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Asymptotics for two-dimensional vectorial Allen-Cahn systems

Fabrice BETHUEL*

Abstract

The formation of codimension-one interfaces for multi-well gradient-driven problems
is well-known and established in the scalar case, where the equation is often referred to
as the Allen-Cahn equation. The proofs rely for a large part on a monotonicity formula
for the energy density, which is itself related to the vanishing of the so-called discrepancy
function. The vectorial case in contrast is quite open. This lack of results and insight
is to a large extent related to the absence of known appropriate monotonicity formula.
In this paper, we focus on the elliptic case in two dimensions, and introduce methods,
relying on the analysis of the partial differential equation, which allow to circumvent the
lack of monotonicity formula for the energy density. In the last part of the paper, we
recover a new monotonicity formula which relies on a new discrepancy relation. These
tools allow to extend to the vectorial case in two dimensions most of the results obtained
for the scalar case. We emphasize also some specific features of the vectorial case.

1 Introduction

1.1 Statement of the main result

Let € be a smooth bounded domain in R?. In the present paper, we investigate asymptotic
properties of families of solutions (u.).>o of the systems of equations having the general form

—Au. = -2V, V(u:) in Q C R?, (1)

as the parameter £ > 0 tends to zero. The function V', usually termed the potential, denotes
a smooth scalar function on R¥, where k € N is a given integer. Given & > 0, the function u,
represents a function defined on the domain  with values into the euclidian space R¥, so that
equation (1) is a system of k scalar partial differential equations for each of the components
of the map u.. The equation (1) and its parabolic version have been introduced as models in
the physics and material literature (see e.g. [17] and the references therein, in particular [8]).

Equation (1) corresponds to the Euler-Lagrange equation of the energy functional E. which
is defined for a function v : Q — R¥ by the formula

ul?
Eg(u):/ﬂee(u):/ﬂe|v2| —|—1V(u). (2)
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We assume that the potential V' is bounded below, so that we may impose, without loss of
generality and changing possibly V' by a suitable additive constant, that

infV =0. (3)

We introduce the set ¥ of minimizers of V', sometimes called the vacuum manifold, that is
the subset of R* defined by
S={yeR"V(y) =0}

Properties of solutions to (1) crucially depend on the nature of 3. In this paper, we will
assume that the vacuum manifold is finite, with at least two distinct elements, so that

(H)) X ={01,..,04}, ¢>2, 0; €RF Vi=1,..,q

We impose furthermore a condition on the behavior of V' near its zeroes, namely:

(Ha) The matriz V2V (0;) is positive definite at each point o; of X, in other words, if \;
denotes its smallest eigenvalue, then A, > 0. We denote by )\;r its largest eigenvalue.

Finally, we also impose a growth condition at infinity:
(H3) There ezist constants X > 0 and R > 0 such that

v V) 2 asclyl’, iy > Roo and "
V(z) = + o0 as |z| = +o0.

A potential V' which fullfils conditions (Hy), (Hz2) and (Hs) is termed throughout the paper
a potential with multiple equal depth wells (see Figure 1).

A typical example is provided in the scalar case K = 1 by the potential, often termed
Allen-Cahn or Ginzburg-Landau potential,
(1-w?)?

Vi =S (5)
whose infimum equals 0 and whose minimizers are +1 and —1, so that ¥ = {+1,—1}. It is
used as an elementary model for phase transitions for materials with two equally preferred
states, the minimizers +1 and —1 of the potential V.

Important efforts have been devoted so far to the study of solutions of the stationary Allen-
Cahn equations, i.e. solutions to (1) for potentials similar to (5), or to the corresponding
parabolic evolution equations, in the asymptotic limit € — 0, in arbitrary dimension N of the
domain €. The mathematical theory for these questions is now well advanced and may be
considered as satisfactory. The results found there provide a sound mathematical foundation
to the intuitive idea that the domain {2 decomposes into regions where the solution takes
values either close to 4+1 or close to —1, the regions being separated by interfaces of width
of order €. These interfaces are expected to converge to hypersurfaces of codimension 1,
which are shown to be generalized minimal surfaces in the stationary case, or moved by mean
curvature for the parabolic evolution equations.



Figure 1: Graph of a potential with several minimizers.

Several of the arguments developed in the scalar case rely on integral methods and energy
estimates. A central tool in the scalar case is the measure associated to the energy, defined
on {2 by

Ve = ec(us) dz on £, (6)

where e.(u.) is defined in (2). The interfaces between the regions where u. takes approxi-
mately constants values close either to +1 or —1 (for the Allen-Cahn potential given in (5))
are then defined as concentration sets for the measure v.. In [27], T.Ilmanen proved conver-
gence of these interfaces to motion by mean curvature in the weak sense of Brakke, a notion
relying on the language, concepts and methods of geometric measure theory. In the elliptic
case considered in this paper, convergence to minimal surfaces was established by Modica
and Mortola in their celebrated paper [31]. J.Hutchinson and Y.Tonegawa in [26] established
related results for non-minimizing solutions. More references will be provided in Subsection
1.3.

Remark 1. The case of minimizing solutions was treated in the vectorial case by Baldo,
on one hand (see [7]), and Fonseca and Tartar on the other (see [22]), where they obtained
quite similar results to [31] (for the scalar case). The approaches rely on ideas from Gamma
convergence, and do not rely on monotonicity formulas, as for general stationary solutions or
solutions of the corresponding evolution equations in the scalar case.

The purpose of the present paper is to show that, to some extent, the results obtained in
the scalar case can be transposed to the vectorial case for potentials V' which fulfill conditions
(Hy), (Hz) and (Hs), that is potentials with multiple equal depth wells, if we restrict ourselves
to two dimensional domains. Let us emphasize that, prior to the present paper, no mono-
tonicity formula similar to (36) was known in the vectorial case, so that different arguments
have to be worked out. Several of them rely strongly on some specificities of dimension two.

We assume throughout the paper that we are given a constant Mg > 0 and a family
(ug)o<e<1 of solutions to the equation (1) for the corresponding value of the parameter ¢,



satisfying the natural energy bound
Ec(us) <My, forany 0 <e < 1. (7)

Assumption (7) is rather standard in the field, since it corresponds to the energy magnitude
required for the creation of (N — 1)-dimensional interfaces. Our first main result is the
following;:

Theorem 1. Let (u., )nen be a sequence of solutions to (1) satisfying (7). There exist a
subset &, of Q and a subsequence of (en)nen, still denoted (en)nen for sake of simplicity,
such that the following properties hold:

i) S, is a closed 1-dimensional rectifiable subset of Q such that
' (6,) < Cu My, (8)

where Cy is a constant depending only on the potential V.

i) Set th, = Q\ 6, and let (U)jer be the connected components of k.. For each j € I
there exists an element 0; € X such that

Ug,, — 0, uniformly on every compact subset of W, as n — +o0. (9)

Similar to the results obtained for the scalar case, Theorem 1 expresses, for the vectorial
case in dimension two, the fact that the domain can be decomposed into subdomains, where,
for n large, the maps u., takes values close to an element of the vacuum set ¥ (see Figure 2).
These subdomains are separated by a closed one-dimensional set &,, on which the map u,,
might possibly undergo a transition from one element of 3 to another. Notice that Theorem
1 extends also to non-minimizing solutions the results® of [7, 22] (see Remark 1).

As in the scalar case, our proofs involve the energy measures v, defined in (6), in particular
in order to define the set &,. In view of (7), the total mass of the measure v, is bounded by
Mp, that is

Va(Q) < M07

so that by compactness, there exists a decreasing subsequence (gy,)nen tending to 0 and a
limiting measure v, on Q with v,(Q) < Mj, such that

Ve, — V, in the sense of measures on {2 as n — +o0. (10)

The set &, then corresponds to the concentration set for the measure v,: We will see that
v, vanishes on the complement of the G,, and that the one-dimensional density of vy is
bounded away from zero on &,. The proof of this result is established thanks to a suitable
clearing-out result, a common method in the field : This result is stated in Theorem 7 and
relies on corresponding results at the level of the PDE (1), which are stated in Theorem 6.
The precise definition of &, is given in (66). As we will also see below, our methods involve
also other measures of interest concentrating on G,.

1This result holds however in arbitrary dimension and yields stronger, in particular minimizing, properties
for &,.



An important property of the set &, stated in Theorem 1 is its rectifiability. Recall that
a Borel set S C R?, is rectifiable of dimension 1 if its one-dimensional Hausdorff measure is
locally finite, and if there is a countable family of C! one-dimensional submanifolds of R?
which cover H!-almost all of S. Rectifiability of S implies in particular, that the set S has an
approzimate tangent line at H'-almost every point zo € S. More precisely, in our context,
this means that there exists a set 2, C &,, with H!(2(,) = 0 such that, if 29 € &, \ 2, then
we have

1 ]D)Q
lim 2 (62 1 D@0, ) _ (11)
r—0 2r
and there exists a unit vector €, (depending on the point z¢p € &,) with the following
property: For any number 6 > 0 we have
hmHl (64 N (D? (w0, 7) \ Cone (%0, Exy, H))) o (12)

r—0 T

where, for a unit vector € and 0 > 0, the set Cope (20, €, 0) is the cone given by
Cone (20,2,0) = {y € B2, &4 - (y = 2)| < tan 0] (y — 20)|} , (13)

&+ being a unit vector orthonormal to & (see e.g. [35]). A point z¢ € &, \ Ay is termed a
reqular point of &,.

In the minimizing case, it is established in [7, 22] that the interface &, is a co-dimension
one minimal surface, which hence reduces, in dimension two, to a union of segments. Our
next result shows that, in dimension two, the same kind of result holds for non-minimizing
solutions. In order to state the result, and since the notion of minimality is also related in
our context to the presence of densities of measures, we specify first which other measures,
besides vy, we have in mind. To that aim, we introduce a limiting measure for the potential
term: Consider the positive measure (. defined on €2 by

= V(Eus)dx, so that C(€) < M. (14)

Since the family ({:)e>0 is uniformly bounded, passing possibly to a further subsequence, we
have the convergence
V(usn)
En
Theorem 2. There exists a set &, C &, such that 7—[1(@3*) =0, such that A, C €, and such

that, for xg € 6, \ &, the set &, is, locally near xo, a segment. More precisely, there exists
a unit vector €, and a radius ro > 0, such that

Ce, =

dz — (., in the sense of measures on 2, as n — 4o00. (15)

6* N D2(1’0, To) = (1’0 — T0€x07 xo + Togxo) . (16)

Moreover the restriction of the measure (s to D?(xg,79) is proportional to the H' measure of
(o — T0€xy, To + T0€x, ), that is, there exists a number ¢z, > 0, depending on xo, such that

0 LD?(xg,79) = Cxo (7—[1 L (20 — 70€xy, To + roé’xo)) . (17)

The number ¢y, is bounded below, that is, there exists a constant no(d(zg)) > 0, depending
only on 'V, My and d(zg) = dist(xg, Q) such that

Czo > No(d(zg)), for any zp € 6, \ €,. (18)



Notice that, as a consequence of (18), for any xg € S, \ &, , the one-dimensional density
O, defined by
D?(x,
O, (20) = lim infw (19)
r—0 2r

is bounded below by mno(d(z¢)), hence away from zero, and is locally constant, equal to
Czo = Ox(x0).

Remark 2. It is known, in the scalar case (see e.g. [29]), that, the set &, is orthogonal,
in some appropriate sense, to the boundary, if the boundary is smooth, and if we impose
furthermore a Neumann type boundary condition

Oue
on

(0) =0, for o € 90. (20)

One might conjecture that the same holds true in the two-dimensional vectorial case, that is
the segments composing the set G, are orthogonal to the boundary.

Theorem 2 expresses local stationarity properties of the set &, and the measure (.. As
we will discuss later, the set &, may have singularities, and hence &, may be non empty.
However, more global stationary properties are also available, which encompass the presence
of singularities. In order to state these properties, the abstract language of varifolds is the
most appropriate. In order to use this language, an important preliminary step is to establish
that the measure (, concentrates on the set &,, i.e. its restriction to the set 2\ &, vanishes
(see Theorem 1), and that it is absolutely continuous with respect to the H!'-measure on
S, (see Theorem 4). In particular, this property implies that the measure (, is completely
determined by the set &, and the density Oy, and we have

(e = O,(H'L&,) = 0,d), where d\ = H' L G,. (21)

These properties will be discussed later (see Theorem 4 where they are established). We
have:

Theorem 3. The rectifiable one-dimensional varifold V(Sy,©y) corresponding to the mea-
sure (x 1s stationary.

The theory of varifolds has been developed in the context of minimal surfaces, but it turns
out to be also an important tool in the study of singular limits (see e.g. [35] for a general
presentation of the theory of varifolds). The fact that V(S,,©,) is a stationary varifold is
equivalent to the following statement: Given any smooth vector field X € C2°(Q,R?) on Q
with compact support, the following identity holds

/ div,, o, Xdie = 0. (22)
Q

Here, for z € &, \ €,, the number divaG*X(x) is defined by

—

div,, . X(z) = (a,,, : 6)2(95)) &, (23)

Ty Sx
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Figure 2: The domain ) is divided in subdomains where u. is nearly constant. The interfaces
are union of segments. One might conjecture that the segments are orthogonal to the boundary
if one imposes Neumann boundary conditions (see Remark 2).

The structure on one-dimensional stationary varifolds, with densities bounded away from
zero, was thoroughly investigated by Allard and Almgren in [5]. They showed that such
varifolds have a graph structure and are the union of segments with densities. Theorem 2
may therefore be deduced from Theorem 3 invoking the results of Section 3 in [5]. In the
present paper, we provide however a simple self-contained proof, based on several results
which are worked out independently.

One-dimensional stationary varifolds may have singularities, which are characterized by the
fact that the density is not constant in their neighborhood. The simplest example of such a
singular varifold in the whole plane with a singularity at 0 is provided by the union of a finite
number of distinct half-lines, intersecting at the origin, with appropriate constant densities.
More precisely, consider an integer d > 2, and let €, €5, ..., €y be d distinct unit vectors in
R2. Set

d
S, = 'U1]Hi’ where for i = 1,...,d, we set H; = {té;,t > 0}, (24)
1=

and let 61,...,04 be d positive numbers. If 6; represents the density © of S, on H; (which
is hence constant there), then V(Sy, ©) is a stationary one-dimensional rectifiable varifold if
and only if

d
> 06 =0. (25)
=1

Singularities z¢ which behave locally as (24)-(25) are termed of finite type. It turns out that
singularities of finite type appear in the asymptotics of the vectorial Allen-Cahn equation,
even in the minimizing case, and are actually an intrinsic part in the problem. A first trivial
example is provided by an uncoupled system of two scalar Allen-Cahn equation, taking for

1
instance as a potential V : R? — R the potential V (u1,ug) = 1 [(1—u})®+ (1 —u3)?]. For



this potential, the map u. defined on R? by

X1 ) 2
ug(x1,r9) = ( tanh { —— | ,tanh | —— , for (z1,x2) € R?,
(@1, 22) ( (\/56> <\/§6>> (@1, 22)

is a solution to (1) on the whole plane. The limiting interface &, for ¢ — 0 is then given as
the union of the lines 1 = 0 and xo = 0, so that 0 is a singularity where these lines cross
with right angles. One may actually construct similar examples where the angle between the
two lines is arbitrary.

A more involved example is constructed in [16], where a sequence of minimizing solutions
is constructed on the entire plane, for a potential with three minimizers and equilateral
symmetry. The set &, then consists of three half lines with equal angles and equal densities,
and yields a singularity at zero with triple junction (see Figure 3). The appearance of triple
junctions in general minimizing problems is discussed in [37] and analyzed there through
Gamma-convergence methods.

Remark 3. Singularities of finite type have also been constructed as limits of scalar Allen-
Cahn problems (see [19, 18, 24]). In these constructions, the number d of half-lines in (24) is
even.

Besides singularities with a locally finite sum of segments as in (24), an example of a
singularity of a stationary varifold with an infinite complezity is produced in [5]. It is however
shown in [5] that the occurrence of such singularities is ruled out if the set of densities is
discrete. As we will see later, there are examples of potential such that the possible set of
densities is infinite, so that singularities of infinite type cannot be ruled out a priori in the
limits of solutions to (1).

Figure 3: Example of a triple junction, as in [16].

1.2 Comparing results in the scalar and vectorial cases

Although the results stated in Theorems 1, 2 and 3 for the vectorial Allen-Cahn equation are
somewhat parallel with the results obtained so far in the literature for the scalar case, it is



worthwhile to stress some major differences between the scalar and the vectorial case.

The one-dimensional case
Distinct behaviors are already observed for the one-dimensional case. Indeed, for Q = R,
equation (1) reduces to the ordinary differential equation

_ d2w,
ds?

= —£2V,V(w.) on R. (26)

Finite energy solutions to (26) necessarily connect at 00 two minimizers 0~ and ot: They
are called profiles or heteroclinic connections, if 0~ # oT. Multiplying (26) by ., we are

led to the conservation law | ’2
d /1 We
v — =0 27
3 (v -5 —o (27)

so that for profiles one derives the identity
elwe| = v/2V (we) on R. (28)

In the scalar case, the first order equation (28) is easily integrated by separation of variables,
so that profiles connect only nearby minimizers 0~ and o™ of the potential, and are essentially
unique, up to translations and symmetries. For instance, in the case of the Allen-Cahn
potential (5), the solution is given up to translation and symmetry, by

we(s) = tanh <\/S§e> , for s e R.

The situation is very different in the vectorial case, since relation (28) is less constraining:
Under additional assumptions on the potential V', one may find several profiles connecting
two minimizers of the potential (see e.g [3] and references therein). The search for such
solution is still an active field of research (see for instance [4, 38, 32]). As we will see next,
the genuine non-uniqueness of one-dimensional profiles is a first source of important difference
also in the higher dimensional case, in particular concerning the conservation law (28).

The higher dimensional case

The higher-dimensional theory in the scalar case is rather advanced and a very satisfactory
theory has been set up in any dimension N > 2. As mentioned, the existence of a (N — 1)-
dimensional set &, is established in [27, 26]. Moreover, it is shown there that the (N — 1)-
rectifiable set G, equipped with the energy density corresponding to the measure v, defined
in (10) is a stationary rectifiable varifold. The results in [26] embody the intuitive idea that
locally, the equation reduces to a one-dimensional problem. More precisely, typically, in
dimension two, the expected situation reduces, locally near some point xg, to the case

u(x) ~ we(xs), with z = (z1,22) € R?, (29)

where the coordinates are chosen so that the tangent to &, at zg has equation z9 = 0, and
where w, stands for a solution to the one-dimension problem (26) (see Figure 4). Notice that
the possibility of gluing of several such one-dimensional solutions is not excluded, but we
will not discuss this here. Ultimately, the results in [27, 26] provide a rather simple picture



of the solutions. They involve a minimal surface, the solution may be represented as one-
dimensional profiles glued to the surface in the transversal direction, so that one is tempted
to write the correspondance

solutions to (1) ~ minimal surface + glued profiles. (30)

The general structure of solution is hence fairly well understood (see Figure 4). As a matter of
fact, the correspondance goes to some extent in either way, since, conversely, given a minimal
surface, one may construct solutions to the scalar Allen-Cahn equation having the previous
behavior (see [33]). This should be also connected with the famous De Giorgi conjecture
([20]) (see [34], and references therein).

-

Transition line @

Gl

ok -

/

[

Figure 4: Interface near a reqular point xg in the scalar case, with an Allen-Cahn type
potential.

The picture in the vectorial case is more complex. Firstly, as we have already seen, the
set of one-dimensional profiles is much larger, it could perhaps be even infinite. Besides this,
there are solutions which cannot be reduced to one dimensional profiles, in view of results in
[1] and [15], and are hence genuinely multi-dimensional, so that a property similar to (29) or
(30) cannot not be expected in full generality.

In [15], it is shown that, under specific conditions on the potential V', one may construct
mountain-pass solutions to —Au = V,,V (u) on the cylinder A;, = [-L,L] x R provided L > 0
is sufficiently large, with periodic boundary conditions in the 1 direction, namely such that

u(=L,z2) = u(L, z2) and %(—L,l'g) = %(L,xg), for any zo € R. (31)

8951 8171

The solution obtained in [15] is not a one-dimensional profile, since one may show that there
are also tangential contributions: Indeed, we have

)
8—;‘1 #0on Ap. (32)

10



Figure 5: Interface with a periodic pseudo-profile

One then considers the scaled map on R? defined for x = (x1,z2) by

xz — Neé;

us(x) = u ( > , if 1 € [Ne, (N + 1)¢], (33)

£

which solves (1) on R? (see Figure 5). Moreover, it follows from (32), that for the transversal
derivative, we have

Oue
8:31

2

£ — W11 # 0, where w11 = ¢H'(D) with D = {(21,0),z; € R}, (34)

for some constant ¢ > 0. Finally it can be shown that the set of densities obtained for such
solution is infinite, by choosing various values for the constant L > 0.

1.3 Comparing the methods in the scalar and vectorial cases

Monotonicity for the energy in the scalar case

A large part of the arguments developed for the scalar theory, as well as actually in the
present paper, rely on integral estimates, starting with the energy, but also the integral of
the potential. In the present context, we set for an arbitrary subdomain G C €2,

E: (ue, G) = /Geg(u)da: and V. (u,G) = i/GV(u)dm (35)

Monotonicity formulas play a distinguished role in the field. We recall that the monotonicity

formula
1

d
4 (TN_QE (uE,IB%N(xo,r))> >0, for any @0 € 2,

holds for arbitrary potentials, and is relevant if one wants to establish concentration on N — 2
dimensional sets, as it occurs in Ginzburg-Landau theory (see e.g [11, 14, 6]). If one wants
instead to establish concentration on N — 1 dimensional sets, then the stronger monotonicity
formula

4/ 1
I <TN_1E5 (UE,BN(%,T))> >0, for any o € €, (36)

11



seems more appropriate. As a matter of fact, we have, in dimension N = 2, the identity (see

Subsection 3.7)
d [ E. (ue,]D)z(r)) 1 € Jue 5
ar ( = 5 [ e D R (37)

where & (u:) denotes the discrepancy function given by

|Vue|?
—e—.

. (39)

£eue) =V (ue)
Notice that, in view of (28), the discrepancy function vanishes for one-dimensional profiles,
a property which allows to compute solution in the scalar case as seen before.

Formula (36) has been established in [27] in the scalar case. As identity (37) shows in
dimension 2, if the discrepancy function is non-negative, then (36) holds. As the matter
of fact, the proof provided in [27] relies strongly on the non-negativity of the discrepancy
function &, a property obtained there thanks to the maximum principle. The fact that &
is non-negative for scalar solutions of (1) was observed first by L. Modica in [30] for entire
solutions. It is actually proved in [26] that the discrepancy . vanishes asymptotically as
e — 0.

Inequality (36) is the cornerstone of the scalar theory, as developed in [27, 26]. It yields both
upper and lower bounds for the concentration of the energy. A large part of the arguments
deals with properties of limiting measures, obtained as € — 0. As already mentioned, instead
of the measure (, which appears both in Theorem 1 and Theorem 2, obtained as a limit
of the potential (see (14) and (15)), the central tool in the scalar case is the corresponding
measure for the full energy. More precisely, let (v:)o<e<1 be the family of measures defined
on © by (6), and v, be the limiting measure obtained by compactness in (10). A first
straightforward consequence of the monotonicity formula (36) for the energy is that the one-
dimensional density of the measure v, is bounded from above. This property then implies
that the concentration set &, of v, has at least dimension one. Combining the monotonicity
(36) with a weak form of the clearing-out property, similar to Proposition 6.1 in the present
paper, the monotonicity formula yields also a lower bound on the density of v, which is hence
bounded away from zero. This property implies that the concentration set &, of v, has at
most dimension one, hence its dimension is ezxactly one. The previous discussion therefore
shows that the concentration property of v, is a direct consequence of (36).

Notice also that the previous arguments show that the measure v, is absolutely continuous
with respect to d), the HV~1 measure on &,, so that one may write v, = e, d\, where e, is
an integrable function on &,. Going to the limit &€ — 0 in (38), we obtain, since £ — 0 as
e —0,

20, = Vy, (39)

a relation which in some sense extends (28) to the high-dimensional setting. We will see, in
contrast, that relation (39) does not extend to the vectorial case.

Remark 4. As already mentioned, it has been proven in [27, 26] that, in the scalar case,
the rectifiable varifolds V (&, @,) corresponding to the measure v, is stationary. In view of
relation (39) this implies that the rectifiable varifold V(S,, ©,) corresponding to the measure
(x is also stationary: This is hence consistent with Theorem 3 of the present paper.

12



Circumventing lack of monotonicity for the energy in the two-dimensional vec-
torial case.

Concerning the vectorial case, non-negativity of the discrepancy as well as the monotonicity
formula are known to fail for some solutions of the Ginzburg-Landau system, so that the
question whether they might still hold under some possible additional conditions on the
potential or the solution itself is widely open to our knowledge (see [2] for a discussion of
these issues and for additional references).

In order to circumvent the lack of monotonicity formula for the energy, we have to work
out new results on the level of solutions to PDE (termed in the paper the e-level), which
will be presented in Subsection 1.4. The clearing-out result given in Theorem 6 is central
in our analysis: It implies, as in the scalar case, that the set G, has dimension at most
one. Combining with several other results for the PDE, we are able to deduce most of the
properties developed in Theorem 1.

For the proofs of Theorems 2 and 3, the fact that the measures (, and v, are absolutely
continuous with respect to the H! measure of &, is crucial. We will show, in the last part of
this paper:

Theorem 4. The measures vy and (s have support on the set G, defined in Theorem 1,
and are absolutely continuous with respect to A\ = H' &, the one-dimensional Hausdorff
measure on S,. Let €, and Oy denote the densities of Vi and (s with respect to A respectively,
s0 that vy = exdX and (, = O,d)\. We have the inequalities, for x € &,,

M1 < ex(7) < Kdens (d(7)) Ox(), and
Mo (40)
< —
)= 4Gy
wheremny > 0 is some constant depending only on V', d(x) = dist(z, 9Q) and where Kgens (d(z))
0 denotes a constant depending only on V', My and d(z).

Notice that we have also the straightforward inequality (. < vy, so that O, < e,. It follows

from the inequalities (40) that the densities e, and ©, are locally bounded from above and
away from zero.

A new discrepancy relation
Our arguments require to split the energy, in particular the gradient term, into its compo-
nents, leading to several other measures. For a given orthonormal basis (€1, €2), we consider,
for i, j = 1,2, the quadratic gradient terms euey, e, ;, and pass to the limit e — 0, extracting
possibly a further subsequence

Enlle, g, * Uep g, — M in the sense of measures on 2, as n — +oo,for i, =1,2, (41)
where 1, ; ; denotes a bounded (signed) Radon measure on 2. Notice that
=2V, < Hyij < 2V and Wyji = K- (42)

In the scalar case, the fact that solutions essentially reduce to the one-dimensional profile, with
respect to the transversal direction, also implies the vanishing of the tangential contributions
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to the gradient terms. More precisely, we may write, in view of Theorem 4 since v, is
absolutely continuous with respect to dA

Hoyi,j = Mg jdA, (43)

where m, ; ; is an integrable function on &,. The definition and values of m, ;; strongly
depend on the choice of orthonormal frame. In order to derive some more intrinsic objects,
we may work in a moving frame associated to S,. More precisely if xg € &, \ &,, and if the
orthonormal frame (€1, €2) is chosen so that €; = €, then we set

my, 1,1 (T0) = mu22(w0), my (o) =my1,1(20) and m, | |(¥o) = my12(0),  (44)
and define the measures
Mt 0 =M1 1 dA, =y dA, and p g = my ; dA (45)

In the scalar case, the fact that the tangential contributions vanish (see [26]) can be expressed
as

Hy,) =0 when k =1 (i.e. in the scalar case) and (46)
e 1, =0 when k =1 (i.e. in the scalar case).
On the other hand, vanishing of the discrepancy leads to (see [26] once more)
204 = My, 1,1, when k =1 (i.e. in the scalar case). (47)

It turns out that the relation (47) does not hold in general for the vectorial case. Indeed, for
the map constructed in [15] and given in (33), we have w, | # 0, so that the first relation
in (46) is not satisfied. We will see later that the second one is always satisfied, whereas the
discrepancy relation (47) is not, in general. Our next result provides a generalization of (47)
for the vectorial case.

Theorem 5. We have the identities

200 = Pt — B and 1 =0. (48)

Notice that, in view of identities (46), the discrepancy identity (47) appears as a special
case of (48).

Recovering monotonicity

So far, we have introduced in Theorems 1, 2, 3, 4 and 5 the main results of this paper.
As mentioned, many arguments have to be carried out without monotonicity formula, in
particular Theorem 1. However, in order to obtain the proofs of Theorems 2 to 5, we rely
ultimately on a new monotonicity formula, which we describe at the end of this subsection.

Before doing so, let us emphasize that, in order to prove Theorem 4 and several intermediate
results, we rely in an essential way on Lebesgue’s decomposition theorem for measures, a result
which asserts that measures at hand can be decomposed into an absolutely continuous part
and a singular part with respect to the one-dimensional Hausdorff measure d\ on &,. More
precisely, we decompose the measures (, and v, as

v, = Vi +v{¢, and ¢, = (§ + C§°, (49)
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where the measures v¢ and (¢ are absolutely continuous with respect to the measure
H'L&,, that is
v < HUIL G, and (% < HI L&,

and
v; L viand ¢§ L C¢°. (50)
We are then in a position to write, prior to the proof of Theorem 4,

vi¢ = e dA and (2° = O,dA.

An important intermediate step in the paper, is a preliminary version of Theorem 5 (see
Proposition 5) established only for the absolutely continuous parts of the measures.

In order to show that v§ = (; = 0, the cornerstone of the argument is an alternate
differential inequality for solutions of the equation (1). We have indeed, for any xg € €2 such
that D?(zg,7) C Q (see Subsection 3.6 for the proof), the differential relation

1d V(ug,D2($0,T)) 1 2 1 2
g@ ( r = E /BDQ(ZO’T) ?V(UE) — 1"72 d'T. (5].)

Although this does not transpire from the formula above, we will see that the right hand side
has, in an asymptotic limit € — 0, an appropriate sign, yielding monotonicity for the measure
(.: As a matter of fact, it turns out that the function r — (,(D?(xg,7))/r is non-decreasing
(see Proposition 6). This yields an upper bound for the density of (., so that the singular
part vanishes.

Oue
00

2 Ou,
or

Remark 5. Let us emphasize once more that, at the € level, we do not know that the right
hand side of identity (51) is not negative or not.

In the next subsections, we provide more details on the structure of the proof.

1.4 Elements in the proof of Theorem 1: PDE analysis

As mentioned, many of our main results, dealing with the limiting measures, are derived
from corresponding results at the e-level for the map u., for given € > 0, which rely on PDE
methods. We describe next these PDE results.

1.4.1 Scaling invariance of the equation

As a first preliminary remark, we notice the invariance of the equation by translations as well
as scale changes, an observation which plays an important role in our later arguments. Given

. €
any fixed » > 0 and € > 0, we introduce the corresponding scaled parameter € = —. For a
r

given map u. : D?(xg,r) — R¥, we consider the scaled (and translated) map @z defined on
the unit disk D? by
Gz(x) = ue(rx + x0)), Vo € D?. (52)

If the map u,. is a solution to (1), then the map @z is a solution to (1) with the parameter e
changed into €. The scale invariance of the energy is given by the relation

ez(tz)(z) = rec(us)(re + zo), Yo € D?, with & = ; (53)
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Integrating this identity, we obtain the integral relations
E. (ue,D*(r)) = rEz (12, D*(1)) and V. (us,D*(r)) = rVe (@z,D*(1)) , (54)

where we have made use of the notation (35). It follows from the previous discussion that
the parameter € as well as the energy E. behave, according to the previous scaling laws,
essentially as lengths. If we emphasize the dependance on r by writing € = &, then, in a
loose sense, identity (54) shows that the quantity &, 'E;z, is scale invariant, since

& Bz, (@iz,,D*(1)) = e 'Ex (ue,D*(r)), for any 0 <r < 1. (55)

1.4.2 The e-clearing-out Theorem

We next provide clearing-out results for solutions of the PDE (1). In view of the assumptions
(Hy), (H2) and (H3) on the potential V', we may choose some constant py > 0 sufficiently
small so that

B (03, 2u0) ﬂIB%k(Gj,QuO) =), for all i # j in {1,--- , ¢} and such that

1 56
QA;Id <V*V(y) <2\'1d, forallie {1,---,q} and y € B(oy, 210). (56)

We then have:

Theorem 6. Let 0 < e <1 and u. be a solution of (1) on D?. There exist constants 11 > 0
and Cyen > 0, depending only on the potential V', such that if

E. (ue,D?) < 214, (57)

then there exists some 0 € X such that

o=

, for every z € D2(§)7 (58)

|U5($) - O—‘ < Cyell (Ee(U57D2)) 4

< Mo
- 2

where Yo is defined in (56). Moreover, there exists some constant Cyrg > 0 depending only
on the potential V', such that we have the energy estimate

E. (ua,ID)z <:>> < Cprg €Ec (ue, D?). (59)

Theorem 6 is the main (new) PDE result of the present paper: It paves the way to the
concentration of measures on the set &y, and will be used to show that its dimension is
at most one. The main ingredient in the proof of Theorem 6 is provided by the following
estimate:

Proposition 1. Let 0 < ¢ < 1 and u. be a solution of (1) on D?. There exists a constant

Cgec > 0 depending only on V' such that
%
(/ ee(ug)da:> —1—8/ eg(ug)dx] : (60)
D2 D2

/ ec(us)dz < Cqec
D2(%)
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Proposition 1 provides a very fast decay of the energy on smaller balls, provided both
E:(us) and ¢ are sufficiently small. Combining the result (60) of Proposition 1 with the
scale invariance properties of the equation given in subsection 1.4.1, we obtain corresponding
results for arbitrary discs D?(xg,7) C Q. Indeed, we first apply Proposition 1 to the scaled
and translated map 7z defined on D?(1) by (52) with parameter £ = ¢/r: Expressing the
corresponding inequality (60) we obtain, provided £ < 1, i.e. € <,

E: (ﬂg,]D)Q (196» < Caee [Bz (@)’

Since Ez (tiz) = r'E,. (ue,]D)Q(:Uo,r)) and E; (ﬂg,]D)Q(Q/lG)) =r1E, (uE,DQ(x0,9r/16)) we
are led, provided € < r, to the inequality

(NI

+ 2Bz (ag)] .

E. <u€,D2 (:[;0, ?g)) < Caee [\}; (B. (ue, D (20,7))) + §E€ (uE,D2(x0,T))} . (61)

Iterating this decay estimate on concentric discs centered at xg, and combining with elemen-
tary properties of the solution u., we eventually obtain the proof of Theorem 6.

Invoking once more the scale invariance properties of the equation given in subsection 1.4.1,
the scaled version of Theorem 6 writes then as follows:

Proposition 2. Let xg € Q and 0 < & < r be given, assume that ]D)Q(:L'(),T) C Q and let u, be
a solution to (1) on Q. If
E. (ug, D? (o, r))

r

< 21117 (62)

then there exist some 0 € ¥ such that

3r

1
E D? 6
|ue(z) — 0] < Cyen < e (e, . (xO’T))> , for z € ]D)Q(xo, Z)

and (63)

or €
EE <U5, ]D)2 <$0’ 8)) S Cnrg ;Es (UE, ]D)2 (1,‘0, 7")) .
\

< Mo
- 2

The proof of Proposition 2 is a straightforward consequence of Theorem 6 and the scaling
properties given in subsection 1.4.1, in particular identities (54).

1.4.3 Other results at the e-level

The analysis of the limiting measures requires some other ingredients, in particular concerning
the interplay between the measures (. and V., leading to the relations (40) on the limiting
densities. The connectedness of &, also requires results at the e-level, in particular we will
rely on Proposition 4.6.

We next present the main tools for handling the measures and the concentration set &,.
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1.5 Elements in the proof of Theorem 1: construction of G, and clearing-
out for the measure v,

As mentioned, the set &, introduced in Theorem 1 is obtained as a concentration set of the
energy measure V.. The properties stated in Theorem 1 are, for a large part, consequences
of the two results we present next. These results are deduced from corresponding properties
of solutions to (1), and presented in the previous subsection.

The first result represents a classical form of a clearing-out result for the measure v, and
leads directly to the fact that energy concentrates on sets which are at most one-dimensional.

Theorem 7. Let xg € Q and r > 0 be given such that D*(zg,7) C Q. There exists a constant
M1 > 0 such that, if we have

Vi <D2(1‘0,T))

<11, then it holds v, (DQ(Z'(), 70)> =0. (64)
r

2
The previous statement leads to consider the one-dimensional lower density of the measure
v, defined, for zg € €2, by
Vi (]D)Q(xo, r))
ex(zg) = liminf ——— %~ (65)

r—0 r

so that e,(zg) € [0, +00]. We define the set &, as the concentration set for the measure v,.
More precisely, we set
G, = {x S 9703*(1'0) > 111}7 (66)

where 11 > 0 is the constant provided by Theorem 7. The fact that &, is closed of finite
one-dimensional Hausdorff measure is then a rather direct consequence of the clearing-out
property for the measure v, stated in Theorem 7.

Remark 6. Let us emphasize once more that the previous definition of &, directly leads,
by construction and in view of Theorem 7, to concentration of the measure v, and (, on the
set &, and also a lower bound on the density of v,. The upper bounds on densities require
different arguments, in particular a monotonicity formula.

The connectedness properties of &, stated in Theorem 1, part ii) require a different type of
clearing-out result. Its statement involves general regular subdomains U C 2, and, for & > 0,
the related sets (see Figure 6)

Us = {z € Q,dist(z,U) < 8§} DU and (67)
Vs =Us \ U.

Theorem 8. Let U C 2 be an open subset of 2 and 6 > 0 be given. If we have
v.(V5) =0, then it holds v, (U) = 0. (68)

In other terms, if the measure v, vanishes in some neighborhood of the boundary o, then
it vanishes on Y. This result will allow us to establish connectedness properties of &,. For
instance, we will prove the following local connectedness property:
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Figure 6: The sets Us and V.

Figure 7: The tangent cone property, as given in Proposition 4.

Proposition 3. Let 2o € Q, r > 0 such that D?(xq, 2r) C Q. There exists a radius pg € (r,2r)
such that &, ND?(xg, po) is a finite union of path-connected components.

The connectedness property provided by Proposition 3 implies the rectifiability of &,
invoking classical results on continua of bounded one-dimensional Hausdorff measure (see
e.g [21]). The proof of Theorem 1 is then a combination of the results in Theorem 7 and
Proposition 3.

For the set &, given by Theorem 1, the approximate tangent line property (12) can actually
be strengthened as follows (see Figure 7):

Proposition 4. Let xqg be a reqular point of S.. Given any 0 > 0 there exists a radius
Reone(0, o) such that

S, ND? (20,7) C Cone (%0, €zy,0), for any 0 < 7 < Reone(0, z0). (69)
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1.6 A useful tool: The limiting Hopf differential w,

We introduce the complex-valued measure referred to as the limiting Hopf differential

Wi = (Ky,1,1 — Hy2,2) — 20112, (70)

where the measures 1, ; ; have been defined in (41). Since the measures p, ; ; depend on the
choice of orthonormal basis, the expression of the Hopf differential also strongly depends on
this choice. The measures (, and w, are strongly related in view of our next result.

Lemma 1. We have, in the sense of distributions,

Ow, . 28C*
0z "0z
Relation (71) is the two-dimensional analog of the conservation law (28) for the ordinary
differential equation. It expresses the fact that the energy of the solution wu. is stationary
with respect to variations of the domain. Since the measures v, and (, are supported by S,
identity (71) also expresses a stationary condition, when integrated against a test function,
for the set &, and the measures p, ; ;. As a matter of fact, identity (71) is the starting point
of the proofs of Theorems 2, 3, 4 and 5.

n D'(Q). (71)

Taking the real and imaginary parts of this relation, we obtain, in the sense of distributions,
the modified Cauchy-Riemann relations

0
8752(2“*’1’2) = om (2C — Be11 + Hy22) and
a (72)

0
2 = —_— 2 _
O (211,2) 20 (2Ck + 1,1 — Hi2,2) 5

the second relation being in some sense the closest to (28).

Our next results involve the decomposition of the measures into absolutely continuous parts
with respect to d\ = H!' L&, and singular parts, and describe properties of the absolutely
continuous part. Besides (49), we may also decompose the measures p, ; j, writing

i = My + W with ug, o L ugs . (73)
where the measures ugf ; is absolutely continuous with respect to the measure dA = HLG,.
Relations (49) and (73) imply that there exists a set B, C &, such that H' LG, (B,) =0
and

Vi(6,x\ By) =0, (6, \ By) =0, and ui,; (6, \By) =0, ford,j=1,2. (74)

Since, by construction, the measures ;¢ vi“ and pg5 ; are absolutely continuous with respect
.

to dA, there exist functions ©,, e, and m, ; ; defined on &, such that we have

Cic = @* d)\v Vic = Cx d)\v and pgG ;= m*,ivjdA7 (75)

*,7,]

Besides 2, and B, we introduce a third class of exceptional points, the set €, defined as the
complementary of the set of Lebesgue points for the densities of the measures n¢, ¢, MY
with respect to d\ = H'L_&,. The set &, \ €,, then corresponds to the intersection of
the set of Lebesgue’s points of the functions ©,, e, and m, ; ;. We consider the union of all
exceptional points

¢, =2, UB,UC,, (76)

which is precisely the set appearing in Theorem 2.
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Proposition 5. Let 29 € &, \ €. Assume that the orthonormal frame (€1,83) is chosen so
that €, = €,. We have the identities, for the functions O, m, ; ; defined in (75),

2@)*(350) = III1*7272(1‘()) — m*7171(560) and
(77)
III1*7172(‘7}0) = O.
Next, let wi® = (p.i”fm - u‘ij’Q) — 2ipgS o denote the absolutely continuous part of w, with
respect to dA. The previous result yields, after change of orthonormal basis:

Lemma 2. For a given orthonormal basis (€1,€3), we have the identity
wy® = —2exp(—2iy,) 5" = —2(cos 2y, — sin 2y,) (", (78)
where v« (z) € [—5, 5] denotes, for v € &, \ &, the angle between €, and €.

Remark 7. Changing possibly €, into —é,, we may indeed always choose y,(xp) in an
T T

interval of length 7, here -7, 5].

We present some arguments involved in the proof of Proposition 5. We work near a reqular
point xg = (20,1, Z0,2) € 6.\ E,, where &, is defined in (76), and choose the orthonormal basis
so that €; = €,,. In the neighborhood of the point xy, the measure v, hence concentrates
near the line 9 = xg 2, and we may follow the approach of [6], eliminating the derivatives
according to the transversal direction, that is eliminating the xo-variable, in order to obtain a
one-dimensional problem: For that purpose, we integrate along ”vertical” lines. The general

idea would be to consider integrals of the form
(z0,2+3/4r) (z0,24+3/4r)
I; j(s) = / Wyi i (S, 20,2) dag or W(s) = / Ci(s,202)dxa.
(z0,2—3/4r) (z0,2—3/4r)

However, since at this stage of our argument we don’t know that the measures are absolutely
continuous with respect to d\, one has to be a little more careful in order to define properly
the previous integrals. To that aim, we introduce for s > 0, the segment Z,.(s) = [s—r, s+7]| =
B!(s,r) and the square Q,(x¢) = Z,(w01) X Z.(702), and consider the localized measures

B = 10, (mo) i a0d G = 1 (59 Cx-

We introduce also the orthogonal projection P onto the tangent line D;,O = {zo + s€1,s € R},
and the pushforward measures on Dio of the localized measures we have introduced so far,
namely the measures on D;O given by

REL = Py (i) and G2 =B (G) (79)
defined for every Borel set A of Dio by

{ AL (A) = teig (PTH(A) N Qr(0)) = Beiy (A X R)NQr(x0)) and
CI(A) = G (A x R) N Qr(w)) -
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We then introduce the measures Ly, , and Ny, , defined on Z,(z¢,1) by

Lyor =Py (25* — fhen1 + ﬁ*,2,2> = 200" — il + A, and (80)
80
[N:co,r = IPﬁ <2C* + llk,l,l - llk,2,2> = 2Cf1 + llf,lLl - }1?272

Mutiplying (1) by appropriate test functions and integrating, we are led to the somewhat
remarkable properties of these measures, expressed in Propositions 8.1, 8.4, 8.5 and 8.6,
leading to the completion of the proof of Proposition 5.

1.7 Monotonicity for (, and its consequences

The next important step in the proofs of Theorem 2, 3, 4 and 5 is to show that the singular
part of all measures introduced so far vanish. We first establish this statement for the measure
Cx. Our argument involves a new ingredient, the monotonicity formula for (., which actually
directly yields the absolute continuity of ¢, with respect to H!'L_&,.

Proposition 6. Let g € Q, let p > 0 be such that D?(xg,p) C Q. If 0 <19 < 71 < p, then
we have the inequality

(o (D?*(z0,71)) N (. (D?(20,70))

. (81)

™ To

G (D2 (o, 7))

For every xg € Q the quantity has a limit when r — 0 and we have the estimate

_ G(D?*(z0,7)) _ G(D?(x0, p)) My

O, =1 < < . 82
(wo) = limg === = P = d(x0,00) (82)
The measure (y is hence absolutely continuous with respect to the H-measure on S,.

The starting point of the proof of Proposition 6 is the monotonicity formula (51) for the
potential term V', which may be written, after integration, for a solution u. of (1) on © and
0 < rg <71 < psuch that D?(zg, p) C Q

Ce(D*(wo, 1))  Ge(D*(20,70)) :/ 1
T ro D2(20,r1)\D? (0,r0) 47

2
) dx.

Here (r,6) denote radial coordinates, so that 21—z 1 = rcosf and z9—x 2 = rsinf. Passing
to the limit ¢ — 0 in identity (83), we are led to :

dAzg e (83)

with r = |x — z¢|, and where we have set

2
Ou,

00

Oug
or

2
Naoe = (EV(ug) —er2

—i—e‘

Lemma 3. Let g € Q, let p > 0 and assume that D*(zq,p) C Q. For almost every radii
0 <rg<ry <p, we have the identity

G(D?(x0,71))  G(D*(20,70))

1
_ / —dA, (84)
ry T0 D2(z9,r1)\D2(x0,r0) 4r
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where N =20, — T*Qu*ﬂﬁ + Wy, with

T,

e = €082 O, 1 1 + sin? O, 0.0 + 25in 6 cos Oy, 1 2 and
r_2p*7979 = sin? Oy 1,1 + cos? Oy 22 — 2sin 6 cos O, 1 2.

Notice that we may verify that

2 2

Oue,,

00

Oue,,

— M and g,
or

n—-+o0o

En 0,0 @s measures.

%
n—-+o00

The next step in the proof of Proposition 6 is the fact that, as a consequence of Proposition
5, the absolutely continuous part of N, is non-negative. We then perform a few manipulations
which allow to get rid of the singular part in (81), and lead to the completion of the proof of
Proposition 6.

In order to prove that v, is also absolutely continuous with respect to dA, we will in-
voke the fact that v, is "dominated” by the measure (.. Whereas the reverse statement is
straightforward, since we have the inequality (, < vy, the fact that v, is ”dominated” by the
measure (, is a consequence of several estimates at the e-level, requiring some PDE analysis
(in particular Proposition 4.5). Theorem 5 is then a direct consequence of Theorem 4 and
Proposition 5.

1.8 On the proofs of Theorems 2 and 3

The proof of Theorem 3 is a direct consequence of Lemma 1 combined with Theorem 5.
Theorem 2 could be deduced from Theorem 3 combined with the result of [5], but we provide
in this paper a self contained and perhaps more elementary proof.

1.9 Open questions and conclusion

As already mentioned, one of the main unsolved open problems in the present paper, i.e. in
the two dimensional elliptic context, is the existence or not of singularities of ”infinite type”
in the limiting varifold. If such singularities do exist, their actual construction may turn out
to be extremely difficult.

Although the paper focuses exclusively on the two-dimensional case, it is quite tempting
to believe that a large part of the results might extend to higher dimensions. However, it
is not clear how the arguments presented in this paper, in particular concerning properties
of solutions to the PDE (1), can be adapted in higher dimensions. Indeed, as the previous
presentation hopefully shows, many of our arguments rely on the fact that we work in two
dimensions, and do not seem to have natural extensions in higher dimensions.

Another challenging problem is the related parabolic two-dimensional equation, which has
already attracted attention (see e.g.[17] or more recently [28]). One might express the hope
that some of the methods introduced in this paper extend also to this case.

1.10 Plan of the paper

The outline of the paper merely follows the description given in Subsections 1.4 to 1.8. As
a matter of fact, the presentation of the arguments is divided into three parts. Part I is a
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preliminary part which presents various properties of the energy functional and consists of a
single section, Section 2. It presents some consequences of the energy bound, starting with
estimates on one-dimensional sets, as well as consequences of the co-area formula. Part II,
which runs from Section 3 to Section 6, gathers all properties of solutions to the PDE (1),
including standard one. For a large part, in both parts, special emphasis is put on energy
estimates on level sets of some appropriate simple scalar functions (see (2.8)). Section 5
presents the proof of Proposition 1. The last part, Part III, describes the properties of the
limiting set &, and the limiting measures, and contains therefore the proofs to the main
results of the paper.

Acknowledgement. The author wishes to express his warmest thanks and his strong grat-
itude to the referees of the paper, for pointing out numerous mistakes and for suggesting
several substantial improvements of the paper.
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The results in this section are based on variants of an idea of Modica and Mortola (see [31]),
adapted to the vectorial case in [7, 22]. We also present some applications of the co-area
formula in connection with the functional. The results in this section apply to maps having a
suitable bound on their energy E., of the type of the bound (7). We stress in particular BV
type bounds obtained under these energy bounds. None of the results in this section involves
the PDE (1). We start with simple consequences of assumptions (H;), (Hz) and (H3) for the

potential with multiple equal depth wells (see Figure 1).
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2.1 Properties of the potential

It follows from the definition of py and property (56) that we have the following behavior
near the points of the vacuum manifold X:

Proposition 2.1. For anyi=1,...,q and any y € B¥(0;,2u0), we have the local bound

1. _
Z)\i ly— o> <V(y) <My — o4l

1 (2.1)
5)\;|y — 0P <VV(y) - (y—oi) <2X [y — oil >
Choosing possibly an even smaller constant g, we have
1 q
V(y) = @ = Jhouf on B\ U BH (o3, 20), (2.2)

where we have set \g = inf{\,i=1,...,¢}.

The proof relies on a straightforward integration of (56) and we therefore omit it. Proposi-
tion 2.1 shows that the potential V essentially behaves as a positive definite quadratic function
near points of the vacuum manifolds 3. This observation will be used throughout as a guiding
thread. Proposition 2.1 leads to a first elementary observation:

Lemma 2.1. Let y € R¥ be such that V(y) < &g, where &g is defined in (2.2). Then there
exists some point ¢ € 3 such that

ly — o] < uo.

Moreover, we have the upper bound

ly — o] < \/4X\ V(). (2.3)

We next turn to the behavior at infinity. For that purpose, we introduce the radius
Ro = sup{|o|, 0 € ¥}, (2.4)
and study the properties of V on the set R* \ B¥(2Ry).
Proposition 2.2. There exists a constant oo > 0 such that
V(y) > Booly|?, for any y such that |y| > 2Ry. (2.5)

Proof. Integrating assumption (Hs) along a line joining y to the origin, we obtain that, for
some constant Co, > 0, we have

(Xoo,y|2

V(y) > — Cso, for any y € R”. (2.6)

It follows that

Vi) > el

, provided |y| > R/p = sup {2 %, 4R0} . (2.7)

o0
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On the other hand, by assumption, we have

V(y)
|y|?

>0 fory € Bk(Rlo) \Bk(QRo),

so that, by compactness, we deduce that there exist some constant o > 0, such that

V(y) > ol|y|? for y € BE(2R/o) \ BF(2Ry).

Combining the last inequality with (2.7), the conclusion follows, by choosing o, = inf {%, o}

O
2.2 Modica-Mortola type inequalities
Let 0; be an arbitrary element in ¥. We consider the function x; : Rk — Rt defined by
X.(y) = ¢(ly — 0i]), for y € R,
where ¢ denotes a function ¢ : [0, +00) — R™ such that 0 < ¢’ <1 and
3
p(t) =t if0<t< 2 and pt) = =%, if ¢ > po.
Given a function u : Q — R* we finally define the scalar function w; on Q as
wi(x) = x, (u(z)), Yo € Q. (2.8)
First properties of the map w; are summarized in the next Lemma.
Lemma 2.2. Let w; : Q — R be defined in (2.8). We have
wil@) = [u(w) = o, if Ju(z) - o) < £,
3
wi(z) = %, hence Vw; =0 if |u(z) — 0;] > o, (2.9)
|[Vw;| < |Vu| on £,
and .
IV(wi)?] <4/ Ao J(u)(x), (2.10)

where we have set
J(u) = |[Vul/V(u). (2.11)

Proof. Properties (2.9) are straightforward consequences of the definition (2.8). For (2.10), we
notice that, in view of the second line in (2.9), we may restrict ourselves to the case u(zx) €
B*(0;, 1o), since otherwise Vw;(z) = 0, and inequality (2.10) is hence straightforwardly
satisfied. In that case, it follows from Lemma 2.1 and the fact that 0 < ¢’ < 1, that we have

lwi(z)] < |u(z) — o;] < 1/4Xg 'V (u(x)), for all z such that u(z) € B¥(o;, wo),
so that
19 w:)2(@)] = 2 fwile)| - [Vug(a)| < 219l V(@) <400 Jw)@),  (212)

and the proof is complete. O
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Lemma 2.3. We have, for any x € Q, the inequality
J(u(z)) < ec(u)(x). (2.13)
Proof. We have, in view of the definition of J given in (2.11),

J(u(x)) = (Ve|Vu(z)]).v/e 1V (u(x)). (2.14)

1
We invoke next the inequality ab < §(a2 + b?) to obtain

J(u(z)) < é( Vu(@)]? + eV (u(@)) < es(u)(2),

which yields the desired result. O

2.3 The one-dimensional case

In dimension 1 estimate (2.10) directly leads to uniform bound on w;, as expressed in our
next result. For that purpose, we consider, for r > 0, the circle S'(r) = {z € R?,|z| = r}
and maps u : S'(r) — R*.

Lemma 2.4. Let 0 < ¢ <1 and ¢ < r < 1 be given. There exists a constant Cyns > 0,
depending only on V', such that, for any given map u : S*(r) — RF, there exists an element
Omain € X such that

|u(f) — Omain| < Cunf\// ) + 7=V (u(r)))dr, for all £ € S'(r). (2.15)

Hence, we have

| ( ) - o—mam‘ < Cunf\// dT for ¢ € Sl( ) (216)

Proof. By the mean-value formula, there exists some point £y € S'(r) such that

Viulto) = 5 | Vs (2.17)
We introduce the quantity
Zy(u) = ;/Sl( )(J(U(T)) + 77 W (u(7)))dr, (2.18)

and distinguish next two cases.

Case 1. The function u satisfies additionally the smallness condition

A
Zr(u) < g, where oy = inf{+/ Ao Ho WHO 0 , X0}, (2.19)

&g denoting the constant introduced in Proposition 2.1.
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We deduce from inequality (2.19) and (2.3) that

Vi) < 5 [ Vistr)ar <

= 27

Zr(u)

™

S Zr(u) S X1 S Xq.

It follows from Lemma 2.1 that there exists some opain € X such that

2 gyt 220! g
[u(€0) = Omain|” < 4Aq "V (u(lo)) < V(u(r))dr < Zy(u)
r Si(r) ™ (220)
AN A
< 7: o < %, since 1 < mi% 0
Next we claim that for any ¢ € S!(r), we have the bound
[u(f) — Omain| < %. (2.21)

Proof of the claim (2.21). We first notice that inequality (2.21) is already satisfied for £ = £y.
We argue next by contradiction and assume that there exists some ¢; € S!(r) such that

|u(€1) — Omain| > %. It follows by continuity that there exists some f5 € S'(r) such that

[u(f) — Gumain| < % for any £ € C(£o, £),

Ho
2 )

(2.22)
’u(£2) - Gmain| =

where C({g, {2) denotes the arc on S'(r) joining counterclockwise the points £y and f5. We ob-
tain, by integration on C({y, £2) and using the bound (2.10), the assumption (2.19), inequality
(2.20) and the definition of the constant &,

16 —

< Vw2 | < 4y/2 / J(u)(r)dr, (2.23)
/(:(zo,ez) B O Jsin

2
<8y Agter < B2,

where we have set wWmain = ©(|u(-) — Omain|). This is a contradiction and hence establishes
the claim (2.21).

In view of (2.21) and arguing as for (2.23), we deduce, integrating as above the bound
(2.10), that, for any ¢ € S'(r), we have

3 2
3 < [~ Crminl? (£2) — [t — Orminl? (f0) < /C oy |71 = o
0,€2

[t = Grmainl? (6) — [t = Gomainl? (€0)] < 4¢/25 ) /Sl( RICEL VAT ANSCES

Combining (2.24) with the second inequality in (2.20), we obtain

U — Omain® (£) < <8\/ At + 4)\01) Z,(u), for any £ € S'(r). (2.25)
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Inequality (2.25) yields the desired result (2.15) in case 1, using the fact that ¢ < 1 and
provided the constant C,,; satisfies the bound

CZ > 8/ A0 +H4N "t

Case 2. Inequality (2.19) does not hold. In that case, we have hence
Zp(u) > o. (2.26)

We consider the number Ry = sup{|o|,0 € ¥}, introduced in definition (2.4) and discuss
next three subcases.

Subcase 2a: For any ¢ € S'(r), we have u(f) € B¥(2Rg).
Then, in this case, for any o € X, we have, in view of assumption (2.26)

9R3 9R3

lu(f) — o]* <9RE = <0) oy < <0> Z,(u), for any £ € S*(r). (2.27)
X1 X1

Hence, inequality (2.15) is immediately satisfied, whatever the choice of Opain, provided we

impose the additional condition on the constant Cypg

>0 (2.28)

Subcase 2b : There exists some {1 € S'(r), and some o € S'(r) such that, we have
u(f1) € BF(2Rg) and u(f2) & BF(2Ry).

Let £ € S'(r). If u(¢) € B¥(2Ry), then we argue as in subcase 2a, so that we obtain inequality
(2.27) as before, hence (2.15) holds for ¢, and we are done. Otherwise, by continuity, there
exists some ¢ € S'(r) such that u(¢') € O9B¥(2Rg) and such that, for any point a € C(¢,¢'),
we have u(a) € B¥(2Rg). We have, by integration,

u(@)* = [u()* < 2/ u(a)] - [Vu(a)| da.
ce,en
Using the fact that |u(a)| > 2Ry, for a € C(¢,¢'), and inequality (2.5), we obtain
V(u(a))
Boo

lu(a)| < for a € C(¢, 1),

so that, combining the two previous inequalities, we are led to

VV(u(a)) - [Vu(a)|da

2
/ 2 el 2 <
[u(O)]” = [u(€)] S VB Jows

2
<= /S e
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Since |u(¢")] = 2Ry, we obtain, for any o € X,

lu(l) — o> < 2 (Ju(0)* + |o]?) <2 (Ju(0)]* +RP)

2

VB Jae J( (a))da+R3+\U(€’)!2>

| /\
/\

IN

(u(a))da + 10R8) , since |u(¢")| < 2Ry,

(
[
(7

!
10R3
<= [ Juta)das 3 )
10R 8 10R2
< (Sp=tolo) + 102, >) (m+ (XIO)ZT(u),

so that the conclusion (2.15) follows for any choice of Oyain € ¥ , imposing again an appro-
priate lower bound on the constant Cyps.

Subcase 2c : For any ¢ € S*(r), we have
[u(€)] = 2Ro.

Let £y satisfy (2.17), so that, in view of Proposition 2.2

2o L L .
u(to)? < 5V (u(to)) = 5~ (m V! w»dz).

We obtain hence, for any arbitrary o € X

ulto) = of? <2 () + o) < = (2}? Sl()wu(@)demarsw)
2 (1, R{Boc 2.29
<2 (Wzr( >+oq< L )) (2.29)

IN

2 27RZB
= (1 T (Oq )) Z, ().

This yields again (2.15) for an arbitrary choice of Opain € ¥ and imposing an additional
suitable lower bound on Cys.

We have hence established for upper bound (2.15) in all three possible cases 2a,2b and
2¢, for an arbitrary choice of Oy € % and imposing an additional suitable lower bound on
Cunt- It is hence established in case 2. Since we already established it in Case 1, the proof of
(2.15) is complete.

Turning to inequality (2.16), we first observe that, since by assumption r > ¢, we have

rt V(u(£))de < / e W (u(0))dl < / ee(u)(£)de. (2.30)
St(r) S(r) St(r)
Combining (2.15) with (2.13) and (2.30), we obtain the desired result (2.16). O
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2.4 Controlling energy and uniform bound on ”good” circles

When working on two-dimensional disks, the tools developed in the previous section allow to
choose radii with appropriate control on the energy, invoking a standard mean-value argu-
ment. More precisely, we have:

Lemma 2.5. Lete <719 <711 <1 andu:D? — RF be given. There exists a radius vz € [ro,71]
such that

1
/ ec(u)(£)de < Ec(u, D?(r1)).
St(re)
The proof is based on a classical mean-value argument, therefore we omit it. O

In the sequel, we will often make use of Lemma 2.5 combined with the uniform bounds
obtained in dimension one. For instance, it follows from Lemma 2.4 that there exists some
point o, € X, depending on v, such that

lu(f) — o, | < \/CHL\/EE(u,ID)Q(m)), for all £ € S'(x.). (2.31)
r —7To

Moreover, it follows from (2.13) that
1
/ |J(u)| < / es(u)dz. (2.32)
S1(xe) TH —To D2 (rp)

2.5 BV estimates and the coarea formula

The right-hand side of estimate (2.15), in particular the term involving J(u), may be inter-
preted as a BV estimate (as in [31]). In dimension 1, as expected, it yields uniform estimates
on u. In higher dimensions of course, this is no longer true. Nevertheless our BV -estimates
lead to useful estimates for the measure of specific level sets. In order to state the kind of re-
sults we have in mind, we consider more generally an arbitrary smooth function ¢ : 2 — R,
where Q C RY is an arbitrary N-dimensional domain, and introduce, for a given number
s € R, the level set
¢ 1(s) = {x € Q, such that ¢(z) = s}.

If ¢ is assumed to be sufficiently smooth, then Sard’s theorem asserts that ¢ ~!(s) is a regular
submanifold of dimension (N — 1), for almost every s € R, and the coarea formula relates the
integral of the total measures of these level sets to the BV-norm through the formula

/HNl (¢7'(s)) ds :/ IV (z)|de. (2.33)
R Q

We specify this formula to our needs in the case N = 2, Q = D?(r), for some r > &, and
¢ = (w;)? : @ — RT, where i € {1,...,q} and where w; : © — R is the map constructed
in (2.8) for a given u : Q — R*. Combining (2.33) with (2.10) and (2.13), we are led to the
inequality, for the level sets (w?)~1(s) C Q = D*(r),

/ C(@) M) ds<avho [ Tu@)ds
o D(r) (2.34)

<avho [ e(wdr=4v/A0 Ee (u,D?(r),
D2 (r)
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where £ = H! denotes length. In several places, we will invoke this inequality jointly with a
mean value argument. This kind of argument yields:

Lemma 2.6. Let u, w; and r > € be as above. Given any number A > 0, there exists some

A
number Ag € [5, A] such that w; '(Ag) is a regular curve in D*(r) and such that

_ 3 8 Ee (U,DZ(T’))
L (w; 1(A0)) < oW /DQ(T) ee(u)dzr < RV W

(2.35)

3
Proof. In view of the definition (2.8), the map w; takes values in the interval [0, THO], so that

3 3
w; (s) =0, if s > %. Hence, it suffices only to consider the case A < THO We introduce

A
to that aim the domain ; 4 = {z € D?*(r), 3 < |u(xz) — 05 < A}. Using formula (2.34) on
this domain, we are led to the inequality

A2 B 1 1
/2 L((wH) ™ (s))ds < 4/ A /Q ec(u)dz < 4v/ N9 E. (u, D?(r)).

AL
4

The conclusion follows by a mean-value argument. O

2.6 Controlling uniform bounds on good circles

Whereas in Subsection 2.4 we have selected radii with controlled energy for the map wu, in this
subsection, we select radii with appropriate uniform bounds on u. We assume throughout

this subsection that we are given a radius g € [%, 1], a number 0 < k < %, a smooth map

u : D2(p) — R* and an element o € ¥ such that

lu—o| < g on dD?(p). (2.36)
1
We introduce the subset Z(u, k) of radii r € [5, o] such that

Z(u,K) = {r € [%, o] such that |u(¢) — o] <k, Y/ € Sl(r)} . (2.37)

Notice that we have, for k' < «,
Z(u, k') C Z(u, k), and hence |Z(u,«)| > |Z(u, K")|. (2.38)
We have:

Proposition 2.3. Assume that (2.36) holds. Then, the following lower bound on the measure
of Z(u, k) holds
9
T >0— — 2.
[Z(u, ) 2 0 = 74 (2.39)

provided we have the lower bound on K

¢ > Cloy v/Eo(w, D2(g)), where Cioy — \j’; (2.40)
0
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Proof. Set w = ¢(| - —0o|). We apply Lemma 2.6 with the choice r = p, A = k and 0; = o0,
so that w = w;. This yields a number A4y € [g, k] such that w™1(A4y) C D?(p) is smooth and

verifies
8E.(u,D?(0)) _ 2Ec(u, D?(0))

4/ MoKk2 K2

If moreover (2.40) is satisfied, then we have

L{w™(Ag)) <

1
L(w™(Ag)) < o (2.41)
Since, by definition, Ay < k, it follows from (2.38) with k' = Ay, that |Z(u, Ao)| < |Z(u, k)],
so that it suffices to establish the lower bound

9
[Z(u, Ao)l 2 0 = 15 (2.42)

For that purpose, we introduce the auxiliary set
1
Z(u,Ag) ={r € [5, o], such that |u(¢) — o] > Ao, V¢ € St(r)}.

We first claim that
Z(u, Ag) = 0. (2.43)

Indeed, assume by contradiction that (2.43) does not hold: In that case, there exists some
radius § < 7o < g in Z(u, Ap). In view of the definition of Z(u, Ag), we have therefore

lu(f) — o| > Ay, for any £ € OD?(rg). (2.44)
On the other hand, in view of assumption (2.36), we have
u(f) — o] < g < Ay, for £ € OD*(p) = S (o),

so that

w(49) 11 (84(0) US'(ro) = 0.
Combining (2.44) and (2.36), it follows from the intermediate value theorem that there exists
some smooth domain V such that |u(z) — o| = Ag for € OV, so that OV C w1 (Ag), and

hence is smooth, and such that
D?(rg) C V C D?*(p). (2.45)

We deduce from (2.45) that, since by assumption 1/2 < ry < p,
OV c w™(Ag) and L(OV) > 2mrg > T,

so that

_ 1

Lw 1 (Ag) > 7> 6

This however contradicts inequality (2.41), and hence establishes the claim (2.43). We next
establish (2.42). For that purpose, consider an arbitrary radius % < r < p such that r ¢

Z(u, Ag) (see Figure 8). It follows from the definition of Z(u, Ap) that there exists some
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¢, € SY(r) such that |u(f.) — o| > Ag. On the other hand, we deduce from (2.43), that there
exists some £.. € S!(r) such that
u(€,) — o] < Ao.

Hence, by the intermediate value theorem, there exists some point /. € S'(r) such that
|u(f) — o] = Ay, so that £, € w™1(Ap). Hence, we have

w L (Ag) NSY(r) £ 0, ¥r ¢ [é, o\ Z(u, Ay). (2.46)

Notice that |[3, 0] \ Z(u, Ao)| = (0 — %) — |Z(u, Ao)|. Hence, relation (2.46) implies, by Fu-
bini’s theorem, that

£ (A0) 2 (2 ) - 1w AL

so that ) 0
A0 > (23 ) = £ (A0) = 0 15, (2.47)
where we made use of estimate (2.41). This establishes (2.42), and hence completes the proof.
O

Figure 8: The circle OD?(rg) does not interset the level set L(w™1(Ay)).

2.7 Revisiting the control of the energy on concentric circles

Using the results of the previous section, we work out variants of the Lemma 2.5. For that
Ho YR

purpose, given a radius o € [%, 1], a number 0 < k < Rk smooth map u : D2(p) — R¥ and
an element o € 3 such that (2.36) holds, we introduce the set
Yo(u, 0, k) = {z € D*(p), such that |u(z) — o] < k}. (2.48)

The following result is a major tool in the proof of our main results:
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Lemma 2.7. Let u, o and x be as above, assume that (2.36) holds on the boundary OD? (o)
and assume that the bound (2.40) on k holds also. Assume moreover that ¢ > %. Then there

exists a radius T, € [g, o] such that S*(t.) C Yo(u, 0, ), i.e.

lu(f) — o| < «, for any ¢ € S!(t.),

and such that .

/ ec(w)dl € — B (u, Yo(u, 0, K)).
St(te) 0

16
Proof. In view of definition (2.48) of Y4 (u, o, k) and the definition (2.37) of Z(u, k), we have
SY(r) C Yo(u, 0, ) for any r € Z(u, k), so that, by Fubini’s theorem, we have

/ (/ ea(u)(:w) do < / es(u)dw = Ee(“a TO‘(”? 0, K))
Z(u,K) St(e) Yo (u,0,k)

Since we assume that the bound (2.40) holds, it follows from Proposition 2.3 that

9
|Z(u, k)| > 0— 6 and hence
11

)
A nl= >0— —.
Tl k)20l 20— 1

The second inequality in (2.49) follows from the fact that, by definition, we have Z(u, k) C [1/
2, o] and the identity |[1/2, o]N[5/8, o]| = |[1/2,5/8]| = 1/8. Hence by a mean value argument,
we deduce that there exists some radius T, € [%, 0] N Z(u, k) such that

/ ec(u)dl < _111/ es(u)dz,
St(te) 0 — 16 Y Yo(u,0,k)

which is precisely the conclusion. O

(2.49)

Comment. The result above will be used in connection with the estimates for u when
u = u, is the solution to (1). Thanks to the equation, we will be able to estimate the growth
of Ec(u, Yo(u, o, k)) with k. We will choose k as small as possible in order to satisfy (2.40).
This merely amounts to choose it of the magnitude of \/E.(u), as we will see in (5.1).

2.8 Gradient estimates on level sets

We go back first to the general setting introduced in Subsection 2.5. Given an arbitrary
smooth function ¢ : Q@ — R, where Q denotes an open subset of RY, and an arbitrary
integrable function f : ) — R, the coarea formula (2.33) generalized as

/ (/ f(f)dé) ds :/ IV (z)|f(x)dx. (2.50)
R \Jo-1(s) Q

For the vectorial case, given a smooth function u : Q — R*, we specify identity (2.50) with
choices ¢ = |u| and f = |Vu|: We are hence led to the identity

/R</|u|1(s) IVu\(é)cM) dS:/Q!Vu(x).]Vde,

2
S/Q]Vu(m) dz.

(2.51)
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We specify furthermore this formula, as in Subsection 2.5, for a given map u defined on a
disk D?(r) and w; being the corresponding maps w; defined on D?(r) by formula (2.8). We
introduce the subdomain

O(u,r) = {x € D?(r), such that u(z) € Rk\ U Bk(O'Z, ZO)} o)

B U71 <Rk\ LqJ Bk(o-ia HO)) - DZ(T) \ LqJ ’%U'(u7r7 HO)'
=1 4 =1 ¢ 4
We have:

Lemma 2.8. Let u be as above. There exists some number [L € [%, %}, where Wy denotes

the constant introduced in (56), such that

4
Z/ |Vl (£)dl < / |Vul? < iEE(u,@(u,r)). (2.53)
) Ho Jo(ur) Hoe

Proof. Tt follows from identity (2.51), applied to w; = ¢(u — 0;), that

Z/HO (/1 \Vul(e)d€> ds = [LO > (/1 \Vu|(€)d€> ds
=171 w;(s) T oi=1 \Ywi ()

< / |Vu|?da.
O(u,r)

We conclude once more by a mean-value argument. O

(2.54)

Part II : PDE Analysis

3 Some properties of the PDE

In this section, we recall first several classical properties of the solutions to the equation (1).
We then provide some energy and potential estimates (see e.g. [11]).
3.1 Uniform bound through the maximum principle

The following uniform upper bound is standard:

Proposition 3.1. Let u. € HY(Q) be a solution of (1). Then we have the uniform bound
bound, for x € Q

40 Coo
Wl B (us) + Ky, where Kypp = 2R2 4+ =2 (3.1)

2 o *unf
fue(@)l” < dist(x, 09) Koo

where Rg = sup{|o|, 0 € ¥} is defined in (2.4), and where Cyyt is defined in Lemma 2.4.
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Proof. We argue as in [10]. We compute, using equation (1)

1 _
iA]uEP = u, - Aug + ]Vu5]2 = 2, - ViV (ue) + !Vug\Q (3.2)

> e %u. - V,V(ue), on Q.

On the other hand, it follows from assumption (4), that there exists some constant C, > 0
such that
y.VV(y) > aeolyl® = Coo, for any y € R¥, (3.3)

see inequality (2.6). Hence, combining (3.2) and (3.3) we obtain the inequality

Coo

1
——Afue]? + a2 <|ug|2 — ) <0 on Q.
2 [od

(o,

We introduce next the function W, = |u|? — %:’ We are led to the differential inequality
for W,

1
—§AWE + 0tooe 2W. < 0 on Q. (3.4)
Let x € Q and set R, = dist(x,d9), so that D?(x, R;) C . It follows from Lemma 2.5 and

R
inequality (2.31) that there exists some radius T € [790, R;] and some element o € ¥ such
that

2 un 2 un
ue(l) - o] < C%f E. (u:. DA(E,)) < C%f Bo(a)), forall £ € §'(z, ),
and hence 4C
yugen2gA4E¥iE4ug-+2R& for all ¢ € S'(z, 1), (3.5)

where St(z,T) = {¢ € R%|¢ — x| = t}. We consider the function

T 4Cun
We = W, — N(ue), where N(u.) = < 7 ng(ug) + 2R(2)> >0,

and notice that, in view of (3.4) and (3.5), we have

1 - -
—iAVV6 + Kooe 2W. = —AW. + otooe 2W. — ocoos_QN(us) <0, on ]D)Q(:n,'r)

- (3.6)
W.(¢) <0 for £ € OD*(x,7) = S'(z,7),
We may hence apply the maximum principle to W, to assert that
3 2 Cx 2
We(y) = |ue(y)|* — N(ue) — — <0, for y € D*(x, 7).
Choosing y = z, the conclusion follows from the definition of N(u.). O
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3.2 Regularity and gradient bounds

The next result is a standard consequence of the smoothness of the potential, the regularity
theory for the Laplacian and the maximum principle.

Proposition 3.2. Let u. € HY(Q) be a solution of (1) and § > 2¢. Set

Os = {z € Q,dist(z,009) > §}.

Then u. is smooth on Q and there exists a constant Cyq (||uEHLoo((95/2),5), depending only

on V, ||uel| Lo (0, ,,) and & such that

Os /2

Cea (”us”Lw(05/2)75>

Veul(z) < -

,if dist(z, 0Q) > 6. (3.7)

Proof. Estimate (3.7) is a consequence of Lemma A.1 of [10]. It asserts that, if v is a solution
on some domain U of R™ of —Av = f, then we have the inequality

1
|VU|2(33) <C <”fHL<><>(u)HU||L°°(u) + anuiw(u)) , forall z e U. (3.8)

We apply inequality (3.8) to the solution wue, with source term f = ¢ 2V,V(u.) on the
domain & = O;: This yields (3.7). O
2

Whereas the result of Proposition 3.2 involves the uniform norm of wu., the next results
provides a related results, involving the energy E.(u.).

Proposition 3.3. Let u. € H*(Q) be a solution of (1), 6 > 2e, M > 0, and assume that
that Ec(ue) < M. There exists some constant Kq,(M,0) > 0, depending only on the potential
V, M and d, such that,

Ka:(M,0)

|Vue|(z) < , if dist(z,0Q) > 6. (3.9)

Proof. We invoke the uniform estimates provided by Proposition 3.1. We have, indeed, in
view of (3.1), the uniform upper bound, for u.

M
luc(z)> < C <5 + 1) , for z € Og.

Combining this bound with (3.7) we derive the conclusion. O

3.3 Gradient term versus potential term: First estimates

Major ingredients in the proof of our main PDE result, namely Proposition 1, are provided in
Proposition 4.2 and Proposition 4.4, which we will state below and prove a little later. They
roughly states that the total energy, which involves both a gradient term and a potential
terms, can ”essentially” be bounded by the integral of the sole potential term. In order to
derive these results, we are led to divide domains into two regions:
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e the region where the solution is near the potential wells 3,
e the region where it is far from X.

Whereas the region where the solution is near the potential wells requires some further anal-
ysis, the region where the solution is far from the wells can be handled thanks to the results
of the previous subsection, in particular the gradient bound described in Proposition 3.2.
Restricting ourselves to the case u. is defined on Q = D?, we consider, for r > 0, the set

O(ue,r) = {m € D?(r), such that u.(x) € RF\ 'L_qJIBk(O'Z»’ ”U)}
! " - " (3.10)
_ q .

= (usmgm> <Rk \igl]Bk(Gi’ 40)> =D?(r) \ U Yo, (ue, Z)’

where O(-,r) has already been defined in (2.52) and describes the region where the solution
is far from 3. Indeed, we have, by definition

dist (ue(2), ) > % for = € O(ue, 7). (3.11)

The integral of the energy on the set ©(u.,3/4) can be estimated by the integral of the
potential as follows:

Lemma 3.1. Letu. € H'(D?) be a solution of (1). There exist a constant Cpy (”UHLOO(D?(?/g)))
depending only on V and ||’UJ||L00([D)2(§) such that

V(u 3
ec(us) < Cpt (HUHLOO(DZ(%)> (58)’ on © (us, 4> . (3.12)

Let M > 0 and assume that E.(us) < M. There exists a constant Cp depending only on the
potential V' and on M such that we have the pointwise inequality

eo(u) < CT(M)V(;‘E) on © <u i) . (3.13)

Proof. Tt follows from the definition of © and in view of inequalities (2.2) or (2.3) that
3
V(ue(z)) > ‘1’% for 2 € O(uz, 7). (3.14)

Since, by definition © (ug, %) C D?(3/4), we have dist(x,dD?) > 1/4, for x € © (ug, %) We
may therefore invoke inequality (3.7) of Proposition 3.2 with § = 1/4. We obtain

- 16e g

16C2
S ( gd) V(U‘E(x))7 fOI' T @ (Uf, 3) ,
(67 e 4

where we have used (3.14) for the last inequality. Set L = [|u||poc(n2(7/s))- Inequality (3.15)

yields
2
ee(ue)(x) < <W + 1) M(3:), forx € © <u5, i) .

2 2 -1 Qo 16C§d
e|Vue|*(z) < CZy (lull oo p2(r/sy), 1/4) e = —
(3.15)

(&%) 3

41



4C2 (L, 1/4
gﬁ/)>J%uam%
%)

we combine (3.12) with the uniform bound (3.1) for = € D?(7/8). O

The conclusion (3.12) follows choosing the constant Cpt as Cpy, =

3.4 The stress-energy tensor

The stress-energy tensor is an important tool in the analysis of singularly perturbed gradient-
type problems. In dimension two, its expression is simplified thanks to complex analysis.

Lemma 3.2. Let u. be a solution of (1) on Q. Given any vector field X € D(2,R?) we have

Oue e
al'i a.’L'j .

/ A (ue) OXi dr = 0 where A (u;) = e-(u:)di; — € (3.16)
Q

i 69cj

The proof is standard (see [13] and references therein): It is derived multiplying the equation

(1) by the function v = ZXiaqu and integrating by parts on Q. The 2 x 2 stress-energy
matrix A. may be decomposed as

V(ue)

Ac = A (ue) = T (us) + — I, (3.17)
where the matrix 7. (u) is defined, for a map u : Q — R¥, by
e [ |ugy|* — Jusy |2 —2ug, - uy >
T:(u) = = 2 ! ! 2 . 3.18
8( ) 2 ( _2Ux1 * Uz, |u961|2 - |ux2’2 ( )

Remark 3.1. Formula (3.16) corresponds to the first variation of the energy when one
performs deformations of the domain induced by the diffeomorphism related to the vector
field X. More precisely, it can be derived from the fact that

d
ZE.(uz 0 ;) =0,

dt
where, for t € R, the map &, : Q — Q is a diffeomorphism such that
d -
%cbt(;c) = X (®y(z)),Vz € Q.
. . . . . . 0X;
In dimension two, one may use complex notation to obtain a simpler expression of T;; —.
Ty
Setting X = X7 4 ¢ X2 we consider the complex function w, : 2 — C defined by
We =€ <|u€m1 > — |Ue,, % — 2iue, -ugw) , (3.19)

the quantity w. being usually termed the Hopf differential of u.. We obtain the identities

T”(ug)g‘;(Z = Re (—wf?ij) and 5@].(2;('1' = 2Re (%f) .
J j

Identity (3.16) is turned into

/QRe <w€%§> _ i/QV(ug)Re @f) _ i/ﬂV(us)divX'. (3.20)

Remark 3.2. Recall that the Dirichlet energy is invariant by conformal transformation.
Such transformation are locally obtained through vector-fields X which are holomorphic.
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3.5 Pohozaev’s identity on disks

Identity (3.20) allows to derive integral estimates of the potential V(u.) using a suitable
choice of test vector fields. We restrict ourselves to the special case the domain is Q = D?(r),
for some r > 0. We notice that for the vector field X = z, we have

0X 0X
E—Oanda—l

However X = z is not a test vector field, since in does not have compact support, so that we
consider instead vector fields X of the form

X5 = 2ps5(|21)),

where 0 < < % is a small parameter and s is a scalar function defined on [0, 7] such that
2
ws(s) =1 for s € [0,7—0), |£'(s)] < 5 for s € [r—4,r|, and ¢(s) =0 on [r—3/4,7], (3.21)

so that ¢s(r) = 0. A short computation shows that

oes(lzl) = oes(lzl) =z
az - 2|Z’90(5(’ZD and az - 2’Z|¢5(|Z|)7
so that 5 ) 5 ¥
9Xs _ = 9Xs _ 2l
5 = 5 #h(el) and 8 = Bl (el) + pu(l2)) € R

We drop the subscript ¢ and simply write v = w.. Using polar coordinates (r,6) such
that (z1,22) = (rcosf,rsinf), we have uy, = cosfu, —r~! sinfug and uz, = sinfu, +
r~! cos@uy. After some computations, this leads to the formula
we = £(cos 20 — isin 26) [(\UT|2 - r_2|ue|2) — 2ir_1ur.ue)]
52
Z _ .
= EW [(|url2 —r 2|ue]2) — 2ir 1ur.ue)] .

Combining the previous computations, we obtain
€ 2 —21, |2 /
5 (lurl” =7 Jual”) |21¢5(]2]) and
1

Re <w588)(6> = —
- (3.22)

Ro (522) = k(D) + pa(lz) on D),

We check that, as expected, we have

0X 0X,

T;:Oand a—zézlon]D)Q(r—é).
Inserting these relations into (3.20) and passing to the limit § — 0 yields the following
identity, usually termed Pohozaev’s identity:
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Lemma 3.3. Let u. be a solution of (1) on D?. We have, for any radius 0 < r < 1

1 T
— Viug) = /
e? Jo2(r) (ue) = 8]1])2(7')<

where T denotes arclength on OD?(r), so that dt = rdf corresponds to the H'-measure on
St(r) and 9 _ lg
or rob

Proof. Using the vector field X in (3.20), we obtain, in view of identities (3.22)

Ou,
or

2 B Oug
or

22
+ 82V(u5)> dr, (3.23)

2 1 1 _
2] v [wguwbwaux)} dr= [ 3 (funl = luol?) el
e ]D)Z(r) 2 DQ(T‘)Q
so that
2 1 2 —2 2 2 /
2 Viw)es(lede = ol = 2l = 2V(we) ) leloh(al)de.  (3.24)
& D2(r) 2 D2(r) &

Next we observe that

@s5(| - [) = 1p2¢r) as § — 0 in the sense of measures, and
|- 15(]-]) = —rdr as § — 0 in D'(R?),

The conclusion follows.

O
A straightforward consequence of Lemma 3.3 is the estimate:
Proposition 3.4. Let u. be a solution of (1) on D?. We have, for any 0 <r < 1
1 T
E / Vi) <" / . (u2)dl. (3.25)
€ Jo2r) 2 Jsin)

Proposition 3.4 follows immediately from Lemma 3.3 noticing that the absolute value of
the integrand on the left hand side is bounded by 2c e, (ue).

Identities (3.23) and (3.25) are central in the paper, in particular (3.23) leads to the mono-
tonicity for (.. Identity (3.25) has the remarkable property that its yields a bound of the
integral of the potential inside the disk involving only energy terms on the boundary. We will
see later that the energy (on smaller disks) can be bounded by the integral of the potential
(see Proposition 4.3), so that ultimately, we will end up with an interior estimate of the en-
ergy by the integral of the energy on the boundary. We will show that the latter is ”small”,
for a suitable radius, and considering level sets.

Besides Proposition 3.4, we notice that Pohozaev’s identity leads directly to remarkable
consequences: For instance, all solutions which are constant with values in ¥ on 9D?(r) are
necessarily constant.

Remark 3.3. The previous results are specific to dimension 2, however the use of the stress-
energy tensor yields other results in higher dimensions (for instance monotonicity formulas).
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3.6 Proofs of the "monotonicity” formula for (.

We provide here a proof of formula (51), which is actually not a real monotonicity, since there
is no evidence that the right hand side is non negative (only the asymptotic version turns
out to be, in the last part of this paper, a monotonicity formula). The proof relies on Lemma
3.3, identity (3.23). We have indeed, by Leibnitz rule

d (V. (ue,D?(r) 1 1d
@ ( 2 ( €r ( )) = _ﬁVE (UE,DQ(T)) + ;a (VE (UE,DQ(T‘))) ’
where V. is defined in (35), so that V. (us,D?*(r)) = e~ [, r) V(uz)dx. By Fubini’s theorem,

we have d )
5 (Ve (U67D2(T))) = g S1(r) V(ua)dT7

so that, combining the previous identities, we obtain

Y D2
d M = 6 6_1V(u5)dx+1/ e W (u)dr
dr r 72 Jo2(r) T Jsi(r)
1 1
= (z~:|(u€)r\2 — 5\(u€)7\2 — 26_1V(U5))d7' + = / 6_1V(u5)d7'
r Sl(r) T Sl(r)
1

= (el(ue)r|* = el (ue)r|* + 2671V (ue))dr
r Sl(r)

where we have used (3.23) for the second line. Hence, identity (51) is established.

3.7 Proof of formula (37)

For the identity (37), we have similarly

E D?
d (e (u, D(r) 1/ ee(us)dz + 1/ ec(ue)dr
dr r 72 Jo2(r) T Jsi(r)

1 1
L Ve - 2/ eV (u2)da (3.26)
2r ]D>2(r) r ]D)2(7”)
1
+o- (e((ue)r* + |(ue)e[?) + 2671V (ue))dr
r Sl(r)

We may decompose €|Vuc|? as €|Vue|? = 2e 71V (u:) — 2¢(ue), where the discrepancy & (ue)
is defined in (38). The second line in (3.26) may hence be written as

1 1 1 2
- Vue|*dz — — TV (ue)dz = — / MV (ug)da.
5,2 JD>2(7«)6‘ ue|“dx 3 D2(T)e (ue)dx 2 D2(T)§ (ue) 2 JD>2(7«)6 (us)dx

Combining this identity with (3.26) and (3.23), we obtain a nice cancelation which yields
(37).
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3.8 Pohozaev’s type inequalities on general subdomain

We present in this subsection a tool similar to Proposition 3.4, which will be of interest in the
proof of Theorem 8. We consider a solution u. of (1) on a general domain €2, a subdomain
U of Q and for & > 0 the domain Us introduced in (67). As a variant of Proposition 3.4, we
have:

Proposition 3.5. Let u. be a solution of (1) on Q. We have, for any 0 < b

1 V(ue)de < C(U, 5)/ ee(ue)dw, (3.27)

€ Us Vs
2

where the constant C(U,d) > 0 depends on U, d and V.

The main difference with Proposition 3.4 is that, in the case of a disk, the form of the
C(U,d) > 0 is determined more accurately.

Proof of Proposition 3.5. Turning back to identity (3.20), we choose once more a test vector
field X5 of the form X3(z) = zx,(2), where the function y;, is a smooth scalar positive function
such that

Xs(z) =1for z € Z/lg and y,(z) = 0 for z € R? \ Us

so that Vix; = 0 on the set Us and hence
2

0Xs 0Xs
E—Oandg—l ODZ/[%.
Inserting these relations into (3.20), we are led to inequality (3.27). O

4 Energy estimates

4.1 First energy estimates on levels sets close to X

In this subsection, we estimate the energy on domains where the solution is close to one of
minimizers of the potential o € X. Near such a point, the potential is locally convex, close
to a quadratic potential. In such a situation, solutions to the equation behave, at first order,
as solution to the linear equation of the type

—Av+e2V?V(0) - v ~0,

for which energy estimates can be obtained directly by multiplying the equation by the
solution itself and integration by parts, provided estimates on the boundary are available.
More precisely, we consider again for given 0 < ¢ < 1 a solution u. : D*> — R* to (1) and
assume that we are given a radius g. € [%, %], a number 0 < Kk < Ho/2, where py > 0 is the
constant provided in (56). We introduce the subdomain Y. (., k) defined by

Te(0s, k) = {z € D?(g.) such that |uc(z) — o;| <k, forsomei=1...q }

. (4.1)
- ingE’i(Q€7 K)a
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where we have set
Te,i(@a; K) = wz_l([07 K] N DQ(QE)) = T(fi(uaa Os, K) = {JJ € D2(96)7 ‘u€(x) - O—i’ < K}'

The sets Yq(u, 0,k) of the above form have already been introduced in (2.48) for general
maps u. The set Y.(o, k) corresponds hence to a truncation of the domain D?(g.), where
points with values by u. far from the set ¥ have been removed, whereas the set Y. ;(oe, )
corresponds to a truncation of the domain D?(p.) where points with values far from the point
0; € X have been removed.

The main result of the present section is to establish an estimate on the integral of the
energy on the domain Y. (g., K) in terms of the integral of the potential as well as boundary
integrals. As a matter of fact, in many results of this part, we choose a fixed value of k,

namely

K= = %,so that

Ts(Qe> P-l) U ®(u€7 Qs) = DQ(Q&)'

However, several intermediate results carry out for a full range of values of k, and will be
used later in Subsection 4.2.

(4.2)

Proposition 4.1. Let u. be a solution of (1) on D?, let L > 0 be given and assume that
|ue|lpee < L. (4.3)

Let o. € [%, %] We have, for some constant Ky(L) > 0, depending only on the potential V
and L, the inequality

M &L ec(u
AE(Qe’ul)ea(ua)(m)dx < Ky(L) [/JDQ(QE) ——d +a/8®2(96) ( S)de]. (4.4)

The proof will be divided in several results of independent interest. Firstly, since u. is
smooth and in view of Sard’s Lemma, the boundary 0T (g, k) is smooth and a finite union

of smooth curves for almost every k, which we will assume throughout. Hence, for: =1,...,q
the set 0., is a union of smooth curves intersecting the boundary OD?(p.) transversally.
For i =1i,...,q, we define the curves I'. and II® as
T (0e, K) = 0Tci(0:, k) ND? (o) = wi_l(K) ND?*(g.) fori=1...q, (4.5)
I (0:, k) = Tz i0e, k) N OD?(0:) = wy ([0, k]) N OD?(e:),
so that . ‘
O e,i(0e, k) = T't(ee, k) UL (gc, k). (4.6)
In view of (4.1), we introduce, for i = 1,..., ¢, the integral quantities
O (g, k) = / EVuel? + eIV V (u2) - (ue — 0y). (47)
Te,i(QmK)

We first notice that:
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Lemma 4.1. We have, for every k € [0, wo|, the inequality

2)\max i
/ ec(us)dx < 3 QL (0z, K). (4.8)
Ta,i(g€7’<) 0

Proof. Since, by the definition of Y ;, we have |u — 0;| < k < pg, we are in position to invoke
estimates (2.1), which yields, for i € {1,...,¢},

A 1
o 0 Viu) < 5 olue — 052 < VV (ue) - (ue — 03) on Yei(0e, K), (4.9)

where Amax = sup{\;,i =1,...,¢;}. Multiplying the previous inequality by 2Amax/Ao and
integrating on Y. ;(o., ), we are led to

2Am _
/ eV (g )da < 2max / VLV () - (e — o). (4.10)
Teilos ) Ao S i)
The conclusion then follows from the definitions of e. and Q% (o, k). O

A simple integration by parts yields the following:

Lemma 4.2. Assume that 0 < e <1 and that u. is a solution to (1) on D*(1). Let o be in
[1/2,3/4]. We have, for every « € [0, wo|, the identity, for everyi=1,...,q

/ KM(M + / lu — oy
Pi(gew) O IT: (e )

Proof. For i =1,...,q, we multiply equation (1) by e(us — 0;) and integrate by parts on the
domain Y. ;(o., k). This yields, for i =1,...,q

8|u£ — GZ'|

QE(Q€7K) =€ aﬁ

de] . (4.11)

0 (0, K) = / V2 + eV () - (e — o)
Ts,i(gva)

/ 2% — o) 412
= =5 U — . .
Mesoer) O (412)
_5/ a‘u(c_*_()—i‘Q +5/ 8|ug—0i|2
2 Jri(ewy  OR 2 Jnieewy O
Olue — oy|? Olue — 0;
which yields the desired result, since u = 2|u; — GﬂM, so that
on on
Olue — o;|? Olue — oy 4
’5%1' = 2K|Eaﬁ’ on I'’ (o, K). (4.13)
OJ
Remark 4.1. Notice that we have the inequality
Olue — o -
|€8ﬁl| >0 on I'’ (o, K). (4.14)

Indeed, by definition |u. — 03| = k on Y, ;(0., k), so that we are on a level set and the normal
derivative 7i(¢) is pointing towards the outside.
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The next result will also be used extensively in Subsection 4.2:

Lemma 4.3. Assume that 0 < e <1 and that u. is a solution to (1) on D*(1). Let o be in
[1/2,3/4]. We have, for every k € [0, wol, the inequality

Oluc(f) — oy /
ue)dxr < Ce | K / 7&_‘_ e (u(Nde] 415
/Te(L’EaK) celti) Z on(¢) D2 (g:) e{ue(£)) ( )

where C > 0 is some constant depending only on the potential V' and where 7i({) denotes the
unit vector normal to I'c ; UIl. ; pointing in the direction increasing |us — 0.

Remark 4.2. Let us emphasize that in this statement, k is not constrained by (4.2) and
may actually take arbritrary small values.

Proof. The proof relies on a combination of the results of Lemmas 4.2 and 4.1. We first
estimate the second term on the r.h.s of (4.11). Since by definition, we have the inclusion
T (0c, k) C S*(0e), it follows that 7i(¢) = & on II%(pe, ), so that

< |Vue|, on (o, k). (4.16)

‘8‘718 — O'i’

< |Oue
on |0

N (9]u5 — Gi|
N or

On the other hand, in view of Proposition 2.1, as well as the fact that |u-(¢) — 0;] < k < py
for ¢ € TI%(p., k), we have

lue — 0;] < V (ug) on II' (0., k). (4.17)

2
VAo
Combining (4.16) with (4.17) and integrating on II.(g., k), we obtain the estimate

/ e — 0 |.;8|“€_ e < / \/ V(uo).|Vue|de
HE(QE’K) \/7 Z QE’

ec(u)de,

(4.18)
- ﬁ S1(02)

where, for the second inequality, we used Lemma 2.3 and the fact that IT¢(o., k) C S*(0e).
Combining (4.18) with (4.11) and (4.8), we obtain the desired conclusion (4.15) for the choice
1+ ).

VAo

max

Ao

of constant C' =
O

Our next results allows to obtain, for a suitable choice of k, a bound on the first term on
the right hand side of (4.15):

Lemma 4.4. Assume that0 < e < 1 and that u. is a solution to (1) onD*(1). Let o. € [3,3].

There exists some number [l € [%, %] such that
Oue — 0y / 8
€ —= "dl<¢ |Vue|dl < —E.(u, O(ue, 0¢)), (4.19)
/Fs i(ohe) 8”([) Lei(oshe) Ho

where O(ue, o) is defined in (3.10).
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Proof. We invoke Lemma 2.8 with the choices r = p. and u = u.. This yields directly a

number fi. € [@ @] such that (4.19) is satisfied, so that the proof is complete. O

472
Proof of Proposition 4.1 completed. We combine (4.15) for k = fi. with (4.19). This yields

/ ec(us)de < C
Ts(@e,}le)

On the other hand, it follows from assumption (4.3) and Lemma 3.1 that

8
uaEe(ua G(Ua Qs)) + 5/
Ho D2 (oc)

eg(ue(f))dﬁl . (4.20)

V (ue)

e.(u2) < Coy (L) Con© <u i) 5 0 (ue, 0.), (4.21)

so that
V(us)

3

dx

Ea(u87 ®(U57 Qa)) = / ea(ua)dm < Cpt (L)/
O(ue,0¢) O(ue,0¢) (4'22)
Chpt

V(ue)
(L) /D?(gg) — dx.

Combining (4.22) with (4.20), together with the fact that ©(u.) U Y. (o, fic) = D?(o.), which
follows from (4.2), since f. > %, we obtain (4.4) for Ky (L) = 8C.Cp (L).

IN

4.2 Refined estimates on level sets close to X

Whereas we obtained in Proposition 4.1 an energy estimate on a fized level set Yc(oz, 11),
we derive here an energy estimate on the set Y. (o, k) allowing the value of k to vary and
in particular to be small. This will be completed at the cost of an additional assumption.
Indeed, we will assume that there exists an element O, € % such that

[Ue — Omain| < k on OD?(o.). (4.23)
The main result of this subsection is:

13
Proposition 4.2. Let u. be a solution of (1) on D?, M >0, 0 <k < % and o: € [5, Z}
Assume that (4.23) is satisfied and that

E:(ue) < M. (4.24)
We have, for some constant Cy(M) > 0, depending only on the potential V' and on M,

K Vle) rTe es(u
/TE(QE,K)es(uE)(x)dxgcT(M)[ /Eﬂ(gs) ——dr+ /W(gs) e E)de]. (4.25)

Of major importance in estimate (4.25) is the presence of the term k in front of the integral
of the potential, so that the energy on Y. (g, k) grows essentially at most linearly with respect
to k. Proposition 4.2 will be used in the proof of the clearing-out result, so that we will use
it for small M.
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We may assume without loss of generality that omain = 01, so that it follows from assump-
tion (4.23) that
|ue(¢) — 01| < k for £ € GDQ(QE). (4.26)

We deduce from inequality (4.26) that OD?(g.) C Y.1(o-, k), and that, for i = 2,...,q, we
have
OD*(0.) N OY< ;i (0e, ) = 0.

In particular, we notice the identities

T (0, k) = 0T i(0:, k) = w; H(k) ND?(g.) fori=2...q,

H%(Qe, K)=10, fori=2.. q,2 3 2 2 (4.27)
I (0e, k) = 0Y-1(0e, k) \ OD?(0z) = ([w1 (k) ND (ge)]) \ 0D*(p.) and

I (e, k) = OD*(o:)

As for Proposition 4.1, we will deduce Proposition 4.2 from Lemma 4.3. For that purpose,
we will make use of a new ingredient, given by the following monotonicity formula:

Lemma 4.5. Let pwy > K1 > Ko > K be given. If ue satisfies condition (4.23), then we have,
fori=1,...,q, the inequality

0 S/ Oluetl) il S/ Ofue(l) il 4, (4.28)
Mitoeo)  OLE) Figew)  O(0)

Proof. The proof involves again Stokes formula, now on the domain
Ci(ko, k1) = Yei(0e, k1) \ Te i(0e, Ko)-
It follows from assumption (4.23) that, for any i =1,...,q

Ci(K(), Kl) N 8]1)2(95) == @,

so that
ICi(ko, k1) = 0T i(0s, k1) U Y i(0¢, Ko)-
We multiply the equation (1) by |u€7_zi|, which is well defined on C;(kg, k1), and integrate
Ue — 04

by parts. Since, on I'; ;(0c, k), we have

Ous Uz — 0y O(ue —03)  ue —0;  Olue — 0y

i |ue—o;| o |ue—oi  oi

whereas on C;(ko, K1), we have

V.V <U:0> V(-0 V <U:G>
|ue — o |us — o

= 7.|V(Us — o)+ [V(ue — 03) - (e — 04)] - V(——

= —— V(. = o) = V] — 0l |

o1



integration by parts thus yields

/ Olu: — o4 _/ Olue — oi| _ / L (19wl - [V - ailP]
Te i(0e,K1) on Ic,i(0e,%0) on Ci(xo,K1) |u — Ui|

_|_/ 5—2vuv(u6) . M.
Ci(xo,k1) ‘u - Gz‘|

(4.29)
Since
IVue|? — |V]ue — 03] = |V(ue — 04))? = |V]ue — ] |* > 0, on D?(p.), and
Us — O;
ViV (ue) - N >0, on Ye;(0e, Ho) D Ci(Ko, K1),
- Y
it follows that the r.h.s of inequality (4.29) is positive. Hence, we deduce (4.28).
O

Lemma 4.6. Assume that 0 < e <1 and that u. is a solution to (1) which satisfies (4.23)
and (4.24). Then, there exists a constant C(M) > 0 depending only on V' and M such that
have

0< s/ Olue — 0il 4, < C(M)/ V) g, < C(M)V(ug,]DJQ(%)), (4.30)
FE,’i(QE7K)

6ﬁ(€) D2(.) € -

where, for a point £ € T, ©i(¢) denotes the unit vector perpendicular to T'c and oriented in
the direction which increases |u — 0;].

Proof. By Lemma 4.4, there exists a number [i. € [%, %] such that

a‘ué — O—z" / 8
€ ———dl <e Vue|dl < —E (u, O(ug, 0 4.31
/l—v‘e,i(Qvas) an(e) Fs,i(g7l:lg)| €| 1o 5( ( £ s)) ( )

On the level set O(ue, 0-), we may however bound point-wise the energy in terms of the
potential, as stated in Lemma 3.1, inequality (3.13). This yields by integration

Ee(u, O(ue, 0:)) < Cr(M)V (ue, O(ue, 0c))-

Combining the two previous inequalities, we obtain

Olue — o Cr(M) Crp(M) 5,3
— = A< V(ue, Oue, 0:)) < V(ue, D?(2)). 4.32
E/re,i(g,ag) oni(¢) Ho (e, ©(ue, 0c)) Ho (ue, D°(7) (4.32)

On the other hand, we invoke to Lemma 4.5 with the choice k1 = fi. and kg = k to deduce

that Olu. — o Olu. — o
U — O; U — O;
Olue = ail 4, < / Olue — 9ily,
~/FE,7;(Q,K) 8“(6) Fa,i(g’}lﬁ) an(g)

Cr(M
which together with (4.32) leads to the desired result (4.30), with C(M) = TM( ) O
0
Proof of Proposition 4.2 completed. We go back to Lemma 4.3 and combine (4.15) with (4.30):
This yields the desired inequality (4.25). O
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4.3 Bounding the total energy by the integral of the potential

The main result of the present paragraph is the following result, which will be used both in
the proof of the clearing-out results as in the proof of Theorem 4:

Proposition 4.3. Let u. be a solution of (1) on D? and let L > 0 be given and assume that
luell oo o2 2)) <L (4.33)
There exists some constant Kyt (L) depending only on 'V and L such that

/ ec(uz)(z)dz < Kpoy (L) / Vite) 1 / ec(ug)dz. | . (4.34)
D*(}) P DAD*(3)

In the context of the present paper, the main contribution of the r.h.s of inequality (4.34)
is given by the potential terms, so that Proposition 4.3 yields an estimate of the energy by
the integral of potential, provided the solution is bounded on a small domain, according to
assumption (4.33).

Before turning to the proof of Proposition 4.3, we observe, as a preliminary remark, that
the result of proposition 4.3 is, at first sight, rather close to the result of Proposition 4.1.
However, let us emphasize that estimate (4.25) yields only an energy bound only for the
domain where the value of u. is close to one of the potential wells, whereas (4.34) yields an
estimate for the full domain D?(1/2).

The first step in the proof of Proposition 4.3 is:

Lemma 4.7. Let 9. € [1,3], let u. be a solution of (1) on D? and assume that (4.33) is
satisfied. We have, for some constant Cpot(L) > 0, depending only on the potential V' and

the value of L, such that

Vise) ° e:(u
/DQ(QE) ea(Ua)(x)d(lZ < Cpot(L) [/ID)Q(QE) c dx + 4 /,3]1))2(95) a( a)d£] . (435)

Proof. We observe first that

DZ(QE) = O(ue, 0:) U Ye(0e, %) (4.36)

In view of Lemma 3.1, we have

/ ee(ue)dr < CT(L)/ Md:n,
9(05) 6(95) £

whereas Proposition 4.1 yields
v
/ (ue)dx + 5/ ee(ue)dl| .
D2 (ue,0¢) = D2 (0¢)

The proof of (4.35) then follows straightforwardly from our first observation (4.36). O

/ ee(ue)(x)dr < Ky (L)
Ts(@e,%)
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Proof of Proposition 4.3 completed. As usual, a mean-value argument allows us to choose

some radius g. € [, —] such that

2°4
/ es(ues)dl < 8/ es(ug)dz. (4.37)
D2 (o) D2(3)\D2(1)

1
2

Combining with Lemma 4.7, we are led to

/Dz(l) ec(ue)(z)da < /W(QE) ee (1) (z)da

< Cpot / d:r + - / e (ue)dl (4.38)
DQ(QS) ]D)2(Qe
< Cpot / / UE df
by € D)
The proof of Proposition 4.3 is hence complete. O

We will also invoke the following variant of Proposition 4.3:

Proposition 4.4. Let u. be a solution of (1) on D?, let M > 0 be given and assume that
(4.24) holds. There exists some constant Cpot(M) depending only on V' and M such that

/ ex(ug)()dz < Cpoy(M) / Vite) 1y 1 o / ec(ug)dz. | . (4.39)
D2(}) p) ° DED2(3)

Proof. 1f u. satisfies (4.24), then it follows from Proposition 3.1

HU‘SHLOO(DQ(%)) <Ly= 5CunfM + Kunf. (4.40)
Invoking Proposition 4.3, inequality (4.39) follows with
Cpot (M) — Kpot (LM) = Kpot (5CunfM + Kunf) .
O

In the course of the paper, we will invoke the scaled versions of Proposition 4.3 and 4.4.
Given o > ¢ > 0 and zg € €2, we consider a solution u. on {2 and assume it satisfies the bound
(4.33) or the bound

E(ue, D*(z0, 0)) < Mo, (4.41)

then, thanks to the relations (54), we have the scaled version of (4.34) or (4.39) respectively,
namely

/ ec(uz)dz < Kpor(L) / Vite) 4 1 € / e-(u)dz |, (4.42)
D2 (z0,2) D2(xo, %) € 0 JD2(0,0)\D?(z0,%)

and

/ ee(ue)dz < Cpoy(M) / Viue) 4 4 € / ec(us)dz| . (4.43)
D2(x0,%) D2(z,32) € 0 JD2(z0,0)\D? (0, %)

These relations lead to:
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Proposition 4.5. Let My > 0 and € > 0 be given. Let us be a solution of (1) on Q such
that B (us) < Mo, and o € Q and o > ¢ > 0 such that D*(zq, 0) C Q. Then, we have

/ V(us)d:b +< / es(ue)dz,
D2(z0,%2) € 0 JD2(z0,0)\D? (0, %)

where the constant Ky (dist(zg, 0)) depends only on V', My and dist(zo, 0%2),

/ ee(ues)dzr < Ky (dist(zo, 002))
D2($07§)

4
Proof. Since D?(zq, 0) C 2, we have dist (]D)2(a:0, Eg)’ 89)) > g It therefore follows from

Proposition 3.1 that

20Cunt My

<L —_——
=0 dist(xg, 09)

lell oo 2o, 22 + Kunt.

The conclusion then follows directly from (4.43) with the choice Ky (dist(zg, 0€2)) = Kpot(Lo).
O

4.4 Energy bounds by integrals on external domains

Our next result paves the way for the proof of Theorem 8. As there, we consider an open
subset U of Q and define U; and Vs according to (67).

Proposition 4.6. let u. be a solution of (1) on Q, U be an open bounded subset of Q and
1>d0>e>1>0 be given such that Us C Q. Assume that

/ e (ue) dir < Koo (U, 0), (4.44)
Vs

where Kext (U, 0) > 0 denotes some constant depending possibly on U and 6. Then, we have
the bound, for some constant Cext(U,0) depending possibly on U and §

/u ee(ue)dr < Cext (U, 0) </125 ee(ue) + 8/% eg(ug)dm) (4.45)

)
4
Proof. The proof combines Proposition 4.4, Proposition 3.5 with a standard covering by disks.
We first bound the potential on the set s thanks to Proposition 3.5, which yields
2

i/ug, V(us)dz < C(U,0) /vg, ee(ue)dxr < C(U, 8)Kex (U, 9). (4.46)

In inequality (4.46), we have assumed that the bound (4.44) is fullfilled for some constant
Kext (U, §), which we choose now as

Kpot (Mo)o

Ko (U, 0) = 8C(U,8)

(4.47)
Inequality (4.46) then yields

5
1 /u V(e)d < K (M) (4.48)
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This bound will allow us to apply inequality (4.41) on disks of radius g covering Us . In this
4

1
direction, we claim that there exists a finite collections of disks {D2 (mi, 8) } such that
1€l

) _
Us ¢ UD? (:ci, ) and x; € Us, for any i € I. (4.49)
1 4el 8 1

8

x € Us and then extracting a finite subcover thanks to Lebesgue’s Theorem. Notice that we
4

1
Indeed, such a collections may be obtained invoking the collection of disks {]D2 (a:, ) } with

also have

)
2 (. 2
igIID (1:1,4) cug. (4.50)

On each of the disks D? (z;, ), we have, thanks to (4.48)

1

0
D[ Vds < K)
ID) (xl74)

so that we may apply the scaled version (4.43) of Proposition 4.4 on the disk D?(;, 16): This
yields the estimate

/ de + c eg(ue)dac] )
D2(z;,306) € 0 D2(2,%)

Adding these relations for ¢ € I and invoking relations (4.49) and (4.50) we are led to

/ ec(ue)(x)de < Cpot
]D)Q(:ci,%é)

V(ug)dac—i—E ec(ug)dz | . (4.51)
ug = Oy

/ ee(uz)(x)dz < 4(T)Cpor
u

)
4

Invoking again the first inequality in (4.46) we may bound the potential term on the right
hand side, so that we obtain

/u % . (u2)(z)dz < 4(1)Cpos | C(U, 5) /V eue)dr ot 3 . e (u)de

This inequality finally leads to the conclusion (4.45). O

5 Proof of the energy decreasing property

The purpose of this section is to provide a proof to Proposition 1, which is a major step in
the proofs of the main theorems of the paper.
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5.1 An improved estimate of the energy on level sets

In this paragraph, we consider again for given 0 < ¢ < 1 a solution u, : D> — R* to (1) and
specify the result of Proposition 4.2 for special choices of k and g.. More precisely, we choose

0= =t and k. = Cpq/ Ec(ue), (5.1)

where % < t. < 1 is the radius introduced in subsection 2.4, Lemma 2.5 for the choice
3 .
ri=1,ry= 1 and where the constant Cpq is choosen as

de = sup {4Cunf, Clev} ; (52)

Cunf being the constant provided in Lemma 2.4 whereas Cje, is the the constant introduced
in Lemma 2.3. With the choice (5.2), the lower bound (2.40) is automatically satisfied for
K = Ke. We notice, in view of (2.31), the construction of t. by Lemma 2.5, the definition
(5.1) of k., and the definition (5.2) of Cpq, that there exists some element Opain € X such
that

4(6) — Omain] < 2C /Bt D7) < 2 /B, D)) <

K

55, for all £ € S'(x.). (5.3)

Hence, condition (4.23) is also automatically fulfilled in view of our choices of parameters.
The main result of this subsection is the following:

Proposition 5.1. Assume that 0 < ¢ < 1 and that u. is a solution of (1) on D?. There

exists a constant Ky > 0 such
%
(/ eg(ug)(x)dx> +6/ eg(ue)(m)dx] . (5.4)
D2 D2

Proof. Notice first that the result (5.4) is non trivial only when the energy is small, otherwise
it is obvious, for a suitable choice of constant. We introduce therefore the smallness condition
on the energy given by

/ ee(ug)(x)dr < Ky
Ts(te:y'(a)

2

I
/]1))2 ec(us)der < vy = e (5.5)

and distinguish two cases.

Case 1: Inequality (5.5) does not hold, that is Ec(uz) > vi. In this case (5.4) is straightfor-
wardly satisfied, provided we choose the constant Ky sufficiently large so that

> b
Vv V1

Indeed, we obtain, since (5.5) is not satisfied,

Ky

ke ([ ee<ug><oc>dac>g > Kt [ ec(u)(@)de

(5.6)
> [ elu)@inz [ e
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Case 2: Inequality (5.5) does hold. Since assumption (4.23) is satisfied for p. = v, thanks to
(5.3), we are in position to apply Proposition 4.2. It yields

/ es(ue)(x)dr < Cy(v1) [KE/ V(“5)d:1: + 8/ ee(ue)dﬂl . (5.7)
Te(te,ke) D2(e.) € OD2 (t.)

We choose the constant Ky so that

\/171,1}.

Inequality (5.4) then follows directly from (5.7) in view of the definition k. = Cpa/Ec(ue)

of k. and the fact that, by definition of the energy, we have the point-wise inequality
V(ue)
€

Ky > sup{Cr(v1)Chad,

< ec(ue), so that

3
Kg/ V(ua)daj < de\/EE(ug)/ V(ug)dx < Cpq (/ ea(ua)dw> ’ i
D2(t.) D2(¢.) D2

9 9

O

At this stage, we have already derived an inequality very close to (60) of Proposition 1,
namely inequality (5.4) of Proposition 5.1. However it holds only on a domain where points
with large values of |us — 0;], in sense appropriate sense, have been removed. To go further
and obtain an estimate on a full disk, we invoke improved estimates on the potential V' which
are derived in the next subsection.

5.2 Improved potential estimates

Proposition 5.2. Assume that 0 < ¢ < 1 and that u. is a solution of (1) on D?. There

exists a constant Cy > 0 such that
3
3
( / e5<ue><w>dx) ve | e5<u5><x>dm] NS
D2 D2

Proof. The proof combines the energy estimates of Proposition 5.1, the avering argument of
Lemma 2.7, together with the Pohozaev type potential estimate provided in Proposition 3.4.

We first observe that, in view of inequality (5.3), the bound (2.36) is satisfied for the
solution wue, the radius ¢ = t. and the choice of parameter k = k., where t. and k. have been
defined in (5.1). Moreover, the lower-bound (2.40) is verified for k., as the definition (5.2)
shows. We are therefore in position to apply Lemma 2.7 with the choice ¢ = v, and k = k..

1

/ V(ue)de < Cy
€ Jp2(3)

This yields a new radius 1. € [g, te] such that

1
/ ec(ue)dl < — 11 Ee (ue, T(te, ko)) < 16 B (ue, Te(re, KE))7
$1(t2) te = 16
where, for the last inequality, we have used the fact that t. > 3/4, so that v, —11/16 > 1/16.

Invoking inequality (5.4) of Proposition 5.1, we are led to

(/DQ es(us)(l’)dx> i Jre/D2 es(us)(ff)dw] . (5.9)

/ ee(us)dl < 16Ky
St(ve)
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On the other hand, thanks to Proposition 3.4, we have

! / V(u)dz < 21 / eo(u)dl < 2 / e (u)de. (5.10)
€ JD2(v.) S1(te) St(e)

Combining (5.9) and (5.10) with the fact that 1. > g, we derive (5.8) with
Cy = 32Kr.

The proof is hence complete. O

5.3 Proof of Proposition 1 completed

- 9 5 . . . .
We introduce first a new radius t; € [1—6, =] corresponding to the intermediate radius defined

ro = —, so that it satisfies

in L 2.5 for the choi = —
in Lemma or the choice r, = 7=, 3

/ ec(u)dl < 16E€(u,]D>2(§)). (5.11)
Sl(fe) 8

It follows as above from Lemma 2.4 that there exists some element oy € 33, possibly different
from Opain defined in (5.3), such that

|u(€) — obis| < 4Cunsy [ Es <u,ID)2(2)), for all £ € S'(%.). (5.12)

In order to apply Proposition 4.7, we introduce once more a smallness condition on the energy,
namely

u3
E < =
cue) =me = opec

unf

(5.13)

We then distinguish two cases:

Case 1: The smallness condition (5.13) holds. In this case, we have, in view of (5.12)
() — Opis| < ACunty/T3 = % for all £ € S(%.),

so that condition (4.23) holds fo . = t. (with Omain replaced by opis). We are therefore in
position to apply Lemma 4.7 on the disk D?(t.), which yields

M Z es(u
/IDJQ(EE) ee(ue)(x)da < Chot(Lar) [/13’2(2) s d +€/Sl(fa) <( 6)d£] , (5.14)

where Ly is defined in (4.40), so that [[uel|jeo(p2(2)) < L. Invoking Proposition 5.2 and

4
5
inequality (5.11), we are hence led to

3
2

/IDQ(%E) ec(ue)(z)dr < Cpot((Lar)Cv </}D2 65(u3)(aj)dx)

+ 16Cpot(LM)Cv€/ ec(ue)(x)dz,
ID)Q
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which, since 5/8 > t. > 9/16, yields (60), for a suitable choice of the constant Cgec.

Case 2: The smallness condition (5.13) does not hold. In this case, inequality (60) is
straightforwardly fullfilled, provided we choose

_1L
Cdec > Mo %

The proof is hence complete in both cases. O

6  Proof of the Clearing-out theorem

The purpose of this section is to provide the proof of the clearing-out property stated in
Theorem 6, a main step being the uniform bound (58). We first introduce a very weak form
of the clearing-out theorem.

6.1 A very weak form of the clearing-out

The following result is classical in the field (see e.g. [27, 11]).

Proposition 6.1. Let u. be a solution of (1) on D? with 0 < & < 10. There exists a constant
N3 > 0 such that, if
Ee(ue) < nse,

then we have, for some o € 3, the bound

1
jue(2) — ] < Ci (E(“) <H forz e D? (j) , (6.1)

where Cyi denotes some positive constant depending only on the potential V.

Remark 6.1. In the scalar case, Proposition 6.1 combined with the monotonicity formula
for the energy directly yields the proof of Theorem 6.

Proof. Assume that the bound E.(u) < nge holds, for some constant ng to be determined
later. Imposing first 3 < 1, it follows from Proposition 3.1 applied with = D? that there
exists a constant Cy > 0 depending only on V such that

7
lue(z)| < Cy, for z € ID)Z(g).

Since the potential V' is smooth, and hence its gradient is bounded on the disc B¥(Cp), we
deduce from Proposition 3.2 that there exists a constant C such that

YV () ()] < % for z € D?(g). (6.2)

On the other hand, since we assume E.(u:) < nse, we deduce from the definition of the
energy that

/ V(ue(z))dz < / V(ue(z))de < B (u.) < nze’. (6.3)
D2(%) D2
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16C?E. (ue

3
We introduce next the number o = <()) . We impose a second upper bound on
€

T
N3 given by
<7 o) (6.4)
3= T1602” '

where &g is the constant introduced in (2.2). It follows from the above definitions, that, if
E:(u) <mngse, then we have & < 9. We claim that, if ng is chosen so that (6.4) is satisfied,
then, we have

V(ue(z)) < a < &g, for any z € ]DZ(Z),

Indeed, assume by contradiction that there exists some zg € D?(3/4) such that V (u(zg)) > «.
Invoking the gradient bound (6.2), we deduce that

(6.5)

R

V(ue()) > 5 for z € D? (a:g, 2"2;) (6.6)

dog 1
Without loss of generality, we may assume that Cy is chosen sufficiently large so that 20, = <=
1

and hence .
D? <x0, 202;) c D? <x0, ;Cgi) C ]D)Q(é), since |zo| < 3/4.

Integrating (6.6) on the disk D? (a:o, 50, >, we are led to the lower bound

3
/ V(e (2))dz 2/ V(ue(@))de > 75 % = 26K, (u.).
D2(3) D2(20,5%5;) 8¢5

This yields a contradiction with (6.3) and hence establishes the claim (6.5). Combining (6.5)
and Lemma 2.1 together with the continuity of the map u., we may assert that there exists
some o € ¥ such that, for any z € D?(2), we have

1
=32 6
‘us(x) _ 0_’ < inf{uo’ 4)‘61“} —inf { o, <1024)\0 ClEa(Ua)>

e

. ) (6.7)
E 5 10240,2C2\ ©
< inf {ug, Cwk (6(%)> } , where Cyx = <01>
€ T
To complete the proof of (6.1), we impose an additional upper bound on n3z, namely
6
Ho
< 6.8
me(an) (6:5)
. EE(UE) Ho .. .
So that, if E.(u.) < mse, then we have Cyy § 5 Combining with (6.7), we
€
obtain (6.1), which hence completes the proof of the Lemma. O
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Remark 6.2. In some place, in particular in the proof of Proposition 6.2 below, our argu-
ments require clearing-out results, for values of € which are not necessarily very small. In
such a situation, we will make use of the following immediate consequence of Proposition 6.1:

Corollary 6.1. Let 0 < &y < 10 be given. Assume that € > éy and
Ec(ue) < maéo. (6.9)
Then (6.1) holds.

The proof is straightforward, since (6.9) and € > &y imply E(u:) < nse, so that Proposition
6.1 applies.

6.2 Confinement near a well of the potential

Our next result is the main step in the proof of Theorem 6. It shows that, if the energy is
sufficiently small, then u.(0) takes its values inside a well of the potential.

Proposition 6.2. Let 0 < £ < 1 and u. be a solution of (1) on D?. There exists a constant
N4 > 0 such that if
E. (us, D?) < g, (6.10)

then, we have, for some o € %, the bound

lu(0) — o] < % (6.11)

Proof. We consider first the case that € is not so small, more precisely the case where
1>¢e>n;3, (6.12)

where 13 denotes the constant introduced in Proposition 6.1. In this case, we apply Corollary
6.1 with ég =n3. We therefore impose a first condition on 14, given by

M4 < M3éo = M. (6.13)

Assumption (6.9) then follows from (6.10), so that Corollary 6.1 yields the desired results
and we are done. It remains therefore to establish the result in the case € is small, that is,

under the assumption
0<e<ns. (6.14)

Under assumption (6.14), we distinguish again two cases, first the easy case, where
E.(u.) < &2 (6.15)

In that case, we have, on view of (6.14), the upper bound E.(u.:) < nse, and we are hence in
position to apply the result of Proposition 6.1, which leads again to the desired conclusion
(6.11). We therefore restrict ourselves throughout the end of the proof to the remaining case,

namely
Ee(us) > €2, and 0 < € < n3. (6.16)
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The proof of the Proposition 6.2 under assumption (6.16) then relies on inequality (60) of
Proposition 1, a standard scaling argument combined with an iteration procedure. We divide
the rather lengthy argument into several steps.

Step 1: A scaled version of inequality (61). Set, for 0 < r < 1, E.(r) = E; (u.,D*(r)), and

assume that

52

Ec(r) > —. (6.17)
r
Then, we have
3
r Ec(r) 2 .
E€(§) < Kgec o provided r > ¢, and where Kgee = sup{2Cgqec, 1}. (6.18)
r
Indeed, scaling inequality (61), we are led to
Be(D) < Caee | —=E.(r)  + SE.() ided 7 > (6.19)
- — - rovided r > ¢ )
52_decﬁsr rgr,pove Z &,
E.(r

), we deduce from (6.19) that

€
Since, by assumption (6.17), we have — <
,

E.(r)?
\/F

Step 2: The iteration procedure. We consider the sequence (ry,)nen of decreasing radii r,

Ee(g) < 2Cgec , and (6.18) follows.

1 1
defined as r, = on for n € N, and set E;, = E.(r,) = Eg(z—n), dropping the superscript in
case this induces no ambiguity. We introduce the number

2 1
Ne = sup {n € N, such that ES > 2"¢? = 8—, and 1y, = o > 5} . (6.20)
Tn
We first notice that, under assumptions (6.16), the number n. is well defined. Indeed, we

have, in view of (6.16),
E8>€2:2052 and rg =1 > &,

so that the number 0 belongs to the set of the r.h.s of (6.20), which is hence not empty.
On the other hand, since 2" tends to infinity as n tends to infinity, and since the sequence
(Ep)nen is non-increasing, hence bounded by E§, the set of the r.h.s of (6.20) is a finite set of
sequential number and the number n,. is hence a well-defined integer. In view of the definition
of ng, inequality (6.17) is straightforwardly satisfied for every r,, < r,_. We deduce therefore
from Step 1, inequality (6.18), and the definition of r,, that we have the inequality

En < \/ianec (En)% , forn=0,...n.. (6.21)

We introduce, for n € N, the number A,, = —logE,,. Inequality (6.21) for E,, is turned into
the inequality for A, given by

(log2)

5 log(Kgee), forn=0,...n.. (6.22)

3
An+1 2 §An -

In order to study the sequence (A;)nen, we will invoke the next elementary result.
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Lemma 6.1. Let n, € N*, (apn)nen and (fn)nen be two sequences of numbers such that
Apt1 > Coan — fn, for all n € Njn < ny, (6.23)

where cg > 1 represents a given constant. Then we have the inequality,

n

1

an > ¢ (ao - chﬂfk> , for n e N*, n <n,. (6.24)
k=0~0

We postpone the proof of Lemma 6.1 and complete first the proof of Proposition 6.2, under
assumption (6.16).

Step 3: Imposing a new constraint on Ny and energy decay estimates. We apply Lemma 6.1
to the sequences (ap)nen = (An)nen and (fy,)nen given, in view of (6.22), by

_ (log2)
fo= %

n + log(Kgec), for any n € N.

We notice, in view of the definition of Kge. given in (6.18), that f,, > 0, ¥n € N. It follows
from these definitions that inequality (6.23) is satisfied with

§, ap = —logEg = —log(E.(u.,D?)), and n, = n..

00:2

Inequality (6.24) then yields, for n =0, ...n.,

; . X n 9 k+1
o= =105 > (3) o (55 ) =] - where 2= % ) (6.25)
3 n
> <2> [—logna — 0] -

Here we have used, for the second inequality, assumption (6.10) and we have set

Y i <§>k+1 ((1()2g2)k—|—10g(Kdec)> < +o0.

k=0

Inequality (6.25) leads us to impose another constraint on the constant ng4, besides (6.13),
namely we impose

N4 <exp[—(1+4 )], so that —logns > 1+ o, (6.26)

It follows that inequality (6.25) yields, provided inequality (6.10) holds,
3 n
E, <exp [— (2> }, forn=0,...n. — 1. (6.27)

Step 4: Estimating n. and ry_. It follows from (6.27) and the definition of n. that

e? = exp(2loge) < m,E, = 27"E,, < exp [— (g) —n(log 2)] , forn=0,...n.,
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so that we are led to the inequality

<3) T ne(log2) < 2]loge],

2
3\"
<2> < 2|logel.

Taking the logarithm of both sides, we obtain the upper bound for n.

Hence, since n.(log2) > 0, we have

log(2| log <)
e < :
log 3 — log 2

This upper bound yields a lower bound for r,_, namely

log 2
rn. = 27" = exp(—(log2) ne) > exp <— log(2[log 6\)Og>

log 3 —log2
(6.28)
> exp (—y1log(2|logel))
> (2] log e]) .
Here we have set loa 2
og
=— ~1,7, that 1 < < 2.
" log 3 — log 2 SO tha i

We notice that (2|loge|)™ ! > €, 50 that there exists some universal constant 0 < 1 < 1
e—

such that
Tn. > 2¢€, provided 0 < e <. (6.29)

Going back to the definition of n., we deduce from (6.29) and (6.28) that

B, .1 < ezrgelﬂ = oneF1e? < 8lloge|V1e?, if 0 < e <e. (6.30)

Step 5: Change of scale. We introduce the scaled parameter ¢ defined by
€= 7"7;1_,’_16 = 2r e, so that by (6.30) we have & > ¢, if ¢ < ey,
Invoking (6.29), we have moreover
€ <1, provided 0 < € < &7. (6.31)
We consider once more the scaled map iz defined on D? by
Uz () = Ue(T (. 41) T), for = € D?.

Using the scaling properties (54), we are led to the identity, for the energy

Ez(tz) = 7"7:51+1E6(u67]D)2 (Thet1)) = 7“;51+1E25+1>
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so that, in view of (6.28) and (6.30), we have

iiz) < 16|loge|)? &%, if £ < ey, and
g

&
: E.(ue, D2(ry (6.32)
(5 ) — e (e, 6(7‘ +1)) < 8lloge|Me, if € < e.

0B o

The derivative of map s — ¢(s) = 8|log s|¥'s is given, on (0, 1) by ¢'(s) = 8(|log s|Y* — (y1 —
1)|log s|Y*71), so that it is non-negative on the intervalle I = (0,e!~Y*) C (0,1). It follows
that ¢ is non-decreasing on the interval I and tends to 0 as s tends to 0. Hence, there exists
some universal constant €9 € I such that

p(e2) = 8|log ez e2 < M3, and eg < e, (6.33)

where 13 denotes the constants introduced in Proposition 6.1. We have therefore, by mono-
tonicity of ¢
p(e) = 8|loge['e <mg, for 0 < e < .

Going back to (6.32) and (6.31) we obtain, for 0 < e < &y

Eg(ﬂg) < 1135 and & < 1. (634)

Step 6: Proof of Proposition 6.2 completed. We conclude invoking the weak clearing-out
property stated in Proposition 6.1. For that purpose, we distinguish two cases:

Case 1: 0 < e < g9. In view of (6.34), we are in position to apply Proposition 6.1 to the
map u. with parameter &: Hence there exists some point o € ¥ such that

|Gz(0) — o] < %.

since u(0) = @z(0) the conclusion of Proposition 6.2 follows.

Case 2: 1 > ¢ > e9. Here we apply directly Corollary 6.1 to u., choosing éy = €2. Besides
(6.13), (6.26) we impose a last constraint on 14 given by

N4 < N3€p = N3E2.

Hence, if u. satisfies (6.10), then it fulfills assumption (6.9) of Corollary 6.1, so that its

conclusion yields again the existence of an element o € ¥ such that |u.(0) — o| < %

In both cases, we have hence established the conclusion of Proposition 6.2 so that the proof
is complete. ]

In the course of the proof, we have used Lemma 6.1, which has not been proved yet.

Proof of Lemma 6.1. We introduce, inspired by the method of variation of constant, the
sequence (by)nen defined by a, = cf by, for any n € N. Substituting into (6.23), we obtain

C§+1bk+1 > c§+1bk — fx, forall k € {0,...,ny},

so that 1
b1 — b > _T—i-lfk’ for all k € {0,...,n.}.
Co
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Let n € N, n < n,. Summing these relations for k =0 to k =n — 1, we are led to

n n

1 1
bn>bo =Y g fe=a0— ) g fio
k=00 k=00
which, in view of the definition of by, yields the desired conclusion (6.24). O

A direct consequence of Proposition 6.2 is the following:

1 1
Corollary 6.2. Let 0 < ¢ < 1 and u. be a solution of (1). Set nz = inf{§n3,§n4} and
assume that
E.(ue,D?) <1s. (6.35)

then, there exists some o € 3 such that

lue(z) — o] < %, for any = € D? (;) . (6.36)

7
Proof. Let xg € }D)Q(g) be an arbitrary point. We consider the scaled parameter £ = 8¢ and

the scaled and translated map . defined on D? by

1
tz(x) = ue (9:0 + 8x> , for every z € D?,

so that .
Ba(i) = 8B (1 D2 (an, ) ) < 8E.lue) < 815 < (6.37)

where we have used assumption (6.35) and the definition of ns for the last inequality. As
above, we distinguish two cases.

Case 1: ¢ < %. In this case € < 1, so that, in view of (6.37), we are in position to apply
Proposition 6.2 to 4z: It yields an element o, € X, depending possibly on the point z¢, such

that
Ho

77
where we used the fact that @z(0) = u(xp). Since inequality (6.38) holds for any point
ro € D?(7/8), a continuity argument shows that the element o,, of ¥ does not depend on
xg, so that the proof of Corollary 6.2 is complete in Case 1.

‘715(0) - O—a:()’ = |u€(x0) - Gaco‘ < (638)

Case 2: 1>¢> %. In this case 1 < € < 8. In view of the definition of 5, we have 81y < ngs,
It then follows from assumption (6.35) that

_ 1 -
Es(tz) = 8E. <U5,D2 <9307 8)) < 8Ec(ue) < 8ns <mz <m3é. (6.39)

Hence, we are in position to apply Proposition 6.1, so that there exists an element o,, € X,
depending possibly on the point zp such that |4z(0) — 0y,] < %. Since 1z(0) = ue(xo), we

conclude that
Ho

e (0) = 0] < 2.

The proof of Corollary 6.2 is hence complete.
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6.3 Energy estimates for solutions near potential wells

We turn in this section to energy estimates, for solutions having their image near a well, a
condition which replaces the smallness assumption on the energy.

Proposition 6.3. Let u. be a solution of (1) on D? with 0 < ¢ < 10 such that, for some
0 € X, we have

lu(z) — o] < % for = € D*(1). (6.40)
Then, we have the energy estimate
2 (3 -3 2
E: [ ue,D 1 <8N ? Amax €E: (u, D). (6.41)

Proof. The proof is parallel and actually much easier then our earlier energy estimate. We

5 3
first invoke Lemma 2.5 with rg = 3 and 7| = Z: This yields a radius t. € [g, Z] and an

element o € X such that

/ . (u)dl < S B, (u, D2)) and/ e — of|Vaue| < 16y/00 ' Ex(ue, DY), (6.42)
St(te) St(re)

where we have used (2.12) and (2.13) for the second inequality. We multiply the equation
(1) by (ue. — o) and integrate on the disk D?(t.) which yields, as in (4.29)

Ou,
/ E|Vu5|2 + EilvuV(ua) (ue —0) = 5/ ; (ue — 0). (6.43)
D2(xe) St(re) OT
We deduce from (6.42) that
Oue -1 2
5 (ue —0) < lue — 0| Vue| < 164/ Ay Ec(ue, D7)). (6.44)
St(ee) OF St (xe)

We use next the fact that, in view of assertion (58), we have |u. — o] < % on the disk D?(t.).

Arguing as in (4.9), we have the point-wise inequality

Ao
2Amax

e|Vue > + e 'V V(ue) - (ue — 0) > es(u). (6.45)

Combining (6.43) with (6.45) and (6.44), we obtain
_3
/ ee(us)dr < 8y > Amax €E: (u, D?)),
D2 (e )
Which yields the energy estimate (6.41). O

6.4 Improved uniform bounds

Combining Proposition 6.3 with Proposition 6.1 and Proposition 6.2 leads to an improve-
ment of uniform bound provided by Corollary 6.2, under the assumption that the energy is
sufficiently small.
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Proposition 6.4. Let 0 < ¢ < 1 and u. be a solution of (1) on D?. There exist constants
Neg > 0 and Cyen > 0, depending possibly on V', such that, if

E. (ue,D?) <, (6.46)

then there exists some o € 3 such that we have the uniform bound
2\\5 ~ Ho 2
lu(z) — 0] < Cyent (Be(ue,D?))® < =, forz e D* { = ). (6.47)

Proof. We assume that the bound (6.46) holds, for a constant ng > 0, whose value will be
determined in the course of the proof. We first impose that ng < ns, so that (6.46) implies
(6.35), and we are in position to apply Corollary 6.2 and assert that, for some o € 3,

7
lua(z) — o] < % for x € D(3). (6.48)

Next let zg € D?(3/4) be an arbitrary point. We consider the scaled parameter £ = 8¢ and
the scaled and translated map @z defined on D? by

1
Uz(x) = ue <xo + 81:) for every x € D?,

so that iz solves (1) on D?, with € replaced by &. For x € D?, the point z¢ + 1/8z belongs to
D?(Z), so that if follows from (6.48) that

liz(z) — o] < %, for z € D(1). (6.49)
Moreover, we have, using (55),
1
Bz (i) = SE- (ue,mﬂ(xo, 8)) < 8B (u, D?) < 8n5. (6.50)

In view of (6.49) and the fact that £ < 8, we are in position to apply Proposition 6.3 to e,
so that we derive that

3 _3 _3
Ee <u5,ID>2 (4)) < 8¢ 2 Amax EEz(uz, D?)) < 8°X; 2 Apax €Ee (ue, D?). (6.51)
. . . 4 32
We perform now another change of coordinates, introducing the parameter ¢ = §5 = 35, SO

that 0 < € < 10. We consider the scaled map . defined on D? by

3
Ue(x) = Ug (f) , for every z € D?,

so that 1 solves (1) on D?, with e replaced by € and, in view of (6.51)

4 2048 3 _3
B (i) = gEg (ag,D2(3)> < T)\O 2 Amax €Bx (ug,D?) < <64)\0 2)\maxn6> e.  (6.52)
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We impose next the following additional condition on g

_3
64)\0 2)\maxn6 <mns, (653)
so that, if (6.53) is satisfied, then we deduce from (6.50) that
Ee(ae) < Mgze.

We are hence in position to apply Proposition 6.1 to the map w.: It follows, since 4.(0) =
ue (), that

(6.54)

1
Ec(a)\® _ wo
€ -2

uc(e) o] = [6(0) = o] < Cu
In view of (6.52), we have

Ec(t)  3BEc(t)
e 32

< 3225 * AmaEe (1, D?) |

so that (6.54) becomes
1
‘Ua(xo) - O—‘ < Gy (Ea(ueamz))B s

1

_3 6
with Cy = Cux (32)\0 QAmaX> . This yields (6.47) and completes the proof of the Proposi-
tion 6.4. O]

6.5 Proof of Theorem 6 completed

We choose
_Te
5

With this choice of constant 11, Proposition 6.4 directly yields (58), whereas the energy esti-

i

_3
mate (59), follows directly from inequality (6.41) of Proposition 6.3 , choosing Cprg = 16, * Amax-
The proof of Theorem 6 is hence complete.

Part III: Analysis of the limiting sets and measures

7 Properties of the concentration set G,

The purpose of this section is to provide the proof of assertion i) of Theorem 1. We start
with the proof of Theorem 7, that is the clearing-out property for the measure v,.
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7.1 Proof of Theorem 7
Recall that v, is the weak limit of the measure v, defined in (6) by v. = e-(us)dz, so that
Ee (u, D?(z0,7)) = ve(D*(xg, 7)) = v (D2(z0,7)).

Let 9 € Q and r > p > 0 be such that D?(zq,7) C €. Since D2(z0, p) is a closed set, we
have, by standard properties of weak convergence of measures

lim sup v, (]D)Q(;vo,p)) < v (D%(xg, p)) < v*(D2(ajo, r)). (7.1)

n—-+oo

Next, let g and r > 0 be such that
v, (D?(zg,7)) <My 7.

It follows from (7.1) that, for given p < r, there exists some n(p) € N such that, if n > n(p),
then we have

Ve (D%(20,p)) < . (72)

8
We choose p = g We obtain, inserting in (7.2),

8r 59 45
Ve, (D%(20, p)) = Ve, (DX (w0, 5-)) < 3. -0M0 = o pmy < 21p, (7.3)
9 48 32
Hence, for sufficiently large n, we are in position to apply Proposition 2 on the disk D?(zq, p)
so that (63) yields

b5r 5 €
(B0 2)) oo (B () S
P 0 (7.4)
r
<emM- = §€”1 —0asn— +oo.
p

Letting n — 400, it follows that v, (DQ(.%'(), g)) = 0 and the proof is complete.

7.2 Elementary consequences of the clearing-out property

We present here some simple consequences of the definition of &, as well as of the clearing-out
property stated in Theorem 7. For x € Q, we set

Vi (D2(.%', T))
e*(z) = hm_%lpf

so that e.(x) < &*(x), where e, is defined in (65).

€ [0, 4o0], (7.5)

Lemma 7.1. i) Let zg € U, = Q\ S,. There exists some radius ry, > 0 such that
D?(xg,72,) C Q and
V(D2 (20, 7,) = 0. (7.6)

In particular
ey(x) = e*(z) = 0, for any = € D? (g, 74, ). (7.7)

i) Let xo € &y, and rg > 0 such that D?(xq,70) C Q. We have

v, (D?(xg,7)) >y 7, for any 0 < 7 < rg. (7.8)
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Proof. Tt follows from the definition (66) of &, that, if 2y € i, then we have e,(zo) < 13.
Hence there exists some radius 7o > 0 such that D? (zo,70) C © and such that

Vo (D (0, 70)) < romi-
In view of Theorem 7, we deduce that v, (ID?(zo, %)) = 0. Choosing 7y, = ZO’ we obtain

(7.6). Identity (7.7) is then a straightforward consequence of the definition (7.5). Turning
to assertion ii), we argue by contradiction: If (7.8) were not true for some 0 < r < rg, then
we would be in position to apply Theorem 7 to the ball D?(zg,r), which would imply that

v, (D (o, g)) = 0, and hence that e,(xo) = 0, a contradiction with the definition of &,. O

Proposition 7.1. The set &, is a closed subset of 2.

Proof. Tt suffices to prove that its complement, the set U, = Q\ &, is an open subset of .
Let xg be an arbitrary point in i,. It follows from Lemma 7.1 that

ex(x) = 0 for € D?(20, 72),
so that D?(zg,7y,) C .. Hence, &I, is an open set. O
Lemma 7.1 leads also immediately to:

Proposition 7.2. The set &, has finite one-dimensional Hausdorff measure. There exists a
constant Cyg > 0 depending only on the potential V' such that

HY(S,) < CulMy.

Proof. The proof relies on a standard covering argument. Let 0 < p < i be given, and
consider the set
Q, = {z € Q,dist(z,00) > p}.

Next let 0 < § < p/4 be given. Consider the points x; on a uniform square lattice of R?, with

nearest neighbour at distance 3 We obtain for a subfamily I a standard finite covering of
2, of size §, that is such that

) )
Q,C U]D)Z(xj,(S) and D? ( z;, = | ND? zj,= | =0, fori#jel.
jeI 2 2

We introduce then the set of indices
Is = {z € I, such that D?(z;,0) NS, # @},

so that given any arbitrary index i € Is, there exists a point y; € &, ND?(x;,6). It follows
from the definition of &, that

ex(yi) > M. (7.9)
Invoking Lemma 7.1, inequality (7.8), we see that, for any 0 < r < §, we have

V(D (yi, 7)) > M1 7 (7.10)
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Since D?(y;, 6) C D?(x;,26), we deduce from (7.10) that
v, (D?(x5,268)) > 11 6. (7.11)

Since the points x; are on a uniform grid, we notice that a given point & € R? belongs to at
most 25 distinct balls of the collection D?(x;,25). We have therefore

H(Ism1d <Y vi (D (24,20)) < 25v,(Q) < 25Mp. (7.12)
i€l
It follows therefore that o5 M
8(I5)0 < 0
N1

Therefore, letting § — 0, we deduce, as a consequence of the definition of the one-dimensional
Hausdorff measure that

50 M
1 < limi < 0
H(6,NQ,) < hgn_}lgleﬁ(L;)é -
. . 50
We conclude letting p — 0, choosing Cy = n— O
1

7.3 Proof of Theorem 8
Theorem 8 is a direct consequence of Proposition 4.6 which has actually been taylored for
this purpose. Indeed, since v4(Vs) = 0, we have the convergence

/ ee, (ue, )dz — 0 as n — +o0,
Vs

so that condition (4.44) is fulfilled for ¢ = ¢,, and the map wu,,, provided n is sufficiently
large, say larger than some given value ng. We are therefore in position to conclude, thanks
to Proposition 4.6, provided n > ng is sufficiently large, that

/ ee, (e, )dx < Cext (U, 9) (/ ee, (ue, )dx + €n/ e, (ugn)dm>
Us Vs Us

4
S CeXt(Z/{7 5) (/ egn (U/gn)dx + gnM()) .
Vs

It follows that
/ ee, (Ug, )dz — 0 as n — 400,
Us
4
so that the proof is complete. O

7.4  Connectedness properties of G,

The purpose of the present section is, among other things, to provide the proof of Proposition
3. Given r > 0 and x¢ € Q such that D?(zg,2r) C Q, we consider the closed set

Gup = Sy p(w0) = 6, ND%(x0, 0) for p € [0, 2r).

The proof of Proposition 3 relies on several intermediate properties we present next.
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Proposition 7.3. Let r > 0 and xg € Q be as above. The closed set
Q. (20) = Gy (o) US? (0, 7) (7.13)
s a continuum, that is, it is compact and connected.

Proof. The proof of compactness of Q, »(z¢) is a straightforward consequence of Proposition
7.1, since both sets composing the union (7.13) are compact. The proof of connectedness of
Q, r(x0) is more involved, and strongly relies on Theorem 8, as we will see next. In order to
invoke Theorem 8, a first step is to approximate &, , by sets &5, with a simpler structure.

Definition of the approximating sets ;. These sets are defined using a Besicovitch covering
of G, . Let
8o = dist(D?(zg,7),09) > 0.

For given 0 < & < 84, we consider the covering of &, , by the collection of open disks
{ID)Q(:):O, 8)}zes, ., which is obviously a covering of &, .., and actually a Besicovitch covering.
We may therefore invoke Besicovitch covering theorem to assert that there exists a universal
constant p, depending only on the dimension N = 2, and p families of points {x;, }ie4,,
{miy Yisears - - {xi, fipea,, such that x; € &, (20), forany i € A=A UAy...UA,,

- 2(,. _ 200
Ger C Vs = U <iZgAZID> (x,,e,s)) = U D?(x;,9), (7.14)
and such that the balls in each collection {D?(x;,8)}ica, are disjoint, that is, for any ¢ =

1,...,p, we have
D?(x;,8) ND?(x;,8) = 0 for i # j with 4,j € Ay. (7.15)
As a consequence of the above constructions, a point « € Us ., where Us , is defined in (7.14),

belongs to at most p distinct disks of the collection {D?(x;, 8)}ica. We define the set Ss ;- as
the closure of the set s, that is

- p -
G5, =5, = U U D2(x;,,0),
o,r d,r 0=14pEA, (Ze )

Notice that, by construction, the total number #(A) of distinct disks is finite. Actually, we
have the bound

4pr?
Indeed, since the family of balls {D?(z;,,8)}ica, are disjoint disks of radius & which are
included in a ball of radius 2r, we have

(7.16)

42
jj(Ag)gé—Zforﬁzl,...,p,

so that (7.16) follows by summation.
We next consider the set
Qs = G5 US*(w0,7)

and its distinct connected components {ngﬂ‘}k T In view of the structure of Qs ,, which is
a union of f§(A) disks with a circle, the total number of connected components 75 is finite
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and actually bounded by #(A) + 1, hence the number on the right hand side of inequality
(7.16) plus one. As a matter of fact, we claim

The set Qs is simply connected, so that §(Js) = 1. (7.17)

Proof of the claim (7.17). We assume by contradiction that Qs , has at least two distinct
connected components and denote by Q%,T the connected component which contains the circle
St(zg,7). Let Qg , be a connected component distinct from D}) ,» and set

B = inf {dist(gg,r,ag7r),j e Js,j # 2} > 0.

We consider the open set

U=z ecR?dist (2,92, <ﬁ}CD2x,r u 97,
{ (0 85r) < § oI ey Her
so that using the notation (67), we have
Up = {x € R?, dist (z,U) < B} C D*(zo,7)\ U ]
1 4 jegs\{2y "
and
Vs EUB\L{C{xERQ,Egdist(x,ﬂgr) Sg;} (7.18)
4 4 ’
combining (7.18) with the definition of 3, we obtain
Vs NG, =0 and v, (vﬁ) —0. (7.19)
4 4

We are therefore in position to apply Theorem 8 to assert that v, () = 0. However, since by
definition Qgﬂ, C U, it follows that U N S, # B, so that v, (U) > 0. We have hence reached a
contradiction, which establishes the claim (7.17).

Proof of Proposition 7.3 completed. It follows from the definition of &, that
dist(Qs,r, Qu,r) < 0, where Q,, = S5, U S%(zo, 1),

so that Qs , converges as & — 0 to Q,, in the Hausdorff metric. Since for every o, the set
Ss, is a continuum, it then follows (see e.g. [21], Theorem 3.18) that the Hausdorff limit
Q. is also a continuum and the proof is complete. O

We deduce as a consequence of Proposition 7.3:
Corollary 7.1. The set Q. , is arcwise connected.

Proof. Indeed, any continuum with finite one-dimensional Hausdorff dimension is arcwise
connected, see e.g [21], Lemma 3.12, p 34. O
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7.4.1 Proof of Proposition 3

Invoking Fubini’s theorem together with a mean value argument, we may choose some radius
ro € [r,2r) such that the number of points in &, N dD?(xg, 7o) is finite, more precisely

mo = ﬁ (6* N 8D2(£0a TO)) < %Mﬂv

where we have used estimate (8) of the %! measure of &,. We may hence write

S, NAD?(zg,70) = {a1, .-, amy }- (7.20)
Next, we claim that for any point y € &, ,,, there exists a continuous path p : [0,1] = &, »,
connecting the point y to one of the points ay, ..., ay,, that is such that

p(0) =y and p(1) € {ai,...,am,}- (7.21)

Proof of the claim (7.21). If |y — xo| = 1o, then y € &, NOD?(z0,70), and it therefore suffices
to choose p(s) =y, for all s € [0,1]. Otherwise, since, in view of Corollary 7.1 applied at zg
with radius 7o, the set &,y U OD? (g, ) is path-connected, there exists a continuous path
P:00,1] = &4y UOD?(x0,70) such that

p(0) =y and p(1) € 8D2(m0, T0).
By continuity, there exists some number sy € [0, 1] such that
1p(s)] < 1o, for 0 < s < sp and |p(so)| = 7o.

It follows that
P(s0) € &, NOD*(xg,70) = {a1, ..., am,}-

We then set
p(s) = p(s), for 0 < s < sp, and p(s) = p(sp), for sp <s <1,

and verify that p has the desired property, so that the proof of the claim is complete.

Proof of Proposition 3 completed. It follows from the claim (7.21) that any point y € &,
is connected to one of the points ai,...,am, given in (7.20). Hence &, ,, has at most mg
connected components and the proof is complete. ]

7.5 Rectifiability of G,
In this section, we prove:
Theorem 7.1. The set &, is rectifiable.

Proof. The result is actually an immediate consequence of Proposition 7.3 and the fact that
any 1-dimensional continuum is rectifiable, a result due to Wazewski and independently
Besicovitch (see e.g [21], Lemma 3.13). Indeed, given any zg € €, 7 > 0 such that D?(zq,r) C
(2, the set 6, US?(xg,7) is a continuum, hence rectifiable in view of the result quoted above,
and hence so is the set 6*,%. Since rectifiability is a local property, the conclusion follows. [
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7.6 Uniform convergence of (u., ),cy off the set &,

We go back in this Subsection at the level of the solutions u., and establish uniform conver-
gence off the set G,. Our results will rely on the following main tool.

Proposition 7.4. Let z9 € Q\ &, and 5, > 0 be given by Lemma 7.1, Assertion i). There
exists a sequence (Ogy n)neN With 0y, n € X, for n € N, such that
L 1
”ugn — O-xO,HHLOO(Dz(xo,FmO)) — 0 as n = 400, with T = iT‘xO. (722)

Proof. Tt follows from (7.6) that v, <D2 (z0, 7“;;;0)) = 0, and hence

limsup E., (ue, ,D?(20,72,)) = limsup v, (D(z0, 72,)) < Vo(D2(z0,72,) = 0. (7.23)

n—-+o0o n—-+o0o

Hence, there exists some ng € N, such that for n > ng, we have
Ean (ué‘n ) ]D2 (x()v rx())) S T117'a:0- (724)

We are therefore in position to apply Proposition 2 to u.,,, 29 and r = r,,: The first inequality
in (63) yields the existence of some 0y, , € ¥ such that

EE £ ,]D)Q s I I :E
o (tte,, D? (o, 7 0))> - 0, for x € D?(xo, %) (7.25)
n—

Tzo

’ugn (x) - 0—$()7n| S CWGH (

This yields (7.22) and completes the proof of Lemma 7.4. O]

The previous result can be extended to more general domains by covering as follows.

Corollary 7.2. Let K C U, = Q\ &, be compact and connected. Then there ezists a sequence
(GK,n)neN with Ok, €2, forn € N, such that

[te, — O, llLoo(x) — 0 as m — +oo. (7.26)

Proof. Let § = dist(K,S,) > 0. We consider the covering of K C UK]D)2(a:,fx), where 7, =
Te

inf{7,, 2}. By Lebesgue covering theorem, we extract a finite covering, so that
2 y g g g

K C Kpep = gADQ(x,fx), with A = {z1,...,24},¢ < +00. (7.27)

Since K is assumed to be connected, we may assume likewise that Ky o, is connected. Applying
Proposition 7.4 to each of the points z1, ..., z,, we obtain the existence of ¢ points 0, , € ¥
such that

[te, () = Oan| = 0, for z € D2 (24,70, ),i = 1,..., L. (7.28)

Hence, there exists ng € N such that u., (z) €  + BF(up/2), for n > ng and = € K.
Since the set ¥ + B¥(1o/2) has ¢ distinct connected components, each of them containing a
single point of ¥, we deduce from the continuity of u., and the connectedness of Ky, that,

for n > ng, all points 04, » coincide, for ¢ = 1,...,¢, i.e. there exists o, € ¥, such that
Oz;n = Oy, for i =1,...,¢, and n > ng. Combining with (7.27) and (7.28), we derive the
conclusion. O
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7.7 Proof of Theorem 1 completed

The statements in Theorem 1 , assertions i) have been obtained so far : they follow combining
results in Section 7, namely Proposition 7.1 (closedness of &, ), Proposition 7.2 (upper bound
on the one-dimensional Hausdorff dimension of &,), Proposition 3 (its connectedness) and
Theorem 7.1(rectifiability of &,).

The proof of assertions ii) of Theorem 1 is based on Corollary 7.2 and requires some
additional arguments, and extracting more subsequences. For m € N, we consider the set

1
Uy = {a: € Q, dist(z, &,) > m} ND?(m), (7.29)
so that ,, is a compact subset of $l,, and such that
_ “+o00
U C g1 and Lililm =,.

We denote by qujﬂ, J € Jm the connected components of i,,,. We claim that the set of indices
Jm is countable. Indeed, since U7, is an open set, it contains a disk Dy, ; of radius r,, ; > 0,
and since the sets i, ; do not intersect and are, by definition (7.29), included in the disk
D?(m), the same holds for the disks Dy,,; and hence ern,j < m?, which implies that J,, is
Jje€J
countable, for any m € N. Hence the set UM{m} X Jm, 18 countable. Invoking a diagonal
me

argument together with Corollary 7.2 applied with K = Hﬁn, J € Jm, we may extract a
further subsequence, still denoted for sake of simplicity (ey,)nen, such that, for any m € N,
and j € J,, we have

Ue, = Opm.j, a8 N — +00, uniformly on W4 , (7.30)
where 0., ; € X. Hence, given any z € &, the limit O(z) = liril ue, () exists, and is
n—-+0o0

constant and equal to o, ; on LL?n It follows that O is continuous on i, with values in a
discrete set. Hence, O is constant, equal to some o; € 3, on each connected component A%
of i1,. Invoking again Corollary 7.2 for an arbitrary compact subset of {2, we derive that

Ug, — 0;, as n — +oo, uniformly on K,
so that the proof is complete.

7.8 On the tangent line at regular points of &,

In this subsection, we provide the proof to Proposition 4. It relies on the following Lemma,
which is actually a weaker statement:

Lemma 7.2. Let xg be a reqular point of G, and €z, be a unit tangent vector to S, at xy.
Given any © > 0 there exists a radius Reone(0, o) such that

SN (]D)2 (zo,7) \ D? (330, g)) C Cone (20, €2y,0), for any 0 < T < Reone(0,20).  (7.31)
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Proof. Since we have the inclusion
Cone (51707 gxou 9) C Cone (x07 gxm 9/) )

for < 0 < 0 < 0, it suffices to establish the statement for 0 arbitrary small. For a given
regular point xg of S,, we may invoke the convergence (12) to assert that there exists some
r1 > 0 such that for 0 < T < r; we have

H! <6* ND? (z9,27) \ Cone (xo, Coros g)) < %. (7.32)

We set

A(wo,7,0) = (&, ND? (w0, 7)) \ (cone (20, Eaq, ) UD? (azo, g)) ,

so that we have to prove that A(zp,T,0) is empty, if T is sufficiently small. We assume
by contradiction that A(zg,T,0) # () for some small T, and will show that we obtain a
contradiction. We have, in view of the definition of A(zp,T,0) and (7.32)

0 0
A(z0,7,0) N Cone <:c0, €305 2) = () and H' (A(zo,7,0)) < g (7.33)
we notice that, if A(xg,T,0) is not empty, then we have
. . 0 T. (0
dist (A(xo,’t, 0), Cone <x0, €105 2)) > 3 sin <2>
dist (A(zo, 7T, 0), 0D?(20,27)) > T,
so that, if 8 > 0 is sufficiently small,
. . 0 9 T . (9
dist [ A(z0,T,0),Cone | 0, €xy, B U dD*(xg,27) | > osinl o) (7.34)

Since we assume, by contradiction that the set A(zg,T,0) is not empty, there exists some
point 71 € A(xo,T,0). We consider the set Q, oc(z0) = &, U ID? (20,27) introduced in
(7.13). In view of Proposition 7.3 and Corollary 7.1, the set Q, 2c(xo) is path-connected:
Hence, there exists a continuous path p joining x; to some point x5 € dD?(xg,2T) which
stays inside G4 27(70). On the other hand, since 21 € D?(zg,T) the length H!(p) of this path
is larger than t. We claim that

p m COHB (.’170, gxoa g> # @ (735)

Indeed, otherwise p would be a path inside &, ND? (x9, 2T) \ Cone (xo, s %) Since its length
is larger then T, this would contradict (7.32). Next, combining (7.35) and (7.34), we obtain

0 T 0 0
1 = e > 3 — ~
H <meone ($07em0’ 2>> - 2 Sin <2> 0—0 4

Since p is a path inside &, 2r(zg) this contradicts (7.32), provided 0 is chosen sufficiently
small. This completes the proof of the Lemma, choosing Reone(0, o) = 71. O
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7.8.1 Proof of Proposition 4 completed

Given T < Ry, we apply Lemma 7.2, the sequence of radii (Tx)ken given by
T
T = 27 for k S N,

so that
S, N (ID)2 (o, Tk) \ID)2 (ﬂCO,Tk-H)) C Cone (%0, €5y,0), for any k € N.

We take the union of the sets on the left-hand side, so that we obtain
(CH \ {ajo} = kLGJNG* N (]D)2 (.CC(), Tk) \]D)2 (.CC(), Tk+1)) C Cone (.CC[), gx(), 9) .

This yields the result.

8 Behavior near points in &, \ €,

In this section, we analyze more precisely the behavior of the measures ¢, and w,;; in the
vicinity of good points, that is points 2 in &, \ &,, in particular points having the Lebesgue
property for the absolutely continuous part of the measure. One of our main goals is to
provide the proof to Proposition 5 and Lemma 2. The results in this section also pave the
way to the proof of Theorem 2 provided in Section 10.

8.1 The limiting Hopf differential

The Hopf differential

Weg =€ (’(U&‘)Z’I‘Q - |(u€)$2’2 - 2i(u€)Z1 ' (u5)$2)

defined in (3.19) has turned out to be a central tool in our analysis so far. We combine it
in the present subsection with the rectifiability properties and Proposition 4 to derive new
properties near good points. Recall that we have defined w, in (70) as

Wi = (He,1,1 = Hi2,2) — 2i12:
So that, in view of the definition (41) of the measures 1, ; j, we have

We, — Wy, in the sense of measures on 2, as n — +oo. (8.1)

8.2 The limiting differential relation for w, and (,

In this paragraph, we provide a proof to Lemma 1. First, passing to the limit in (3.20), we
are led to:

Lemma 8.1. Let (uc, )nen be a sequence of solutions to (1) on Q with €, — 0 as n — 400
and assume that (7) holds. Let w, and (. be the bounded measures on 2 given by (8.1) and
(15) respectively. Then, we have, in the sense of distributions

0X X N
Re <<W*7 62> ) = <2C*, Re <az>> y for any X € CO (Q,C) (82)
D'(2),D(Q)

D'(2),D(2)
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Lemma 8.1 is actually our main tool in the rest of the discussion, and will be used with
vector fields X of various types.

Proof of Lemma 1. Using iX as test function in (8.2) and the fact that Re(iz) = —Im(z) for
any complex number z € C, we obtain likewise

o ({0 2

Combining (8.2) and (8.3), we are hence led to the simple identity

ox
W oz

which yields (71) in the sense of distributions. O

) =2 <C*, Im <%§>> for any X € C3°(Q2,C). (8.3)
)

D/ (Q),D(Q D/(Q),D(2)

X
_9 <c*, ‘Zz> . for any X € C2°(9, ), (8.4)

D'(2),D(2) D'(2),D(Q)

We describe next some additional properties of the measures wy et (., mostly based on
Lemma 8.1, choosing various kinds of test vector fields X. Whereas we have used so far
mainly vector fields yielding dilatations of the domain (see e.g. Lemma 3.3), we consider
also vector fields of different nature. Given a point z¢ = (z,1,%02) € ©, p > 0 such that
D?(z0,2p) C £, the fields we will consider in the next paragraphs are of the form

Xf(x1,x9) = f1(w1) fa(22)8;, with j=1,2, (8.5)

where f; represents, for ¢ = 1,2, an arbitrary function in Cg° ((zo; — p, 0, + p)). These
vector fields have hence support on the square Q,(zo), defined by

Q,(x0) = Iy(w01) x Z,(202), where Z,(s) = [s — p, s + p] = B'(s, p), for s > 0. (8.6)
We consider also the subset R,(z¢) of Q,(x0) given by

Rp(xo) = Ip(x(n) X I:%p (1‘072) C Q,;(:L‘o), (87)

so that Q,(zo) \ R,(x0) is the union of two disjoint rectangles

Qutan) \ Ry = (Tozon) x (202 + Fona 49 U (Totows)  (ma = prava = D).

In several places, we will assume that the following conditions holds

Vi(Qp(T0) \ Rp(0)) =0, (8.8)

which means that the measure v, concentrates, locally near xg, in a neighborhood of the
segment (xog — p€1,xo + p€1).
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8.3 Projecting the measures on the tangent line

In the above framework, the €; direction plays a distinguished role: Integrating various
quantities with respect to the xs-variable, we obtain one-dimensional quantities, treated as
measures on the interval Z, (xo,1) = (z0,1 — po, 0,1 + po). Using appropriate test functions,
relation (8.2) is then turned into a differential equation.

Given a Radon measure v on Q,(zo), and a test function ¢ € C.(Q,(z0),C), we define
the Radon measure (¢v)*' = Py(¢v) defined on Z,(z¢,1) as follows: For any Borel set A of
Z,(xo,1), we have

(V)™ (A) = (pv) (BH(A) N Qp(20)) = ¢V ((A x R) N Qp(0)).

so that

(v,0) = (90)(Qp(a0)) = /Q »

We mainly will make use of test functions ¢ of the form

pdv = /I d(pv)*t. (8.9)

(o)

o(r1,72) = g1(71)92(72), (8.10)

where g1 and gy are defined on the intervals Z,(xo,1) and Z,(xo,2) respectively. If ¢ is of the
form (8.10), then (8.9) becomes

D) prioa = / g1 (@) d(ga(@2)v)"
D'(Qp(0)),D(Qp(xa)) T, (x0) (8.11)

= ((dg2(22)V)™, 91) D12, (20.1)) DT, (x0.1)) -

In the case where vV(Q,(z0) \ R,(x0)) = 0 and ga(s) = 1 for s € I%p(xog), then we have
g(z2)v = v, so that identity (8.11) becomes

(v,p) = / g1(z1)dv™. (8.12)
Tp(w0,1)

We will make use of these formulas in several places for the Radon measures [, ; j, for i = 1,2,
vV, and (, and also related measures, obtained by multiplication and sums of the previous
ones.

8.4 Some quantities of interest

The measures Ly, 5, Ng,p, defined on Z,(xg) as well as the measures ﬁflz j have already been
introduced in the introduction in (80) and correspond to the description provided in the
previous paragraph. Our computations will also involve some auxiliary ”moment ” measures,
defined for, k£ € N, by

(w2 — $0,2)k 20, — He1,1 + 11*72’2}> (8.13)
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With this notation, we have i) o = Jo.2¢,0) Lag,p = Lo.2g,p @a0d Ny p = No iy p- We will drop
the subscript zp when there is no ambiguity (that is, in most places). We also consider the
measures, for k € N,

1 .
Bma,p(5) = 7 (Nip + Lioy) = By (@2 = 202)"C.) (8.14)
The main result of this section is:

Proposition 8.1. Assume that (8.8) holds. Then, the measures Ly, , and I, , are propor-
tional to the Lebesgue measure on L,(xo,1), that is, there exist constants Lo, and Jo, such
that

Leop = Lopdrr and Iy, = Jop,dxr, where Lo, € R and Jy, € R.

Moreover, we have the differential relations, for k € N*,

d .
—2—Jpp = kNy_1, in D'((z0,1 — p, 0,1 + p)),

ds
d (8.15)

~qeLhe = 2k, in D' (201 — w01 + p))-

In the case k = 1, we obtain hence the relations

d
_2d7.1]1’p = [Np, in ’D/((CIZOJ — P, 0,1 + ,0)) and
ds (8.16)
— L =23, in D'((@o1 = o1 + p))-

Notice the following consequence of Proposition 8.1:

Corollary 8.1. For any k € N*, the measures Ji , and Ly , are absolutely continuous with
respect to the Lebesgue measure dxy. Hence there exist measurable functions Jy , and Ly,
on Ly(xo,1) such that

J]k,p = Jk,pd«Tl and n—k,p = L;w,dacl. (8.17)

Moreover, the functions Ji , and Ly, , are bounded on Z,(xo1).

Proof of Corollary 8.1. The result is an immediate consequence of the fact that the measures
Ni—1,, and Jj_ , are bounded, so that, J; , and Ly, , represent BV functions on Z,(xo), and
hence are bounded. ]

The proof of Proposition 8.1 involves the use of various kinds of vector fields of the form
(8.5) in (8.2), that we will describe next in details in Subsections 8.5 and 8.6. The proof of
Proposition 8.1 is then completed in Subsection 8.7.

8.5 Shear vector fields

We use in this section vector fields of the form (8.5), specifying j = 2. More precisely, we
consider here vector fields of the form

Xp(a1,22) = f1(z1) fo(a2)8 = ifi(a1) fol@2), (8.18)

83



where, for the last identity, we have identified ¢ = €5. A short computation shows that

0X '
L = LR i) + SR fale2)
B;f 1 ) (8.19)
52 = g @) fa(z2) + 5 fi(z1) falw2),
and hence
Re (%) = e e, and
(8.20)
0X * / *) gl
Ro (.52 ) = =0 fion i) - 5 o) o)
Identity (8.2) then becomes
(Re(wa) +26) , flea) a(e0)) +m (o) i), =0 (821)
In view of (8.11) and the fact that Imw, = —2p, 1,2, we may write
((Re(w.) +28.), fi(@2) fi(a1)) = /Z o Fi [f3(w2) (Re(@,) +28.)] ™
and | (8:22)
s, fo2) fla0), =2 /Z I CLECAIE

8.5.1 A first choice for the function f;

We choose, in this subsection as functions fi, fo in (8.18) fi = f, where f is an arbitrary
function in CZ°(Z,(x0)) and, for fa, a function of the form

To — T0,2
(——)

fa(x2) = x p

)

where x is a non-negative given smooth plateau function such that

3 3
X(s) =1, for s € [-7, 7], and (s) =0, for [s| > 1. (8.23)
In particular, we have fa(zg2) =1 and
/ . 3p
fo(z2) =0, if |22 — 20| < R (8.24)

Such a vector field corresponds somewhat to a shear vector field. Using these shear vector
fields, as test vector fields in (8.2), we obtain:

Proposition 8.2. Assume that (8.8) holds. Then the measure I, defined on Z,(xo) by (8.13)
is proportional to the Lebesgue measure, that is J, = Jo ,dx, for some number Jy , € R.
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Proof. We first claim that
Im (w,, f(x2) f1(71)) =0. (8.25)

D’(2),D(2)

The proof of (8.25) relies on identity (8.21) and formulas (8.22). Indeed, since we assume
that v, (Qp(z0) \ Rp(zo)) = 0, it follows from (8.24) that f; vanishes on the support of
Re(wy) 4 2C,. Hence, we are led to the identity

fo(x2) (Re(&)*) + 2Z*> = 0 and therefore (fé(.%’g) (Re(d)*) + 2@))11 =0.

The first term on the left hand side of (8.21) hence vanishes, which yields the claim (8.25).
We next notice that

Im(wy f(22)) = —214,1,21Q, (z0) = —2Px,1,25
so that (8.25) leads to the identity

(Ps,1,2 f2(«’132)f/(351)>D,(Q>7D(Q) = 0. (8.26)

We invoke now the second identity in (8.22), together with the fact that [f(x2)f. 12]"" =
iy o = Jp, to deduce from (8.26) that

oy ) D (T (@0.0) DT (20.0)) = / f'(s)dd, = 0. (8.27)
Zp(z0,1)
We have hence, in the sense of distributions
d ey
&Jp =0, in D(Z,(x0,1))-
A classical result in distribution theory then shows that J, is proportional to the uniform
Lebesgue measure, so that the proof of Proposition 8.2 is complete. O

8.5.2 Another choice for f, : Transversal stretching vector fields

In this subsection, we assume that fi = f, where f is an arbitrary function in C2°(Z,(x0))

as above, and, that fs is given, for k € N*, by

T — 150,2)
p

where x is a non-negative given smooth plateau function such that (8.23) holds. With this
choice, we have now fa(xg2) =0

f2($2) = (iU - 900,2)kX(

)

1 . 3
Fl(@2) = k(z — m0.2)F L, if |mo — w02| < Zp' (8.28)

Combining as above (8.21) and (8.28), we obtain:

Lemma 8.2. Assume that (8.8) holds. We have, for k > 1 and for any function f in
Ce®(Zp(0))

(1q,h(z2 = 202) " (Re(ws) +20.) , f(@1) ) + (1o, (w2 = w02) Im(w), f/(21) ) = 0, (8.29)

in D'(Q).
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Identity (8.29) of Lemma 8.2 can be rephrased in terms of one-dimensional distributions
using definitions (8.13). Arguing as in the proof of Proposition 8.2 and using (8.11), we
obtain, if (8.8) holds

<k;|Nk—1,p7 f> - <2~uk,p) f/> = 07 for f € Cgo((x(),l — P, 20,1 + P)7
so that, in the sense of distributions, we have

d
—2$.ﬂk7p = kNy_1,, in D'((zo1 — p, 0,1 + p)), for k € N*. (8.30)

8.6 Dilation vector fields

We use here as test vector fields in (8.2), vector fields of the form

—

Xa(z1,22) = fi(zr) fa(x2)€1 = fi(x1) fa(w2). (8.31)
Computations similar to (8.19) yield
O = LR folaa) — & Filan) i),
Ot = JH 0 Raea) + L R i),
Relation (8.2) then becomes
((Re(ws) = 284) , fa(w2) J”{(901)>D,(Q>D(Q> + (Im (wy) , f3(2) f1($1)>D,(Q)7D(Q) =0, (8.32)

Arguing as for (8.22), we obtain the relations

mww—%mhmm@mzé@)ﬁ@ﬂmm@mm-ﬁ%“

and (8.33)

Im (@, f'(22) fi(21)) =4L()mmwwmmw

D'(9),D(2)

We next choose test vectors fields X, as in (8.31), with fy as in Subsection 8.5.1, that is of

the form
T2 — T2

fa(w2) = x ;
2(72) = X( P )
so that (8.24) holds. With this choice, we obtain, if (8.8) holds

/ i Tl _ ~ 7 "
[fo(z2)fe12]™ =0 and (f2(902) (Re(w*) - 2C*>> = —L,.
Inserting into (8.32), we derive the relation
<|]_p, f/> = 0, for any f1 € CSO(IP(.%'QJ)). (8.34)

We have hence, in the sense of distributions

d )
gl]_p =0, in D/(Ip(xojl)).

Arguing as in the proof of Proposition 8.2, we derive from (8.32) and (8.24) that:
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Proposition 8.3. Assume that (8.8) holds. Then, the measure Ly, , defined on Z,(xo) by
(8.13) is proportional to the uniform Lebesgue measure, that is L, = Lo ,dx, for some number
Lo,p € R.

We finally use, as in Subsection 8.5.2, test vectors fields X, given by (8.31), with fy of the
form

To —
fo(w2) = (z2 — xo,z)kw(%),k € N*,
so that (8.28) holds. Inserting into (8.32), and setting f = f1, we are led to

—2(kdg_1, f) + (Li(s), f) =0, for f € C((zo,1 — p, w01 + p)-

D/(Zp), D' (Zp) D/(Zp),D(Zp)

Hence, we have, in the sense of distributions, for £ € N*

d .
—&I]_/W =2kJy_1, in D'((xo1 — ps w01 + p))- (8.35)

8.7 Proof of Proposition 8.1 completed

The proof of Proposition 8.1 follows combining Proposition 8.2, Proposition 8.3, together
with identities (8.30) and (8.35).

8.8 Behavior near regular points

We specify in this part the consequences of Proposition 8.1 to regular points. More precisely,
we consider a g € &, \ Ay, so that a unit tangent vector €, to S, exists at z9. Throughout
Subsection 8.8 we may choose therefore the orthonormal basis (€7, €2) so that

&1 = &, (8.36)

is a unit tangent vector to &, at xg.

8.8.1 Property (8.8) is satisfied near regular points

The analysis carried out so far in Section 8 was mainly constrained by condition (8.8). We
next show that this condition is satisfied near regular points.

Proposition 8.4. Assume that zog € &, \ Ax. Then, there exists pg > 0 such that property
(8.8) is satisfied for any 0 < p < po. Consequently, for any 0 < p < po, the measures Ly, ,
and by, , are proportional to the Lebesgue measure on L,(xo,1) and the differential relations
(8.15) hold.

Proof. Let r > 0 be such that D?(xg,7) C . Since we assume that x¢ is a regular point of
Sy, we may choose a the orthonormal basis so that (8.36) holds. In view of Proposition 4,
we have, for any 0 € [0, 7] and 0 < ¢ < Reone(0, 20)

G, N D? (.,”Uo, Q) C Cone (.7}0, é'mo, 9) = Cone (.TU(), €1, 9) , (8.37)
Since we have Q%(xg) c D? (x0, 0), we obtain, for 0 < p < pg = ﬁ_lane(G,xo)
2

S, N Qp(xO) C Cone (1'07 él, e) . (8.38)
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Specifying (8.38) with 0 = %, we obtain, for 0 < p < pg = ﬂfchone(g,xo)

&, N Qy(20) C Cone <:c0, Eros %) N Q,(z0) C R,(x0). (8.39)

It follows that, if p < pg, then (8.8) holds. In particular, we are in position to apply Proposi-
tion 8.1 at the point xg. This yields immediately, for 0 < p < pg , the fact that the functions
Ly, and Jy, , are constant on the interval (zo1 — po, 0,1 + po), and relations (8.15) hold.
The proof of the proposition is hence complete. ]

Remark 8.1. The argument actually shows also that, for 0 < p < pg, the measures L, , and
Juo,p correspond to the restriction to Z,(xo,1) of the measures Ly, ,, and Jz, 5, respectively.

8.8.2 Some additional properties near regular points

We derive next some additional properties for regular points, in connection with the singular
part of the measures. We introduce therefore the set

B, = {s € R such that ({s} x R) NB, # 0} = P(B,).

where B, is defined in (74) and represents the set where the singular part of the measures
concentrates. Notice that, since H'(B,) = 0, the Lebesgue measure of the set B, vanishes
likewise. Recall, in view of Corollary 8.1, that we have, for any 0 < r < pg (where pg is
provided by Proposition 8.4) J;, = J; ,dz; and L;, = L ,dz, where the function L;, and
J1,» are bounded. We have first:

Lemma 8.3. Let zg = (z0,1,%02) be a regular point in &, \ Ax and let py be given by

Proposition 8.4. Let 0 € [0, 5]. We have, for any r < %inf{Rcone(G, o), Po},

z0,1+27

[ b (olds < arsin0ver (D 20) and
0,127

03310,1+2r (840)

/ | L1, (8)|ds < 8rsin@vie (D?(z0,2r)) .

0,1—2r

Proof. 1f 2r < Rcone(0, x0), it follows from (69) that we have v, (Rar(20)\Cone (%0, €y,0)) = 0.
On the other hand, we have

|zo — 22| < 2rsind, for x = (x1,22) € Ry (20) N Cone (0, €24, 0) -

Multipling by 41,2 and integrating on the set Ray(z0) \ By« X R, we are led to

/ A2 (22 — w02)| < 4rsin0v, (D*(zg,2r) \ By x R)
RQT(Q?O)\B* xR (841)
< 4rsin@v§° (D2 (z0,2r)).

For the last inequality, we invoke the fact that we have the inclusion D?(xzg,2r) \ By x R C
D?(z0,27) \ By, so that

Vi (ID)Q(xO, 2r)\ B, x R) < v, (ID)2(:U0, 2r) \ B,) = v (IDJQ(xO, 2r)),

88



the last identity being a consequence of the decomposition (73) and (74). Since, by definition
J1 = Py(fis,1,2(x2 — @0,2)), we have hence, in view of (42)

mm@ws/ dpre (@2 —202) . (3.42)

/(1’0,1—27‘71‘0714—27")\3* RQT(J)O)\B* xR

Combining (8.41), (8.42) together with the fact that B, has zero Lebesgue measure and the
function J; ,, is bounded, thus integrable, we deduce the first inequality in (8.40). The second
is established invoking similar arguments. O

Lemma 8.4. Let o = (x0,1,%0,2) be a reqular point &, \ Ay, and and let py be given by

1
Proposition 8.4. Let 0 € [0,5]. For any 0 <r < 5 inf { Reone (0, %0), po)}, there exists some
or € [r,2r] such that

r0,1+0r
/ Jpo(s)ds| < 8sinBv§e (D2(x0,2r)) and

0,1—0r
zo,1+0r
/ d[Npo
0,1 —0r
Proof. The proof of (8.43) follows from (8.40) integrating the differential equations (8.15)
for k = 1. Indeed, for almost every o € [r,2r], zo1 — 0 and zo; + ¢ are Lebesgue points of
J1,000 L1,py> Jpo and the absolutely continuous part of N,,. We choose next a sequence of

smooth, compactly supported test functions {¢m, }men such that such that 0 < v, < 1, for
any m € N, and

(8.43)
< 165sin 0 v§© (D2($0, 2r)) .

Um = Ly, —omoi+e) 1 L (Ze(20,1))- (8.44)

m—-+00

Using 9, as test function for the differential equation (8.16), we obtain, by integration by
parts, for any m € N

zo,1+0 zo,1t0
2/ Ym(8)Jpy(s)ds :/ @b;n(s)Ll,po(s)ds and

0,1—0 z0,1—0

zo,1t0 zo,1+0
[ N =2 [ 95

0,1—0 0,1—0

Passing to the limit m — +o00, we obtain, using the Lebesgue properties of the points xg 1 — ¢
and zg1 + 0

x0,1+0
[ N, =200 01+ 0) = s — ) and
T0,1—0
xo,1+0 1 (845)
[ am)s = 5 Ean (01 = 0) — Lin (01 + ).

0,1—0@

Next, we use a mean value argument to deduce that there exists some number o, € [r,2r],
such that z91 — o, and xg1 + ¢, are Lebesgue points of Ji p,, L1, Jp, and the absolutely
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continuous part of N,; and such that

x0,1+2r
mmwm+@>+wmwm—&ns/ 1o ()]s
X

0,1—2r

(8.46)
9 [To1+2r
Lugn(ans + o)l + Lo = o) <5 [ Ly ()lds
r 0,121
Combining (8.45), (8.46) with (8.40), we obtain the desired result. O

8.9 Behavior near Lebesgue points: Proofs to Proposition 5 and Lemma 2

Recall that, at this stage we already know that, if o € S, \ ., in view of Propositions 8.2
and 8.3, we have
H.xo’m = LO,podxl and IPﬁ(}jL*Jg) = J07p0d$]_,

where Ly ,, € R and Jy,, € R. We derive here additional properties in the case zo € €.,
leading eventually to the proof of Proposition 5.

8.9.1 Additional properties of J, and N, ,, at Lebesgue points

0,P0

Let z¢p € &4 and pg > 0. We impose in this paragraph the additional condition that x¢ & &,,
i.e. xq is a regular point, which is not on the support of the singular part, and is moreover a
Lebesgue point for the densities of the absolutely continuous part for all measures of interest.
More precisely, this means that

( 1

lim — O, (7) — Ox(xo)|dT =0

=07 J&, D2 (zo,r) 94(7) (@)l
1

lim — ex(T) — ex(z0)|dT =0, and 8.47

r—0 1 G*QDQ(I(),T)| *( ) *( ’ ( )
1

lim — |m,; ;(T) — my; j(zo)|dT =0, fori,j =1,2.

r—=0 71 S,ND2(20,7)

As a first direct consequence, we deduce that, for some constant K = K(xg) > 0 depending
on xg, we have

Vi (D*(xo,7)) < K7 for any 0 <7 < R, (8.48)
and also that 1
lim — O, (7)dT = Oy (),
r=0r G,ND2(z0,r)
1
lim — ex(7)dT = ex(zg), and (8.49)
r=0r G,ND2(z0,r)
1
lim - A ()dT =ty (o).
S0 7 &, ND2(2o,7) M (T)AT = M (20)

At this stage, we already know that .J,, is a constant map. Concerning N,, we may decompose
this measure on Z,,(x0,1) as a sum of an absolutely continuous part and a singular part

Np, = N2+ N3, with N2 < d; and N3, L N9

Po 0 PO’
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so that there exists a set F,, C Z,,(z0,1) supporting the singular part, that is, such that
HI(FPO) =0 and [NZO (Ipo (z0,1) \Fpo> =0, (8.50)

and a measurable function Ny, defined on Zp,(z¢,1) such that N¢¢ = N, dz1. In this setting,
the functions L,,, N,, and J,, on Z, (xo,) are related to the functions ©, and m,; ;, for
i, = 1,2 defined on &, by (43) by the following result.

Proposition 8.5. Let xg € &, \ €, and py > 0 be given by Proposition 8.4 so that (8.8) holds
for p = po. Choose the orthonormal basis so that € = €, is a unit tangent vector to &, at
xg. Then, xo.1 & Fp, and is a Lebesgue point for N,y and J,,(xo). We have the identities, at
the point x,

Npq (fUO,l) = 20, (zg) — Im*,z,z(fﬂo) + Im*,l,l(wo),

Jp0($0,1> == m*7172(l‘0) and (851)

Ly (70,1) = 204(70) — my 1,1 (w0) + my 5 9(Z0)-

Proof. We go back to the definition (76) of &,. Since z¢ ¢ €,, and hence z¢ & B, (see (74)),
we have by definition of the set B,

Ve (D(z0,7) < +oo and Dy (v)(xo) = lim V2 (D2(z0.7))

D (vy)(z0) = lim =0 A (D(z0,7))

—0, (8.52)

where A represents the one-dimensional Hausdorff measure on &,. On the other hand, since
xo is a regular point, we have, in view of (11)

2
g MO @0 1)
r—0 2r

so that

v 2 o, T
Dy(vi)(w0) = DA(vE)(20) = }E}%W

< 400. (8.53)

Turning to the measure v{', we have v{*(Z.(x0,1)) = Vi (Zr(20,1) X Zr(z02)) . In view of

Proposition 4, given 0 > 0, we have, for r < Reone(0, z¢), the inclusion
G.N ]D)2 (.’Eo, 7") C Cone (l’o, gxo, 8) .

On the other hand, we have also the chain of inclusions

r
D?(20,7) C (Zr(w01) X I (w0,2)) C D? (0, ) (8.54)

so that combining the previous relations, we are led to the bounds
v (D2 (20, 7)) < VE (T (201)) < Vs (]D)Z(xo, 0029)) . (8.55)

Letting 0 and r go to zero, we deduce from (8.52) and (8.55) the identity

lim Ve (Z+(0,1))

ti YL D () a0) = DA(v) o) < +ox,
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and similarily, for 4,5 = 1,2

X1 IT
tim &+ Er@o)) D(C)(z0) = Ou(z0) and
r—0 2r
M (e (w0,1)) n
Jim = = Da(K5,5) (20) = miuij(z0) < +o0.

It follows that, in view of the definition (80) of N,,, we have

lim Ny, (Z, (1'071))

tim —2 ) 9D, (28 () — Da(15) (w0) + Da(u35) (wo) € R

=20, (7o) — m, 9 5(w0) +m, 1 1 (z0).
We deduce that zg1 € F),,, where F,, is defined in (8.50), and that we have

Nac Ir .
lim M = lim w

r—0 2r r—0 2r - 2@)*(330) o III1*72’2(:1,’0) + m*,Ll(xO)”

We prove using similar arguments that zo; is a Lebesgue point for the map V,,, so that the
first identity in (8.51) is established. Turning to the maps J,, and L,, we observe that, since
these maps are constant, x 1 is obviously a Lebesgue point for them. The two last identities
in (8.51) are established using the same arguments. O

We compute next J,, (zg) and N,y (xo) in a different way.

Proposition 8.6. Let xg and pg > 0 be as in Proposition 8.5. We have

(8.56)

Jﬂﬁmpo(s) =0 for s € (wO,l — 0, Z0,1 + po) and
Nafo,po (17071) =0.

In order to proof Proposition 8.6, we rely on an intermediate result:

Lemma 8.5. Let xg € G, \ €, and py > 0 be given by Proposition 8.4. Choose the orthonor-
mal basis so that €5 = €, is a unit tangent vector to &, at xg. For < r < pg, let o, > 0 be
given by Lemma 8.4. Then, we have

1 xo,1+0r 1 xo,1+tor
lim / dN,(s) = 0 and lim / Jr(s)ds = 0. (8.57)
r—0 QQT 0,1 —0r r—0 20y x0,1—0r
Proof. For any given 6 € [0,%], and 0 < r < inf{pg, § Reone(6, z0)}, we deduce, combining
(8.48) with (8.43), that
z0,1+0r zo,1+0r
/ dN,.| + / Jr(s)ds| < 24sin@v§© (Dz(xo, 27“)) < 48K sin 9, (8.58)
x0,1—0r x0,1—0r

so that, since o, > r,

1 zo,1+0r

/ dN,
297’ 0,1 —0r
We first let » — 0, so that g, — 0 as » — 0, and then let 6 — 0 in (8.59), which yields
(8.57). O

+

1 0,1+0r
/ Jr(s)ds

< 48K sin 6. (8.59)
297" 0,1—0r
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Proof of Proposition 8.6 completed. We first consider .J,,. We already know that the function
J o is constant on Z,,(xo,1), so that

1 zo,1+0r
Jr(s)ds = J-(xz01),
mémm*’ (z04)

we deduce therefore from the second relation in (8.57) that J,,(zo,1) = 0. We now turn to
Ny, Since zg ¢ Fy,, we have Dy(N? )(zo1) = 0, that is

o Ny (T (w0.)
r—0 20,

Combining with the first identity in (8.57), we are led to

1 xo,1+0r 1 ro,1+0r
lim / Ny (s)ds = lim / dNZ¢(s) = 0. (8.60)
T T

r—0 2@7" 0.1—0r r—0 2Qr 0.1—0r

Since zg,; is a Lebesgue point for N,,, we derive that N, (zo,1) = 0, so that the proof is
complete.

8.9.2 Proof of Proposition 5 completed

Since zg € 6, \ €,, we are in position to apply Propositions 8.5 and 8.6. Combining (8.51)
with (8.56), we obtain (77) and the proof is complete. O

8.9.3 Change of orthonormal basis for the Hopf differential

Recall that we have assumed in Proposition 5 that the orthonormal basis is chosen so that
€ is tangent to S, at xg. However, the definition of the Hopf differential clearly depends
on the choice of coordinates, and we will need to compute it in various bases, for instance
a moving frame on G, or a frame related to polar coordinates. For that purpose, and for a
given angle € R, let (&7, &) be a new orthonormal basis deduced from (&}, ;) by a rotaion
of angle 6, that is

(8.61)

0

é’f = cosf & +sinf &,
€, = —sinf €; + cos b €;.

Let (zg1,292) = (cosfx1 + sinf xg, —sinf 1 + cosf x2) denote the coordinates related to
the new basis and w, ¢ and w,g the corresponding Hopf differentials. Then, for any map

u: Q — R?, we have the identities Ugy, = Uz, COS 0+, sin 6 and Ugg, = —Usg, SN 04y, cos b,
so that ) ) ) )
|u1971] — ’uffea‘ = cos 20 (]uml\ — | g, | ) + 2sin 26 ug, - Uy, (8.62)
gy, - Ugy, = — Sin 20 (‘u$1‘2 — \uw2|2) + 208 20Uz, - Uy, . ’
We are hence led to the transformation law
We,p = (cos 20 + i sin 20)w. = exp(2if)w. and (3.63)
W9 = (cos 260 + isin 20)w, = exp(2i0)w,. '

It follows in particular from the above relations that, if the limits (8.1) and (41) exist for a
given orthonormal basis, then they exist also for any other one.
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8.9.4 Proof of Lemma 2 completed
In view of (43), we may write, in the basis (€1, €2)
ac

W, = ((I(n*,l’l — m*’2’2> — 2i1m*71,2) d/\ (864)

Next let 29 € G, \ €,, €, be a tangent vector at zo to S,, so that the angle of €; with €y,

is given by vi(zo) € [-7/2,7/2]. In view of the notation (8.61), we have €, = 63/*(10). It

follows from (8.63) that

ac

Wi, (o) = XP(20Yx(w0))wi® = exp(2iv4(20)) (11 — My22) — 2imy12)dA. (8.65)
Appying Proposition 5 at xg in the basis (é’f/* (‘TO), é’g* (xo)), we are led to the identity
exp(2iv«+(wo)) (14,11 (z0) — My 2,2(20)) — 204 1,2(20)) = —20x(20),
so that, for any x € &, \ €,, we have the identity
(my11(x) — my22(2)) — 2im, 1 2(2) = —2exp(—2iv,(z))Ox ().
Going back to (8.64), we obtain hence that
wy® = —2exp(—2iy.(7))O.dA = —2exp(—2iy.)

The proof is hence complete.

9 Monotonicity for (, and its consequence

The purpose of present section is to establish Proposition 6.

9.1 Proof of Lemma 3

Since (g, — (i, asn — 400, weakly in the sense of measures, we have, for any Borel set A such
that (,(0A) = 0, the convergence (., (A) — (4(A), as n — +oo. Since v4(dD?(zg,7)) = 0
for almost every r € (0, p), we have hence, for almost every r; € (0, p),

Cen (D (w0, 7)) = Cu(D*(wo,74)) and

+oo

1 1
/ —d ANy e — / fdc/igw.
D2(z0,r1)\D2(z0,m0) T n=+00 D2 (zg,r1)\D2(z0,r0) T

Passing to the limit n — +o00 in (83) and combining with (9.1), we obtain the identity (84).

(9.1)

9.2 First properties of ./ |

Let py g9 and iy, be defined by (85) on D?(xg, p), where (r,6) denote the polar coordinates
of x = (x1,22) with z¢ as the origin, so that 1 —z¢1 = rcosf and x2 — z92 = rsinf. We
denote by pi% 4 and ugS . the absolutely continuous parts of these measures with respect to

the H'-Hausdorff measure d\ on &, ND?(xg, p). We prove in this subsection:
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Lemma 9.1. We have the relations

N = (205 = PulG o+ iS,) LD (2o, p) = dsin® (v. — 6) (C2°LD*(z0,p)) 2 0. (9.2)

Q%

Remark 9.1. Let Vr denote the gradient of the function

r:(r1,x2) — \/(xl —20,1)% + (2 — 20,2)?%, so that Vr(xz) = ((x1 — zo1)/r, (x2 — x0,2)/7).

For given x € (&, \ &) ND?(xg, p), we denote by V+r(x), the projection of Vr(x) onto the
line orthogonal to the tangent to &, at the point z. We compute

[VEr(a)] = |sin (va(z) - 6) .
Formula (9.2) can therefore be rewritten as

N = 4| V|20 > 0. (9.3)

Q%
Proof of Lemma 9.1. We may write

—2 .ac

usz = my . dA and 7 Heho = r—21m*7979d)\, (9.4)

where, similar to (85), we have set, for z € (&, \ &,) ND?(xo, p),

my, () = cos? O(x)my 1.1 () + sin® O(z)m, 9.2(x) + 25in 0 cos O(2)m, 1 2() (©.5)
r~2m, g g(z) = sin® 0(z)my 1 1 (z) + cos? O(z)my 2.2(x) — 2sin O(z) cos O(z)my o(x).
We have, in view of Lemma 2 and relations (8.63)
wih = —2exp(2i(y«(x) - 0))CL°, on D*(zo, ). (9.6)

Since w{ is absolutely continuous with respect to d\, we may write wl} = w, gd\, where
W, ¢ is a function on &, N D?(zg, p). Concerning the measure N ‘;C*, we have

N = (28* — T*Z]m*’g,g + rfn*mr) dX. (9.7)

-
It follows from the definitions (9.5) and (9.4), that we have the identity

W, o(z) = (my () — r_21m*7979(:1:)) — 2ir~'m, . g(2). (9.8)
Combining (9.6) and (9.8), we are hence led to

i (2) — 177210, 0,0(2) = —2c08 (2(y2(2) — 0)) ©,(x),

so that
(20, (2) — r*my 0 0(z) + My pyp (7)) = 2(1 — cos (2(v4(z) — 0)) Ok(x)

= 4sin? (y,(z) — 0) O, (z).
Going back to (9.7), we deduce that

N0 = 4sin® (v, — 0) (&,

T(,*

so that (9.2) is established. O
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9.3 Integrating on growing disks

Let p > § > 0 be given. We introduce and study in this section the scalar functions Z, F
and G5 defined on the interval [d, p], by

Z(r) = Cu(D*(wo, 1)),
Z(r)

F(r)= and

(9.9)

G6(r):/ ! d’/‘/wo*? for r € [5ap]
D2(20,r)\D2(20,6) [T — Tol ’

The three functions defined in (9.9) are clearly bounded on the interval [d, p], since, for any
0 < r < p, we have

0< Z(r) < Z(p) < vu(D*(20,p)), 0 < F(r) < Z(p)/d, and
Gs(r)] < 2vi(D*(x0,p)) /6.

Moreover, the function 7 is clearly non-decreasing. We will show below that these functions

have bounded variation. In order to relate these functions and their derivatives to the mea-

sures on D?(zg, p) introduced so far, we have to eliminate the polar angle . For that purpose,
we consider the map TT : D?(zq, p) \ {0} — (0, p) defined by

Mx)=r= \/(xl —201)? + (2 — o 2)?, for x = (x1,22) € ]1))2(:50, p).

Hence, we have TT~1(o) = S!(x0, 0), for any o € (0,r]. We define the measures (, and N, on

[0, p) by ) ]
Co =TI(Ce) and AL =TIg(A L),
so that, for any Borel subset of (, p), we have
C(A) = ¢ (M(A)) and A, (A) = (T71(A)). (9.10)

We first have:

Lemma 9.2. The function Z and Gs have bounded variation. We have
d s d .
d—Z = (e >0, and d—G(; = 77N, in the sense of distributions D’'(6, p). (9.11)
r r

Proof. We first observe that, as a consequence of the definitions (9.9) and (9.10), we have
the identities

2r) = &ll0.m) = [t = ["1g,al.

The desired result (9.11) is then a direct consequence of Fubini’s Theorem. Indeed, let
v € Cc(9, p). We have

p
E ) i = [, 020

p o 5
= / o'(r) {/ dc*} dr = // (p’(r)l[o’r)dC*dr
0 0 (0,0)x(0,p) (9.12)

P . .
= / |:/ (,0/(7’)1[077«)d7’:| dé = _/ (p(T)dC*
[0,0) LVO [0,p)

= _<C*7 SD>D(5,p),D'(5,P) ’
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Which establishes the first identity in (9.11). The second is proved using the same argument.
Finally, since (, and r‘lz/%;o,* are bounded measures on [d, p], it follows that the functions Z
and G5 have bounded variation. ]

For the proof of Proposition 6, we will make use of the fact that the derivative of F' may
be written in two different ways, as stated in the next Lemma.

Lemma 9.3. The function F has bounded variation. We have the identities

d 1. 1 1 .
—F=2l—5Z=—U,
T r

3 2 Voo in the sense of distributions D’(4, p). (9.13)
r ro o

Proof. The first identity in (9.13) corresponds to the Leibnitz rule applied to the product

Z 1
F = — of the measure Z, handled as a distribution on (d, p), by the smooth function r — —.
r

,
It yields
d Z 1d

—F = —— 4+ ——/Z, in the sense of distributions,
dr r2  pdr

so that the first identity in (9.13) follows, in view of the first identity in (9.11).

For the second identity, we invoke Lemma 3, which asserts that, for almost every r € (9, p),
we have

F(r) — F(5) —/ ! _ Gslr), (9.14)

D2 (wo,r)\D2(20,0) 41T — To| "7 4

Taking the derivative, in the sense of distributions, of this identity, the second identity in
(9.13) then follows from the second identity in (9.11). O
9.4 Refined analysis of the derivative of F: Proof of Proposition 6

In this subsection, we take advantage of the two different forms of the derivative F’, namely
F' = rilt/iéo,* and F' = (,/r — Z/r? provided by Lemma 9.3, in order to show that this
distribution is actually a non-negative measure, yielding the main statement in Proposition
6. We first have:

Lemma 9.4. Set B, =T1"! (&, ND?(z,p)). We have H'(B,) =0 and
S ((0,0) \ B,) = 0. (9.15)
Proof. Since H'(€,) = 0, we deduce that H'(B,) = 0. Recall that
N =N on D?(p) \ &,, (9.16)

whereas in view of Lemma 9.1, we have .4 ;w* > (0. Combining this inequality with (9.16) we
obtain

N, L (D (o, p) \ €,) > 0. (9.17)
In view of the definition of .4, ., we obtain hence (9.15). O

It remains to study ,/@07* L_B,. We have:
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Lemma 9.5. The restriction of t/léw to B, is non-negative, i.e.

N LB, >0. (9.18)

T, *

Proof. Recall, that, in view of Lemma 9.3, we have in the sense of distributions

‘/Vzo,* =4 <z* - f) ) in D/((Sv p) (919)

Since both sides of (9.19) are bounded measures, the identity in (9.19) is also an identity
of measures. Since Z is a bounded function, it follows from the fact that B, has vanishing
one-dimensional Lebesgue measure that

Z y .
—L_B, =0 and hence .4 , LB, = (LB, > 0.
r 0

Proof of Proposition 6 completed. Combining (9.15) and (9.18), we obtain that

Nzox = 0 0n (0, p).

Since F' = r~'.4}, x, we deduce that F’ > 0 on (0, p), so that F' is non-decreasing. Inequality
(81) follows. The other statements of Proposition 6 are then straightforward consequence of
the former, so that the proof is complete. O

9.5 Proofs of Theorems 4 and 5

Recall that at this stage we already know, thanks to Proposition 6 that the measure (, is
absolutely continuous with respect to the measure dA. We next derive the same statement
for the measure v,, thanks to a comparison with the measure (, relying on our PDE analysis
developed in Part II.

9.5.1 An upper bound for the measure v,

It follows from the very definition of the measures (. and v, that we have the inequality
Cx < V4. Indeed, we have, for every € > 0, the straightforward inequality (. < v.. We next
present a reverse inequality:

Lemma 9.6. Let 9 € Q and r > 0 be such that D?(zg,7) C Q. Then we have
2 r 2
v, <ID) (x0,§) < Ky(d(20)) &y (D (w0, 7)) , (9.20)

where d(xg) = dist(xg, Q) and where the constant Ky > 0, depending only on V', My and
d(zo), has been introduced in Proposition 4.5.

Proof. The result is an immediate consequence of Proposition 4.5 for the solution u.. Indeed,
for n € N, we have the inequality

V.. <D2(xo, g)) < Ky (dist(z0, 0Q)) [cgn <1D>2(a;0, %f)) + v, (]D)Q(xo, 2))] .
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Letting n — +o00, we are led to the inequality

v, (DQ(:EO, g)) < Ky (dist (20, 9Q)) s <D2(m0, ‘Z“)) :

which yields (9.20). O
An immediate consequence is:

Corollary 9.1. The measure vy, is absolutely continuous with respect to the measure d\ =
HLL&,. Moreover, we have, writing v, = e,d\,

ex(zo) < Ky (dist(zg, 9Q)) Ok(xp), for A—almost every zy € G,. (9.21)
Proof. We have, for every xy € &, \ &,, the identity

Dy (vy)(z0) = limsup 5y = limsup "
r—0 ) r—0 (9'22)
. C* (]D) (l'(), T))
< Ky(d(zo))lim L ——— 2Ky (d(20))Ox (o),
r—

where we used Lemma 9.6 for the second line. It follows that Dy (v4)(x) is locally bounded
for A-almost every xg € €2, so that v, is absolutely continuous with respect to A. Since

ex(z0) = Dr(vi) (o),

for A-almost every zy € &,, inequality (9.21) follows from (9.22). O

9.5.2 Proof of Theorem 4

In view of Proposition 6, we know that (, is absolutely continous with respect to A, whereas
the same conclusion holds for vy, in view of Corollary 9.1. All inequalities in (40) follow from
either (9.21) or (82), choosing Kgens = Ky, except the first one, namely 11 < e,(z). The
latter inequality is a consequence of the clearing-out theorem (Theorem 7), and the definition
(66) of G,.

9.5.3 Proof of Theorem 5

Theorem 5 is an immediate consequence of Proposition 5 combined with the fact that all
measures are absolutely continuous with respect to the measure H! &, (so that the singular
parts actually vanish).

10 Proof of Theorem 2

The argument consists, for a large part, in revisiting the analysis provided in Section 8, taking
however now into account the results obtained in Section 9, in particular the fact that all
measures at stake are absolutely continuous with respect to H'L_&,. We present several
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observations which are relevant for the proof as separate subsections. Given an orthonormal
basis (€1, €3), we introduce the measure

N, =2¢, — Hx,2,2 + i 1,1 O Q. (101)

This measure plays in cartesian coordinates the same role as J‘QO,* in radial coordinates, and
as mentioned, depends on the choice of the basis. Properties of N, are the starting point of
the proof.

10.1 Properties of N, and their consequences

Similar to inequality (9.17), we have:
Lemma 10.1. Given any orthonormal basis (€1, 62), we have the inequality
N, = 4sin® v, s > 0. (10.2)
Proof. Combining Lemma 2 with Theorem 4, we obtain, for w, = (M 1,1 — He22) — 20112
Wi = —2exp(—2iY4) G = —2(cos 2y, — i8in 2v4) Gy,

so that
Be11 — He22 = —2(cos2vy,) G, and 12 = —(sin 2y, ) C,. (10.3)

It follows from (10.3) that
N, =20, — K22 + He 11 = 2 (1 - COS(ZY*)) C*,
so that the proof is complete. O

Next, consider a point zg € &, \ €,, so that a tangent exists. We assume moreover that the
orthonormal basis (€7, €2) is chosen so that €; = €,,. An immediate consequence of Lemma
10.1 is the following.

Corollary 10.1. Let g € &, \ &, and pg > 0 be the number provided by Proposition 8.4.
Then we have

Nzo,po = 0 and, more generally, Ny, ,, > 0, if k is even. (10.4)

Proof. We set R _
N, = 1Qp0($0)N* =20 + ll*,l,l - }1*,2,2’

Recall that, if P denotes the orthogonal projection onto the line the tangent line D}EO =
{zo + s€1,s € R}, then, we have, in view of the definition (80),

Nao.po = P4(2Cx + a1 — fa22) = P4(NL), and Nyg g po = Py ((902 - xo,z)kN*) :

If k is even, then if follows from (10.2) that (zg — x02)*N, > 0, hence (10.4) follows. O

For k > 0, let Jy,, be defined on Z,,(zo,1) by identity (8.17) in Corollary 8.1. As a
consequence of Corollary 10.1, we have:

100



Lemma 10.2. Let 9 € &, \ €, and py > 0 be the number provided by Proposition 8.4.
Assume that k is odd. Then, the function Jy ,, is monotone, non-increasing on L, (xo,1)-

Indeed, we have, in view of (8.15) and (8.17), in the case k is even,

d .
_2£Jk,po = ENj_1,, > 0 in D'((z0,1 — po,o,1 + po)), (10.5)

And the conclusion follows. O

10.2 Additional properties of the functions J; ,,
For s € Z,,(x0,1), we introduce the subset A(s) of &, defined by

{ A(s) =P 1(s) NG N Qpy(z0) = ({(5,702)} + [~ o2, po6a]) N Sy, and set
8(A(s))-

A(s) represents the set of points in @Q,,(x¢) N &, whose orthogonal projection onto the line
xo + Ré€; is the point (s, z2). Since &, is connected, we have

A(s) # 0 and hence Z(s) > 1 for s € Z,,(z0,1)- (10.6)

Lemma 10.3. Let zg € S, \ &€, and py > 0 be the number provided by Proposition 8.4. For
almost every s € L (x0,1), the number Z(s) is finite. If A(s) is finite, then we have, for
k eN,

Jipo(5) = —2 > (202 — aa(s))¥ sin(y.(a(s))Os(a(s)). (10.7)

a(s)=(s,a2(s))€A(s)
Proof. 1t follows from (10.3) that
12 = — Sin(ZY*)z* = _1Qp0(ro) Sin(2y,)OydA.

In view of the definition of Jj ,,, we obtain therefore, since Ji ,,ds = Jj ,

Tepods = =B (@02 = 2) fia2) = ~Bs (202 = 22)" 19, (rg) SI(2y.)OWAN) . (10.8)

Next assume that A(s) is finite: Given any point a(s) € A(s), we may find some arbitrary
small number § > 0 such find (&, ND?(z¢,8))NA(s) = {a(s)}. If a(s) € &,, then the angle of
the tangent to &, at the point a(s) with the vector €; is y«(a(s)) so that, if y.(a(s)) # +m/2,
then we have

dP; (1 dA
ds cos(v«(a(s))
Since sin(2y4(a(s))) = 2sin(y«(a(s))). cos(y«(a(s))), the conclusion follows combining (10.8)
and (10.9). O

As a consequence, we obtain:

Lemma 10.4. Let xg € &, \ €, and pg > 0 be the number provided by Proposition 8.4. Let
s € Ip,(xo,1) be such that Z(s) = 1. Then, we have Ji p,(s) = 0, for any k € N.

101



Proof. We already know, by Proposition 8.6, that Jy ,,(s) = 0, so that it remains to establish
the property for & > 1. Since, by assumption, A(s) contains a unique element a(s) =
(s,a2(s)), we have, by (10.7)

Tipo(s) = =2 (202 — az(s))" sin(v.(a(s))Ox(als)).

Applying this formula to the case k = 0, we obtain Jy ,,(s) = —2sin(y.(a(s))O(a(s)), so
that
Tipo(5) = =2 (0.2 = a2(8))* Jop0(5) = 0,¥s € Zy(wo,)-

The proof is hence complete. ]

Lemma 10.4 motivates to introduces, for 0 < p < po, the set
G(p) = {s € [0, — p.z01 + pl, such that Z(s) = 1}

It plays a distinguished role in the proof of Theorem 2, as well as our next result shows.

10.3 Properties of the set G(pg)
We first show that, for 0 < p < pg, the set G(p), if not empty, is an interval.

Proposition 10.1. Let zp € &, \ &, and py > 0 be the number provided by Proposition 8.4.
Let 0 < p < po, and sy and sy satisfying s1 < xo,1 < S2 be in G(p). Then [s1,s2] C G(p), and
we have

G, N ([81, 52] X Ipo (.1:0,2)) = [81, 52] X {1'072}. (10.10)

Moreover, there exists a number Lg , > 0 such that, we have

G L (51, 82) X Zpg(wo,2)) = LopdA, (10.11)
with M
M1 0

T S Lop < o—/——57 10.12

Kaons(d(20)) = 7 = dist(zo, 09 (10.12)

The proof relies on the following more technical result:

Lemma 10.5. Let xg € &, \ &, and pg > 0 be the number provided by Proposition 8.4. Let
0 < p < po, and s1 and sy satisfying s1 < xo,1 < s2 be in G(p). Then, we have

{ N po L-(s1,82) =0, for k € N, and (10.13)

Jipo(8) =0 and Ly 5 (s) =0, for every s € [s1,s2] and k > 1.

Proof of Lemma 10.5. Since Z(s1) = Z(s2) = 1, we may apply Lemma 10.4 to s; et sg, with
k =1, to assert that
J1,p0 (s1) = J1,p0 (52) =0.

On the other hand, since, in view of Lemma 10.2, the function J; ,, is monotone on Z,,, we
deduce that

d
J1,p0(s) = 0 for s € [s1, s2], and hence N,, = —2£J17p0 =0 in D'((s1, s2))- (10.14)
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It follows from the second identity in (10.14), the definition (80) of N,, and (10.2), that the
restriction of the measure N, to (s1,s2) X Z,,(x0,2) vanishes. This implies the first identity
in (10.13), where Ny, ,, is defined in (8.13). For the second, we notice that, in view of the
first differential equation in (8.15), we have

d

£Jk7p0 =0 on (s1,s2), for k> 1.

Since Jy po(20,1) = 0, for k > 1, it follows that Jj ,(s) = 0, for every s € (sy, s2). Similarly,

d

invoking the second relation in (8.15), that is _d*n-k,po = 2kJj_1po-for k > 1, and the fact
S

that Ly ,,(20,1) = 0, we deduce that Ly, ,,(s) = 0 for every s € (s1, s2), for k € N*. O

Proof of Proposition 10.1 completed. Combining the first and the third identities in (10.13)
with (8.14) we deduce that

1 x
E(Nk’p +Lg,) L (s1,52) =Py ((xg — zg2)k C*> L (s1,82) =0, for k € N*. (10.15)

Choosing k = 2 in (10.15), we obtain hence that (zo — z02)? (x = 0 on (s1,52) X Ly, (z0,2), SO
that
G L(Sla 52) X (Ipo ($0,2) \ {xO,Q}) =0,

Since, in view of Theorem 4, {, = ©,dA > 1n1d\, we deduce that

dAL(s1,82) X (Zp(z0,2) \ {z0,2}) =0,

so that (10.10) follows. Next, we use (8.14) with & = 0, so that
. 1
]Pti (C*) L(Sl, 82) = Z(No’p + U_o’p) L(Sl, 52) = L()’deTl L(Sl, 82), L07p S R, (10.16)

where for the last identity, we used the first identity in (10.13) and Proposition 8.4. Combining
(10.16) with (10.10), we obtain (10.11). Since , = ©,dJ, it follows from (10.11) that

Lo, = O.(x0),

so that (10.12) follows from Theorem 4. Finally, the fact the (s1,s2) C G(p) is a direct
consequence of (10.10) and the definition of G(p). O

10.4 On the measure of the set G(p)

We show here that the set G(p) contains elements.

Lemma 10.6. Let xg € S, \ &, and pg > 0 be the number provided by Proposition 8.4. There
exists 0 < p1 < po, such that we have the lower bound

5
G(p)] = =L, for any 0 < p < pi.

103



Proof. We first notice that, since P, is a contraction, that for any p < pg, we have

zo,1+
/ pZ(s)ds <HY (G N Q,(x0)) < H! (6* N D? (:co, Coi ))

s
0,1—P 8
10
< H! <6* N D2 <x0, 9”)) ,

where we used (8.54). On the other hand, in view of (11), there exists some 0 < p; < po,
such that, for p < p1, we have

(10.17)

21p

H' (S, N (D (0, p)) < 10 (10.18)
- : 9 .
Combining (10.17) and (10.18), we obtain hence, for p < p; = 0P
To1+p 21 (1 21
/ Z(s)ds < — - <Op> _Hp_ T (10.19)
ro1p 10 \9 9 3

We introduce the set K(p) = {s € [x0,1 — p, 0,1 + p], such that Z(s) > 2}. We have

To,1+p
/ Z(s)ds = / Z(s)ds+ [ Z(s)ds > ()] + 20K(p)] = 20 + |K(p)].  (10.20)
To,1—p G(p) K(p)

Combining (10.19) and (10.20), we deduce that |[K(p)| < = and the conclusion follows. [

WD

10.5 Proof of Theorem 2 completed

Let zp € &, \ &, and pg > 0 be the number provided by Proposition 8.4. We first invoke
Lemma 10.6, so that there exists 0 < p1 < pg such that |G(p1)| > 5p1/3. Hence there exists
two numbers s; and sy such that

xo1 —p1 < 81 < x01 — % and g1 + % < s < x0,1 + p1, and such that {s1,s2} C G(p).
Setting ro = p1/3, we obtain, in view of Proposition 10.1

Zyo(w0) C (s1,82) C G(p).

Identity (10.10) of Proposition 10.1 then leads directly to identity (16), whereas identity
(10.11) yields (17) and (10.12) yields the lower bound (18), with the choice

1

m(d@o) = g

The proof of Theorem 2 is hence complete.
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11 Proof of Theorem 3

Inserting identities (10.3) into the system (72), we are led to the system of first-order equations

0 fsin2y) ] =

- prn [(1 4 cos2yy) ¢ and

5 5 (11.1)
~on [(sin2vy,)C] = pr. [(1 —cos2yy) Gy -
This system involves only the measure (, and the set &, (through the angle y,). We are going
to show next that these relations are equivalent, in the sense of distributions, to (22). For
that purpose, let X = (X1, X2) be a vector-field in C>°(£2, R?). We have, for any = € &\ &,,
since by definition €, = cosy(xo)€1 + siny(xg)€2
div,, o X(z) = (gx : 6)2(95)) &,

= (cosy*(a:)g;(l@?) + SinY*(x)ng(x)

0X1 0Xo ()
ox1 0x2

+ sinyy () cos v () [aai(f(x) + +gil(x)} )

) - (cosY«(x)€1 + siny,(z)6E2)

= cos’ yx(2) 5 — () + sin’ y.(z))

Using this computation, we may expand relation (22) as

0X 0X 00Xy 0X
<C*, COSQ'Y*%II + sinQY*W; + siny, cosYx [89012 + (%ﬂ > =0 (11.2)

Integrating by parts in the sense of distributions, we obtain hence, for every X; € C°(2,R)
and any Xy € C°(£, R), the relation

0 o . a . g .
<8x1(COS2 Yils) + Tm(smy* COS Y C*),X1>—|—<aw2(s1n2 Yils) + a—xl(smy* cosy*C*),X2> =0.
Since X; and Xs can be chosen independently, we are led to the system, in the sense of
distributions,

[(Sin Y4 cOS Yy, Gx] = 9 [(cos®v4) 4] and

_671’2 81)1

(11.3)

. 0 . 9
~ B [(sin Yy cosV4) G| = pr. [(sm y*) C*] .

Since 2siny, cos v, = sin 2y, 1+cos(2y,) = 2cos? v, and 1 —cos(2y,) = 2sin’7y,, we verify
that (11.3) is equivalent to (11.1), so that the system (72) is equivalent to (22). The varifold
V(6,,0,) is hence stationary. The proof of Theorem 3 is complete.
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