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Abstract

Purpose—To examine if there was spatial misclassification in exposure to neighborhood noise 

complaints among a sample of low-income housing residents in New York City, comparing home-

based spatial buffers and Global Positioning Systems (GPS) daily path buffers.

Methods—Data came from the community-based NYC Low-Income Housing, Neighborhoods 

and Health Study, where GPS tracking of the sample was conducted for a week (analytic n=102). 

We created a GPS daily path buffer (a buffering zone drawn around GPS tracks) of 200-meters and 

400-meters. We also used home-based buffers of 200-meters and 400-meters. Using these 

“neighborhoods” (or exposure areas) we calculated neighborhood exposure to noisy events from 

311 complaints data (analytic n=143,967). Friedman tests (to compare overall differences in 

neighborhood definitions) were applied.

Results—There were differences in neighborhood noise complaints according to the selected 

neighborhood definitions (p<0.05). For example, the mean neighborhood noise complaint count 

was 1196 per square kilometer for the 400-meter home-based and 812 per square kilometer for the 

400-meter activity space buffer, illustrating how neighborhood definition influences the estimates 

of exposure to neighborhood noise complaints.
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Conclusions—These analyses suggest that, whenever appropriate, GPS neighborhood 

definitions can be used in spatial epidemiology research in spatially mobile populations to 

understand people's lived experience.
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Introduction

In spatial epidemiology, most studies rely on crude neighborhood definitions (i.e. 

geographically-defined administrative boundaries and spatial buffers around a geographic 

location), which can result in spatial misclassification (i.e. incorrectly characterizing an 

environmental exposure) [1]. These administrative boundaries neighborhood definitions 

seem to be applied in studies with little theoretical reasoning. Although administrative 

boundaries (including ZIP codes and census tracts) are not used as much nowadays in spatial 

epidemiology research spatial buffers are still quite common, perhaps due to increased 

Geographic Information System (GIS) capacity. These spatial buffers are static and 

egocentric, meaning that they are fixed (not dynamic) and focused on a single location, 

which is a major limitation. Additionally, although most research has focused solely on 

residential neighborhoods [2], emerging research demonstrates that people are exposed to 

multiple (e.g. residential, work, social) neighborhood environments in their daily lives 

(termed “spatial polygamy”) [3-11]. While (some) research has focused on other salient 

neighborhood contexts (e.g. school neighborhoods for children and work neighborhoods for 

adults) [2], studies rarely examined more than one neighborhood context in the same study. 

Consequently, the range of neighborhood contexts one experiences is often missed in spatial 

epidemiology research. Real-time geospatial methods, including the use of Global 

Positioning System (GPS) technology are the cutting-edge, best suited method that can 

overcome these limitations because they better capture neighborhood contexts corresponding 

to individual lived experiences (known as “activity space neighborhoods”) [12-15]. Thus, 

there is strong theoretical basis related to the measurement of activity spaces with GPS 

receivers as a basis for exposure assessment. Previous research though demonstrated that 

when home-based spatial buffers were compared with GPS-defined “activity space 

neighborhoods” they shared at most only 12% of the variance in the neighborhood 

characteristics studied [16]. This suggests that residential neighborhoods are a very poor 

proxy for people's daily neighborhood exposures because most people's day-to-day activities 

are conducted outside of their residential neighborhood. However, little research has 

empirically examined the extent of spatial misclassification including comparing home-

based spatial buffers and GPS activity space buffers including daily path buffers, which 

reflects an individual's daily movement patterns.

The purpose of this methodological study was to examine if there was spatial 

misclassification in neighborhood noise complaint exposure among a sample of low-income 

housing residents in New York City, using GPS data we collected. We focus on 

neighborhood noise complaints, because neighborhood-level exposure to noisy events can be 
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related to health (e.g. blood pressure [17-23] and sleep [24-27], and it might be an especially 

salient neighborhood exposure to low-income housing residents in urban epicenters such as 

New York City [28, 29]. Moreover, noisy events that socially perceived as disturbing might 

be highly relevant to neighborhood disorder, which could be relevant to the studied 

population.

Materials and Methods

Data used in this study come from the NYC Low-Income Housing, Neighborhoods and 

Health Study, a pilot study that demonstrates the feasibility of Global Positioning Systems 

(GPS) data in a sample of low-income housing residents, which is among the first GPS 

studies to be conducted among a sample of low-income adults. Study details were previously 

described in detail and are briefly summarized here [30, 31]. Recruitment of 120 low-

income housing residents in New York City was conducted through community-based 

outreach, which included handing out flyers outside of public housing developments in four 

different New York City neighborhoods, as well as through flyers posted and circulated by 

community-based organizations that work with low-income individuals (especially public 

housing residents), flyers posted in community locations (e.g. local stores) and through word 

of mouth (social networks). Adults were considered eligible for participation in the study if 

they self-reported living in low-income housing (e.g. public housing) in New York City; 

were 18 years of age or older; could speak and read English; self-reported not being 

pregnant; self-reported no difficulty in walking or climbing stairs; and were willing to wear 

a GPS device (on their person; e.g. in their pocket) for one week. The vast majority (80%) of 

the participants reported living in public housing (versus other low-income housing) and all 

participants reported being low-income. These data were collected between June and July 

2014. Informed consent was obtained from all participants prior to data collection. The New 

York University School of Medicine Institutional Review Board reviewed and approved the 

research protocol.

Neighborhood Noise Complaints

We used the density of noise complaints as our measure of neighborhood exposure to noisy 

events [32]. In 2010, New York City started a sampling platform (called “NYC 311”) 

operated by the Department of Environmental Protection that residents in New York City 

can make a call to 311 to report a complaint in their neighborhoods. The types of complaints 

include home, lost and found, vehicles and parking, transportation, streets and sidewalks, 

public health and safety, and noise [32]. One of the top three classifications among all types 

of complaints in the 311 data is noise. In this study, noise complaints came from 311 data 

during 1/1/2014 – 12/31/2014 (n=145,067). We specifically selected the year as the time 

frame for the analysis because the participant data were collected in 2014 and because 

registered complaints could be one-off events, not representative of average conditions 

across time. We anticipated that our measure is stable and consistent across time because it 

is a long time period. The 311 noise complaint data contain a time stamp and location of a 

noise report (i.e., case), address, streets, city, borough, as well as a latitude and longitude of 

each incidence. Some noise reports were removed – in particular, 1,100 noise reports were 

deleted due to missing location information (i.e., longitude and latitude of reports). The total 

analytic noise report cases were 143,967. These noise data included different types of noise, 
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including noise from specific sources, e.g. commercial, helicopter, house of worship, park, 

streets, and vehicle. The top ten noise complaints from the 311 data in 2014 accounted for 

approximately 93% of the total complaint reports (See Table 1). The top three noise 

complaints include loud music/party (37%), construction before/after hour (17%), and loud 

talking (13%). The 311 noise data can be considered to be pollution indicators for the 

location of noise incident from residents in New York City [33]. Previous research has used 

this noise complaint data [33, 34] and we defined neighborhood noise complaints as the 

density of noise complaints in the different neighborhood definitions (described below), and 

more specifically the per square kilometer density and kernel density approach. Kernel 

density estimation is a data smoothing method where inferences about the population are 

made based on a sample data in this context the amount of noise complaints exposure based 

on distance from point source.

Address Geocoding

Participants provided their residential address. We geocoded (converted addresses to 

coordinates) the address following procedures used in our previous work, including cleaning 

the addresses prior to geocoding which involved standardizing the spelling to the USPS 

format (e.g. changing “street” to “St”, “avenue” to “Ave”, and “circle” to “Cir”) [35, 36]. 

These addresses were geocoded in mid-August 2014, using ArcGIS. Addresses were 

matched using a minimum match score of 65, spelling sensitivity of 60, and side offset of 10 

feet. The ArcGIS minimum match score required was 80. We then conducted interactive re-

matching in ArcGIS, where addresses can be reviewed and corrected on a case-by-case basis 

as necessary and for addresses with a match score of >80 that had ties. In the final step, we 

used Google Earth Pro to geocode the addresses with match scores below 80 and those that 

ArcGIS (Environmental System Research Institute, Redlands, CA) were unable to geocode. 

For addresses that were not geocoded in Google Earth Pro, we cleaned them and geocoded 

them in ArcGIS and Google Earth Pro (following the procedures previously articulated).

Geographic Information System (GIS) Buffers

Studies have used different sizes and zones for home-based spatial buffers. In this study, we 

used polygon-based street-network derived residential buffers of 200-meters and 400-meters

—as have been used in previous neighborhood noise research in New York City [29, 37] and 

because we thought large buildings can block out noise, making network buffers most 

appropriate. Polygon-based street network buffers follow the street network for the sizes 

selected and then are connected the outer buffer edges to form a polygon. We use street 

network buffers as opposed to Euclidian distance here because these are meant to be 

comparable to past research [16]. Of note, 200-meters and 400-meters equates 

approximately to a 1/8 and 1/4 mile, respectively, around a location. The mean for the 200- 

and 400-meter spatial buffers across participants (n=102) were 0.04 (SD=0.01) square 

kilometers and 0.20 (SD=0.04)) square kilometers, respectively. In this study sample, many 

participants spend >50% of time in their residential neighborhood (i.e. 400-meter network 

buffer) [38].
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Global Positioning System (GPS) Protocol and GPS Data Cleaning

The GPS device was set to log in 30-second intervals for location prior to distribution. 

Consistent with other studies [16, 39-48], GPS tracking of the sample was conducted for a 

week. During the study orientation and baseline assessment, participants were instructed to 

place the small QStarz BT-Q1000XT GPS device (Qstarz International Co., Ltd., Taipei, 

Taiwan) on their belt (using the manufacturer-provided case) or in their pocket and to 

complete a travel diary [30, 39]. Participants were asked to wear the GPS devices at all times 

(except when sleeping, swimming or showering). Consisting of a series of checkboxes, the 

travel diary asked the participant, “Did you charge the GPS monitor today?” and “Did you 

carry the GPS monitor with you today?” and was meant to help the participant remember to 

charge the device and carry it with him or her throughout the week. Consequently, the diary 

include did not include information about specific activities done in a day or any other time-

period. Of note, we asked participants to complete their travel diary at home and at 

nighttime. However, we did not know when or where participants completed their travel 

diary, which we did not collect and so the diary was not used to inform the GPS data 

cleaning process. The GPS device was given to participants in a large plastic zipper storage 

bag, which also contained a mini USB charging cord for the GPS device, a USB wall 

adapter for charging, a manufacturer-provided GPS belt holder (if requested), a pamphlet 

containing background information on GPS, and the travel diary. Upon completion of the 

one-week GPS protocol (i.e. carrying the unit for all journeys, charging the unit daily, and 

completing the travel diary), researchers went to easily accessible community locations (i.e. 

coffee shop, library) in the participant's neighborhood to obtain the GPS devices, which is in 

line with our community-based approach. Participants also returned to the project office to 

give back the GPS devices, depending on which option was most convenient for him or her. 

As demonstrated previously, participants were compliant following the study's GPS protocol 

[30, 39].

GPS data were downloaded from Qstarz GPS devices in .gpx format then stored on a 

secured server and converted into ESRI .shp files and transferred into a geodatabase for 

processing, further analysis, map creation, and storage. GPS data in 30 seconds epochs were 

processed using a script built in python and executed in ArcGIS which eliminated duplicate 

timestamps, dates outside the range of the study, and removed GPS data points that were 

isolated spatially as these were likely data errors and not characteristic of typical mobility. 

GPS data drift is typically more pronounced while GPS receivers are stationary and these 

issues may be exacerbated in urban environments, however in past testing the GPS drift 

ranges from between 10 to 30 meters, and while a significant issue these common issues 

with GPS data did greatly influence out activity space variable calculations.

Of 120 participants enrolled in the study, six participants had no GPS data either due to user 

error, battery issues, or failing to return the device. Due to mismatched data a further five 

participants survey data could not be linked to GPS data and were omitted, one participant 

successfully returned the GPS device but had insufficient data, one participant's ID was 

found to be a duplicate in post-processing. In addition, five participants were removed 

because they spent a majority of their week with the GPS device outside New York City, 

since these data may not reflect typical mobility patterns and we were concerned with 
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typical daily mobility. These restrictions resulted in a final participation and completion rate 

of 85.8% (n=102).

GPS Buffers

There are various ways to define an activity space [16, 49, 50]. In brief, the different ways to 

define activity spaces make different assumptions about mobility and therefore draw 

different boundaries around the GPS points. In this study, we used the commonly-used daily 

path area (a buffering zone drawn around the GPS tracks), which is a method in behavioral 

geography research to understand where participants spend the majority of their time and 

exposure to environment [16, 49]. Consequently, the daily path area includes places where 

the participant actually goes. We created 200-meter and 400-meter GPS buffers in this study. 

We selected these buffer sizes to rely on comparable buffer radiuses around home and GPS 

points for the sake of comparability. Of note, we buffered all GPS points for the two GPS 

buffer sizes and dissolved these separate features into a single feature, or space to create an 

“activity space” for each participant. The activity space size for the GPS-based daily path 

buffers was expressed in square kilometers. The mean for the 200- and 400-meter activity 

buffers across participants (n=102) were 11.40 (SD=9.76) square kilometers and 18.39 

(SD=14.20) square kilometers, respectively. GPS activity space buffers for daily paths were 

created using ArcGIS version 10 (ESRI, Redlands, CA).

Statistical Analysis

First, we computed descriptive statistics for the neighborhood noise complaints for each of 

the different neighborhood definitions (i.e., 200-meter and 400-meter home-based buffers, 

and the 200-meter and 400-meter GPS activity space buffers). We applied Friedman test to 

compare differences in neighborhood definitions in neighborhood noise complaints. Post 

hoc analysis for the Friedman's test was performed when the null hypothesis was rejected. 

This allowed us to discover which of the groups (i.e., neighborhood definitions) were 

responsible for the reason that the null hypothesis was rejected. Analyses were performed 

for our various neighborhood definitions and for the different density measures. For 

example, we assessed whether the mean neighborhood noise complaints counts for the 400-

meter home-based buffer and for the 400-meter activity space buffer are different.

Results

Figure 1 shows the location of an individual participants address, the various home-based 

spatial buffers used in this study for that address, and the participants’ daily path buffers. In 

this map we show a kernel density estimation of noise complaints across all neighborhoods 

to give context for the density of noise across the study area.

The mean difference between the 200-meter home-basd buffer and the GPS activity space 

buffer for the sampled low-income adults was 833 (SD = 1673), and the mean difference 

between the 400-meter home-based buffer and the GPS activity space buffer for the sampled 

low-income adults was 384 (SD = 764) for the count variables. Minimal median differences 

were found for the kernel density estimates across neighborhood definitions.
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Table 2 shows descriptive statistics on noise complaints for the different neighborhood 

definitions. Differences were stark for the count variables. For example, the mean 

neighborhood noise complaint count was 1696 per square kilometer for the 200-meter 

home-based buffer and 863 per square kilometer for the 200-meter activity space buffer. The 

mean neighborhood noise complaint count was 1196 per square kilometer for the 400-meter 

home-based buffer and 812 per square kilometer for the 400-meter activity space buffer.

Table 3 shows the results from the overall Friedman test. Overall, the estimates from level of 

neighborhood noise complaints varied for each neighborhood definition (all P ≤ 0.005). 

Models comparing all measures of noise complaints across neighborhood definitions 

detected 11 specific differences including statistically significant differences in noise event 

count for the 400-meter home-based and 400-meter activity space buffer. In models 

comparing the specific measures of noise complaints (i.e., count and kernel density) 

differences remained including statistically significant differences in kernel density 

estimated noise for the 200-meter home-based and 200-meter activity space buffer.

We also found significant differences in neighborhood definitions studied when we 

completed the Friedman tests for each noise complaint metric separately: count and kernel 

density (data not shown).

Discussion

In this study, we examined if there was spatial misclassification among neighborhood noise 

complaint exposure among a sample of low-income housing residents in New York City. In 

particular, this study examined spatial misclassification comparing spaces defined by place 

of residence (home-based spatial buffers) to spaces defined by daily movement (GPS 

activity space buffers), which is a methodological novelty of this study. There were 

differences in metrics of neighborhood noise complaints according to the selected 

neighborhood definitions, illustrating how neighborhood definition influences the metrics of 

neighborhood noise complaints. However, the degree of spatial misclassification was less 

than we anticipated and less substantially than prior work as discussed below. This 

somewhat reduced level of spatial misclassification might be due to using two localized 

neighborhood definitions and in light of spatial autocorrelation. Overall, therefore, this study 

demonstrates that the neighborhood definition matters and if possible GPS buffers can be 

appropriate for spatially mobile populations. We also note that in some cases evaluating 

residential environment may still be useful, so home-based buffers can have utility. However, 

we argue that use of spatial buffers are likely less relevant when the research study needs to 

consider people's complex lived experience.

This study provides a meaningful contribution to the literature as very few studies have 

empirically examined spatial misclassification. In a prior study, though, we showed there 

was substantial spatial misclassification in youths’ access to tobacco retailers using 

administrative neighborhood definitions and home-based spatial buffers [1]. One other study 

that we are aware of examined neighborhood noise and spatial misclassification [37]. In this 

study, the researchers used different neighborhood definitions, especially home-based 

buffers and administrative definitions, demonstrating neighborhood-levels of noise across 

different metrics. However, this study did not use GPS data. Even less research has 
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examined spatial misclassification comparing home-based spatial buffers and activity 

spaces, especially GPS-based activity spaces such as daily path buffers. However, a recent 

study [51], that analyzed exposure assessment in aspects of neighborhood walkability using 

different neighborhood definitions (e.g. self-reported activity spaces and home-based spatial 

buffers) found differences across neighborhood definitions. In addition, another study found 

that when home-based spatial buffers were compared with GPS-defined activity space 

buffers they shared at most only 12% of the variance in the neighborhood characteristics 

studied [16]. This study examined environmental features such as fast food outlet density 

and park-land use and is most comparable to our study.

Future Research

Future research should continue to examine spatial misclassification including comparing 

home-based spatial buffers and GPS activity space buffers, including different variants of 

activity space buffers, across geographies and across exposures. Studies are needed in rural 

geographies and in varying geographic regions to see if these issues of spatial 

misclassification hold true to non-urban areas and differing regional contexts. The city of 

New York is a robust study environmental features, however it may be unique in regards to 

issues of spatial misclassification and future research should examine if the findings 

observed in the current study are comparable to other contexts, not only geographically but 

including varying sociodemographic groups. With this said, future research can furthermore 

examine other neighborhood factors (e.g. tobacco retailers, supermarkets) as well as they 

relate to spatial misclassification, including using larger samples.

In addition to evaluating issues of spatial misclassification in other regions and among 

varying populations, the current research opens the door for evaluating spatial mismatch as 

related to various health outcomes, including blood pressure, sleep, anxiety and substance 

use. While we hypothesize that noise in one's residential neighborhood could influence 

health, we also hypothesize that the activity spaces in addition to residential level noise 

would have more pronounced health effects. However, future research is needed to examine 

these hypotheses. From a mobility perspective, we do believe that activity spaces are the 

most salient neighborhood definition for mobile populations. We note that the exposure to 

noise to consider is likely dependent on the studied outcome(s).

Studies can collect GPS data via GPS-enabled smartphones for determining activity space 

neighborhoods, which could increase compliance to a GPS protocol, as smartphone are 

common nowadays. Although we believe current smartphones are of limited interest for 

GPS assessment due to limited battery life, they may be of great interest in the future, 

including because of their ability to combine GPS assessment and Global System for Mobile 

Communications (GSM) triangulation. Indeed it should be noted that future research 

utilizing GPS data might benefit from data triangulation techniques (utilization of data from 

cell towers) in conjunction with GPS to obtain even more realistic activity spaces. In 

addition to overall noise using GIS datasets, future studies can analyze different types of 

noise—which may have different impacts on health. Future studies can also examine other 

measures of noise exposure (not examined in the current study), e.g., annual average daily 

traffic noise and noise by time of day and by season. In the future research, the occurrence of 
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the time and location can be adjusted in the analysis of noise. There are different ways to 

measure noise. In addition to self-report of noise, other sources lampposts of noise, or other 

more novel sources such as geolocated Twitter data about noise. Personal noise exposure 

could be measured as well via noise monitors—not just using GIS datasets of noise. Noise 

sound pressure data and noise complaint data should be compared in the future. Finally, 

future research should also examine individuals’ mobility preferences, including as it relates 

to noise. For example, people may move because of noise level or other reasons. People 

could move to a more pleasing and quiet environment if they are noise sensitive or annoyed 

while out and about.

Study Strengths and Limitations

This study has a number of strengths. This is one of few studies empirically examining 

spatial misclassification, and one of very few studies empirically examining spatial 

misclassification using GPS data. In addition, we examined spatial misclassification using 

several different metrics, including density measures and kernel density measures of 

neighborhood-level exposures. Despite these strengths, this study is subject to some 

limitations.

Participants may have changed their spatial patterns given our distribution of GPS devices 

leading to potential reactivity bias and selective daily mobility bias. However, our past work 

suggests that these issues are minimal [30, 39]. Second, this study was conducted in a single 

geographic location among a relatively small non-probability sample of low-income housing 

residents. While 102 participants can be viewed as a relatively small sample size for spatial 

epidemiologic research, given that many recent GPS studies have fewer than 100 

participants, our sample size of 102 is on par with the sample sizes of most GPS-based 

research. In addition, while our findings might only be generalizable to similar adult samples 

in similar urban areas, given that 20% of Americans now live in the 100 largest cities, and 

more than 70% of Americans living in urbanized areas with urbanization still on the rise, the 

relevance is large and growing [52]. We also note that GPS data accuracy in urban locations 

may suffer from error due to urban canyon effects and multipath reflectance [53]. While the 

urban environment, especially one as dense as New York City, presents issues for deriving 

subsequent data from GPS, such as mode of transportation, speed, and so on, these issues are 

less pronounced when examining data in aggregate as we have done here. Furthermore, this 

study relies on assumptions for the definition of exposure areas. In particular, the selected 

buffer size around the GPS points and residential locations could have influenced the 

findings. Because participants were tracked for only one week (which is currently the 

standard in spatial epidemiology literature), it is unknown whether spatial patterns were 

representative of ones’ typical travel patterns and there may be seasonal variation in people's 

travel patterns (e.g. people may be more spatially monogamous in the winter months). Two 

weeks or even longer may represent someone's typical travel patterns in addition to GPS 

data over time. Furthermore, we were not able to consider in-door home noise exposure in 

the current study.

In addition, noise complaint data has certain limitations, which are important to note. More 

specifically, for example, the intensity of noise varies depending on the types of noise and 
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the duration of noise complaints, ranging from noise from loud music/party and loud talking 

(e.g., a few hours) to noise from construction before/after hour (e.g., weeks). In this study, 

each noise complaint was counted as one case in the analysis and we did not disaggregate by 

noise type. The differences in noise type and duration could influence the magnitude of 

noise exposure for each participant. Additionally, depending on a location of noise 

complaint, whether noise occurs in mid-town New York, or a residential area in Bronx, for 

example, construction noise may diffuse differently. Another limitation is that the data are 

based on complaint reports from residents in New York City. Often complaints concentrated 

in the morning and evening since the residents are at home or come back from work. Thus, 

density of noise tends to sparse across city and time. Residents do not report ambient noise 

as complaints at a given time and location, since they are not present near the location and 

time of the occurrence. In contrast, even if there is no noise complaint at a certain time and 

location, this does not indicate noise do not exist. If an individual happens to live near a 

frequent caller to 311, this can bias his/her exposure. Residents simply may not be present at 

the time and location. Additionally, there may be differential reporting of noise (which is 

subjective) by certain characteristics including individual and neighborhood-level factors, 

such as age and socio-economic status [54]. In this study, we did not have resources to give 

noise monitors to participants. A complementary approach may be to replicate the present 

study using modeled noise (sound pressure) data. Finally, we assume that people are 

exposed to noise, however people can wear noise-canceling devices (e.g. listening to music 

on a smartphone) in their neighborhoods.

Conclusions

Researchers must be careful in selection of the neighborhood definition, in light of spatial 

misclassification. Like other exposures, many studies of neighborhood noise only use home-

based spatial buffers to focus on the residential environment [17, 21-23]. Our analyses 

considering the exposure to reported noisy events suggest that, whenever possible, activity 

space neighborhood definitions can be used in spatial epidemiology research in spatially 

mobile populations to understand people's lived experience. The use of home-based 

neighborhood definitions can bias exposure estimates.
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Glossary of Terms (Appendix)

Administrative Boundary
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A boundary set by an administrative organization (e.g. police department, United States 

Postal Service, US Census Bureau) and examples include police districts, ZIP codes and 

census tracts

Daily Path Buffer
A type of activity space neighborhood based on GPS technology. This neighborhood 

calculates a buffering zone drawn around GPS tracks

GPS Defined Activity Space Buffer
A set of spatial locations visited by an individual over a given period, corresponding to 

his/her exhaustive spatial footprint; the regular activity space is the subset of locations 

regularly visited over that period. One way to define activity space buffers is via Global 

Positioning Systems (GPS) technology

Geographic Information System (GIS)
A system that is concerned with capturing, storing, analyzing and managing all types of 

spatial or geographical data

Global Positioning System (GPS)
A space-based navigation system that provides location and time information in all 

conditions

Spatial Buffer
Defines a neighborhood as a radius around a particular location, calculated using GIS 

technology. Many types of spatial buffers exist depending on the buffer size and what the 

location that the radius is set around represents (e.g. home, workplace, etc.). These spatial 

buffers are static (meaning that they are fixed and not dynamic) and egocentric (meaning 

that focused on a single location)

Spatial Misclassification
To classify an environmental exposure incorrectly
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Highlights

• The existence of misclassification in neighborhood noise exposure has been 

understudied.

• We compared noise complaints between neighborhoods defined using home-

based buffers and daily path buffers.

• Differences in noise metrics were found based on the neighborhood 

definition.
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Figure 1. 
Comparison of Home-based Buffers and GPS Daily Path Buffers, with Kernel Density 

Estimates of Neighborhood Noise Complaints.
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Table 1

Description of geo-coded noise complaint type, count, and percentage (n=143,967)

Common complaint types Count Percent

1. Loud music/party 54,004 37

2. Construction before/after hours 24,293 17

3. Loud talking 18,696 13

4. Car/truck music 9,184 6

5. Barking dog 7,528 5

6. Construction equipment 6,036 4

7. Air condition/ventilation equipment 4,157 3

8. Engine idling 4,059 3

9. Banging/pounding 3,184 2

10. Alarms 3,048 2

11. Others 9,778 7
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Table 2

Density of noise reports from the 311 data by neighborhood definition during the year of 2014 (n=143,967)

Neighborhood definition
No. noise report per square kilometers

Mean (SD) Median (IQR) Range

Count

200m home-based buffer 1,696 (1,804) 920 (1,955) 5,108

200m activity space buffer 862 (384) 853 (631) 1,447

400m home-based buffer 1,196 (859) 837 (1,452) 2,994

400m activity space buffer 812 (332) 799 (508) 1,437

Kernel Density

200m home-based buffer 838 (630) 669 (1334) 1,858

200m activity space buffer 835 (364) 826 (626) 1,405

400m home-based buffer 839 (638) 636 (1265) 1,843

400m activity space buffer 791 (318) 784 (484) 1,277

Note: SD= Standard Deviation, IQR= Interquartile Range
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Table 3

Friedman test comparing neighborhood noise across neighborhood definitions, noise (count and kernel 

density)

Differences Tested P-value

200m activity space (kernel density) - 200m activity space (count)

200m activity space (kernel density) - 200m home-based (count)

200m activity space (kernel density) - 400m activity space (count)

200m activity space (kernel density) - 400m home-based (count) *

200m home-based (count) - 200m activity space (count)

200m home-based (count) - 400m activity space (count)

200m home-based (kernel density) - 200m activity space (count) §

200m home-based (kernel density) - 200m activity space (kernel density) ^

200m home-based (kernel density) - 200m home-based (count) §

200m home-based (kernel density) - 400m activity space (count)

200m home-based (kernel density) - 400m activity space (kernel density)

200m home-based (kernel density) - 400m home-based (count) §

400m activity space (count) - 200m activity space (count)

400m activity space (kernel density) - 200m activity space (count) §

400m activity space (kernel density) - 200m activity space (kernel density)

400m activity space (kernel density) - 200m home-based (count) §

400m activity space (kernel density) - 400m activity space (count)

400m activity space (kernel density) - 400m home-based (count) §

400m home-based (count) - 200m activity space (count)

400m home-based (count) - 200m home-based (count)

400m home-based (count) - 400m activity space (count) **

400m home-based (kernel density) - 200m activity space (count) **

400m home-based (kernel density) - 200m activity space (kernel density)

400m home-based (kernel density) - 200m home-based (count) **

400m home-based (kernel density) - 200m home-based (kernel density)

400m home-based (kernel density) - 400m activity space (count)

400m home-based (kernel density) - 400m activity space (kernel density)

400m home-based (kernel density) - 400m home-based (count) §

P-value for test of asymptotic general independence < 0.001

^
p. < 0.1

*
p. < 0.05

**
p. < 0.01

§
p. < 0.001
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