N

N

MQp2H TT Q +?2 7Q aQ7ir "2 +2?2Bi2+im" 2
GBM2 1M;:BM22 BM:
JO? K2/ G KBM2 E2°/Qm/B- h2r}F wB /B- *?QmFB hB#2

hQ +Bi2 i?Bb p2 ' bBQM,

JQ? K2/ G KBM2 E2/Qm/B- h2r}F wB /B- *?QmFB hB#2 K +BM2- a H ?
7Q° aQ7ir "2 “+?Bi2+im 2 S'Q/m+i GBM2 1M;BM22 'BM;X CQm'M H Q7
TTXRRRRNRX RyXRyRefDXDbbXkykRXRRRRNR X ? H@yj338eRe

> G A/, ? H@yj338eRe
2iiTh,ff?2 HXbQ #QMM2@ mMMBp2 ' bBi2X7 f? H@Y]:
am#KBii2/ QM 8 .2+ kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.sorbonne-universite.fr/hal-03885616v1
https://hal.archives-ouvertes.fr

A Novel Approach for Software Architecture Product Line Engineering

Mohamed Lamine Kerdou®|iTew k Ziadi®, Chouki Tibermacing Salah Saddl

aComputer Science Department University of Biskra, Algeria
L.Kerdoudi@univ-biskra.dz
bSorbonne Universite CNRS, LIP6, F-75005 Paris, France
Tew k.Ziadi@lip6.fr
°LIRMM, CNRS and Montpellier University, France
Chouki.Tibermacine@lirmm.fr
dIRISA, University of South Brittany, France

Salah.Sadou@irisa.fr

Abstract

A large software system exists in @irent forms, as dierent variants targeting dérent business needs and users. This kind of
systems is provided as a set of “independent” products and not as a “single-whole”. Developers use ad-hoc mechanisms to man
variability. We defend a vision of software development where we consider an SPL architecture starting from which the architectur
of each variant can be derived before its implementation. Indeed, each derived variant can have its own life. In this paper, we propc
a novel approach for Software Architecture Product Line (SAPL) Engineering. It consists of, i) a generic process for recovering a
SAPL model which is a product line of “software architectures” from large-sized variants. ii) a forward-engineering process tha
uses the recovered SAPL to derive new customized software architecture variants. The approach is rstly experimented on thirte
Eclipse variants to create a new SAPL. Then, an intensive evaluation is conducted using an existing benchmark which is also ba:
on Eclipse IDE. Our results showed that we can accurately reconstruct such an SAPL and dmfively pertinent variants. Our

study provides insights that recovering SAPL and then deriving software architectessgmod documentation to understand the
software before changing it.

Keywords: Software Architecture; SPLE; Software Architecture Product Line; BUT4Reuse; Software Architecture Recovery;
ComponerfService-based Software

1. Introduction whole”. Indeed, large component software systems exist in dif-
ferent forms, as dierent software variants targeting @rent
Software Product Line Engineering (SPLE) aims to improveysiness needs and users. For example, IDEs like Eclipse ex-
reuse by focusing not on the development of a single softwar@t as several variants targeting erent kinds of software en-
product but on a family of related products. The systems inyineers([3]. These software variants often use ad-hoc mecha-
a Software Product Line (SPL) approach are developed frorjisms to manage variability and they do not take complete ben-
a common set of assets in a prescribed way, in contrast to b@-ts from the SPLE framework. For developers of new soft-
ing developed separately, from scratch, or in an ad-hoc manngfare variants that are built upon existing ones, the presence of
This production economy makes the software product line ap, single model describing the architecture of the whole system
proach attractive. SPLE considers the existence of a single afith an explicit speci cation of commonality and variability is
chitecture model describing all the variants that implement dif¢ great interes{[4,]5]. Indeed, this enables to see the common
ferent software products of a single product line. The particupart of the whole, on top of which new functionality can be
larity of this “single” architecture model is that it includes what built, in addition to the dierent features they can use.
is refereed aa variability model(also calledeature modél in In this work, we defend a vision of software development
which variability andcommonalityare explicitly specied us- \here we consider an SPL architecture starting from which the
ing high level characteristics of the so-calfedturedl]. These software architecture of each software variant can be derived.
are then mapped to components, which are organized accordiffggeed, each derived software variant can have its own life.
to the identi ed features. Speci ¢ software variants candee Thjs ife is regulated by evolution needs whose origin often de-
rived (generated) by choosing from the feature model a set Ofends on the context which is speci ¢ to each software. From
desired features, then SPL tools choose and assemble the gRa point of view of the responsible of the software mainte-
propriate components mapped to the selected feafures [1]. pance, the architecture is a crucial artifact for two readdns [6, 7]:
During recent years, multiple approaches have been prqy ynderstand the software before making changes on it, and
posed addressing SPL implementation, or software prOdUCtdEﬁi)/ﬁbtify changes made on the software to keep its documen-

tion [1,12]. However, there are many software systems that exisgtion compliant with its implementation. However, the situa-
as several “independent” software variants and not as a “single

Preprint submitted to Journal of Systems and Software December 17, 2021

tion where the software variants do not have their fproper posed as a generic and extensible framework for SPL reverse-
architecture raises problems during the maintenance stage ehgineering. For enabling extensibility, BUT4Reuse relies on
a software on the two points mentioned above: i) referringadaptersfor the di erent artifact types. These adapters are im-
to a generic architecture to understand a given software is plemented as the main components of the framework. Sev-
very di cult task. Knowing that comprehension is the mosteral adapters covering a wide range of artifact types are al-
costly activity during maintenancgl[8], this will generate con-ready available [16]. In this work, we followed the extensibility
siderable additional costs; ii) modifying a generic architecturemechanisms of the BUT4Reuse Framework to implement a new
to take into account the modi cations made on one of its soft-adapterfor SAPL reverse-engineering from large component-
ware products, is a task that is not only diult and error prone, based software systems from a collection of their existing vari-
but also with unforeseeable consequences on the other softwaaats. The produced SAPL architectures are of great interest
products. Our vision is that the dérent software variants can since they enable to see the variability points in the software
be created from the same SPL, but must have their standalowariants as well as maintain the dependency between these vari-
software architectures to be able to evolve independently anants [4/5]. ii) a forward engineering process that uses the re-
without constraints. However, it is commonly known that hav-covered SAPL to derive new customized software architecture
ing the software architecture of a system is better than dealingariants. Several con gurations can be created starting from
with its source code [9]. this SAPL. They represent an exhaustive enumeration of all
Our approach for solving the two problems mentioned abovthe possible valid con gurations. In this process, the discov-
is that the product line must rst produce the software archi-ered constraints from the bottom-up process are used to derive
tecture of a software product, before its corresponding softvalid and consistent variants. Thus, we followed the extensibil-
ware artifact. This paper considers the challenge of analyzingy mechanisms of the FeaturelDE Framewark| [17] to develop
the source code and the software architectures of existing var& software architectureomposetthat allows to select starting
ants of component-based software systems to reverse-engindeym the SAPL a set of desired features (a possible con gura-
a software architecture to all the existing software variants. Weion) that meet a given set of user requirements and derive the
call this constructed architectureSaftware Architecture Prod- software architecture of the new variant.
uct Line (SAPL) that represents the unique software architec- The approach is rstly experimented on thirteen Eclipse
ture that supports the software product line and common to alDE variants to create a new SAPL. Then, an intensive eval-
the software variant members of the SPL. uation is conducted using an existing benchmark which is also
Most of existing SPL extractive approaches focus only orbased on Eclipse IDE. We built the architecture model of Eclipse
source code [10, 11]. They mainly recover feature models froMdDE SPL and derive new software architecture variants. The
the source code and maintain traceability links between eactesults of the experiments showed that our approach cac-e
feature and its associated code fragments. In our case, we révely reconstruct such an SAPL and derive valid and pertinent
cover SAPL including a special kind of feature models, wherevariants. One of the insights that can be provided based on our
features are related to architecture fragments. In addition, thetudy is that recovering SAPL is of great interest since it al-
obtained SAPL enables thereby to derive a software architedews to derive the software architectures of new variants before
ture for a given product rather than only showing traceabilitytheir implementations. This is an important activity in software
links. Besides, in the literature, and to our best knowledgemaintenance and evolution since iters good documentation
there are few works that combine in a complete process the beto understand the software product before changing it.
e ts of software architecture recovery techniques with SPL ex- The remaining of the paper is organized as follows. In Sec-
tractive approaches. Such works were analyzed and discussgdn[2, we expose background material about Software Product
in a mapping study_ [12], where the authors state that it is unkine Engineering and the extractive adoption of SPLs. We also
clear how software architecture techniques which have beeintroduce an example which serves as a running example for
mostly developed for a single system can be utilizedatively illustrating our proposals. Sectipf 3 presents a general picture
in an SPL context. of the proposed approach. In Sectjgn 4, we expose our SAPL-
In this work, we propose a novel approach for Software Ar-Reverse Engineering process, the proposed SAPL Metamodel
chitecture Product Line Engineering. The overall process ofor Component-Based Software Variants, and its instantiation
our approach was initially introduced in our previous work [13], for the OSGi systems. Sectipp 5 describes our SAPL-Forward
which is substantially extended in this paper according two maingineering Process. We show the results of our experiments
dimensions: i) A more detailed and extended speci cation ofin Sectior{ §. We nally discuss the related work in Secfi¢n 7,
the two steps. In particular, we describe the SAPL-Forwardefore concluding the paper in Sectjdn 8.
Engineering step in a new complete way, and ii) a new larger
experimentation. Th|s approach consists of a cqmplete process Background & Problem lllustration
that aims to exploit the bene ts of software architecture recov-

ery techniques for single systems in the context of SPL. The Mmany development settings of software systems start from a
proposed approach is composed of two processes: i) & processftware architecture, which is particularly necessary for large-
for SAPL-reverse-engineering that extends the BUT4Reuse fragigre systems. Reusing software architectures across a set of

work, which is considered as one of the moseetive methods rejated systems allows to maximize the return on investment of
for SPL-reverse-engineering [14,/15]. This framework was pro-

2

Domain
engineering

Domain implementation

= |

Products

Feature model
E-Shep
=
_—
— o
Catalogue = Payment
~

Ve N
BankTransfer | CreditCard | High | = Standard

CreditCard = High

Reusable assetgg,;

Calaliua pafmm

S!mm% Search

BankTransfer CreditCard High Standard

IDE Legend:

& Mandatory
' Optional a IDE
A Or Core

a [¥] Team

Core Team Android CPP A Alternative

GIT
7| SVN
CPP > Core 4 | Android

GIT ¥ SVUN CPP
GIT | | SN Team A CPP => SUN

Constraints

(a) IDE Feature Model (b) Configuration

Figure 2: SPL Feature Model

included. Figur@ shows an example of a feature model regard-

ing an illustrative and simpli ed example of IDE architecture.
ThelDE FM consists of a mandatory featuCere, two possible
TeanTfunctionalities from which one or both could be selected,
. _ two optionalAndroid and CPPfeatures. The concept of core
time and eort. Indeed, we leverage the g.ood pr_act|ce§ (pat_assets refers to the software artifact needed to implement the
terns, styles, etc.) and thereby the quality attributes imple PL

mented in this architecture. There are many ways this happens Furthermore, cross-tree constraints can be speci ed to de-

in practice. Indeed, se\{eral SYSFemS or produqts resemblie ea(?na further relationships between features (not in parental rela-
other more than they der. Th|s_|s an opportunity for reusing tionship). These constraints are arbitrary propositional formu-
th_e archltectu_re across these similar produc_ts. Thl_JS’_ SPL Siflss \which must be valued to true. Adding constraints between
plify the creation of.new_ memb_ers of a family of similar sys- features can provide more reliable de nition of the variability
tems. We present n this gectpn relevant concepts related fRodel [21]. Two kinds of cross-tree constraints can be used for
Software Product Line Engineering. any pair of features, namehgquiresandexcludesonstraints.
For instance, in Figurg 2, the following constraints are:

Figure 1: SPLE Process

2.1. Software Product Line Engineering

The Software Engineering Institute at Carnegie Mellon Uni-
versity de nes a Software Product Line (SPL) as a set of sys-
tems sharing a common managed sefeaturessatisfying the
speci ¢ needs of a particular market segment or mission and
that are developed from a common set of cassetsn a pre- .
scribed way/[[18]. 2.2. Extractive Adoption of SPLs

The Software Product Line Engineering paradigm separates Besides, SPL reverse-engineering approaches consider as
two processes that are illustrated in Fighre 1 [1§]Domain input a set of existing variants and propose a solution to con-
engineering this process is responsible for establishing thestruct the SPL. This mainly includes the identi cation of the
reusable software artifacts (assets) such as requirements, deatures, the synthesis of the feature model and the extraction
sign, realisation, tests, etc. and thus for de ning the commonalef the reusable assefs [14]. Many SPL extraction approaches
ity and the variability of the product line. Traceability links be- have been proposed in the last years. As@oret al. [11[22]
tween these artifacts facilitate systematic and consistent reusgresent a complete survey and a systematic mapping on these
if) Application engineeringthis process is responsible for de- existing works. Among them the BUT4Reuse framework that
riving product line applications from the software artifacts es-we use in this paper.
tablished in domain engineering. It exploits the variability of ~ BUT4Reusel[14, 23] framework is considered as one of the
the product line and ensures the correct binding of the variabilmost popular Frameworks that provides a uni ed environment
ity according to the applications' speci ¢ needs. for mining software artifact variants. It is a generic and exten-

Features of the SPL are speci ed in what is called a vari-sible framework for extractive SPL adoption. It is generic be-
ability model (a.k.afeature modgl Feature models (FM) are cause it can be used in dirent scenarios with product variants
widely used in SPLE to describe both variability and common-of di erent software artifact types (e.g., source code in Java,
ality in a family of product variants [20]. The graphical repre- C, models, requirements, or plugin-based architectures). It is
sentation of a feature model is a tree where each feature hasatensible by allowing to add déerent concrete techniques or
parent feature except for the root feature. Each feature is dedgorithms for the relevant activities of extractive SPL adoption
composed into one or more features. In order to derive a ne\i.e., feature identi cation, feature location, mining feature con-
product variant, we need to select a set of features that meet tlséraints, extraction of reusable assets, feature model synthesis
rules (mandatory, optional, or, alternative) given by the featureand visualizations). Several validation studies of BUT4Reuse
model. The selection of a feature implies that its parent is alsasing di erent software artifact types or dirent extensions

have already been published [21] 24, 25].

— “CPP"requires“Core”: which means, if CPP is included
then Core must also be included.

— “GIT” excludesSVN": which means, if GIT is included
then SVN should not be included, and vice versa.

2.3. Problem lllustration line engineering. Indeed, most of the existing extractive ap-

For illustrating the problem, we use the systems that are ddtroaches in the literature focus on the feature model extraction
veloped under the OSGi framework such as Eclipse IDE. Th&rom the source code of a collection of software variants. As
OSGi speci cation de nes a component model and a frame-We aforementioned in the introduction, there are few works that
work for creating highly modular Java systems|[26]. The archicombine the bene ts of software architecture recovery tech-
tecture of Eclipse is fully developed around the notiorphf- Niques with SPL extractive approaches. In our approach, we
gin conforming with the OSGi standard. Eclipse-based IDEg€Vverse-engineer the SPL source code in order to extract the
run on top of Equind¥ which is the reference implementa- SAPL where Common.allllty and vgrlabmty between fragment of
tion of the OSGi speci cation. These IDEs are a collection@rchitectures are explicitly speci ed. The recovered SAPL in-
of similar software products that share a set of software assetgludes a special kind of feature models, where features are re-
The Eclipse Foundation provides integrated development env|ated to architecture fragments. The produced SAPL is used
ronments (IDEs) targeting a variety of developers. lers a then to derive new software architecture variants. These archi-
set of “software products” (following Eclipse terminology they t€ctures are important for the mainten_ance and evolution needs.
are called “packages”) where each one is a large-sized systehf1US, in this paper, we propose to revisit the SPL problem from
composed of hundreds to thousands of components, registerifige Software architecture (SA) perspective.

and consuming hundreds of services. This complex structure N this context, we identi ed ve main challenges: i) How
requires a considerable ert to understand all dependencies 0 extract a software architecture from the source code of each

when building a new Eclipse IDE software variant. variant; ii) How to compare the software architecture variants

Currently, if a developer wants to create a customized Eclipé@-dentify the common parts and nd then dirent features;
based IDE, shiae has to select one of the default prod@cts ili) How to construct the SAPL with an explicit speci cation
(for instance, IDE for @C++ Developers) and then manually of the variability at an architectural level; iv) How to simplify
install new features which meet Heis requirements, before and reduce the complexity of the recovered architectures. The
adding new functionality to the IDE. Besides, for a given set oféXtraction should be generic and extensible to support all these
Eclipse IDE variants, it is not easy to see the variability pointsdi €rentaspects; v) Once the SAPL is constructed, one remain-
among them. Developers often use ad-hoc mechanisms to maRg challenge is related to the derivation of new variants. How
age variability and they do not bene t from the SPLE frame- the SAPL can be used to derive new pertinent SA variants?
work. It is di cult to create a new customized Eclipse IDE ~ This paper proposes an approach to cover all these chal-
variant that only contains a set of desired features (not all th€nges. Our approach consists on a complete process that aims
prede ned features of an existing product). In fact, the devel10 exploit the bene ts of software architecture recovery tech-
opers should manually analyze and understand the componert§lues for single systems in the context of SPL. It proceeds rst
of the Eclipse IDE variants to identify the common features andy analyzing the source code of existing software variants to ex-
then adding the desired features. This task is a cumbersome alfgct the software architecture of each variant. The source code
error-prone activity for a developer especially that in most case8f these software variants is created using opportunistic reuse
Eclipse IDEs are too large and complex. In addition, theedi (extractive adoption of SPLs). Our approach supports also the
ent Eclipse IDE variants that can be derived from the same Sergconstruction of the architectures from products that already
must be able to evolve independently and without constraints.Pelong to an SPL. After that, we reverse-engineer a software

In this paper, we consider an SAPL as a model starting fron@rchitecture called SAPL following that is common to all these
which the new customized software product variants can be dsoftware architecture variants. This SAPL is built with an ex-
rived. We aim to adopt the SAPL approach in order to be abl@licit speci cation of commonality and variability. Second, this
to develop e ciently a new customized Eclipse IDE (Software SAPL can be used in a SPLE's derivation process in order to de-
architecture and its implementation). Thus, this SAPL mainJive new customized variants (software architectures and their
tains the dependency between theadient variants and makes implementation). The developer is involved to select which
it possible to have speci ¢ documentation for each of the softfeatures that represent a possible con guration for generating
ware variants and therefore to be able to maintain and evolv@ 9iven variant. The overall process of our approach is illus-
independently. In the following sections, we use Eclipse-basefiated in FigurgB. Itis composed of two main sub-processes (in

IDEs to illustrate our solutions, but the proposed approach i§i9ure[3): i) A Bottom-Up Process for Recovering SAPL; this
generic and is not related to OSGi or Eclipse. sub-process starts rst with the Reverse-Engineering of Soft-

ware Architectures from the source code of each software vari-
) ant (we call this: “step 0”). Second, it reconstructs an SAPL for
3. Approach Overview these software architecture variants and ii) A SAPL Forward-

. Engineering Process which allows to derive new variants (Soft-
In this section, we provide an overview of our solution which

. . ware Architecture Variants).
consists of a novel approach for software architecture product . oo .
In the next sections, we describe in detail each sub-process.

Ihttps://www.eclipse.org/equinox/
2available here: https://www.eclipse.org/downloads/packages/
release

https://www.eclipse.org/equinox/
https://www.eclipse.org/downloads/packages/release
https://www.eclipse.org/downloads/packages/release

Software Architecture Product Line

Bottom-Up Process for SAPL-Forward
Recovering SAPL Engineering Process
1 (@ o Foalive

O Software ArchitectureProduct Line \\Bmﬂ!u,) Software Architecture Variants Derivation S mpone

Construction

o
Decomposition In lock e e '
Architecture Blocl)

Elements and Feature Naming
P 1 l 1

! Views 1
L ’

- Derive a new Software Check constraints and
Multi-View SAPL Construction Architecture Variant add missing features

Features

. .
D denci Analyze and 1 Select a set of desiredT
Identification Understand the SAPL == J

TE & 5 o

Software Architecture Variants
Drived Software

Reverse Engineering of Architecture Variants
Software Architecture

Variants
/_g

Source Code of Software Variants

Figure 3: Proposed Approach for SAPL Engineering

. - veri rchitecture SBoskeal [: Siring
4. Bottom-Up Process for Recovering SAPL B SAPLArchitect Boolear |

= graphTypeTree : Boolean

© text : String source Q.1

Before presenting each step, we rst describe the generi OJWWMS feres & Compostcermen
] = Constraint. model1.% | = name : String
meta-model that is supported by our approach. ﬁ

& Feature compor
4.1. SAPL Meta-model for Component-Based Software Archi 101888 0.1 - name : String EComector._jo.» [0-
0.1 = selected : Boolean = T)
= mandatory : Boolean q pr
operator | description : String | ; |
= abstract : Boolean 1.1 source 0.%| 0.%
it chuiredElemcnq Ui ProvidedElement
‘:! chil |
0.%| outgoingEdge target | 1.1

& Edge

. root
0. 1

fur
] I
&
8
€
s

tecture Variants

Figure[4 depicts our generic SAPL meta-model which is %é;ﬁ;m

used for creating an architecture for a set of component-base

software variants. To specify the variability model, we have

been inspired in the de nition of this meta-model by the feature

meta-model in[[2]7]. As mentioned above, a feature model is_ . .
. . Figure 4: SAPL Metamodel for Component-Based Software Architecture Vari-

de ned with a set of features that can be related by constraintg

and operators such a#ternative choice optionalandxor. So,

the left part of the meta-model of Figur¢ 4 shows the intro-

duced concepts to specify feature models. We enriched it bgomponent is that it is a software unit with provided capabilities

adding component-based architecture elements. An instance 8fd a set of requirements. The provided capabilitrs\(id-

this meta-model serves as a feature model that represents tAdElemenin our meta-model) can include operations the com-

variability in a family of software product variants and a com- Ponent is able to execute. The requiremeRsquiredElement

prehensive architecture (modulesomponents) that helps the in our meta-model) are needed by the component to produce

developer to understand the structure of the SPL features ariie provided capabilities.

the relations between them.

As our meta-model is used for representing component-baskd- Mapping of the SAPL Metamodel to OSGi Component Model
systems, it has been de ned based on top of an abstract syntax We show in this sub-section how to instantiate our generic
of a software component model. The latter is used to repreSAPL meta-model (in Figuig 4) for a concrete component based
sent any kind of component-based system such as an OSGI osgstem which is related to the OSGi System. Figjre 5 presents
Spring-based one. A generally accepted de nition of a softwarehe result of the instantiation for OSGi component model. In-

incomingEdge ¢, »

5

deed, a component in OSGi is known as a bundle or a plugiistics. iii) we parse the manifest le of each plug-in to iden-
(PluginElementin this meta-model) which packages a set oftify the exported and imported package elements. iv) the pro-
Java types, resources and a manifest le. Plugin dependenciegded and required interface elements are identi ed by analyz-
are expressed as manifest headers that declare requirements amgithe Java source code and Bytecode (in case source code
capabilities. The “import-package” header is used to expressia not available) in the exported and imported package fold-
plugin's dependency upon packages that are exported by others. iv) the extension and extension-point elements are iden-
plugins. The “require-bundle” is used when a plugin requiregi ed by parsing the plugin.xmt les of each plug-in. v) -
another plugin. The rst plugin has access to all the exportedhally, the programmatically registered and consumed services
packages of the second. The manifest le declares also what agge identi ed by parsing the source code and bytecode of each
the packages that are externally visible using “export-packagetlass in the plug-in. We parse here the following statements:
(the remaining packages are all encapsulated). Furthermorecontext>.registerService(..) and<context>.
the Java interfaces that are present in the exported and importgdtServiceReference(..) to capture the type of classes
packages are considered respectively as the plugin's providetiat are instantiated and registered. In addition, the services that
and required interfaces (representedrrgvidedinterfaceEle- are declared with the DS (Declarative Services) framework are
mentandRequiredinterfaceElement identi ed by parsing the OSGI-INFcomponent.xrilles. Be-

Besides, the OSGi framework introduces a service-orientetbre saving the architecture, we create the connectors to link the
programming model which is a publish, nd and bind model. created elements. The parsing of the source code and bytecode
The registered services with the OSGi Service Registry are refitas been implemented by using Java libraries such as AST-
resented by th&egisteredServiceElementhile a consumed Parser for source code parsing and ObjectWeb's A@Mr
service by a plugin is represented byCansumedServiceEle- bytecode parsing.
ment

Services are not the only collaboration way between plug4.4. SAPL Construction

ins. Equinox provides a means of facilitating inter-plugin col- The software architectures variant that are recovered in the
laboration viaExtension Registry Plugins open themselves previous step from the source code of the software variants are
for extension or con guration by declaring extension points;sed as input for SAPL construction step. Thus, thestint
(ExtensionPointElememt this meta-model) and de ning con- software architecture variants are analyzed and compared to
tracts. Other plugins contribute by developing extensi@s (gentify the common part and the dirent features. As illus-
tensionElemenin this meta-model) using existing extension trated in Figuré 3, this activity extends the BUT4Reuse frame-
points. . ~work to support architectural artifacts.

Our OSGi model allows to produce several software archi- T support the dierent types of artifacts, and enabling ex-
tecture with several points of view that representatent kinds tensibility, BUT4Reuse relies cadaptersfor the di erent arti-
of plug-in's capabilities and requirements. The supported aract types. These adapters are implemented as the main compo-
chitecture points of view in our model areterface service nents of the framework. An adapter is responsible for decom-
package andextension Of course these points of view are not posing each artifact type into its constituting elements, and for
orthogonal, there are intersections between each other. But, wg ning how a set of elements should be constructed to create

are convinced that the developers would not be able to undef reysable asset. Designing an adapter for a given artifact type
stand the whole software variant by analyzing all the points ofequires three main tasks:

view together. Thanks to this meta-model, developers can pro-

gressively understand the software variant by analyzing each Element identi cation. The rst step is to identify the

architecture view separately. In addition, our framework can be Elementghat compose an artifact. This will de ne the

easily extended to support other points of view in order to cover granularity of the elements in a given artifact type. For

all the aspects that the developers need to know when they de- the same artifact type, we can select elements airdint

velop a new variant. levels of granularity (e.g., package level versus statement
level for source code).

4.3. Reverse-Engineering of Software Architecture Variants
The rst step in our bottom-up process (step 0) uses reverse- Similarity metrics de nition . This task de nes a simi-
engineering techniques to extract a software architecture variant larity metric between any pair of Elements. An element
from the source code of each software variants. For instance, ~ Should be able to compare its de nition with the one of
the reverse-engineering of software architectures from Eclipse ~ @nother elementand return as output a value ranging from
IDE variants is based on the analysis of the con guration les zero (completely dierent) to one (identical).
and the source code of the dirent components (plugins). -
Indeed, for recovering the SA variants, we analyze the Eclipse
artifacts as follows: i) for each Eclipse variant, we generate
a software architecture where the root element @mposi-
teElementwith the name of this variant (for instance “Eclipse
for Java developers”). ii) for each plug-in in the Eclipse vari- 3yepsite https://asm.ow2.io/
ant, we create #luginElementwith the plug-in's character-

6

Structural dependencies de nition. The purpose of this
task is to identifyStructural Dependencief®or the Ele-
ments When the artifact type is structured, the elements

https://asm.ow2.io/

1 CompositeElement il S'rr'ing

= name : String

*

0.
gonnectors

components

0.
1 ComponentElement

requiredElements target

E “

-_— ox 0.*
. H PluginElement 1
E Ex = name : String extensionPoints o x |5 ExtensionPointElement

= point : String 0.% extensions = pluginSymbName : String =id : String
export_packages 0.

= className : String

= pluginVersion : String = name : String
0.* import_packages = schema : String

£ ImportedPackageElement —
= name : String

5 ExportedPackageElement
= name : String

requiredInterfaces
p.*x

providedInterfaces

o
H ProvidedInterfaceElement|
= interfaceName : String
ox iServi 0.* registeredServices™ operations : String

H RequiredInterfaceElement|
= interfaceName : String
= operations : String

B C med iceEl H RegisteredServiceE lement
= objName : String = objName : String
| = interfaceName : String | = interfaceName : String

Figure 5: Modeling of OSGi Elements

will have containment relations. In the case of architec- In this paper, we reused the algorithm calleterdependent
ture artifacts, relations between interfaces, componentElementghat formalizes Block identi cation using class equiv-
and plugins usually capture this information. alences/[2B]. This algorithm is based on a formal de nition of a
)) Block that uses the notion of interdependent Elements, which is
In this paper, we extend BUT4Reuse by proposing a néwje ned as follows: Given a set Software Architecture Variants
adapter related to Eclipse-Software Architect{ftes addition (SAY, two Architectural Elements; ande; (of software archi-
to allow comparing software architectures, this new adapter igsctures fronSAY are interdependent if and only if they belong

designed with a set of parameters to consideedint architec- exactly the same variants 8V This is de ned formally as
tural points of view (services, interfaces, packages and exteRy|ows:

sions).
Once the adapter is implemented, SAPL construction fol- 9sav2 SAVe; 2 sav® & 2 sav
lows four sub-activities as illustrated in Figuire 3. ~ 8sav2 SAVe, 2sav, &2V

Decomposition in Architectural ElementsThe rst step takes Since interdependence is an equivalence relation on the set
as input a collection of architecture variants that are obtainedf Elements ofSAVthis leads to the following de nition of
from the reverse-engineering activity. It decomposes each varglock candidates :

ant into a set of Architectural Elements (AEs). The computed Given SAVa set of software architecture variantsBlack

AEs can be of dierent types depending on the considered poinbf SAVis an equivalence class of the interdependence relation
of view. For instance, to compare and analyze several Eclipsgf Architectural Elements oBAV

software variants, BUT4Reuse divides each variant into the fol- | Figure[®, we illustrate an example of using the Blocks

lowing elementsPluginElement , ServiceElement , identi cation algorithm. The ellipses represent the software ar-
PackageElement ExtensionPointElement chitecture variants. The stars represent Architectural Elements
ExtensionElement , andinterfaceElement . within these artifacts. The similarity metric between Elements

To identify them, our adapter loads and parses the inpugstablishes when Elements from dient artifacts are equal
Eclipse SA variants and performs a mapping of the elementand therefore we can compute the intersections among them.
in the input SAs with these elements. Hence, the separated intersections represent the identi ed Blocks.

For instance, th8lock 0 contains the Elements that are com-

BIOCk. Identﬁ cation and F_eature Naming Th.is Step reuses on to all the SA variant8Block 1 groups elements that are
algorithms implemented in BUT4Reuse which automaticallygp o aq only by variant 3 and variant 4

identify sets of AEs that correspond to the distinguishable fea- Once blocks are identi ed, the next step is a semi-automatic
tures from the SA variants. These sets of AEs are nadBi@eks) ,ooqq \where domain experts manually review the elements
Blockspermit to increase the granularity of the analysis by thefrom the identi ed blocks to map them with the functionali-

domain experts in order to not reason at Element level. In factﬁeS (i.e., features) of the software variant. BUT4Reuse inte-
Block identi cation represents an initial step before reasoninggrates V\;hat is calleWariCloud [29], a tool that analyzes the

atfeature level. elements inside each block and extracts words that help do-
main experts to identify featured/ariCloud uses information
4Available onlinehttps://github.com/kerdoudi/but4reuse retrieval techniques, such as TF-IDF (Term Frequency-Inverse

https://github.com/kerdoudi/but4reuse

SA variant 2 Block & {‘ roductLineArchi |

SA variant 3

f eclipse_core_equinox

Block 5

Block 3

f pde_eclipse

N

SA variant 1 f eclipse_core_apache

Block 2

SA variant 4

f swing_eclipse

f eclipse_birt_jst f eclipse_wb

Block 1

Figure 6: Block Identi cation from a set of Software Architecture Variants Figure 7: Example of SAPL for three Eclipse Variants (Extension and Package

point of view)

Document Frequency), to analyze the text describing elements
inside blocks. The descriptions used by BUT4Reuse to builééxtended and what are the extension-points that are provided
word clouds are thus provided by the speci ¢ adapter. As forto be extended. After that, the interface and service points of
our adapter, the words correspond to the names of packagesew can provide which interfaces or services that should be
extensions, services, interfaces and plugins. Using these worétaplemented or consumed.
allows to give automatically more representative names. Besides, the current implementation of the SAPL construc-
tion is realized with two distinct algorithms that provide two
Dependencies Identi cation During this step, the approach di erent organization of features. They are inspired from fea-
identi es the dependencies between theatient blocks. ture model synthesis in BUT4Reuse [14]. In the rst one the
BUT4Reuse uses the dependencies de ned within the adapt@satures are organized in the SAPL as a Flat feature diagram
to identify dependencies between blocks. In our adapter, Wgjith all the constraints included as cross-tree constraints. The
extract therequires and themutual-exclusion — dependen- second one is a heuristic called “Alternatives before Hierarchy”
cies between blocks based on the element dependencies. Tt is based on calculating rst the Alternative constructions
is performed as follow: from the mutual exclusion constraints, and then create the hier-
archy using the requires constraints. The constraints that were
not included in the hierarchy are added as cross-tree constraints.
Moreover, the generation of the SAPL is implemented as a sep-

" letBlandB2are two identi ed blocks

~ “Blrequires BZ2'i 9e 2 B1"9e, 2 B2* e requires
e;

© “Blis inmutual-exclusion dependency with BZ'i
9e; 2 B1"9e& 2 B2 g is in mutual-exclusion

arate plug-in that provides an extension-point for other develop-
ers to extend this activity for generating SAPL by using more
sophisticated algorithms.

Once the SAPL is recovered, it can be visualized and up-

dependency with &; dated graphically using our SAPL graphical modeling tool that
o]) is provided as a set of plugins which are implemented based
Multi-View SAPL Construction A software architecture of a 4 'the Eclipse Modeling Framework and the Graphical Model-
large system is a complex entity; it cannot be presented in g, Framework. Our graphical tool allows also to visualize each
single point of view. In this step of our process, we enable thge a1 re in the SAPL as a separate fragment of software architec-
developer to construct a multi-view SAPL. These points of Viewy re |ndeed, the tool provides an editor that allows to visualize
can help and assist the developer to understand progressively,shically the SAPL as follows. First, the SAPL can be visual-
the SPL. However, we should not confuse these points of VieWseq a5 4 compact representation of all the assets of the SAPL in
with architectural views which allow addressing separately thqerms of “features”. Second, we enable the developer to click
concerns of the various “stakeholders” of the architecture. FOfice on a given feature in order to visualize its architecture,
instance, the four views: logical view, process view, physical,ich can be opened in another editor. In this way, instead of
view, development view that have been proposed by Kruchtepig ajizing the whole SAPL in one screen, we assist the devel-
in [30]. Our points of view are related to abstraction aspectsoper to understand features progressively. For instance, Fig-
Developers that want to use our approach are then free to de Nge g gepicts the generated SAPL starting from three Eclipse
their own points of view for t_he|r components. For example’variants which are IDE for Java, IDE RCP and RAP, and IDE
we .have de_ ned for the QSGl component .model the followingso, java and Report Developers. The featieelipse core

points of view": service, interface, extension, package. equinox” is common to the three variants. The edge with a

Now, in the context of Eclipse Software Architectures, we y5snhed line represents a discovered require dependency.

argue tha}t the developer_wants rst to analyze the extension Besides, FigurE]8 shows an excerpt of the architecture frag-
point of view. The latter gives less complex (in terms of NUM- ot that represents the featueelipse birt jst . As we
ber of elements and connections) SAPL model that can helpg, see the componemBIRT Emitter Conf. Plug-in ”

herhim to understand easily what are the components that are
8

provides an extension-point which is extended by several plug- ~ Let F, be the set of all the features in the recovered
ins. In this architecture, the set of provideskquired elements SAPL,

that are not connected to other components, represent elements _
that are connected to components located in other features. Our
tool enables the developers to merge two or several model frag-
ments (that represent two or several features) in a single archi- —Fe Fa,
tecture fragment which allows to visualize the structural depen-
dencies between these features.

In the current implementation the reconstructed SAPL is re-
lated to OSGi Component Based software variants. This plug- -
in provides an extension-point for other developers to contribute
by developing extensions for generating SAPL for other kinds
of component-based software product line, such as applications

Let F¢ be a set of candidate features that are selected by
the developer, where,

— Fc = Fn [Fo, with, Fp, is the set of mandatory
features andF, is the set of optional features.

Let Fs be the nal set of selected features by the de-
veloper, after checking their consistency and adding the
missing features, where,

built with Java 8 module system. — Fs=Fm[FO[Fa, with,
- F3 Fo, where8 fop 2 F8 fi 2 Fy;
5. SAPL Forward-Engineering Process fop is not inmutual-exclusion dependenwayth fr,

The goal of this process is to use the recovered SAPL to — Fais the set of missing features that are added after
create valid con gurations and to derive in anetive way checking the discovered constraints. This is de ned
new customized software variants. SAPL is used for mod- formally as follow:
eling all the possible con gurations of the software architecture (8 fa 2 Fa; 9 fy 2 Fryy 8f2 2 Fry, Where, “fiy
of a speci ¢ domain. It captures the commonalities and the requires fy" ~ fais notinmutual-exclusion
variabilities among these software architectures. In this way, in dependency with fip)
order to complete the “loop”, our forward-engineering process _ (8 fa2Fqa 9 fop 2 FY; 8fore 2 F2, where, “fop
allows the developer to analyze and understood the SAPL that requires fy" N fyis notinmutual-exclusion
is recovered using the previous bottom-up process and then, de- dependency with fop))

rive the new software variant (software architecture and its im-
plementation) as a new variant. As depicted in Figyre 3, our Once the nal set of selected featuresg) is created, we
software architecture derivation process is composed of the foproceed to merging them one-by-one until constructing the new

lowing steps: software architecture variant. Merging two features consists on
creating a software architecture by applying these steps: i) re-

1. Analyse and understand the SAPL, move duplicate components from the two features and add the

2. Select a set of candidate features, remaining component elements into the architecture. ii) add to

3. Check the consistency and add missing features, each of the created component element their required and pro-

4. Derive the corresponding variant. vided architecture elements. iii) create connectors that connect

.)) the required elements to the provided elements that have the

The rst step is considered as one of the most importaname name and the same point of view (service, interface, ex-
activity in the derivation process. As we know the architecturgeansion etc.).
of a software system abstracts its complex structure as more However, we implemented our software architecture deriva-
manageable and comprehensible high-level structure. Thus, thg, process askeaturelDE composerthat is called a&oftware
SAPL lets the developer to know the structure of each identi ed,chitecture composer E} It allows to select one possible
feature and its relationship with the other features. con guration and to check if it satis es all the constraints and

After understanding the SAPL and its features, the seconghan derives the corresponding software architecture. The Fea-
step in this process consists on selecting startlng from this SAP}reIDE Framework [17] is an Eclipse-based IDE that supports
a set of features that meet the developer's requirements. At thg| phases of feature-oriented software development for the de-
end, before merging them, a consistency check of the selectghjopment of software product line: domain analysis, domain
features is performed based on the discovered constraints. implementation, requirements analysis, and software genera-

In fact, features are related to fragments of software archition The Feature IDE tool provides extensibility for including
tecture that represent a characteristic or a functionality of th%omposers dealing with di erent artifact types. That means

software. They can be optional or mandatory. A selection ofnat any DSL can be enriched with variants derivation function-
a number of these features de nes one speci ¢ con gurationgjities.

of the software architecture. In our derivation process we Use |, order to derive a new Eclipse Software Architecture vari-

the constructed assets (fragments of software architectures) obnt the developer can use deeaturelDE SA Composerto
tained from the bottom-up process as reusable assets. The pro-

cess is based on merging the selected features. This is de ned
formally as: 5Available onlinehttps://github.com/kerdoudi/but4reuse

https://github.com/kerdoudi/but4reuse

52 | BIRT POF Emitter ..
|| BIRT PPTX Emiter ...

5 | BIRT OpenDocum...

== | BIRT Docx Emitter .. >

|55 | BIRT Postscript £m...

. & Compoiste Elements
{l BIRT Word Emitter... .
{l CompositeElement
52| BIRT PPT Emittor ..
£ PuginElement
= Extension View
ExtensionPointElement
—@
: Extensionk Element
== 3 Extension Connector
& Service View
|52 | BIRT Emitter Configuration Plug-in J Corsumedservicelement
P Feshteredsenviceilement
|| e ServiceConnector
(= Interface View
ProvidedinterfaceElement
—Q
RequiredinterfaceElement
El QpenDocument F..
» =3 InterfaceConnector
&= Package View
P ExvortedPackagetiement
W imeortedPackagetlemen
++ = 3p PackageConnector
‘@ BIRT OpenDocum..

Figure 8: Excerpt of the SA ofeclipse birt jst

~

con gure manually the SAPL by selecting a set of desired fea-
tures among an identi ed list. After an automatic check of con-
straints and selecting automatically the features that are meeting
constraints, our composer generates a hew Software Architec-
ture variant by composing the reusable assets. This architec-
ture model represents the structure of the selected features and
their relationships without variability information, which is use-

ful for the understanding purpose. At the end, the new variant
is generated by collecting the extracted software assets which
correspond to the selected features.

Besides, one of the promising challenges in the SPL context
is the continued evolution of the software variants such as when
new features are added to the family. Actually, this is related to
another problem which is out of the scope of this paper. It is
related to co-evolution of product variants and their SPL. In our
approach, we must re-execute the complete bottom-up process
for recovering the new SAPL. Indeed, theoretically one of the
interests of having an SPL is the fact that when bugs occur in the
system their correction and evolution are carried out at the SPL
level. But, in reality, this is not easy to do. In this respect, the
co-evolution of system families is proposed as a novel method-
ology to deal with these issues (approaches like [31[32, 33])
and this is not the goal of the presented work.

6. Experimentation and Validation

Our approach includes two processes: a bottom-up process
for reconstructing the SPL and a forward-engineering process
for deriving new variants from the SPL. In order to evaluate this
approach, we conducted a set of experiments to evaluate the two
processes.

Thereby, we addressed the following two research ques-
tions:

10

" Feature (Extension and Package point of view)

RQ1: What is the performance of our SAPL reconstruc-
tion process, in terms of identifying the expected features
and artifacts in the product line?

In the research question RQ1we measured the perfor-
mance of the bottom-up process through a controlled ex-
periment. In this experiment, we used a real-world set of
Eclipse IDE variants. First, we recovered the SAPL from
the set of Eclipse IDE variants. After that, we measured
the precision , recall , andF1-Score of the identi -
cation of features.

" RQ2: Based on the recovered SAPL can we derive in an

e ective way new customized variants? In other terms,
what is the performance of the top-down process for prod-
uct variant derivation from the SAPL?

In the research question RQ2,we compared the cus-
tomized software architecture variants that are derived
automatically using our forward-engineering process with
the same variants that are created without our approach.
We mean by without our approach, choosing a given Eclipse
IDE variant and install manually new features (clicking
on Help>Install New Software...).

This part of the experiment is based on the following
steps:

1. We use ousoftware architecture composer
to compose and derive a setr@w customized vari-
ants This is performed in this way:
(a) We created a con guration by selecting from
the SAPL the features that are identi ed from
a given input variant (i.e. an Eclipse IDE vari-
ant).

(b) After that, we chose from the SAPL one or
a set of additional features that are identi ed
from the other input Eclipse IDE variants, and
added them to the created con guration.

(c) These additional features should not belong ini-
tially to the features of the candidate input vari-
ant (selected in stgpfla).

2. In the other side, we have taken the candidate in-
put variant (from step]a), and we have installed
manually all the same additional features that are
previously chosen.

3. At the end, we used two architectural change met-
rics to measure the similarity between the derived
customized software architectures and the software
architectures of the variants that were created man-

ually (in steg).

6.1. Dataset: Eclipse Variants

In this evaluation, we have used a set of Eclipse IDE vari-
ants. We have used in particular two datasets that are considered
as input software variants. The rst dataset represents a set of
o cial Eclipse IDE variants that contains 13 vari§|(ise have
selected the Eclipse 2020-03 R release). The size of these vari-
ants varies from 193 to 639 MB and the number of components
varies from 383 to 975 components. The second dataset is a set
of Eclipse IDE variants that are automatically generated using
the EFLBench Framework in|[3]. EFLBench Framework in-
tegrates an automatic and parametrizable generator of Eclipse
IDE variants. It automatically creates variants taking as inputs:
i) an Eclipse IDE and ii) the number of variants that we want to
generate.

The use of the EFLBench Framework is motivated by the
fact that the o cial Eclipse releases contain few variants (at
most 13 variants), which can be considered as a limitation for
intensive evaluation of our approach with other scenarios with
larger amount of variants. Indeed, regardless of theial ver-
sions, in practice, developers create their customized Eclipse
IDE by installinguninstalling projects into an ocial release.

So, in order to achieve the most general results in our experi-
ment we did not limit ourselves to the @ial Eclipse releases.
We decided to use in this experimentation a large number of
Eclipse IDE variants. This enables us to empirically analyze
whether the number of input variants has an impact on our ap-
proach.

6.2. Evaluation Metrics

In this subsection, we explain the metrics that are used in
this evaluation for the context of Eclipse IDE variants.

1. Performance Metrics
In order to measure thgrecision ,recall , andF1-Score
of our Bottom-Up process, we have compared the content
of each identi ed feature in the recovered SAPL with the

content of prede ned Eclipse features of the input vari-
ants. In fact, in an ocial Eclipse IDE one or more plu-
gins can be grouped together intolaclipse feature

so that a user can easily load, manage, and brand those
plugins as a single unit. A prede ndgtlipse feature
describes via afeature.xmil le a list of plugins and
other features which can be seen as a logical unit com-
posed of a set of related components. It has a name, a
version number and a license information assigned to it.
All the prede nedEclipse features are located in a
speci ¢ folder which has the namdeatures ']

In this experimentation, we use the prede neédipse
features of the input variants as agfound truth ”

to compare them with the identi ed features using our
approach. For instance, in Figlife 9 we show an example
of what we consider as a ground-truth of three imaginary
Eclipse input software variants. In this Figure, for each
variant we show its prede ned features. For example,
“Variant1” contains four featured$i, f2, f3, andf4, where
each of them groups a set of plugins.

Now, let us suppose that our approach has been used to
recover the SAPL from the three software variants. As
a result, a set of features have been identi ed,(if,,
etc.). In this evaluation, for each identi ed feature (for
instancejf;), we proceed in this way: we select tHeé-
ture.xmr les that are located in the commorféatures
folders” (the intersection set) of the variants from which
this feature is identi ed. In our example, if we suppose
thatif; has been identi ed from the three variants, then,
we select from the ground-truth in Figuréf® and 2
(because they are common to the three variants). After
that, we compare the plugins that belong to this iden-
ti ed feature with the plugins that are present in these
“feature.xmil les (for f1 andf2 these plugins are p1, p2,
p3, p4, p5, and p6).

~ TheTrue Positives(TP) are the set of plugins that
are assigned to an identi ed feature and that are cor-
rect according to the ground truth (they belong to
the prede ned Eclipse features). For example, if
our approach has assigned fe the following plu-
gins: pl, p2, p3, p4, p5, p7, and p8 themA for if;
is equal to 5.

False Positives(FP) represent the set of plugins
that belong to the candidate feature, and they do not
belong to the ground truth. Fof; FP is equal to 2
(p7 and p8).
Precisionrepresents the ratio of correctly identi ed
plugins to the total number of plugins of a given
feature. Itis de ned by Equatidr 1.

TP

Precision= m (1)

For instancePrecision(if;) = 0.71

5 _ =
(5+2) —

5Downloaded from:
packages/release/2020-03/r

https://www.eclipse.org/downloads/

11

"Prede ned features of Dataset 1 are available onlhtéps:/github.
com/kerdoudi/Eclipse2020-03RGroundTruthFeatures

https://www.eclipse.org/downloads/packages/release/2020-03/r
https://www.eclipse.org/downloads/packages/release/2020-03/r
https://github.com/kerdoudi/Eclipse2020-03RGroundTruthFeatures
https://github.com/kerdoudi/Eclipse2020-03RGroundTruthFeatures

. i i3 (Pr) (P
Variantl @@ p12)(Pe) Pro
2 (ps) 4 @
_ 1 (po) 13 (P7)(Ppo
Variant2 @ @ S T
2 (s) 5 @
C=)P)
Variant3
2 (ps) 6 @
(o) () ()

Figure 9: Example of Ground-Truth features of three Imaginary Eclipse Input
Software Variants

"~ According to the ground truth (prede ned features),
there can be some missing plugins that are not in-
cluded in the set of the plugins of an identi ed fea-
ture. Those plugins aréalse NegativegFN). For
if;, FN is equgl to 1. The missed plugin is p6.

Recallis the ratio of correctly identi ed plugins rel-
ative to the plugins that should be identi ed for the
candidate feature. It is de ned by Equation 2.

TP

Recall = m ¥

For instanceRecall(if,) = (5751) =0.83
Highrecall means that the developers do not have
to manually add a lot of missing plugins. Con-

versely, low recall implies an important involvement
of the developers.

A low value for precision means that the identi-
ed feature contains plugins that should not belong

12

to the feature. This, also, leads to involvement of
the developers in order to manually remove the un-
wanted plugins.

We provide also th&1-Score measure for evaluat-
ing the accuracy. It is a synthetic score of precision
and recall measures. It is the weighted average of
both (in Equatiof 3).

Precision Recall
F1-Score= 2 'S 3)
(Precision+ Recal)

071 083 — () 76

For instanceF1-Scordifi) = 2 w655

2. Architectural Change Metrics

We have used the two metricArchitecture2Architecture
(a2a) [6] and MoJoFM34] to measure the accuracy of
the derived software architectures using our composer.
The metrics have been used to measure the architectural
change between the derived customized software archi-
tectures and the software architectures of the variants that
are created manually. The architectural change refers to
the addition, removal, and modi cation of components
and their elements (service, interface, extension, etc.).
a2ais de ned by the following formula:

mta(A; B)
acqA) + acaB)
where,mto(A; B) is the number of operations needed to
transform architecturd into B andaco(A) is the num-
ber of operations needed to create architecfufeom a
“null” architecture. Five operations are allowed to trans-
form one architecture into another: additioasidE), re-
movals (emE), and movesrovE elements from one
architecture to another; as well as additioaddC) and
removals femC) of components themselves.

MoJoFNs de ned by the following formula:

a2a(A;B) = (1) 100% (4)

mndA; B)

MoJOFMAB) = (1 o a8A)

) 100% (5)

where, mndA; B) is the minimum number oMoveor
Join operations needed to transform the architectire
to the architectur®.
A score of 100% indicates that the architecture A is the
same as the architecture B. A lower score results in greater
disparity between A and B. For example, if an architec-
ture A is composed of three components:

" C1l=fry;rz; pa; p2; P3g

" C2=1frs; pag

" C3=1r4;r5;, psg
and an architecturB is composed of two components:

" C4=1rq;r2; p1; P2; P3; 135 Pag

" C5=fry;rs; psg
and an architecturB is composed of two components:

" C6=1rq;rp; pa; P2; P3; a0 part between all the variants represents tRedture 0” that
* C7=fra;rs; Ps; pag is named Eclipse core eq.uin.ox ", This represent; the core
))) components that must exist in each variant. During the exe-

Where, ri and p; represent their provided and required ¢ ion the developers can see the name of any feature just by
elements (interface, extension, services, package). gjassing its cursor on this feature on the left side of Figute 10.
Thus, the two componen(1 andC2 of architectureA ¢ js 5150 possible to automatically generate a table that show
can be joined in a simple operation to gd. Asare- 5 cjear distribution of all the identi ed features over the input
sult,mno(A, B) = 1. Howevermno(A, D) = 2, because yariants. In Tabl§]L, we show an excerpt of how features are

also the elemerp, must be moved t@7. _ distributed over the input Eclipse IDE variants.
Thus, the obtainedloJoFM scores for these architec- Moreover, all features in Figufe [0 have been assigned au-
tures are: tomatically to blocks, thanks to the word cloud that is used
" MoJoFM(A,B)= 87.5% to name the identi ed blocks starting from words that are ex-
~ MoJoFM(A,D)= 75.0% tracted from the elements names (extension, service, interface,

. L etc.). Figurd T shows the result of automatic feature naming

This disparity is explained by the fact that MOJOFM'S join ¢ 5 identi ed Blocks. In fact, the block naming has been

operation is less expensive, W,h'Ch_ leads to high scoresy a4 yated in our previous work [13]. We have compared our

As for the a2a scores, we obtained: block names with names that are manually given by three do-
" a2a(A,B)=93.33% main experts with more than ten years of experience working on
~ a2a(A,D)= 93.33% Eclipse development (see [14]). The result of the comparison
. . , .. shows that more than 70% of names are the same.

This is explained by the fact the_lt the candidate architec- Figure[T2 presents the feature dependencies in the Eclipse

tures have few components which leads to low I\/lo‘k)':'vlinput variants. Each node represents an identi ed feature, the

scores compared to a2a. fActuaIIy, the a2a has been dgg¢ of 5 node is related to the number of elements in that fea-
S|gn_ed to ad_dress Some o MoJoFM drawbaCks [6]. ture. Edges correspond to features dependencies.

In this experimentation, we have used tteongFMBn-

plementatioff of the two metricsa2a andMoJoFMEach _precision, Recall, and F1-Score ResultsWe depicted in Fig-
program takes as input two architectures given as twqre[T3 the obtained values pfecision andrecall for the
RSF les. An RSF leis a repl‘esentatlon of an archi- rst dataset (o cial Ec|ipse 2020-03 R Variants).

tecture in term of a partition of the architecture elements. |n this Figure, we have classi ed the scores on two cate-
Thus, the two metrics are used to calculate the distancgories: i) scores for features that contain more than three plu-
between two architectures. We rst convert the candidateyins (40 features). ii) scores for features that contain less than

architectures to RSF les as follows: three plugins (36 features). As we can see, for 78%4(@L
" The relation name in the RSF le must always be of features in the rst category, we obtainptecision scores
“contain” . Read the following syntax: greater than 75%. And, 88% (8®) of these features have
containcomponentName objectName recall scores greater than 75%.

Ve must have exactly one fine per cluster (compo- 1y R e T R ins are greater
nent), i.e. only at decompositions are supported. plug 9

than 85%. These features represent in general the “core com-
The objects represent the provided and required elponents” of the Eclipse projects. Examples of these features in-
ements (interface, extension, service and packagepjudeEclipse core equinox (“Feature 0%), Eclipse core

We added the termBrovided or Requiredbefore tracecompass, Eclipse EMF sirius , Eclipse ptp core

the name of each element to distinguish betweergclipse passage lic , andEclipse Core jpt . In particu-
them. lar, for theFeature O, theprecision =0.91,recall =0.93,

The following lines represent an example of an RSF le: andF1-Score= 0.92. This means that, our tool can identify the
containcom.ibm.icu Providedcom.ibm.icu.text. SCSU core features with a very low error rate.

containcom.jcraft.jsch Requiredcom.jcraft.jsch.Cipher As for the features of the second category, most of them
containcom.jcraft.jsch Requiredcom.jcraft.jsch.DH have very bad precision and recall scores. These scores are
explained by the fact that these features are not present in the

6.3. Answering Research Question 1 corresponding prede ned Eclipse features les (ground-truth).

Actually, some plugins in the Eclipse projects are not catego-
gized in any feature and their feature les are not created by
the owners. Therefore, by using our approach these plugins are
jdenti ed and grouped into features but their scores are very
ow. To con rm our intuition, we have performed a manual
check for each of these features. We found that most of their
plugins are present iplugins folders of the variants that

8Downloaded fromhttps://github.com/csytang/LoongFMR are containing these features.

13

6.3.1. Results of using the rst Dataset

First, we have run our adapter for the rst dataset (the 1
o cial Eclipse variants). We have identi ed 76 features. Fig-
ure[I0 presents the identi ed features. It illustrates for eac
input variant what are the identi ed features. The common

https://github.com/csytang/LoongFMR

Figure 10: Features per Variant in the Eclipse 2020-03 R Variants

Table 1: Excerpt of distribution of identi ed features over the Eclipse IDE variants

Eclipse | Eclipse| eclipse| Eclipse| eclipse| Eclipse| Eclipse| Eclipse |Eclipse| Eclipse| Eclipse| Eclipse | Eclipse]
modeling| parallel] php rcp rust | scout | testing| committerg cpp dsl java |javascript jee
Variant | Variant| Variant| Variant| Variant| Variant| Variant| Variant | Variant| Variant| Variant| Variant | Variant
eclipse core equinox X X X X X X X X X X X X X
bouncycastle apache sshd X X X X X X X X X X X X
apache lang commons X X X X X X X X X X X X
mylyn eclipse core X X X X X X X X X X X
mylyn eclipse bugs X X X X X X X X X X
wst eclipse core X X X X X X X X X X
mylyn eclipse ant X X X X
eclipse xtext xtend X X
eclipse core tracecompass X X
eclipse EMF sirius X
eclipse ptp core X
eclipse passage lic X
eclipse xtend emf X
eclipse Core jpt X

14

" F1-Score scoresmearF 0.82 andmedian= 0.96

These scores are relatively good compared to the global re-
sults.

6.3.2. Results of using the second Dataset

We have used two of the EFLBench strategies for auto-
matic generation of Eclipse IDE variants : i) Random Gener-
ation Strategy, ii) Percentage-based Random Generation Strat-
egy. The second strategy allows the user to specify a percentage
de ning the chances of the features of being selected. In this
experimentation, we have used drent percentages namely,
20%, 40%, 60%, 80%, and 90%. We have run our experimenta-
tion with di erent set of Eclipse variants: 13 variants (to com-
pare with the scores of the rst dateset), 50 variants, and 100
variants (to analyze whether the number of input variants has
an impact on feature identi cation) which are generated auto-
matically.

Table[2 shows therecision andrecall scores that are
obtained for the identi ed features when considering sets of
randomly generated Eclipse variants using thedom strat-
egy We considered also three con gurations 13 variants, 50

Figure 11: Word clouds show relevant names to two identi ed Blocks duringvariamsy and 100 variants.
feature identi cation The table presents for each con guration theanand the
median scores as well as the number of identi ed features. As
In order to have a global result, we measuredrttean(av- We can see, the obtainededian values for all the features and
erage value) and thmedian (obtained by arranging all scores for all the con gurations is equal to 100%. These mean that at
from smallest to largest and locating the central number) scordeast 50% of these features are correctly identi ed. As for the

of all the features as follows: meanscores for 13 variants, we have obtained scores that are
R o) relatively good (78% for precision and 73% for recall) com-
Precision scoresmear~ 0.55 andnedian= 0.66 pared to theneanscores that are obtained from the 13@al

variants (using the rst dataset). We can observe here an im-
provement of around 25%. Thus, using the second dataset, we
~ E1-Score scoresmean= 0.54 andnedian= 0.71 have obtained in general good scores. This is explained by the
fact that the second dataset is generated automatically using a
We can observe that tireeanscores are relatively low. For the penchmark based on Eclipse. The latter generates the variants
recall andF1-Score, the obtainednedianscore is relatively starting from one input Eclipse IDE. This means that the num-
good (50% of features have a score greater than 0.78) comparggy of features with a few number of plugins is reduced (com-
to theprecision score. pared to dataset 1) because they are limited only to the features
In addition, we have also estimated the developersre qfjnput Eclipse variant and not to the thirteen Eclipse IDE vari-
when shéhe want to correct the identi ed features. We have gnts as in the rst dataset.
analyzed for all of them the False Positive®} and False Neg- Besides, we can observe how timeanprecision and re-
ativesEN). We have observed that 30% of features h@# = ¢4l scores decrease to around 1% to 13% with the number of
0", 50% of features haveFP 3", and 10% of featuresPP yariants (from 13 to 50 and to 100 variants) which is not very
11". These scores mean that for most of the features, thgjgnj cant. Since themedian scores have not changed at all
e ort that the developer should make to remove manually thgor the sets. This means that increasing the number of input
unnecessary plugins is not important. variants has almost no impact on the obtained scores. All these
We have also observed that, 68% of features h&d¢= 0" yajues show how is consistent the recovered SAPL using our
and 21% of features havé"N 12". These scores show that gpproach even for a large number of input variants generated
using our approach, the developer is not requested to makergndomly.
great e ort for adding the missing plugins. Furthermore, the sets of randomly generated Eclipse vari-
Besides, when we calculated threeanandmedian scores ants using dierent settings dPercentage-based Random Strat-
for only the features that contain more than three plugins Wegyallow to evaluate our approach with variants which are simi-
have obtained the following scores: lar, or dissimilar among them. The obtained scores are depicted
in Table[3. We have made these observations:

~ Recall scoresmearn= 0.54 andnedian= 0.78

Precision scoresmean= 0.81 and thenedian= 0.97
R i - for the median scores, we can see in the table that they
Recall scoresmearr 0.84 and thenedian= 0.95 are almost 100% in all con gurations except the case

15

Figure 12: Features dependencies in the Eclipse 2020-03 R Variants.

Figure 13: Precision and Recall scores for the Eclipse 2020-03 R variants

all the features have been selected from the input Eclipse

Table 2: Precision and Recall Results in sets of randomly generated Eclipse . . L
variant and the generated variants are almost similar. In

variants using the Random Strategy

Variants | PrecisionRecall F1-Score this case, we obtain a few number of features (see the last

13 variants 0.78 | 0.73| 0.75 three rows in Tabl|3). In order to explain the scores ob-
Mean |50variants 0.66 | 0.60| 0.62 tained for the most important features, we take for exam-

100 varianté _0.64 | 059 0.61 ple the scores of “Feature 0" which contains more than

13 varants 1 1 1 650 plugins. ltsprecision andrecall scores are re-
Median (50 vanants 1 1 1 spectively greater than 95% and 90%, which are consid-

100 varanis 1 1 1 ered as good values.

13 variants 148 - When we set the percentage to 20% and the number of

Features 50 variants 200 input variants is equal to 50 or 100, the obtaimadan
100 variants 206 scores forecall andprecision are relatively low. The

lowest values are 60% foecall and 66% foiprecision
) This comes from the fact that the number of identi ed
when we set the generation percentage to 20% and the featyres is very highy 196 features) which leads to low
number of input variants is equal to 100. average. But, we have obtained very gooedianscores
(greater than 97%) which mean that at least 50% of fea-

- for the meanscores, as expected the highest scores are , ,
tures have been correctly identi ed.

obtained when we use a percentage of 90% where almost

16

Table 3: Precision (Prec) and Recall scores for sets of randomly generated Eclipse variants eserg dettings of the Percentage(Perc)-based Random Strategy

of

Perc 90%

Perc 80%

Perc 60%

Perc 40%

Perc 20%

variant

PregRecall

PregRecall

PreqgRecall

PregRecall

PregRecall

13 var.

0.92| 0.97

0.90 0.91

0.96/ 0.92

0.95/ 0.91

0.85) 0.79

Mean | 50 var.

0.97| 0.92

0.97| 0.95

0.92] 0.86

0.84] 0.78

0.69 0.63

100 var.

0.98] 0.93

0.95 0.90

0.87| 0.81

0.82] 0.76

0.66| 0.60

13 var.

1.0| 1.0

10| 1.0

10| 1.0

1.0| 1.0

10| 1.0

Median | 50 var.

10| 1.0

10| 1.0

1.0 1.0

10| 1.0

10| 1.0

100 var,

10| 1.0

10| 1.0

10| 1.0

10| 1.0

1.0| 0.97

of 13 var.

15

18

44

83

119

Features 50 var.

32

48

89

140

196

100 var.

38

64

105

154

203

At the end, we can conclude that our approach gives in gen-

In order to select the features that are identi ed from the

eral good results when we use variants that are generated usandidate variant, we have used the table that was generated in
ing both random strategy or percentage-based strategy, withduring our bottom-up process (such as TqBle 1) and show the
user-speci ed percentage, except the case where the percentatjstribution of identi ed features over the input Eclipse IDE
equal to 20% and number of generated variants greater than S5@ariants. We have estimated time spent to perform this a “me-
At the end, based on all the obtained results (using the twahanical” task that does not imply thinking. The estimated
datasets), we can conclude that the recovered SAPL is consigalue is less than 5 minutes. We estimated the time spent for
tent, which shows the ectiveness of our bottom-up process selecting the candidate feature and checking automatically the
(answer taRQ1). satisfaction of all the constraints, and then derive the corre-
sponding variant. All these tasks take around 10 minutes which

6.4. Answering Research Question 2 is not signi cant.

In this part of experiment, we used as input only the rst

dataset (the ocial Eclipse release that contains 13 variants). In Table 4: Description of the Customized Variants

order to evaluate the ectiveness of our derivation process, we[Custonl Candidate Added Identi ed
have used the SAPL that is recovered from these variants, angariantg Input Variants ~ Feature from Variants
oursoftware architecture composer to derive ‘9 customized” Cv1 | Eclipse-Java] i .
variants’. After that, they are compared with the variants that " cv2 | Eclipse-JEE Eclipse | - Eclipse Modeling
are created manually as explained above. Eatlstomized- [~CV3 | Eclipse-DSL EMF Sirius Tools
variant’, is composed of features that are identi ed from a ™ Cv4 [Eclipse-Javd Eclipse |- Eclipse-Parallel fof
given input variant (Eclipse IDE variant) and single additional —cv5 | Eclipse-JEE Core Scienti ¢ Computing
feature. This latter should be identi ed from other input vari- Eclipse- |Tracecompass - Eclipse-CPP for
ants. We describe in Talilé 4 the€ecustomized variantsThe Cvé Testing C/C++ Developers
features that are identi ed from the candidate variantin the seg=—cy/7 Eclipse CPP))
ond column are composed with the feature in the third column—Gvg | Eclipse-Java Eclipse PTP | - Eclipse-Parallel for
CV9 | Eclipse RCP Core Scienti c Computing

" TheEclipse EMF Sirius feature that is identi ed us-
ing our adapter belongmly to theEclipse-Modeling

Tools variant. It is an Eclipse project which allows to From the other hand, we installed manually (without our

create graphical modeling workbenchs by leveraging th(ﬁs

Eclipse Modeling technologies, including EMF and GMF.

TheEclipse Core Tracecompass feature isidenti ed
from two variantsEclipse-Parallel ~ andEclipse-CPP.
The Tracecompassis an open source project to solve

performance and reliability issues by reading and ana-

lyzing the traces and logs of a system|[35].

The Eclipse PTP Core feature is identi ed from the
Eclipse-Parallel

proach) each of the three features in the candidate variants
using Eclipse's graphical user interface: clicking on Help-

>Install New Software...). We add the following URLSs to reach
the features update sites:

- http://download.eclipse.org/sirius/updates/releases/6.3.1/2019-06

~ Ihttp://download.eclipse.org/tracecompass/stable/repository/

~ |https://download.eclipse.org/tools/ptp/updates/mars

At the end, we compared each derived Software Architec-

variant. The PTP project provides ture (SA) with the architecture of the corresponding manually

an integrated development environment to support the deson gured variant. The obtaineloJoFMind a2a scores for
each derived variant are presented in Table 5. As we can ob-
serve, all the values can be considered as good results. They

velopment of parallel applications written in C+€, and
Fortran [36].

17

Table 5: MoJoFM and a2a Results 6.5. Genericity Guidelines

Custom MoJoEM | a2a Number of Plugins For achieving a more generalizable use of the proposed ap-

Variantg Derived SA]Manually created SA. proach, we provide here guidelines for users on how to apply
Cvi 98.41 [89.03 1039 722 our approach for other families of products than Eclipse-based
CV2 97.44 |91.26 1479 1196 variants. Let us take the example of Java's module system [37]
CV3 90.27 [90.800 1021 751 as a candidate Component Model. In a Java module-based ap-
CV4 99.42 |96.41 621 566 plication, the primitive components are called modules. A mod-
CV5 97.43 |98.45 1099 1071 ule is a collection of classes and packages that make up a com-
CV6 98.71 |93.58 568 487 plete whole. It can be in the form of a directory or a JAR le.
cvV7 0081 19443 736 706 A system typically uses multiple modules. Modules were intro-
CV8 | 9942 9657 720 722 duced to allow better modularity of the Java platform. To reuse
CVo 9938 (9583 7908 668 our approach, the developers can follow these guidelines:

1. Mapping our SAPL Metamodel to the candidate Compo-
nent Model (for instance, Java Modules):

indicate that all derived architectures are almost the same with
their corresponding variants that are constructed manually. We
explain the di erence between them as follows. When the size
(number of plugins) of the derived variant is greater than the
size of the input variant (e.g. CPP, JavaScript, Modeling, etc.),

First, identify the Elements that compose an arti-
fact in the input variant (e.g., JavaModuleElement
and JavaConnectorElement). This will de ne the
granularity of the elements in a given artifact type.

this is due to the fact that in the derived variant there are some " Second, identify the points of view that are related
plugins (which belong to other features) that have been added to abstraction aspects. For the Java module system,
for meeting the constraints that are discovered using BUT4Reuse. the views could be de ned as: ServiceElement, In-
For example, the high number of plugins in the rst customized terfaceElement, PackageElement and ModuleEle-
variant (CV1: Siriust Eclipse Java features) is due to the set of ment.
constraints applied when we select taeipse EMF Sirius 2. Modify the implementation of our software architecture
feature. Example of these constraints include: adapter as follows:

" “Eclipse EMF sirius impliesEclipse xtext xtend ” " Create a Java class for each identi ed element.

Create a Java class that performs the adaptation task

" “Eclipse EMF sirius impliesmylyn eclipse ant (for instance,JavaModuleSoftArchiAdpater). It

"~ “Eclipse xtext xtend impliesEclipse xtend emf ” should implements the operatiorsAdaptable ,
adapt, andconstruct of the Java Interfac\dapter .
where the featuresEclipse xtext xtend " and “Eclipse The developers can use the implementation of our
xtend emf” are not features of the ocial Eclipse-Java vari- OSGiSoftArchiAdapter class. The result of adap-
ant and they are not installed during the manual installation of tation is anAdaptedModel

the Eclipse EMF sirius feature. But, based on the results -
of constraints identi cation (see previous constraints), we ob-
served that they are required for creating a correct variant, while
the manual installation of the feature did not do it. In prac-
tice, developers should deal with this issue by manually nd-
ing and adding the required plugins, which is a complex, time-
consuming and error-prone task. In the second customized vari-
ant (CV2: Siriust+ Eclipse JEE features), the scores are slightly
improved. This is due to the fact that the required features al-
ready exist in the candidate @ial variant (Eclipse JEE). For -
instance, the rhylyn eclipse ant ” feature already belongs 6.6. Threats to Validity
to features of Edipse JEE variant. This eXperiment may sLer from some threats to the valid-
At the end, we can conclude that the obtained results shoify of its results:
the e ectiveness of our approach. Indeed, taking into consider- On what concerns the internal validity, we can say that, as
ation the discovered constraints can make the derived varian@ithors have been involved in the manual installation of new
more consistent and more pertinent than some variants that aggstomized variants, the results would be biased. In fact, the
created manually. These are dient from those used in the way of installing new features in a given Eclipse variant was
evaluation 0fRQ1, which are ground truth variants that are cor- Performed by following the o cial online documentation of the
rect because they have been created by experts and exist sinceg@didate projects (suchBMF Sirius , or CoreTracecompass.
long time. But for new variants created manually, we can obtaiiknowing the way of how installing manually these features

incorrect products regarding the SAPL(answeR{Q2). does not impact the automatic derivation of such customized
variants using our composer, because the developer has only to

18

Create a Java class that performs the SAPL con-
struction by using as input theAtlaptedModer'.
This class should implement the operation:
createSAPLModelthat is provided by our Java in-
terface:
ISoftwareArchitectureProductLineSynthesis

3. Use GMF Dashboard Framework to customize our graph-
ical tool in order to visualize Java Module SAPL.

select the candidate features and the required features are audhich takes existing products as the basis for the core assets.
matically selected and added by meeting the constraints that afidhe extractive approach is also called SPL reengine€ring [11].
identi ed at the SAPL recovering step. Our approach is built on BUT4Reuse where a new adapter
Besides, we have used in our evaluation the prede ned Ecliisg@roposed to consider software architectures. Independently
featuresasground truth to compare them with the features from SA, several extensions of BUT4Reuse have already been
that are identi ed using our approach. The fact that the predeveloped and published in[21,124] 39]. Martinez et &l [21]
de ned featuresare realized manually by the Eclipse Projectsproposed an approach for automating the extraction of model-
owners can be seen as a threat to validity, because some pluginased SPL from model variants as follows. First, they iden-
in the Eclipse projects are not categorized in any feature antify features and detect constraints among them. After that, the
their feature les are not created by the owners. Therefore, bynodel variants are refactored to conform to an SPL approach.
using our approach these plugins are identi ed and grouped int@iadi and Hillah [39] proposed an adapter for BUT4Reuse to
features but their scores are very low. But, the most importangxtract variability from Bytecode based applications. The work
features in the Eclipse projects which are well described by then [40] is designed to identify variability in a set of statechart
owners are identi ed using our approach with higitecision variants. They have used variability mining algorithms to iden-
andrecall scores. tify the relations between the variants. In our approach, we
The fact that we have instantiated and experimented our aprst reverse-engineer the software architecture of each software
proach in the context of Eclipse-based SPL can be seen asvariant, after that, we reconstruct a SAPL model starting from
limit for our study's generalizability to other kind of compo- which the software architecture of each new software variant
nent service-based SPL. To mitigate this, we provided in ourcan be eectively derived.
approach a generic meta-model for component-based software Besides, software architecture recovery (SAR) is a chal-
variants which can be easily instantiated for other kinds of comienging problem, and several works in the literature have al-
ponenfservice based software variants. At the implementatiorready proposed contributions to solve it (e.g., works cited in [41,
level, our plugin provides extension-points for other developer®,/42]). Most of these approaches are proposed for a single soft-
to contribute by developing extensions for generating SAPL foware architecture recovery. Lutellier et al. [6] present a compar-
other kinds of component-based software product line, such aaive analysis of six SAR techniques. Magbool etlall [42] pre-
applications built with Java®©module system. sented a review of the hierarchical clustering techniques. In the
The fact that Eclipse IDE variants are very well modular-last decade several works had proposed approaches that aim to
ized can be seen as a threat for the obtained results in our esecover componenservice-oriented architectures from exist-
perimentation. In fact, using software variants created with oping systems. For example, the works|in|[43] and [44] are based
portunistic reuse with poor modularization has n@et on the on the de nition of a correspondence model between the code
e ciency of our architecture extraction approach. But, it mayelements and the architectural concepts._In [45, 46] a compo-
extract complex and highly coupled architecture. However, th@ent is considered as a group of classes collaborating to provide
aim of our approah is also to enable the developer to construet system function. Seriai et al. in [47] used FCA to perform the
a multi-point of view SAPL. These points of view can help andcomponent interface identi cation. The authors|in|[48] recover
assist the developer to understand progressively the SAPL alBPMN models starting from service oriented systems that have
reduce the complexity of the created architecture. Indeed, it ibeen generated from web applications. More recently, Shatnawi
not easy to understand the whole system by analyzing all thet al. [49] proposed a new approach to extract reusable services
points of view mixed-up together. from the source code of a collection of software variants. Simi-
To increase construct validity, we did not limit ourselves lar to BUT4Reuse principals, this approach is also based on the
to a single evaluation measure. Indeed, for measuring the pecomparison of input applications to identify and cluster similar
formance of the SAPL reconstruction process, our evaluatioservices. Some works have been proposed to recover software
was conducted using three measuresdll , precision ,and architectures at run-time. For instande,![50] presented an ap-
F1-Score), which are widely accepted in software engineeringproach for recovering at run-time software architectures from
research community [38]. In addition, for measuring the accucomponent based systems and changing the system via manip-
racy of the derived software architectures using our approachulating the recovered SA. The authorslin/[51] have proposed an
we used two well known architectural change metridschi- approach to recover at run-time architectures of a large-sized
tecture2Architectur¢a2a) [6] and MoJoFNB4]. componenservice oriented systems by considering some spe-
ci ¢ use cases in order to reduce the complexity of the recov-
ered architectures. Compared to our work, we focused on the
software architecture recovery for a family of products not only

Assund@o et al.[22] presented a complete survey on the ex@ Single software grchitectgre recovery.
isting SPL adoption approaches. They exposed three ways for Our approach is extensible by allowing to use one of the ex-
adopting SPLE: i) from scratch, by applying a complete do-iSting approaches for recovering software architecture of each
main analysis and variability management before applicatio§oftware variant. Regarding SAPL recovery, it is also exten-

new product appears; and iii) by using an extractive approach>APL model is based on the result of the feature identi cation
and constraint discovering. The BUT4Reue framework allows

19

7. Related Work

to extend easily this activity by implementing one of the exist- The authors in [[54, 55] have proposed an approach for re-
ing approaches such as FCA. covering a product line architecture (PLA) starting from a set
Besides, few works were proposed in the literature that ainof source code variants. Their approach supports the identi ca-
to recover SAPL models. The authors(in|[12] have presented #on of a minimum subset of cross-product architectural infor-
mapping study of the existing approaches of software architeanation through the identi cation and removal of outliers. The
ture recovery for software product line. Shatnawi et al. [5] haverecovered PLA using their approach is presented using UML
proposed a process for recovering software product line archpackage and class diagrams, module dependency graphs and
tectures of a family of object-oriented product variants. Firstdesign structure matrices. The UML diagrams are annotated to
they used FCA to migrate the object-oriented systems to a set tiighlight the commonality and variability related to assets. An-
component variants. Each variant is a set of similar componentsther approach has been proposed recently by Lee et al.lin [56]
that share the majority of their classes and dependencies. Seghich aims to recover a PLA starting from a family of products
ond, they used FCA to identify mandatory and optional com-developed with the clone-and-own approach. The PLA is an
ponents. At the end, they build the SPLA as a feature modedbstraction of all possible product variants of an SPL. For deter-
where the dependencies between component variants are baseithing common and variable classes, they use the Harmonized
on relations of typalternative OR, AND, requireandexclude Total Constant Commonality Indices (HTCCIPL) of packages
The authors in[]4] have proposed an approach for recoveringr classes of a product line. They applied the approach on set
software product line architecture from object-oriented producbf Apo-Games variants. The PLA in their work is presented as
variants. They identify mandatory components and variatiora package diagram or class diagram annotated with HTCCIPL
points of components as a main step. They analyze commonalalues.
ity and variability across product variants in terms of features. = Compared to our approach, their approach applies on small-
Compared to our work, the recovered SAPL using our apto medium-sized software variants where the variability is iden-
proach is both a feature model and a complete architecture thtted at low level artifacts. In addition, the derivation of new
shows all the architectural connections between componentsoftware architecture variants starting from their recovered PLA
The particularity for us is that the software architectures ardias not been addressed.
considered as main artifacts. We believe that recovering SAPL The authors in[57] have compared in term of precision and
for such software architecture variants helps the developers noécall ve search algorithms to locate features over families
only the derivation of new variants but also in the maintenancef product models guided by latent semantic analysis (LSA),
and evolution of the family of products. Indeed, this SAPL al-a technique that measures similarities between textual queries.
lows to have a speci ¢ documentation for each of the variantsTheir results show that search-based software engineering (SBSE)
and therefore to be able to maintain and evolve independentlytechniques can be applied to locate features in product mod-
Wille et al. [52] have proposed a variability mining ap- els. Recently machine learning techniques are widely used for
proach for Technical Architecture (TA) variants. They elimi- feature location process [58,]59, 60]. The authors_ in [58] pro-
nate the unnecessary information from the input TAs. The composed a machine learning-based approach for feature location
ponents from the TAs are clustered by ltering them based oron models. The goal is to identify the model fragments that
their structural relations to eliminate unrealistic variability. Un- best realizes speci ¢ features. They useatient subsets of a
fortunately, their approach can not recover an architecture désnowledge base to learn how to locate unknown features. Their
scribing all the variants. On the other hand, our solution carapproach analyze the in uence of three model fragment proper-
derive new SAs and product variants starting from the reconties: density, multiplicity, and dispersion. Density measures the
structed SAPL. The proposed process is generic and can be gpercentage of model elements that are present in a model frag-
plied for many component based-systems (or -software archiment. Multiplicity measures the number of times that the model
tectures). fragment appears in the model. Dispersion measures the ratio
Assun@o et al. [[53] proposed an approach called Model-of connected elements in the model fragment (Model elements
Vars2SPL. It allows to extract starting from UML class diagrammay or may not be connected in the model). Their results show
variants a feature model and a product line architecture (PLA)hat density and dispersion properties signi cantly in uence the
which represents a global structure of the input variants. The infeature location results. In our approach, thanks to the extensi-
put of ModelVars2SPL consists of two parts: i) a set of modelbily mechanism of BUT4Reuse Framework, we argue that it is
variants, and ii) for each variant a feature set that denotes thgossible implement and improve the feature identi cation pro-
con guration of the features provided by the variant. Comparectcess by using one of existing machine learning approach.
to our work, we identify automatically the features from input
variants. Moreover, the generated SAPL using our approacg_ Conclusion
is both a feature model and an architecture where each feature
has it owns fragment of architecture. For large and complex in- Recovering architecture models of large-sized software prod-
put models variants, our SAPL enables to make the understandets is an important activity in software maintenance and evolu-
ing progressive (per feature) which is more easy than analyzingjon. These architecture modelser a good documentation to
the complete architecture. In addition, our approach is generianderstand the software product before changing it. For large
and can be applied on a variety of models (not only UML classsoftware products with several software variants, these models
ones). are of great interest since they enable also to see the common

20

and variable features between software variants. SPL Reversp] J. Martinez, T. Ziadi, M. Papadakis, T. F. Bissy&nd. Klein, Y. Le Traon,

Engineering (SPL-RE) processes enable to recover models with
such a rich structure, including the variable part in the product

variants and enable to see the variability points.

In our work, we focused on component- and service-based
software variants and proposed in this paper: i) a (meta-)model|
for architectures of componéservice-based software product
line which describes the rules for de ning an SAPL, ii) the

Feature location benchmark for extractive software product line adoption
research using realistic and synthetic eclipse variants, Information and
Software Technology 104 (2018) 46-59.

H. Eyal-Salman, A.-D. Seriai, Toward recovering component-based soft-
ware product line architecture from object-oriented product variants, in:
Proc. of SEKE, 2016, pp. 1-7.

5] A. Shatnawi, A.-D. Seriai, H. Sahraoui, Recovering software product line

architecture of a family of object-oriented product variants, J. Syst. Softw.
(ISS) 131 (C) (2017) 325-346.

design of a generic SPL-RE process for building architecture(6] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidgvi

models (SAPL models) by analyzing software variants, iii) a
forward engineering process that uses the recovered SAPL t
derive new consistent and useful software architecture variants,

iv) an implementation of the approach in the context of OSGi- [8]
based systems, and v) an experimentation of this approach o
a set of Eclipse releases. The experimentation that we con

ducted enabled us to evaluate theagency of the process in
identifying correct features, compared to those identibedt

by experts. In addition, it enabled us to measure the accuraé%o]
of architectures of products derived from the recovered SAPL.
At the implementation level, we have proposed in this work[11]
atool chain completely based on Eclipse Modeling Framework,
Graphical Modeling Framework and FeaturelDE Framework [17].
It consists of: i) a graphical tool for creating SAPL and de n- [1]
ing constraints between features, ii) a graphical tool for creat-
ing and updating each feature's software architecture, iii) a new
BUT4Reuse adapter related to software architecture variant&3
The adapter is designed with a set of parameters to consider
di erentarchitectural points of view (services, interfaces, pack-
ages and extensions), iv) a FeaturelDE Software Architecturg!
Composer for selecting one possible con guration and check-
ing if it satis es all the constraints and than deriving the corre-[15]

sponding software architecture.

As perspectives to this work, we plan to study the enrich

ment of SPL reverse engineering of large compafisentice-

based variants by including a learning module which exploits
existing SPLs and their variarisatures to identify features in [17]
a smarter way (by learning from existing experiences). In addi:

tion, we envisage the instantiation of the process for other co

ponenfservice frameworks, or just investigate its use with Java
modules for exploring variability in standard Java applications.
Our approach is applicable on any set of large software proo[—
uct variants: i) other IDEs (from Jetbrains or Microsoft for in-
stance), ii) Linux distributions, iii) existing code bases of com-[20]
panies from which they used to derive new products for their
new customers, and many other software development settings.
This requests of course a set of adapters to be developed fph)
each case, but the general philosophy of our approach remains

the same.

References

[1] S. Apel, D. S. Batory, C. Estner, G. Saake, Feature-Oriented Software

Product Lines - Concepts and Implementation, Springer, 2013.

[2] T. Thim, C. Kastner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, Fea-
turelDE: An extensible framework for feature-oriented software devel-

opment, Science of Computer Programming 79 (0) (2084):http:
/ldx.doi.org/10.1016/j.scico.2012.06.002 !

21

R. Kroeger, Measuring the impact of code dependencies on software ar-
chitecture recovery techniques, IEEE TSE 44 (2) (2018) 159-181.

L. Bass, P. Clements, R. Kazman, Software architecture in practice, 3rd
edition, Addison-Wesley Professional, 2012.

B. P. Lientz, E. B. Swanson, Software Maintenance Management, Addi-
son Wesley, Reading, MA, 1980.

J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of software
architecture recovery technigues, in: 2013 28th IEEEM International
Conference on Automated Software Engineering (ASE), IEEE, 2013, pp.
486-496.

J. Martinez, W. K. Assurfip, T. Ziadi, Espla: A catalog of extractive spl
adoption case studies, in: Proceedings of the 21st International Systems
and Software Product Line Conference-Volume B, 2017, pp. 38-41.

W. K. Assun@o, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
A. Egyed, Reengineering legacy applications into software product lines:
a systematic mapping, Empirical Software Engineering 22 (6) (2017)
2972-3016.

Z.T. Sinkala, M. Blom, S. Herold, A mapping study of software architec-
ture recovery for software product lines, in: Companion Proceedings of
ECSA, 2018, pp. 1-7.

M. L. Kerdoudi, T. Ziadi, C. Tibermacine, S. Sadou, Recovering soft-
ware architecture product lines, in: 2019 24th International Conference
on Engineering of Complex Computer Systems (ICECCS), |IEEE, 2019,
pp. 226-235.

J. Martinez, T. Ziadi, T. F. Bissyakd J. Klein, Y. L. Traon, Bottom-up
adoption of software product lines: a generic and extensible approach, in:
Proc. of SPLC, Nashville, TN, USA, 2015, pp. 101-110.

J. Martinez, T. Ziadi, T. F. Bissyagd J. Klein, Y. L. Traon, Bottom-up
technologies for reuse: automated extractive adoption of software product
lines, in: Proc. of ICSE Companion, IEEE Press, 2017, pp. 67-70.

J. Martinez, Mining software artefact variants for product line migration
and analysis, Ph.D. thesis, University Pierre et Marie Curie and University
of Luxembourg (2016).

T. Thum, T. Leich, S. Krieter, Feature modeling and development with
featureide, Modellierung 2018 (2018).

L. Northrop, P. Clements, F. Bachmann, J. Bergey, G. Chastek, S. Cohen,
P. Donohoe, L. Jones, R. Krut, R. Little, et al., A framework for soft-
ware product line practice, version 5.0, SEI.—2007-Httpvw. sei. cmu.
eduproductlinedndex. html (2007).

19] K. Pohl, G. Bickle, F. J. van Der Linden, Software product line engineer-

ing: foundations, principles and techniques, Springer Science & Business
Media, 2005.

D. Benavides, S. Segura, A. Ruiz-Ges| Automated analysis of feature
models 20 years later: A literature review, Inf. Syst. 35 (6) (2010) 615—
636./d0i:10.1016/).is.2010.01.001

URL http://dx.doi.org/10.1016/j.is.2010.01.001

J. Martinez, T. Ziadi, T. F. Bissyagd J. Klein, Y. L. Traon, Automating

the extraction of model-based software product lines from model variants
(T), in: 30th IEEEACM, ASE , Lincoln, NE, USA,, 2015, pp. 396—406.

W. K. G. Assun@o, S. R. Vergilio, Feature location for software product
line migration: a mapping study, in: 18th SPLC, Companion Volume,
Italy, 2014, pp. 52-59.

J. Martinez, T. Ziadi, T. F. Bissyagd J. Klein, Y. L. Traon, Bottom-up
technologies for reuse: automated extractive adoption of software product
lines, in: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume, 2017, pp. 67—70.

L. Li, J. Martinez, T. Ziadi, T. F. Bissyarg] J. Klein, Y. L. Traon, Mining
families of Android applications for extractive SPL adoption, in: Proceed-
ings of the 20th SPLC 20186, Beijing, China, 2016, pp. 271-275.

(25]

(26]

(27]

(28]

(29]

(30]
(31]

(32]

(33]

(34]

(35]
(36]
(37]
(38]

(39]

[40]

[41]
(42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

M. L. Kerdoudi, T. Ziadi, C. Tibermacine, S. Sadou, A bottom-up ap-
proach for reconstructing software architecture product lines, in: Proc. 0f50]
the 13th ECSA: Companion Proceedings, ACM, 2019, pp. 46—49.

J. McA er, P. VanderLei, S. Archer, OSGi and Equinox: Creating highly
modular Java systems, Addison-Wesley Professional, 2010.

G. Perrouin, J. Klein, N. Guel , J.-M.&k&quel, Reconciling automation
and exibility in product derivation, in: Proc of. the 12th SPLC, IEEE,
2008, pp. 339-348.

T. Ziadi, L. Frias, M. A. A. da Silva, M. Ziane, Feature identi cation from
the source code of product variants, in: 16th CSMR 2012, Hungary, 2012[53]
pp. 417-422doi:10.1109/CSMR.2012.52 |

J. Martinez, T. Ziadi, T. F. Bissyagd J. Klein, Y. L. Traon, Name sug-
gestions during feature identi cation: The VariClouds approach, in: Pro-[54]
ceedings of the 20th SPLC , Beijing, China, 2016, pp. 119-123.

P. B. Kruchten, The 4 1 view model of architecture, |IEEE software
12 (6) (1995) 42-50.

A. Bryan, J. Ko, S. Hu, Y. Koren, Co-evolution of product families and
assembly systems, CIRP annals 56 (1) (2007) 41-44.

J. C. Kirchhof, M. Nieke, |. Schaefer, D. Schmalzing, M. Schulze, Variant
and product line co-evolution, in: Model-Based Engineering of Collabo-
rative Embedded Systems, Springer, 2021, pp. 333-351. [56]
C. Seidl, F. Heidenreich, U. ABmarin, Co-evolution of models and feature
mapping in software product lines, in: Proceedings of the 16th Interna-
tional Software Product Line Conference - Volume 1, SPLC '12, Asso-
ciation for Computing Machinery, New York, NY, USA, 2012, p. 76-85. [57]
doi:10.1145/2362536.2362550 |

URL https://doi.org/10.1145/2362536.2362550

Z. Wen, V. Tzerpos, An eectiveness measure for software clustering al- [58]
gorithms, in: Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004., IEEE, 2004, pp. 194-203.

[51]

[52]

(58]

E. Foundation, Eclipse trace compass project, [59]
httpsi//www.eclipse.orffracecompass
E. Foundation, Eclipse parallel tools platform (ptp),

httpsi//www.eclipse.orfptp/. [60]
S. Mak, P. Bakker, Java 9 Modularity: Patterns and Practices for Devel-
oping Maintainable Applications, ” O'Reilly Media, Inc.”, 2017.

G. Salton, M. J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, Inc., New York, NY, USA, 1986.

T. Ziadi, L. M. Hillah, Software product line extraction from bytecode
based applications, in: Proc. of the 23rd (ICECCS), IEEE, 2018, pp. 221~
225.

D. Wille, S. Schulze, I. Schaefer, Variability mining of state charts, in:
Proceedings of the 7th International Workshop on Feature-Oriented Soft-
ware Development, 2016, pp. 63-73.

S. Ducasse, D. Pollet, Software architecture reconstruction: A process-
oriented taxonomy, IEEE TSE 35 (4) (2009) 573-591.

O. Magbool, H. Babri, Hierarchical clustering for software architecture
recovery, IEEE TSE 33 (11) (2007) 759-780.

S. Chardigny, A. Seriai, M. Oussalah, D. Tamzalit, Extraction of
component-based architecture from object-oriented systems, in: Proc. of
WICSA, IEEE, 2008, pp. 285-288.

A. Seriai, S. Sadou, H. A. Sahraoui, Enactment of components extracted
from an object- oriented application, in: Proc. ECSA, Springer, 2014, pp.
234-249.

S. Allier, H. A. Sahraoui, S. Sadou, S. Vaucher, Restructuring object-
oriented applications into component-oriented applications by using con-
sistency with execution traces, in: Proc. of the 13th CBSE'10, Springer,
2010, pp. 216-231.

S. Allier, S. Sadou, H. A. Sahraoui, R. Fleurquin, From object-oriented
applications to component-oriented applications via component- oriented
architecture, in: Proc. of the 9th WICSA, Colorado, USA, IEEE, 2011,
pp. 214-223.

A. Seriai, S. Sadou, H. Sahraoui, S. Hamza, Deriving component inter-
faces after a restructuring of a legacy system, in: Proc. of WICSA, |IEEE,
2014, pp. 31-40.

M. L. Kerdoudi, C. Tibermacine, S. Sadou, Opening web applications for
third-party development: a service-oriented solution, Journal of SOCA
10 (4) (2016) 437-463.

A. Shatnawi, A. Seriai, H. A. Sahraoui, T. Ziadi, A. Seriai, Reside:
Reusable service identi cation from software families, J. Syst. Softw.
(JSS) 170 (2020) 1107480i:10.1016/}.js5.2020.110748

22

URL https://doi.org/10.1016/}.jss.2020.110748

G. Huang, H. Mei, F.-Q. Yang, Runtime recovery and manipulation of
software architecture of component-based systems, Journal of ASE 13 (2)
(2006) 257-281.

M. L. Kerdoudi, C. Tibermacine, S. Sadou, Spotlighting use case speci c
architectures, in: Proc. the 12th ECSA, Springer, 2018, pp. 236-244.

D. Wille, K. Wehling, C. Seidl, M. Pluchator, I. Schaefer, Variability min-
ing of technical architectures, in: Proceedings of the 21st SPLC - Volume
A, ACM, 2017, pp. 39-48.

W. K. Assun@o, S. R. Vergilio, R. E. Lopez-Herrejon, Automatic extrac-
tion of product line architecture and feature models from uml class dia-
gram variants, Information and Software Technology 117 (2020) 106198.
C. Lima, I. Machado, M. Galster, C. von Flach G. Chavez, Recovering
architectural variability from source code, in: Proceedings of the 34th
Brazilian Symposium on Software Engineering, 2020, pp. 808-817.

C. Lima, W. K. Assungo, J. Martinez, |. do Carmo Machado, C. von
Flach G. Chavez, W. D. Mendonca, Towards an automated product line
architecture recovery: the apo-games case study, in: Proceedings of the
VIl Brazilian Symposium on Software Components, Architectures, and
Reuse, 2018, pp. 33-42.

J. Lee, T. Kim, S. Kang, Recovering software product line architecture
of product variants developed with the clone-and-own approach, in: 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC), IEEE, 2020, pp. 985-990.

J. Font, L. Arcega, @. Haugen, C. Cetina, Achieving feature location in
families of models through the use of search-based software engineering,
IEEE Transactions on Evolutionary Computation 22 (3) (2017) 363-377.
M. Ballarn, A. C. Mare@n, V. Pelechano, C. Cetina, On the in uence of
model fragment properties on a machine learning-based approach for fea-
ture location, Information and Software Technology 129 (2021) 106430.
C. S. Corley, K. Damevski, N. A. Kraft, Exploring the use of deep learn-
ing for feature location, in: 2015 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE, 2015, pp. 556-560.

A. C. Mareen, J. FontD. Pastor, C. Cetina, Towards feature location in
models through a learning to rank approach, in: Proceedings of the 21st
International Systems and Software Product Line Conference-Volume B,
2017, pp. 57-64.

	Introduction
	Background & Problem Illustration

