
HAL Id: hal-03885616
https://hal.sorbonne-universite.fr/hal-03885616v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel approach for Software Architecture Product
Line Engineering

Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou

To cite this version:
Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou. A novel approach
for Software Architecture Product Line Engineering. Journal of Systems and Software, 2022, 186,
pp.111191. �10.1016/j.jss.2021.111191�. �hal-03885616�

https://hal.sorbonne-universite.fr/hal-03885616v1
https://hal.archives-ouvertes.fr

A Novel Approach for Software Architecture Product Line Engineering

Mohamed Lamine Kerdoudia, Tewfik Ziadib, Chouki Tibermacinec, Salah Sadoud

aComputer Science Department University of Biskra, Algeria
L.Kerdoudi@univ-biskra.dz

bSorbonne Université CNRS, LIP6, F-75005 Paris, France
Tewfik.Ziadi@lip6.fr

cLIRMM, CNRS and Montpellier University, France
Chouki.Tibermacine@lirmm.fr

dIRISA, University of South Brittany, France
Salah.Sadou@irisa.fr

Abstract

A large software system exists in different forms, as different variants targeting different business needs and users. This kind of
systems is provided as a set of “independent” products and not as a “single-whole”. Developers use ad-hoc mechanisms to manage
variability. We defend a vision of software development where we consider an SPL architecture starting from which the architecture
of each variant can be derived before its implementation. Indeed, each derived variant can have its own life. In this paper, we propose
a novel approach for Software Architecture Product Line (SAPL) Engineering. It consists of, i) a generic process for recovering an
SAPL model which is a product line of “software architectures” from large-sized variants. ii) a forward-engineering process that
uses the recovered SAPL to derive new customized software architecture variants. The approach is firstly experimented on thirteen
Eclipse variants to create a new SAPL. Then, an intensive evaluation is conducted using an existing benchmark which is also based
on Eclipse IDE. Our results showed that we can accurately reconstruct such an SAPL and derive effectively pertinent variants. Our
study provides insights that recovering SAPL and then deriving software architectures offers good documentation to understand the
software before changing it.

Keywords: Software Architecture; SPLE; Software Architecture Product Line; BUT4Reuse; Software Architecture Recovery;
Component/Service-based Software

1. Introduction

Software Product Line Engineering (SPLE) aims to improve
reuse by focusing not on the development of a single software
product but on a family of related products. The systems in
a Software Product Line (SPL) approach are developed from
a common set of assets in a prescribed way, in contrast to be-
ing developed separately, from scratch, or in an ad-hoc manner.
This production economy makes the software product line ap-
proach attractive. SPLE considers the existence of a single ar-
chitecture model describing all the variants that implement dif-
ferent software products of a single product line. The particu-
larity of this “single” architecture model is that it includes what
is refereed as a variability model (also called feature model), in
which variability and commonality are explicitly specified us-
ing high level characteristics of the so-called features [1]. These
are then mapped to components, which are organized according
to the identified features. Specific software variants can be de-
rived (generated) by choosing from the feature model a set of
desired features, then SPL tools choose and assemble the ap-
propriate components mapped to the selected features [1].

During recent years, multiple approaches have been pro-
posed addressing SPL implementation, or software product deriva-
tion [1, 2]. However, there are many software systems that exist
as several “independent” software variants and not as a “single

whole”. Indeed, large component software systems exist in dif-
ferent forms, as different software variants targeting different
business needs and users. For example, IDEs like Eclipse ex-
ist as several variants targeting different kinds of software en-
gineers [3]. These software variants often use ad-hoc mecha-
nisms to manage variability and they do not take complete ben-
efits from the SPLE framework. For developers of new soft-
ware variants that are built upon existing ones, the presence of
a single model describing the architecture of the whole system
with an explicit specification of commonality and variability is
of great interest [4, 5]. Indeed, this enables to see the common
part of the whole, on top of which new functionality can be
built, in addition to the different features they can use.

In this work, we defend a vision of software development
where we consider an SPL architecture starting from which the
software architecture of each software variant can be derived.
Indeed, each derived software variant can have its own life.
This life is regulated by evolution needs whose origin often de-
pends on the context which is specific to each software. From
the point of view of the responsible of the software mainte-
nance, the architecture is a crucial artifact for two reasons [6, 7]:
i) understand the software before making changes on it, and
ii) notify changes made on the software to keep its documen-
tation compliant with its implementation. However, the situa-

Preprint submitted to Journal of Systems and Software December 17, 2021

tion where the software variants do not have their own/proper
architecture raises problems during the maintenance stage of
a software on the two points mentioned above: i) referring
to a generic architecture to understand a given software is a
very difficult task. Knowing that comprehension is the most
costly activity during maintenance [8], this will generate con-
siderable additional costs; ii) modifying a generic architecture,
to take into account the modifications made on one of its soft-
ware products, is a task that is not only difficult and error prone,
but also with unforeseeable consequences on the other software
products. Our vision is that the different software variants can
be created from the same SPL, but must have their standalone
software architectures to be able to evolve independently and
without constraints. However, it is commonly known that hav-
ing the software architecture of a system is better than dealing
with its source code [9].

Our approach for solving the two problems mentioned above
is that the product line must first produce the software archi-
tecture of a software product, before its corresponding soft-
ware artifact. This paper considers the challenge of analyzing
the source code and the software architectures of existing vari-
ants of component-based software systems to reverse-engineer
a software architecture to all the existing software variants. We
call this constructed architecture a Software Architecture Prod-
uct Line (SAPL) that represents the unique software architec-
ture that supports the software product line and common to all
the software variant members of the SPL.

Most of existing SPL extractive approaches focus only on
source code [10, 11]. They mainly recover feature models from
the source code and maintain traceability links between each
feature and its associated code fragments. In our case, we re-
cover SAPL including a special kind of feature models, where
features are related to architecture fragments. In addition, the
obtained SAPL enables thereby to derive a software architec-
ture for a given product rather than only showing traceability
links. Besides, in the literature, and to our best knowledge,
there are few works that combine in a complete process the ben-
efits of software architecture recovery techniques with SPL ex-
tractive approaches. Such works were analyzed and discussed
in a mapping study [12], where the authors state that it is un-
clear how software architecture techniques which have been
mostly developed for a single system can be utilized effectively
in an SPL context.

In this work, we propose a novel approach for Software Ar-
chitecture Product Line Engineering. The overall process of
our approach was initially introduced in our previous work [13],
which is substantially extended in this paper according two main
dimensions: i) A more detailed and extended specification of
the two steps. In particular, we describe the SAPL-Forward
Engineering step in a new complete way, and ii) a new larger
experimentation. This approach consists of a complete process
that aims to exploit the benefits of software architecture recov-
ery techniques for single systems in the context of SPL. The
proposed approach is composed of two processes: i) a process
for SAPL-reverse-engineering that extends the BUT4Reuse frame-
work, which is considered as one of the most effective methods
for SPL-reverse-engineering [14, 15]. This framework was pro-

posed as a generic and extensible framework for SPL reverse-
engineering. For enabling extensibility, BUT4Reuse relies on
adapters for the different artifact types. These adapters are im-
plemented as the main components of the framework. Sev-
eral adapters covering a wide range of artifact types are al-
ready available [16]. In this work, we followed the extensibility
mechanisms of the BUT4Reuse Framework to implement a new
adapter for SAPL reverse-engineering from large component-
based software systems from a collection of their existing vari-
ants. The produced SAPL architectures are of great interest
since they enable to see the variability points in the software
variants as well as maintain the dependency between these vari-
ants [4, 5]. ii) a forward engineering process that uses the re-
covered SAPL to derive new customized software architecture
variants. Several configurations can be created starting from
this SAPL. They represent an exhaustive enumeration of all
the possible valid configurations. In this process, the discov-
ered constraints from the bottom-up process are used to derive
valid and consistent variants. Thus, we followed the extensibil-
ity mechanisms of the FeatureIDE Framework [17] to develop
a software architecture composer that allows to select starting
from the SAPL a set of desired features (a possible configura-
tion) that meet a given set of user requirements and derive the
software architecture of the new variant.

The approach is firstly experimented on thirteen Eclipse
IDE variants to create a new SAPL. Then, an intensive eval-
uation is conducted using an existing benchmark which is also
based on Eclipse IDE. We built the architecture model of Eclipse
IDE SPL and derive new software architecture variants. The
results of the experiments showed that our approach can effec-
tively reconstruct such an SAPL and derive valid and pertinent
variants. One of the insights that can be provided based on our
study is that recovering SAPL is of great interest since it al-
lows to derive the software architectures of new variants before
their implementations. This is an important activity in software
maintenance and evolution since it offers good documentation
to understand the software product before changing it.

The remaining of the paper is organized as follows. In Sec-
tion 2, we expose background material about Software Product
Line Engineering and the extractive adoption of SPLs. We also
introduce an example which serves as a running example for
illustrating our proposals. Section 3 presents a general picture
of the proposed approach. In Section 4, we expose our SAPL-
Reverse Engineering process, the proposed SAPL Metamodel
for Component-Based Software Variants, and its instantiation
for the OSGi systems. Section 5 describes our SAPL-Forward
Engineering Process. We show the results of our experiments
in Section 6. We finally discuss the related work in Section 7,
before concluding the paper in Section 8.

2. Background & Problem Illustration

Many development settings of software systems start from a
software architecture, which is particularly necessary for large-
scale systems. Reusing software architectures across a set of
related systems allows to maximize the return on investment of

2

Figure 1: SPLE Process

time and effort. Indeed, we leverage the good practices (pat-
terns, styles, etc.) and thereby the quality attributes imple-
mented in this architecture. There are many ways this happens
in practice. Indeed, several systems or products resemble each
other more than they differ. This is an opportunity for reusing
the architecture across these similar products. Thus, SPL sim-
plify the creation of new members of a family of similar sys-
tems. We present in this section relevant concepts related to
Software Product Line Engineering.

2.1. Software Product Line Engineering

The Software Engineering Institute at Carnegie Mellon Uni-
versity defines a Software Product Line (SPL) as a set of sys-
tems sharing a common managed set of features satisfying the
specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a pre-
scribed way [18].

The Software Product Line Engineering paradigm separates
two processes that are illustrated in Figure 1 [19]: i) Domain
engineering: this process is responsible for establishing the
reusable software artifacts (assets) such as requirements, de-
sign, realisation, tests, etc. and thus for defining the commonal-
ity and the variability of the product line. Traceability links be-
tween these artifacts facilitate systematic and consistent reuse.
ii) Application engineering: this process is responsible for de-
riving product line applications from the software artifacts es-
tablished in domain engineering. It exploits the variability of
the product line and ensures the correct binding of the variabil-
ity according to the applications’ specific needs.

Features of the SPL are specified in what is called a vari-
ability model (a.k.a. feature model). Feature models (FM) are
widely used in SPLE to describe both variability and common-
ality in a family of product variants [20]. The graphical repre-
sentation of a feature model is a tree where each feature has a
parent feature except for the root feature. Each feature is de-
composed into one or more features. In order to derive a new
product variant, we need to select a set of features that meet the
rules (mandatory, optional, or, alternative) given by the feature
model. The selection of a feature implies that its parent is also

Figure 2: SPL Feature Model

included. Figure 2 shows an example of a feature model regard-
ing an illustrative and simplified example of IDE architecture.
The IDE FM consists of a mandatory feature Core, two possible
Team functionalities from which one or both could be selected,
two optional Android and CPP features. The concept of core
assets refers to the software artifact needed to implement the
SPL.

Furthermore, cross-tree constraints can be specified to de-
fine further relationships between features (not in parental rela-
tionship). These constraints are arbitrary propositional formu-
las which must be valued to true. Adding constraints between
features can provide more reliable definition of the variability
model [21]. Two kinds of cross-tree constraints can be used for
any pair of features, namely requires and excludes constraints.
For instance, in Figure 2, the following constraints are:

– “CPP” requires “Core”: which means, if CPP is included
then Core must also be included.

– “GIT” excludes “SVN”: which means, if GIT is included
then SVN should not be included, and vice versa.

2.2. Extractive Adoption of SPLs

Besides, SPL reverse-engineering approaches consider as
input a set of existing variants and propose a solution to con-
struct the SPL. This mainly includes the identification of the
features, the synthesis of the feature model and the extraction
of the reusable assets [14]. Many SPL extraction approaches
have been proposed in the last years. Assunção et al. [11, 22]
present a complete survey and a systematic mapping on these
existing works. Among them the BUT4Reuse framework that
we use in this paper.

BUT4Reuse [14, 23] framework is considered as one of the
most popular Frameworks that provides a unified environment
for mining software artifact variants. It is a generic and exten-
sible framework for extractive SPL adoption. It is generic be-
cause it can be used in different scenarios with product variants
of different software artifact types (e.g., source code in Java,
C, models, requirements, or plugin-based architectures). It is
extensible by allowing to add different concrete techniques or
algorithms for the relevant activities of extractive SPL adoption
(i.e., feature identification, feature location, mining feature con-
straints, extraction of reusable assets, feature model synthesis
and visualizations). Several validation studies of BUT4Reuse
using different software artifact types or different extensions
have already been published [21, 24, 25].

3

2.3. Problem Illustration

For illustrating the problem, we use the systems that are de-
veloped under the OSGi framework such as Eclipse IDE. The
OSGi specification defines a component model and a frame-
work for creating highly modular Java systems [26]. The archi-
tecture of Eclipse is fully developed around the notion of plu-
gin conforming with the OSGi standard. Eclipse-based IDEs
run on top of Equinox1 which is the reference implementa-
tion of the OSGi specification. These IDEs are a collection
of similar software products that share a set of software assets.
The Eclipse Foundation provides integrated development envi-
ronments (IDEs) targeting a variety of developers. It offers a
set of “software products” (following Eclipse terminology they
are called “packages”) where each one is a large-sized system
composed of hundreds to thousands of components, registering
and consuming hundreds of services. This complex structure
requires a considerable effort to understand all dependencies
when building a new Eclipse IDE software variant.

Currently, if a developer wants to create a customized Eclipse-
based IDE, she/he has to select one of the default products2

(for instance, IDE for C/C++ Developers) and then manually
install new features which meet her/his requirements, before
adding new functionality to the IDE. Besides, for a given set of
Eclipse IDE variants, it is not easy to see the variability points
among them. Developers often use ad-hoc mechanisms to man-
age variability and they do not benefit from the SPLE frame-
work. It is difficult to create a new customized Eclipse IDE
variant that only contains a set of desired features (not all the
predefined features of an existing product). In fact, the devel-
opers should manually analyze and understand the components
of the Eclipse IDE variants to identify the common features and
then adding the desired features. This task is a cumbersome and
error-prone activity for a developer especially that in most cases
Eclipse IDEs are too large and complex. In addition, the differ-
ent Eclipse IDE variants that can be derived from the same SPL,
must be able to evolve independently and without constraints.

In this paper, we consider an SAPL as a model starting from
which the new customized software product variants can be de-
rived. We aim to adopt the SAPL approach in order to be able
to develop efficiently a new customized Eclipse IDE (Software
architecture and its implementation). Thus, this SAPL main-
tains the dependency between the different variants and makes
it possible to have specific documentation for each of the soft-
ware variants and therefore to be able to maintain and evolve
independently. In the following sections, we use Eclipse-based
IDEs to illustrate our solutions, but the proposed approach is
generic and is not related to OSGi or Eclipse.

3. Approach Overview

In this section, we provide an overview of our solution which
consists of a novel approach for software architecture product

1https://www.eclipse.org/equinox/
2available here: https://www.eclipse.org/downloads/packages/

release

line engineering. Indeed, most of the existing extractive ap-
proaches in the literature focus on the feature model extraction
from the source code of a collection of software variants. As
we aforementioned in the introduction, there are few works that
combine the benefits of software architecture recovery tech-
niques with SPL extractive approaches. In our approach, we
reverse-engineer the SPL source code in order to extract the
SAPL where commonality and variability between fragment of
architectures are explicitly specified. The recovered SAPL in-
cludes a special kind of feature models, where features are re-
lated to architecture fragments. The produced SAPL is used
then to derive new software architecture variants. These archi-
tectures are important for the maintenance and evolution needs.
Thus, in this paper, we propose to revisit the SPL problem from
the software architecture (SA) perspective.

In this context, we identified five main challenges: i) How
to extract a software architecture from the source code of each
variant; ii) How to compare the software architecture variants
to identify the common parts and find then different features;
iii) How to construct the SAPL with an explicit specification
of the variability at an architectural level; iv) How to simplify
and reduce the complexity of the recovered architectures. The
extraction should be generic and extensible to support all these
different aspects; v) Once the SAPL is constructed, one remain-
ing challenge is related to the derivation of new variants. How
the SAPL can be used to derive new pertinent SA variants?

This paper proposes an approach to cover all these chal-
lenges. Our approach consists on a complete process that aims
to exploit the benefits of software architecture recovery tech-
niques for single systems in the context of SPL. It proceeds first
by analyzing the source code of existing software variants to ex-
tract the software architecture of each variant. The source code
of these software variants is created using opportunistic reuse
(extractive adoption of SPLs). Our approach supports also the
reconstruction of the architectures from products that already
belong to an SPL. After that, we reverse-engineer a software
architecture called SAPL following that is common to all these
software architecture variants. This SAPL is built with an ex-
plicit specification of commonality and variability. Second, this
SAPL can be used in a SPLE’s derivation process in order to de-
rive new customized variants (software architectures and their
implementation). The developer is involved to select which
features that represent a possible configuration for generating
a given variant. The overall process of our approach is illus-
trated in Figure 3. It is composed of two main sub-processes (in
Figure 3): i) A Bottom-Up Process for Recovering SAPL; this
sub-process starts first with the Reverse-Engineering of Soft-
ware Architectures from the source code of each software vari-
ant (we call this: “step 0”). Second, it reconstructs an SAPL for
these software architecture variants and ii) A SAPL Forward-
Engineering Process which allows to derive new variants (Soft-
ware Architecture Variants).

In the next sections, we describe in detail each sub-process.

4

https://www.eclipse.org/equinox/
https://www.eclipse.org/downloads/packages/release
https://www.eclipse.org/downloads/packages/release

Figure 3: Proposed Approach for SAPL Engineering

4. Bottom-Up Process for Recovering SAPL

Before presenting each step, we first describe the generic
meta-model that is supported by our approach.

4.1. SAPL Meta-model for Component-Based Software Archi-
tecture Variants

Figure 4 depicts our generic SAPL meta-model which is
used for creating an architecture for a set of component-based
software variants. To specify the variability model, we have
been inspired in the definition of this meta-model by the feature
meta-model in [27]. As mentioned above, a feature model is
defined with a set of features that can be related by constraints
and operators such as alternative, choice, optional and xor. So,
the left part of the meta-model of Figure 4 shows the intro-
duced concepts to specify feature models. We enriched it by
adding component-based architecture elements. An instance of
this meta-model serves as a feature model that represents the
variability in a family of software product variants and a com-
prehensive architecture (modules / components) that helps the
developer to understand the structure of the SPL features and
the relations between them.

As our meta-model is used for representing component-based
systems, it has been defined based on top of an abstract syntax
of a software component model. The latter is used to repre-
sent any kind of component-based system such as an OSGI or a
Spring-based one. A generally accepted definition of a software

Figure 4: SAPL Metamodel for Component-Based Software Architecture Vari-
ants

component is that it is a software unit with provided capabilities
and a set of requirements. The provided capabilities (Provid-
edElement in our meta-model) can include operations the com-
ponent is able to execute. The requirements (RequiredElement
in our meta-model) are needed by the component to produce
the provided capabilities.

4.2. Mapping of the SAPL Metamodel to OSGi Component Model

We show in this sub-section how to instantiate our generic
SAPL meta-model (in Figure 4) for a concrete component based
system which is related to the OSGi System. Figure 5 presents
the result of the instantiation for OSGi component model. In-

5

deed, a component in OSGi is known as a bundle or a plugin
(PluginElement in this meta-model) which packages a set of
Java types, resources and a manifest file. Plugin dependencies
are expressed as manifest headers that declare requirements and
capabilities. The “import-package” header is used to express a
plugin’s dependency upon packages that are exported by other
plugins. The “require-bundle” is used when a plugin requires
another plugin. The first plugin has access to all the exported
packages of the second. The manifest file declares also what are
the packages that are externally visible using “export-package”
(the remaining packages are all encapsulated). Furthermore,
the Java interfaces that are present in the exported and imported
packages are considered respectively as the plugin’s provided
and required interfaces (represented by ProvidedInterfaceEle-
ment and RequiredInterfaceElement).

Besides, the OSGi framework introduces a service-oriented
programming model which is a publish, find and bind model.
The registered services with the OSGi Service Registry are rep-
resented by the RegisteredServiceElement, while a consumed
service by a plugin is represented by a ConsumedServiceEle-
ment.

Services are not the only collaboration way between plug-
ins. Equinox provides a means of facilitating inter-plugin col-
laboration via Extension Registry. Plugins open themselves
for extension or configuration by declaring extension points
(ExtensionPointElement in this meta-model) and defining con-
tracts. Other plugins contribute by developing extensions (Ex-
tensionElement in this meta-model) using existing extension
points.

Our OSGi model allows to produce several software archi-
tecture with several points of view that represent different kinds
of plug-in’s capabilities and requirements. The supported ar-
chitecture points of view in our model are: interface, service,
package, and extension. Of course these points of view are not
orthogonal, there are intersections between each other. But, we
are convinced that the developers would not be able to under-
stand the whole software variant by analyzing all the points of
view together. Thanks to this meta-model, developers can pro-
gressively understand the software variant by analyzing each
architecture view separately. In addition, our framework can be
easily extended to support other points of view in order to cover
all the aspects that the developers need to know when they de-
velop a new variant.

4.3. Reverse-Engineering of Software Architecture Variants
The first step in our bottom-up process (step 0) uses reverse-

engineering techniques to extract a software architecture variant
from the source code of each software variants. For instance,
the reverse-engineering of software architectures from Eclipse
IDE variants is based on the analysis of the configuration files
and the source code of the different components (plugins).

Indeed, for recovering the SA variants, we analyze the Eclipse
artifacts as follows: i) for each Eclipse variant, we generate
a software architecture where the root element is a composi-
teElement with the name of this variant (for instance “Eclipse
for Java developers”). ii) for each plug-in in the Eclipse vari-
ant, we create a PluginElement with the plug-in’s character-

istics. iii) we parse the manifest file of each plug-in to iden-
tify the exported and imported package elements. iv) the pro-
vided and required interface elements are identified by analyz-
ing the Java source code and Bytecode (in case source code
is not available) in the exported and imported package fold-
ers. iv) the extension and extension-point elements are iden-
tified by parsing the “plugin.xml” files of each plug-in. v) fi-
nally, the programmatically registered and consumed services
are identified by parsing the source code and bytecode of each
class in the plug-in. We parse here the following statements:
<context>.registerService(..) and <context>.

getServiceReference(..) to capture the type of classes
that are instantiated and registered. In addition, the services that
are declared with the DS (Declarative Services) framework are
identified by parsing the “OSGI-INF/component.xml” files. Be-
fore saving the architecture, we create the connectors to link the
created elements. The parsing of the source code and bytecode
has been implemented by using Java libraries such as AST-
Parser for source code parsing and ObjectWeb’s ASM 3 for
bytecode parsing.

4.4. SAPL Construction

The software architectures variant that are recovered in the
previous step from the source code of the software variants are
used as input for SAPL construction step. Thus, the different
software architecture variants are analyzed and compared to
identify the common part and the different features. As illus-
trated in Figure 3, this activity extends the BUT4Reuse frame-
work to support architectural artifacts.

To support the different types of artifacts, and enabling ex-
tensibility, BUT4Reuse relies on adapters for the different arti-
fact types. These adapters are implemented as the main compo-
nents of the framework. An adapter is responsible for decom-
posing each artifact type into its constituting elements, and for
defining how a set of elements should be constructed to create
a reusable asset. Designing an adapter for a given artifact type
requires three main tasks:

• Element identification. The first step is to identify the
Elements that compose an artifact. This will define the
granularity of the elements in a given artifact type. For
the same artifact type, we can select elements at different
levels of granularity (e.g., package level versus statement
level for source code).

• Similarity metrics definition. This task defines a simi-
larity metric between any pair of Elements. An element
should be able to compare its definition with the one of
another element and return as output a value ranging from
zero (completely different) to one (identical).

• Structural dependencies definition. The purpose of this
task is to identify Structural Dependencies for the Ele-
ments. When the artifact type is structured, the elements

3website : https://asm.ow2.io/

6

https://asm.ow2.io/

Figure 5: Modeling of OSGi Elements

will have containment relations. In the case of architec-
ture artifacts, relations between interfaces, components
and plugins usually capture this information.

In this paper, we extend BUT4Reuse by proposing a new
adapter related to Eclipse-Software Architectures 4. In addition
to allow comparing software architectures, this new adapter is
designed with a set of parameters to consider different architec-
tural points of view (services, interfaces, packages and exten-
sions).

Once the adapter is implemented, SAPL construction fol-
lows four sub-activities as illustrated in Figure 3.

Decomposition in Architectural Elements. The first step takes
as input a collection of architecture variants that are obtained
from the reverse-engineering activity. It decomposes each vari-
ant into a set of Architectural Elements (AEs). The computed
AEs can be of different types depending on the considered point
of view. For instance, to compare and analyze several Eclipse
software variants, BUT4Reuse divides each variant into the fol-
lowing elements: PluginElement, ServiceElement,
PackageElement, ExtensionPointElement,
ExtensionElement, and InterfaceElement.

To identify them, our adapter loads and parses the input
Eclipse SA variants and performs a mapping of the elements
in the input SAs with these elements.

Block Identification and Feature Naming. This step reuses
algorithms implemented in BUT4Reuse which automatically
identify sets of AEs that correspond to the distinguishable fea-
tures from the SA variants. These sets of AEs are named Blocks.
Blocks permit to increase the granularity of the analysis by the
domain experts in order to not reason at Element level. In fact,
Block identification represents an initial step before reasoning
at feature level.

4Available online:https://github.com/kerdoudi/but4reuse

In this paper, we reused the algorithm called Interdependent
Elements that formalizes Block identification using class equiv-
alences [28]. This algorithm is based on a formal definition of a
Block that uses the notion of interdependent Elements, which is
defined as follows: Given a set Software Architecture Variants
(SAV), two Architectural Elements e1 and e2 (of software archi-
tectures from SAV) are interdependent if and only if they belong
to exactly the same variants of SAV. This is defined formally as
follows:

• ∃sav ∈ SAV e1 ∈ sav ∧ e2 ∈ sav

• ∀sav ∈ SAV e1 ∈ sav⇔ e2 ∈ v

Since interdependence is an equivalence relation on the set
of Elements of SAV this leads to the following definition of
Block candidates:

Given SAV a set of software architecture variants, a Block

of SAV is an equivalence class of the interdependence relation
of Architectural Elements of SAV.

In Figure 6, we illustrate an example of using the Blocks
identification algorithm. The ellipses represent the software ar-
chitecture variants. The stars represent Architectural Elements
within these artifacts. The similarity metric between Elements
establishes when Elements from different artifacts are equal
and therefore we can compute the intersections among them.
Hence, the separated intersections represent the identified Blocks.
For instance, the Block 0 contains the Elements that are com-
mon to all the SA variants, Block 1 groups elements that are
shared only by variant 3 and variant 4.

Once blocks are identified, the next step is a semi-automatic
process where domain experts manually review the elements
from the identified blocks to map them with the functionali-
ties (i.e., features) of the software variant. BUT4Reuse inte-
grates what is called VariCloud [29], a tool that analyzes the
elements inside each block and extracts words that help do-
main experts to identify features. VariCloud uses information
retrieval techniques, such as TF-IDF (Term Frequency-Inverse

7

https://github.com/kerdoudi/but4reuse

Figure 6: Block Identification from a set of Software Architecture Variants

Document Frequency), to analyze the text describing elements
inside blocks. The descriptions used by BUT4Reuse to build
word clouds are thus provided by the specific adapter. As for
our adapter, the words correspond to the names of packages,
extensions, services, interfaces and plugins. Using these words
allows to give automatically more representative names.

Dependencies Identification. During this step, the approach
identifies the dependencies between the different blocks.
BUT4Reuse uses the dependencies defined within the adapter
to identify dependencies between blocks. In our adapter, we
extract the requires and the mutual-exclusion dependen-
cies between blocks based on the element dependencies. This
is performed as follow:

• let B1 and B2 are two identified blocks

• “B1 requires B2” iff ∃e1 ∈ B1∧∃e2 ∈ B2∧ e1 requires

e2;

• “B1 is in mutual-exclusion dependency with B2” iff
∃e1 ∈ B1 ∧ ∃e2 ∈ B2∧ e1 is in mutual-exclusion

dependency with e2;

Multi-View SAPL Construction. A software architecture of a
large system is a complex entity; it cannot be presented in a
single point of view. In this step of our process, we enable the
developer to construct a multi-view SAPL. These points of view
can help and assist the developer to understand progressively
the SPL. However, we should not confuse these points of view
with architectural views which allow addressing separately the
concerns of the various “stakeholders” of the architecture. For
instance, the four views: logical view, process view, physical
view, development view that have been proposed by Kruchten
in [30]. Our points of view are related to abstraction aspects.
Developers that want to use our approach are then free to define
their own points of view for their components. For example,
we have defined for the OSGi component model the following
“points of view”: service, interface, extension, package.

Now, in the context of Eclipse Software Architectures, we
argue that the developer wants first to analyze the extension
point of view. The latter gives less complex (in terms of num-
ber of elements and connections) SAPL model that can help
her/him to understand easily what are the components that are

Figure 7: Example of SAPL for three Eclipse Variants (Extension and Package
point of view)

extended and what are the extension-points that are provided
to be extended. After that, the interface and service points of
view can provide which interfaces or services that should be
implemented or consumed.

Besides, the current implementation of the SAPL construc-
tion is realized with two distinct algorithms that provide two
different organization of features. They are inspired from fea-
ture model synthesis in BUT4Reuse [14]. In the first one the
features are organized in the SAPL as a Flat feature diagram
with all the constraints included as cross-tree constraints. The
second one is a heuristic called “Alternatives before Hierarchy”
that is based on calculating first the Alternative constructions
from the mutual exclusion constraints, and then create the hier-
archy using the requires constraints. The constraints that were
not included in the hierarchy are added as cross-tree constraints.
Moreover, the generation of the SAPL is implemented as a sep-
arate plug-in that provides an extension-point for other develop-
ers to extend this activity for generating SAPL by using more
sophisticated algorithms.

Once the SAPL is recovered, it can be visualized and up-
dated graphically using our SAPL graphical modeling tool that
is provided as a set of plugins which are implemented based
on the Eclipse Modeling Framework and the Graphical Model-
ing Framework. Our graphical tool allows also to visualize each
feature in the SAPL as a separate fragment of software architec-
ture. Indeed, the tool provides an editor that allows to visualize
graphically the SAPL as follows. First, the SAPL can be visual-
ized as a compact representation of all the assets of the SAPL in
terms of “features”. Second, we enable the developer to click
twice on a given feature in order to visualize its architecture,
which can be opened in another editor. In this way, instead of
visualizing the whole SAPL in one screen, we assist the devel-
oper to understand features progressively. For instance, Fig-
ure 7 depicts the generated SAPL starting from three Eclipse
variants which are IDE for Java, IDE RCP and RAP, and IDE
for Java and Report Developers. The feature “eclipse core

equinox” is common to the three variants. The edge with a
dashed line represents a discovered require dependency.

Besides, Figure 8 shows an excerpt of the architecture frag-
ment that represents the feature “eclipse birt jst”. As we
can see, the component “BIRT Emitter Conf. Plug-in”

8

provides an extension-point which is extended by several plug-
ins. In this architecture, the set of provided / required elements
that are not connected to other components, represent elements
that are connected to components located in other features. Our
tool enables the developers to merge two or several model frag-
ments (that represent two or several features) in a single archi-
tecture fragment which allows to visualize the structural depen-
dencies between these features.

In the current implementation the reconstructed SAPL is re-
lated to OSGi Component Based software variants. This plug-
in provides an extension-point for other developers to contribute
by developing extensions for generating SAPL for other kinds
of component-based software product line, such as applications
built with Java 9+ module system.

5. SAPL Forward-Engineering Process

The goal of this process is to use the recovered SAPL to
create valid configurations and to derive in an effective way
new customized software variants. SAPL is used for mod-
eling all the possible configurations of the software architecture
of a specific domain. It captures the commonalities and the
variabilities among these software architectures. In this way, in
order to complete the “loop”, our forward-engineering process
allows the developer to analyze and understood the SAPL that
is recovered using the previous bottom-up process and then, de-
rive the new software variant (software architecture and its im-
plementation) as a new variant. As depicted in Figure 3, our
software architecture derivation process is composed of the fol-
lowing steps:

1. Analyse and understand the SAPL,
2. Select a set of candidate features,
3. Check the consistency and add missing features,
4. Derive the corresponding variant.

The first step is considered as one of the most important
activity in the derivation process. As we know the architecture
of a software system abstracts its complex structure as more
manageable and comprehensible high-level structure. Thus, the
SAPL lets the developer to know the structure of each identified
feature and its relationship with the other features.

After understanding the SAPL and its features, the second
step in this process consists on selecting starting from this SAPL
a set of features that meet the developer’s requirements. At the
end, before merging them, a consistency check of the selected
features is performed based on the discovered constraints.

In fact, features are related to fragments of software archi-
tecture that represent a characteristic or a functionality of the
software. They can be optional or mandatory. A selection of
a number of these features defines one specific configuration
of the software architecture. In our derivation process we use
the constructed assets (fragments of software architectures) ob-
tained from the bottom-up process as reusable assets. The pro-
cess is based on merging the selected features. This is defined
formally as:

• Let Fall be the set of all the features in the recovered
SAPL,

• Let Fc be a set of candidate features that are selected by
the developer, where,

– Fc ⊆ Fall,

– Fc = Fm ∪ Fo, with, Fm is the set of mandatory
features and Fo is the set of optional features.

• Let Fs be the final set of selected features by the de-
veloper, after checking their consistency and adding the
missing features, where,

– Fs = Fm ∪ F′o ∪ Fa, with,

– F′o ⊆ Fo, where, ∀ fop ∈ F′o ∀ fm ∈ Fm,

fop is not in mutual-exclusion dependency with fm
– Fa is the set of missing features that are added after

checking the discovered constraints. This is defined
formally as follow:
((∀ fa ∈ Fa, ∃ fm ∈ Fm, ∀ fm2 ∈ Fm, where, “ fm
requires fa” ∧ fa is not in mutual-exclusion
dependency with fm2)
∨ (∀ fa ∈ Fa, ∃ fop ∈ F′o, ∀ fop2 ∈ F′o, where, “ fop

requires fa” ∧ fa is not in mutual-exclusion
dependency with fop2))

Once the final set of selected features (Fs) is created, we
proceed to merging them one-by-one until constructing the new
software architecture variant. Merging two features consists on
creating a software architecture by applying these steps: i) re-
move duplicate components from the two features and add the
remaining component elements into the architecture. ii) add to
each of the created component element their required and pro-
vided architecture elements. iii) create connectors that connect
the required elements to the provided elements that have the
same name and the same point of view (service, interface, ex-
tension, etc.).

However, we implemented our software architecture deriva-
tion process as a FeatureIDE composer that is called a “software
architecture composer”5. It allows to select one possible
configuration and to check if it satisfies all the constraints and
than derives the corresponding software architecture. The Fea-
tureIDE Framework [17] is an Eclipse-based IDE that supports
all phases of feature-oriented software development for the de-
velopment of software product line: domain analysis, domain
implementation, requirements analysis, and software genera-
tion. The Feature IDE tool provides extensibility for including
composers dealing with different artifact types. That means
that any DSL can be enriched with variants derivation function-
alities.

In order to derive a new Eclipse Software Architecture vari-
ant, the developer can use our FeatureIDE SA Composer. to

5Available online:https://github.com/kerdoudi/but4reuse

9

https://github.com/kerdoudi/but4reuse

Figure 8: Excerpt of the SA of “eclipse birt jst” Feature (Extension and Package point of view)

configure manually the SAPL by selecting a set of desired fea-
tures among an identified list. After an automatic check of con-
straints and selecting automatically the features that are meeting
constraints, our composer generates a new Software Architec-
ture variant by composing the reusable assets. This architec-
ture model represents the structure of the selected features and
their relationships without variability information, which is use-
ful for the understanding purpose. At the end, the new variant
is generated by collecting the extracted software assets which
correspond to the selected features.

Besides, one of the promising challenges in the SPL context
is the continued evolution of the software variants such as when
new features are added to the family. Actually, this is related to
another problem which is out of the scope of this paper. It is
related to co-evolution of product variants and their SPL. In our
approach, we must re-execute the complete bottom-up process
for recovering the new SAPL. Indeed, theoretically one of the
interests of having an SPL is the fact that when bugs occur in the
system their correction and evolution are carried out at the SPL
level. But, in reality, this is not easy to do. In this respect, the
co-evolution of system families is proposed as a novel method-
ology to deal with these issues (approaches like [31, 32, 33])
and this is not the goal of the presented work.

6. Experimentation and Validation

Our approach includes two processes: a bottom-up process
for reconstructing the SPL and a forward-engineering process
for deriving new variants from the SPL. In order to evaluate this
approach, we conducted a set of experiments to evaluate the two
processes.

Thereby, we addressed the following two research ques-
tions:

• RQ1: What is the performance of our SAPL reconstruc-
tion process, in terms of identifying the expected features
and artifacts in the product line?

In the research question RQ1, we measured the perfor-
mance of the bottom-up process through a controlled ex-
periment. In this experiment, we used a real-world set of
Eclipse IDE variants. First, we recovered the SAPL from
the set of Eclipse IDE variants. After that, we measured
the precision, recall, and F1-Score of the identifi-
cation of features.

• RQ2: Based on the recovered SAPL can we derive in an
effective way new customized variants? In other terms,
what is the performance of the top-down process for prod-
uct variant derivation from the SAPL?

In the research question RQ2, we compared the cus-
tomized software architecture variants that are derived
automatically using our forward-engineering process with
the same variants that are created without our approach.
We mean by without our approach, choosing a given Eclipse
IDE variant and install manually new features (clicking
on Help->Install New Software...).

This part of the experiment is based on the following
steps:

1. We use our software architecture composer

to compose and derive a set of new customized vari-
ants. This is performed in this way:
(a) We created a configuration by selecting from

the SAPL the features that are identified from
a given input variant (i.e. an Eclipse IDE vari-
ant).

10

(b) After that, we chose from the SAPL one or
a set of additional features that are identified
from the other input Eclipse IDE variants, and
added them to the created configuration.

(c) These additional features should not belong ini-
tially to the features of the candidate input vari-
ant (selected in step 1a).

2. In the other side, we have taken the candidate in-
put variant (from step 1a), and we have installed
manually all the same additional features that are
previously chosen.

3. At the end, we used two architectural change met-
rics to measure the similarity between the derived
customized software architectures and the software
architectures of the variants that were created man-
ually (in step 2).

6.1. Dataset: Eclipse Variants

In this evaluation, we have used a set of Eclipse IDE vari-
ants. We have used in particular two datasets that are considered
as input software variants. The first dataset represents a set of
official Eclipse IDE variants that contains 13 variants6 (we have
selected the Eclipse 2020-03 R release). The size of these vari-
ants varies from 193 to 639 MB and the number of components
varies from 383 to 975 components. The second dataset is a set
of Eclipse IDE variants that are automatically generated using
the EFLBench Framework in [3]. EFLBench Framework in-
tegrates an automatic and parametrizable generator of Eclipse
IDE variants. It automatically creates variants taking as inputs:
i) an Eclipse IDE and ii) the number of variants that we want to
generate.

The use of the EFLBench Framework is motivated by the
fact that the official Eclipse releases contain few variants (at
most 13 variants), which can be considered as a limitation for
intensive evaluation of our approach with other scenarios with
larger amount of variants. Indeed, regardless of the official ver-
sions, in practice, developers create their customized Eclipse
IDE by installing/uninstalling projects into an official release.
So, in order to achieve the most general results in our experi-
ment we did not limit ourselves to the official Eclipse releases.
We decided to use in this experimentation a large number of
Eclipse IDE variants. This enables us to empirically analyze
whether the number of input variants has an impact on our ap-
proach.

6.2. Evaluation Metrics

In this subsection, we explain the metrics that are used in
this evaluation for the context of Eclipse IDE variants.

1. Performance Metrics
In order to measure the precision, recall, and F1-Score
of our Bottom-Up process, we have compared the content
of each identified feature in the recovered SAPL with the

6Downloaded from: https://www.eclipse.org/downloads/

packages/release/2020-03/r

content of predefined Eclipse features of the input vari-
ants. In fact, in an official Eclipse IDE one or more plu-
gins can be grouped together into an Eclipse feature

so that a user can easily load, manage, and brand those
plugins as a single unit. A predefined Eclipse feature

describes via a “feature.xml” file a list of plugins and
other features which can be seen as a logical unit com-
posed of a set of related components. It has a name, a
version number and a license information assigned to it.
All the predefined Eclipse features are located in a
specific folder which has the name “features” 7.
In this experimentation, we use the predefined Eclipse

features of the input variants as a “ground truth”
to compare them with the identified features using our
approach. For instance, in Figure 9 we show an example
of what we consider as a ground-truth of three imaginary
Eclipse input software variants. In this Figure, for each
variant we show its predefined features. For example,
“Variant1” contains four features: f1, f2, f3, and f4, where
each of them groups a set of plugins.
Now, let us suppose that our approach has been used to
recover the SAPL from the three software variants. As
a result, a set of features have been identified (i f1, i f2,
etc.). In this evaluation, for each identified feature (for
instance, i f1), we proceed in this way: we select the “fea-
ture.xml” files that are located in the common “features
folders” (the intersection set) of the variants from which
this feature is identified. In our example, if we suppose
that i f1 has been identified from the three variants, then,
we select from the ground-truth in Figure 9 f1 and f2
(because they are common to the three variants). After
that, we compare the plugins that belong to this iden-
tified feature with the plugins that are present in these
“feature.xml” files (for f1 and f2 these plugins are p1, p2,
p3, p4, p5, and p6).

• The True Positives (TP) are the set of plugins that
are assigned to an identified feature and that are cor-
rect according to the ground truth (they belong to
the predefined Eclipse features). For example, if
our approach has assigned to i f1 the following plu-
gins: p1, p2, p3, p4, p5, p7, and p8 then TP for i f1
is equal to 5.
• False Positives (FP) represent the set of plugins

that belong to the candidate feature, and they do not
belong to the ground truth. For i f1 FP is equal to 2
(p7 and p8).
• Precision represents the ratio of correctly identified

plugins to the total number of plugins of a given
feature. It is defined by Equation 1.

Precision =
T P

(T P + FP)
(1)

For instance, Precision(i f1) = 5
(5+2) = 0.71

7Predefined features of Dataset 1 are available online: https://github.
com/kerdoudi/Eclipse2020-03RGroundTruthFeatures

11

https://www.eclipse.org/downloads/packages/release/2020-03/r
https://www.eclipse.org/downloads/packages/release/2020-03/r
https://github.com/kerdoudi/Eclipse2020-03RGroundTruthFeatures
https://github.com/kerdoudi/Eclipse2020-03RGroundTruthFeatures

Variant1
f1 p1

p2p3

f2 p4

p5p6

f3 p7

p8

p9

p10p11

f4 p12

p13

Variant2
f1 p1

p2p3

f2 p4

p5p6

f3 p7

p8

p9

p10p11

f5 p14

p15 p16

Variant3
f1 p1

p2p3

f2 p4

p5p6

f6 p17

p18 p19 p20

Figure 9: Example of Ground-Truth features of three Imaginary Eclipse Input
Software Variants

• According to the ground truth (predefined features),
there can be some missing plugins that are not in-
cluded in the set of the plugins of an identified fea-
ture. Those plugins are False Negatives (FN). For
i f1, FN is equql to 1. The missed plugin is p6.

• Recall is the ratio of correctly identified plugins rel-
ative to the plugins that should be identified for the
candidate feature. It is defined by Equation 2.

Recall =
T P

(T P + FN)
(2)

For instance, Recall(i f1) = 5
(5+1) = 0.83

High recall means that the developers do not have
to manually add a lot of missing plugins. Con-
versely, low recall implies an important involvement
of the developers.
A low value for precision means that the identi-
fied feature contains plugins that should not belong

to the feature. This, also, leads to involvement of
the developers in order to manually remove the un-
wanted plugins.

• We provide also the F1-Score measure for evaluat-
ing the accuracy. It is a synthetic score of precision
and recall measures. It is the weighted average of
both (in Equation 3).

F1-Score = 2 ×
Precision × Recall

(Precision + Recall)
(3)

For instance, F1-Score(i f1) = 2 × 0.71×0.83
(0.71+0.83) = 0.76

2. Architectural Change Metrics
We have used the two metrics: Architecture2Architecture
(a2a) [6] and MoJoFM [34] to measure the accuracy of
the derived software architectures using our composer.
The metrics have been used to measure the architectural
change between the derived customized software archi-
tectures and the software architectures of the variants that
are created manually. The architectural change refers to
the addition, removal, and modification of components
and their elements (service, interface, extension, etc.).
a2a is defined by the following formula:

a2a(A, B) = (1 −
mto(A, B)

aco(A) + aco(B)
) × 100% (4)

where, mto(A, B) is the number of operations needed to
transform architecture A into B and aco(A) is the num-
ber of operations needed to create architecture A from a
“null” architecture. Five operations are allowed to trans-
form one architecture into another: additions (addE), re-
movals (remE), and moves (movE) elements from one
architecture to another; as well as additions (addC) and
removals (remC) of components themselves.
MoJoFM is defined by the following formula:

MoJoFM(A, B) = (1 −
mno(A, B)

max(mno(∀A, B))
) × 100% (5)

where, mno(A, B) is the minimum number of Move or
Join operations needed to transform the architecture A
to the architecture B.
A score of 100% indicates that the architecture A is the
same as the architecture B. A lower score results in greater
disparity between A and B. For example, if an architec-
ture A is composed of three components:

• C1 = {r1, r2, p1, p2, p3}

• C2 = {r3, p4},

• C3 = {r4, r5, p5},

and an architecture B is composed of two components:

• C4 = {r1, r2, p1, p2, p3, r3, p4}

• C5 = {r4, r5, p5},

and an architecture D is composed of two components:

12

• C6 = {r1, r2, p1, p2, p3, r3}

• C7 = {r4, r5, p5, p4}

Where, ri and pi represent their provided and required
elements (interface, extension, services, package).
Thus, the two components C1 and C2 of architecture A
can be joined in a simple operation to give C4. As a re-
sult, mno(A, B) = 1. However, mno(A, D) = 2, because
also the element p4 must be moved to C7.
Thus, the obtained MoJoFM scores for these architec-
tures are:

• MoJoFM(A,B) = 87.5%

• MoJoFM(A,D) = 75.0%

This disparity is explained by the fact that MoJoFM’s join
operation is less expensive, which leads to high scores.
As for the a2a scores, we obtained:

• a2a(A,B) = 93.33%

• a2a(A,D) = 93.33%

This is explained by the fact that the candidate architec-
tures have few components which leads to low MoJoFM
scores compared to a2a. Actually, the a2a has been de-
signed to address some of MoJoFM drawbacks [6].
In this experimentation, we have used the LoongFMR im-
plementation8 of the two metrics a2a and MoJoFM. Each
program takes as input two architectures given as two
RSF files. An RSF file is a representation of an archi-
tecture in term of a partition of the architecture elements.
Thus, the two metrics are used to calculate the distance
between two architectures. We first convert the candidate
architectures to RSF files as follows:

• The relation name in the RSF file must always be
“contain”. Read the following syntax:
contain componentName objectName

• We must have exactly one line per cluster (compo-
nent), i.e. only flat decompositions are supported.

• The objects represent the provided and required el-
ements (interface, extension, service and package).
We added the terms Provided or Required before
the name of each element to distinguish between
them.

The following lines represent an example of an RSF file:
contain com.ibm.icu Providedcom.ibm.icu.text.SCSU
contain com.jcraft.jsch Requiredcom.jcraft.jsch.Cipher
contain com.jcraft.jsch Requiredcom.jcraft.jsch.DH

6.3. Answering Research Question 1

6.3.1. Results of using the first Dataset
First, we have run our adapter for the first dataset (the 13

official Eclipse variants). We have identified 76 features. Fig-
ure 10 presents the identified features. It illustrates for each
input variant what are the identified features. The common

8Downloaded from: https://github.com/csytang/LoongFMR

part between all the variants represents the “Feature 0” that
is named “Eclipse core equinox”. This represents the core
components that must exist in each variant. During the exe-
cution, the developers can see the name of any feature just by
glassing its cursor on this feature on the left side of Figure 10.
It is also possible to automatically generate a table that show
a clear distribution of all the identified features over the input
variants. In Table 1, we show an excerpt of how features are
distributed over the input Eclipse IDE variants.

Moreover, all features in Figure 10 have been assigned au-
tomatically to blocks, thanks to the word cloud that is used
to name the identified blocks starting from words that are ex-
tracted from the elements names (extension, service, interface,
etc.). Figure 11 shows the result of automatic feature naming
of two identified Blocks. In fact, the block naming has been
evaluated in our previous work [13]. We have compared our
block names with names that are manually given by three do-
main experts with more than ten years of experience working on
Eclipse development (see [14]). The result of the comparison
shows that more than 70% of names are the same.

Figure 12 presents the feature dependencies in the Eclipse
input variants. Each node represents an identified feature, the
size of a node is related to the number of elements in that fea-
ture. Edges correspond to features dependencies.

-Precision, Recall, and F1-Score Results:. We depicted in Fig-
ure 13 the obtained values of precision and recall for the
first dataset (official Eclipse 2020-03 R variants).

In this Figure, we have classified the scores on two cate-
gories: i) scores for features that contain more than three plu-
gins (40 features). ii) scores for features that contain less than
three plugins (36 features). As we can see, for 78% (31/40)
of features in the first category, we obtained precision scores
greater than 75%. And, 88% (35/40) of these features have
recall scores greater than 75%.

Furthermore, the obtained precision and recall scores
for all the features that contain more than 60 plugins are greater
than 85%. These features represent in general the “core com-
ponents” of the Eclipse projects. Examples of these features in-
clude Eclipse core equinox (“Feature 0”), Eclipse core

tracecompass, Eclipse EMF sirius, Eclipse ptp core,
Eclipse passage lic, and Eclipse Core jpt. In particu-
lar, for the Feature 0, the precision = 0.91, recall = 0.93,
and F1-Score= 0.92. This means that, our tool can identify the
core features with a very low error rate.

As for the features of the second category, most of them
have very bad precision and recall scores. These scores are
explained by the fact that these features are not present in the
corresponding predefined Eclipse features files (ground-truth).
Actually, some plugins in the Eclipse projects are not catego-
rized in any feature and their feature files are not created by
the owners. Therefore, by using our approach these plugins are
identified and grouped into features but their scores are very
low. To confirm our intuition, we have performed a manual
check for each of these features. We found that most of their
plugins are present in plugins folders of the variants that
are containing these features.

13

https://github.com/csytang/LoongFMR

Figure 10: Features per Variant in the Eclipse 2020-03 R Variants

Table 1: Excerpt of distribution of identified features over the Eclipse IDE variants
Eclipse

modeling
Variant

Eclipse
parallel
Variant

eclipse
php

Variant

Eclipse
rcp

Variant

eclipse
rust

Variant

Eclipse
scout

Variant

Eclipse
testing
Variant

Eclipse
committers

Variant

Eclipse
cpp

Variant

Eclipse
dsl

Variant

Eclipse
java

Variant

Eclipse
javascript
Variant

Eclipse
jee

Variant
eclipse core equinox X X X X X X X X X X X X X

bouncycastle apache sshd X X X X X X X X X X X X
apache lang commons X X X X X X X X X X X X

mylyn eclipse core X X X X X X X X X X X
mylyn eclipse bugs X X X X X X X X X X

wst eclipse core X X X X X X X X X X
mylyn eclipse ant X X X X
eclipse xtext xtend X X

eclipse core tracecompass X X
eclipse EMF sirius X

eclipse ptp core X
eclipse passage lic X
eclipse xtend emf X
eclipse Core jpt X

14

Figure 11: Word clouds show relevant names to two identified Blocks during
feature identification

In order to have a global result, we measured the mean (av-
erage value) and the median (obtained by arranging all scores
from smallest to largest and locating the central number) scores
of all the features as follows:

• Precision scores: mean = 0.55 and median = 0.66

• Recall scores: mean = 0.54 and median = 0.78

• F1-Score scores: mean = 0.54 and median = 0.71

We can observe that the mean scores are relatively low. For the
recall and F1-Score, the obtained median score is relatively
good (50% of features have a score greater than 0.78) compared
to the precision score.

In addition, we have also estimated the developer’s effort
when she/he want to correct the identified features. We have
analyzed for all of them the False Positives (FP) and False Neg-
atives(FN). We have observed that 30% of features have “FP =

0”, 50% of features have “FP ≤ 3”, and 10% of features “FP
≤ 11”. These scores mean that for most of the features, the
effort that the developer should make to remove manually the
unnecessary plugins is not important.

We have also observed that, 68% of features have “FN = 0”
and 21% of features have “FN ≤ 12”. These scores show that
using our approach, the developer is not requested to make a
great effort for adding the missing plugins.

Besides, when we calculated the mean and median scores
for only the features that contain more than three plugins we
have obtained the following scores:

• Precision scores: mean = 0.81 and the median = 0.97

• Recall scores: mean = 0.84 and the median = 0.95

• F1-Score scores: mean = 0.82 and median = 0.96

These scores are relatively good compared to the global re-
sults.

6.3.2. Results of using the second Dataset
We have used two of the EFLBench strategies for auto-

matic generation of Eclipse IDE variants : i) Random Gener-
ation Strategy, ii) Percentage-based Random Generation Strat-
egy. The second strategy allows the user to specify a percentage
defining the chances of the features of being selected. In this
experimentation, we have used different percentages namely,
20%, 40%, 60%, 80%, and 90%. We have run our experimenta-
tion with different set of Eclipse variants: 13 variants (to com-
pare with the scores of the first dateset), 50 variants, and 100
variants (to analyze whether the number of input variants has
an impact on feature identification) which are generated auto-
matically.

Table 2 shows the precision and recall scores that are
obtained for the identified features when considering sets of
randomly generated Eclipse variants using the random strat-
egy. We considered also three configurations 13 variants, 50
variants, and 100 variants.

The table presents for each configuration the mean and the
median scores as well as the number of identified features. As
we can see, the obtained median values for all the features and
for all the configurations is equal to 100%. These mean that at
least 50% of these features are correctly identified. As for the
mean scores for 13 variants, we have obtained scores that are
relatively good (78% for precision and 73% for recall) com-
pared to the mean scores that are obtained from the 13 official
variants (using the first dataset). We can observe here an im-
provement of around 25%. Thus, using the second dataset, we
have obtained in general good scores. This is explained by the
fact that the second dataset is generated automatically using a
benchmark based on Eclipse. The latter generates the variants
starting from one input Eclipse IDE. This means that the num-
ber of features with a few number of plugins is reduced (com-
pared to dataset 1) because they are limited only to the features
of input Eclipse variant and not to the thirteen Eclipse IDE vari-
ants as in the first dataset.

Besides, we can observe how the mean precision and re-
call scores decrease to around 1% to 13% with the number of
variants (from 13 to 50 and to 100 variants) which is not very
significant. Since the median scores have not changed at all
for the sets. This means that increasing the number of input
variants has almost no impact on the obtained scores. All these
values show how is consistent the recovered SAPL using our
approach even for a large number of input variants generated
randomly.

Furthermore, the sets of randomly generated Eclipse vari-
ants using different settings of Percentage-based Random Strat-
egy allow to evaluate our approach with variants which are simi-
lar, or dissimilar among them. The obtained scores are depicted
in Table 3. We have made these observations:

- for the median scores, we can see in the table that they
are almost 100% in all configurations except the case

15

Figure 12: Features dependencies in the Eclipse 2020-03 R Variants.

Figure 13: Precision and Recall scores for the Eclipse 2020-03 R variants

Table 2: Precision and Recall Results in sets of randomly generated Eclipse
variants using the Random Strategy

Variants Precision Recall F1-Score

Mean
13 variants 0.78 0.73 0.75
50 variants 0.66 0.60 0.62

100 variants 0.64 0.59 0.61

Median
13 variants 1 1 1
50 variants 1 1 1

100 variants 1 1 1

Features
13 variants 148
50 variants 200

100 variants 206

when we set the generation percentage to 20% and the
number of input variants is equal to 100.

- for the mean scores, as expected the highest scores are
obtained when we use a percentage of 90% where almost

all the features have been selected from the input Eclipse
variant and the generated variants are almost similar. In
this case, we obtain a few number of features (see the last
three rows in Table 3). In order to explain the scores ob-
tained for the most important features, we take for exam-
ple the scores of “Feature 0” which contains more than
650 plugins. Its precision and recall scores are re-
spectively greater than 95% and 90%, which are consid-
ered as good values.

- When we set the percentage to 20% and the number of
input variants is equal to 50 or 100, the obtained mean

scores for recall and precision are relatively low. The
lowest values are 60% for recall and 66% for precision.
This comes from the fact that the number of identified
features is very high (> 196 features) which leads to low
average. But, we have obtained very good median scores
(greater than 97%) which mean that at least 50% of fea-
tures have been correctly identified.

16

Table 3: Precision (Prec) and Recall scores for sets of randomly generated Eclipse variants using different settings of the Percentage(Perc)-based Random Strategy

of
variants

Perc= 90% Perc= 80% Perc= 60% Perc= 40% Perc= 20%

Prec Recall Prec Recall Prec Recall Prec Recall Prec Recall

Mean
13 var. 0.92 0.97 0.90 0.91 0.96 0.92 0.95 0.91 0.85 0.79
50 var. 0.97 0.92 0.97 0.95 0.92 0.86 0.84 0.78 0.69 0.63

100 var. 0.98 0.93 0.95 0.90 0.87 0.81 0.82 0.76 0.66 0.60

Median
13 var. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
50 var. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 var. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

of
Features

13 var. 15 18 44 83 119
50 var. 32 48 89 140 196

100 var. 38 64 105 154 203

At the end, we can conclude that our approach gives in gen-
eral good results when we use variants that are generated us-
ing both random strategy or percentage-based strategy, with a
user-specified percentage, except the case where the percentage
equal to 20% and number of generated variants greater than 50.

At the end, based on all the obtained results (using the two
datasets), we can conclude that the recovered SAPL is consis-
tent, which shows the effectiveness of our bottom-up process
(answer to RQ1).

6.4. Answering Research Question 2

In this part of experiment, we used as input only the first
dataset (the official Eclipse release that contains 13 variants). In
order to evaluate the effectiveness of our derivation process, we
have used the SAPL that is recovered from these variants, and
our software architecture composer to derive “9 customized
variants”. After that, they are compared with the variants that
are created manually as explained above. Each “customized-
variant”, is composed of features that are identified from a
given input variant (Eclipse IDE variant) and single additional
feature. This latter should be identified from other input vari-
ants. We describe in Table 4 these “9 customized variants”. The
features that are identified from the candidate variant in the sec-
ond column are composed with the feature in the third column.

• The Eclipse EMF Sirius feature that is identified us-
ing our adapter belongs only to the Eclipse-Modeling
Tools variant. It is an Eclipse project which allows to
create graphical modeling workbenchs by leveraging the
Eclipse Modeling technologies, including EMF and GMF.

• The Eclipse Core Tracecompass feature is identified
from two variants: Eclipse-Parallel and Eclipse-CPP.
The Tracecompass is an open source project to solve
performance and reliability issues by reading and ana-
lyzing the traces and logs of a system [35].

• The Eclipse PTP Core feature is identified from the
Eclipse-Parallel variant. The PTP project provides
an integrated development environment to support the de-
velopment of parallel applications written in C, C++, and
Fortran [36].

In order to select the features that are identified from the
candidate variant, we have used the table that was generated in
during our bottom-up process (such as Table 1) and show the
distribution of identified features over the input Eclipse IDE
variants. We have estimated time spent to perform this a “me-
chanical” task that does not imply thinking. The estimated
value is less than 5 minutes. We estimated the time spent for
selecting the candidate feature and checking automatically the
satisfaction of all the constraints, and then derive the corre-
sponding variant. All these tasks take around 10 minutes which
is not significant.

Table 4: Description of the Customized Variants
Custom
Variants

Candidate
Input Variants

Added
Feature

Identified
from Variants

CV1 Eclipse-Java Eclipse
EMF Sirius

- Eclipse Modeling
ToolsCV2 Eclipse-JEE

CV3 Eclipse-DSL
CV4 Eclipse-Java Eclipse

Core
Tracecompass

- Eclipse-Parallel for
Scientific Computing

- Eclipse-CPP for
C/C++ Developers

CV5 Eclipse-JEE

CV6
Eclipse-
Testing

CV7 Eclipse CPP Eclipse PTP
Core

- Eclipse-Parallel for
Scientific ComputingCV8 Eclipse-Java

CV9 Eclipse RCP

From the other hand, we installed manually (without our
approach) each of the three features in the candidate variants
by using Eclipse’s graphical user interface: clicking on Help-
>Install New Software...). We add the following URLs to reach
the features update sites:

• http://download.eclipse.org/sirius/updates/releases/6.3.1/2019-06

• http://download.eclipse.org/tracecompass/stable/repository/

• https://download.eclipse.org/tools/ptp/updates/mars

At the end, we compared each derived Software Architec-
ture (SA) with the architecture of the corresponding manually
configured variant. The obtained MoJoFM and a2a scores for
each derived variant are presented in Table 5. As we can ob-
serve, all the values can be considered as good results. They

17

http://download.eclipse.org/sirius/updates/releases/6.3.1/2019-06
http://download.eclipse.org/tracecompass/stable/repository/
https://download.eclipse.org/tools/ptp/updates/mars

Table 5: MoJoFM and a2a Results
Custom
Variants MoJoFM a2a Number of Plugins

Derived SA. Manually created SA.
CV1 98.41 89.03 1039 722
CV2 97.44 91.26 1479 1196
CV3 99.27 90.80 1021 751
CV4 99.42 96.41 621 566
CV5 97.43 98.45 1099 1071
CV6 98.71 93.58 568 487
CV7 99.81 94.43 736 706
CV8 99.42 96.57 720 722
CV9 99.38 95.83 798 668

indicate that all derived architectures are almost the same with
their corresponding variants that are constructed manually. We
explain the difference between them as follows. When the size
(number of plugins) of the derived variant is greater than the
size of the input variant (e.g. CPP, JavaScript, Modeling, etc.),
this is due to the fact that in the derived variant there are some
plugins (which belong to other features) that have been added
for meeting the constraints that are discovered using BUT4Reuse.
For example, the high number of plugins in the first customized
variant (CV1: Sirius + Eclipse Java features) is due to the set of
constraints applied when we select the Eclipse EMF Sirius

feature. Example of these constraints include:

• “Eclipse EMF sirius implies Eclipse xtext xtend”

• “Eclipse EMF sirius implies mylyn eclipse ant”

• “Eclipse xtext xtend implies Eclipse xtend emf”

where the features “Eclipse xtext xtend” and “Eclipse
xtend emf” are not features of the official Eclipse-Java vari-
ant and they are not installed during the manual installation of
the Eclipse EMF sirius feature. But, based on the results
of constraints identification (see previous constraints), we ob-
served that they are required for creating a correct variant, while
the manual installation of the feature did not do it. In prac-
tice, developers should deal with this issue by manually find-
ing and adding the required plugins, which is a complex, time-
consuming and error-prone task. In the second customized vari-
ant (CV2: Sirius + Eclipse JEE features), the scores are slightly
improved. This is due to the fact that the required features al-
ready exist in the candidate official variant (Eclipse JEE). For
instance, the “mylyn eclipse ant” feature already belongs
to features of Eclipse JEE variant.

At the end, we can conclude that the obtained results show
the effectiveness of our approach. Indeed, taking into consider-
ation the discovered constraints can make the derived variants
more consistent and more pertinent than some variants that are
created manually. These are different from those used in the
evaluation of RQ1, which are ground truth variants that are cor-
rect because they have been created by experts and exist since a
long time. But for new variants created manually, we can obtain
incorrect products regarding the SAPL(answer to RQ2).

6.5. Genericity Guidelines
For achieving a more generalizable use of the proposed ap-

proach, we provide here guidelines for users on how to apply
our approach for other families of products than Eclipse-based
variants. Let us take the example of Java’s module system [37]
as a candidate Component Model. In a Java module-based ap-
plication, the primitive components are called modules. A mod-
ule is a collection of classes and packages that make up a com-
plete whole. It can be in the form of a directory or a JAR file.
A system typically uses multiple modules. Modules were intro-
duced to allow better modularity of the Java platform. To reuse
our approach, the developers can follow these guidelines:

1. Mapping our SAPL Metamodel to the candidate Compo-
nent Model (for instance, Java Modules):

• First, identify the Elements that compose an arti-
fact in the input variant (e.g., JavaModuleElement
and JavaConnectorElement). This will define the
granularity of the elements in a given artifact type.

• Second, identify the points of view that are related
to abstraction aspects. For the Java module system,
the views could be defined as: ServiceElement, In-
terfaceElement, PackageElement and ModuleEle-
ment.

2. Modify the implementation of our software architecture
adapter as follows:

• Create a Java class for each identified element.

• Create a Java class that performs the adaptation task
(for instance, JavaModuleSoftArchiAdpater). It
should implements the operations isAdaptable,
adapt, and construct of the Java Interface IAdapter.
The developers can use the implementation of our
OSGiSoftArchiAdapter class. The result of adap-
tation is an AdaptedModel.

• Create a Java class that performs the SAPL con-
struction by using as input the “AdaptedModel”.
This class should implement the operation:
createSAPLModel that is provided by our Java in-
terface:
ISoftwareArchitectureProductLineSynthesis.

3. Use GMF Dashboard Framework to customize our graph-
ical tool in order to visualize Java Module SAPL.

6.6. Threats to Validity
This experiment may suffer from some threats to the valid-

ity of its results:
On what concerns the internal validity, we can say that, as

authors have been involved in the manual installation of new
customized variants, the results would be biased. In fact, the
way of installing new features in a given Eclipse variant was
performed by following the official online documentation of the
candidate projects (such as EMF Sirius , or CoreTracecompass).
Knowing the way of how installing manually these features
does not impact the automatic derivation of such customized
variants using our composer, because the developer has only to

18

select the candidate features and the required features are auto-
matically selected and added by meeting the constraints that are
identified at the SAPL recovering step.

Besides, we have used in our evaluation the predefined Eclipse
features as ground truth to compare them with the features
that are identified using our approach. The fact that the pre-
defined features are realized manually by the Eclipse Projects
owners can be seen as a threat to validity, because some plugins
in the Eclipse projects are not categorized in any feature and
their feature files are not created by the owners. Therefore, by
using our approach these plugins are identified and grouped into
features but their scores are very low. But, the most important
features in the Eclipse projects which are well described by the
owners are identified using our approach with high precision

and recall scores.
The fact that we have instantiated and experimented our ap-

proach in the context of Eclipse-based SPL can be seen as a
limit for our study’s generalizability to other kind of compo-
nent/ service-based SPL. To mitigate this, we provided in our
approach a generic meta-model for component-based software
variants which can be easily instantiated for other kinds of com-
ponent/service based software variants. At the implementation
level, our plugin provides extension-points for other developers
to contribute by developing extensions for generating SAPL for
other kinds of component-based software product line, such as
applications built with Java 9+ module system.

The fact that Eclipse IDE variants are very well modular-
ized can be seen as a threat for the obtained results in our ex-
perimentation. In fact, using software variants created with op-
portunistic reuse with poor modularization has no effect on the
efficiency of our architecture extraction approach. But, it may
extract complex and highly coupled architecture. However, the
aim of our approah is also to enable the developer to construct
a multi-point of view SAPL. These points of view can help and
assist the developer to understand progressively the SAPL and
reduce the complexity of the created architecture. Indeed, it is
not easy to understand the whole system by analyzing all the
points of view mixed-up together.

To increase construct validity, we did not limit ourselves
to a single evaluation measure. Indeed, for measuring the per-
formance of the SAPL reconstruction process, our evaluation
was conducted using three measures (recall, precision, and
F1-Score), which are widely accepted in software engineering
research community [38]. In addition, for measuring the accu-
racy of the derived software architectures using our approach,
we used two well known architectural change metrics: Archi-
tecture2Architecture (a2a) [6] and MoJoFM [34].

7. Related Work

Assunção et al. [22] presented a complete survey on the ex-
isting SPL adoption approaches. They exposed three ways for
adopting SPLE: i) from scratch, by applying a complete do-
main analysis and variability management before application
engineering ii) by creating and updating the SPL when every
new product appears; and iii) by using an extractive approach,

which takes existing products as the basis for the core assets.
The extractive approach is also called SPL reengineering [11].

Our approach is built on BUT4Reuse where a new adapter
is proposed to consider software architectures. Independently
from SA, several extensions of BUT4Reuse have already been
developed and published in [21, 24, 39]. Martinez et al. [21]
proposed an approach for automating the extraction of model-
based SPL from model variants as follows. First, they iden-
tify features and detect constraints among them. After that, the
model variants are refactored to conform to an SPL approach.
Ziadi and Hillah [39] proposed an adapter for BUT4Reuse to
extract variability from Bytecode based applications. The work
in [40] is designed to identify variability in a set of statechart
variants. They have used variability mining algorithms to iden-
tify the relations between the variants. In our approach, we
first reverse-engineer the software architecture of each software
variant, after that, we reconstruct a SAPL model starting from
which the software architecture of each new software variant
can be effectively derived.

Besides, software architecture recovery (SAR) is a chal-
lenging problem, and several works in the literature have al-
ready proposed contributions to solve it (e.g., works cited in [41,
6, 42]). Most of these approaches are proposed for a single soft-
ware architecture recovery. Lutellier et al. [6] present a compar-
ative analysis of six SAR techniques. Maqbool et al. [42] pre-
sented a review of the hierarchical clustering techniques. In the
last decade several works had proposed approaches that aim to
recover component-/service-oriented architectures from exist-
ing systems. For example, the works in [43] and [44] are based
on the definition of a correspondence model between the code
elements and the architectural concepts. In [45, 46] a compo-
nent is considered as a group of classes collaborating to provide
a system function. Seriai et al. in [47] used FCA to perform the
component interface identification. The authors in [48] recover
BPMN models starting from service oriented systems that have
been generated from web applications. More recently, Shatnawi
et al. [49] proposed a new approach to extract reusable services
from the source code of a collection of software variants. Simi-
lar to BUT4Reuse principals, this approach is also based on the
comparison of input applications to identify and cluster similar
services. Some works have been proposed to recover software
architectures at run-time. For instance, [50] presented an ap-
proach for recovering at run-time software architectures from
component based systems and changing the system via manip-
ulating the recovered SA. The authors in [51] have proposed an
approach to recover at run-time architectures of a large-sized
component/service oriented systems by considering some spe-
cific use cases in order to reduce the complexity of the recov-
ered architectures. Compared to our work, we focused on the
software architecture recovery for a family of products not only
a single software architecture recovery.

Our approach is extensible by allowing to use one of the ex-
isting approaches for recovering software architecture of each
software variant. Regarding SAPL recovery, it is also exten-
sible. However, the organization of features in the recovered
SAPL model is based on the result of the feature identification
and constraint discovering. The BUT4Reue framework allows

19

to extend easily this activity by implementing one of the exist-
ing approaches such as FCA.

Besides, few works were proposed in the literature that aim
to recover SAPL models. The authors in [12] have presented a
mapping study of the existing approaches of software architec-
ture recovery for software product line. Shatnawi et al. [5] have
proposed a process for recovering software product line archi-
tectures of a family of object-oriented product variants. First,
they used FCA to migrate the object-oriented systems to a set of
component variants. Each variant is a set of similar components
that share the majority of their classes and dependencies. Sec-
ond, they used FCA to identify mandatory and optional com-
ponents. At the end, they build the SPLA as a feature model
where the dependencies between component variants are based
on relations of type alternative, OR, AND, require and exclude.
The authors in [4] have proposed an approach for recovering
software product line architecture from object-oriented product
variants. They identify mandatory components and variation
points of components as a main step. They analyze commonal-
ity and variability across product variants in terms of features.

Compared to our work, the recovered SAPL using our ap-
proach is both a feature model and a complete architecture that
shows all the architectural connections between components.
The particularity for us is that the software architectures are
considered as main artifacts. We believe that recovering SAPL
for such software architecture variants helps the developers not
only the derivation of new variants but also in the maintenance
and evolution of the family of products. Indeed, this SAPL al-
lows to have a specific documentation for each of the variants
and therefore to be able to maintain and evolve independently.

Wille et al. [52] have proposed a variability mining ap-
proach for Technical Architecture (TA) variants. They elimi-
nate the unnecessary information from the input TAs. The com-
ponents from the TAs are clustered by filtering them based on
their structural relations to eliminate unrealistic variability. Un-
fortunately, their approach can not recover an architecture de-
scribing all the variants. On the other hand, our solution can
derive new SAs and product variants starting from the recon-
structed SAPL. The proposed process is generic and can be ap-
plied for many component based-systems (or -software archi-
tectures).

Assunção et al. [53] proposed an approach called Model-
Vars2SPL. It allows to extract starting from UML class diagram
variants a feature model and a product line architecture (PLA)
which represents a global structure of the input variants. The in-
put of ModelVars2SPL consists of two parts: i) a set of model
variants, and ii) for each variant a feature set that denotes the
configuration of the features provided by the variant. Compared
to our work, we identify automatically the features from input
variants. Moreover, the generated SAPL using our approach
is both a feature model and an architecture where each feature
has it owns fragment of architecture. For large and complex in-
put models variants, our SAPL enables to make the understand-
ing progressive (per feature) which is more easy than analyzing
the complete architecture. In addition, our approach is generic
and can be applied on a variety of models (not only UML class
ones).

The authors in [54, 55] have proposed an approach for re-
covering a product line architecture (PLA) starting from a set
of source code variants. Their approach supports the identifica-
tion of a minimum subset of cross-product architectural infor-
mation through the identification and removal of outliers. The
recovered PLA using their approach is presented using UML
package and class diagrams, module dependency graphs and
design structure matrices. The UML diagrams are annotated to
highlight the commonality and variability related to assets. An-
other approach has been proposed recently by Lee et al. in [56]
which aims to recover a PLA starting from a family of products
developed with the clone-and-own approach. The PLA is an
abstraction of all possible product variants of an SPL. For deter-
mining common and variable classes, they use the Harmonized
Total Constant Commonality Indices (HTCCIPL) of packages
or classes of a product line. They applied the approach on set
of Apo-Games variants. The PLA in their work is presented as
a package diagram or class diagram annotated with HTCCIPL
values.

Compared to our approach, their approach applies on small-
to medium-sized software variants where the variability is iden-
tified at low level artifacts. In addition, the derivation of new
software architecture variants starting from their recovered PLA
has not been addressed.

The authors in [57] have compared in term of precision and
recall five search algorithms to locate features over families
of product models guided by latent semantic analysis (LSA),
a technique that measures similarities between textual queries.
Their results show that search-based software engineering (SBSE)
techniques can be applied to locate features in product mod-
els. Recently machine learning techniques are widely used for
feature location process [58, 59, 60]. The authors in [58] pro-
posed a machine learning-based approach for feature location
on models. The goal is to identify the model fragments that
best realizes specific features. They use different subsets of a
knowledge base to learn how to locate unknown features. Their
approach analyze the influence of three model fragment proper-
ties: density, multiplicity, and dispersion. Density measures the
percentage of model elements that are present in a model frag-
ment. Multiplicity measures the number of times that the model
fragment appears in the model. Dispersion measures the ratio
of connected elements in the model fragment (Model elements
may or may not be connected in the model). Their results show
that density and dispersion properties significantly influence the
feature location results. In our approach, thanks to the extensi-
bily mechanism of BUT4Reuse Framework, we argue that it is
possible implement and improve the feature identification pro-
cess by using one of existing machine learning approach.

8. Conclusion

Recovering architecture models of large-sized software prod-
ucts is an important activity in software maintenance and evolu-
tion. These architecture models offer a good documentation to
understand the software product before changing it. For large
software products with several software variants, these models
are of great interest since they enable also to see the common

20

and variable features between software variants. SPL Reverse
Engineering (SPL-RE) processes enable to recover models with
such a rich structure, including the variable part in the product
variants and enable to see the variability points.

In our work, we focused on component- and service-based
software variants and proposed in this paper: i) a (meta-)model
for architectures of component/service-based software product
line which describes the rules for defining an SAPL, ii) the
design of a generic SPL-RE process for building architecture
models (SAPL models) by analyzing software variants, iii) a
forward engineering process that uses the recovered SAPL to
derive new consistent and useful software architecture variants,
iv) an implementation of the approach in the context of OSGi-
based systems, and v) an experimentation of this approach on
a set of Eclipse releases. The experimentation that we con-
ducted enabled us to evaluate the efficiency of the process in
identifying correct features, compared to those identified/built
by experts. In addition, it enabled us to measure the accuracy
of architectures of products derived from the recovered SAPL.

At the implementation level, we have proposed in this work
a tool chain completely based on Eclipse Modeling Framework,
Graphical Modeling Framework and FeatureIDE Framework [17].
It consists of: i) a graphical tool for creating SAPL and defin-
ing constraints between features, ii) a graphical tool for creat-
ing and updating each feature’s software architecture, iii) a new
BUT4Reuse adapter related to software architecture variants.
The adapter is designed with a set of parameters to consider
different architectural points of view (services, interfaces, pack-
ages and extensions), iv) a FeatureIDE Software Architecture
Composer for selecting one possible configuration and check-
ing if it satisfies all the constraints and than deriving the corre-
sponding software architecture.

As perspectives to this work, we plan to study the enrich-
ment of SPL reverse engineering of large component/service-
based variants by including a learning module which exploits
existing SPLs and their variants/features to identify features in
a smarter way (by learning from existing experiences). In addi-
tion, we envisage the instantiation of the process for other com-
ponent/service frameworks, or just investigate its use with Java
modules for exploring variability in standard Java applications.
Our approach is applicable on any set of large software prod-
uct variants: i) other IDEs (from Jetbrains or Microsoft for in-
stance), ii) Linux distributions, iii) existing code bases of com-
panies from which they used to derive new products for their
new customers, and many other software development settings.
This requests of course a set of adapters to be developed for
each case, but the general philosophy of our approach remains
the same.

References

[1] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Software
Product Lines - Concepts and Implementation, Springer, 2013.

[2] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, Fea-
tureIDE: An extensible framework for feature-oriented software devel-
opment, Science of Computer Programming 79 (0) (2014). doi:http:

//dx.doi.org/10.1016/j.scico.2012.06.002.

[3] J. Martinez, T. Ziadi, M. Papadakis, T. F. Bissyandé, J. Klein, Y. Le Traon,
Feature location benchmark for extractive software product line adoption
research using realistic and synthetic eclipse variants, Information and
Software Technology 104 (2018) 46–59.

[4] H. Eyal-Salman, A.-D. Seriai, Toward recovering component-based soft-
ware product line architecture from object-oriented product variants, in:
Proc. of SEKE, 2016, pp. 1–7.

[5] A. Shatnawi, A.-D. Seriai, H. Sahraoui, Recovering software product line
architecture of a family of object-oriented product variants, J. Syst. Softw.
(JSS) 131 (C) (2017) 325–346.

[6] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidović,
R. Kroeger, Measuring the impact of code dependencies on software ar-
chitecture recovery techniques, IEEE TSE 44 (2) (2018) 159–181.

[7] L. Bass, P. Clements, R. Kazman, Software architecture in practice, 3rd
edition, Addison-Wesley Professional, 2012.

[8] B. P. Lientz, E. B. Swanson, Software Maintenance Management, Addi-
son Wesley, Reading, MA, 1980.

[9] J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of software
architecture recovery techniques, in: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2013, pp.
486–496.

[10] J. Martinez, W. K. Assunção, T. Ziadi, Espla: A catalog of extractive spl
adoption case studies, in: Proceedings of the 21st International Systems
and Software Product Line Conference-Volume B, 2017, pp. 38–41.

[11] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
A. Egyed, Reengineering legacy applications into software product lines:
a systematic mapping, Empirical Software Engineering 22 (6) (2017)
2972–3016.

[12] Z. T. Sinkala, M. Blom, S. Herold, A mapping study of software architec-
ture recovery for software product lines, in: Companion Proceedings of
ECSA, 2018, pp. 1–7.

[13] M. L. Kerdoudi, T. Ziadi, C. Tibermacine, S. Sadou, Recovering soft-
ware architecture product lines, in: 2019 24th International Conference
on Engineering of Complex Computer Systems (ICECCS), IEEE, 2019,
pp. 226–235.

[14] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Bottom-up
adoption of software product lines: a generic and extensible approach, in:
Proc. of SPLC, Nashville, TN, USA, 2015, pp. 101–110.

[15] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Bottom-up
technologies for reuse: automated extractive adoption of software product
lines, in: Proc. of ICSE Companion, IEEE Press, 2017, pp. 67–70.

[16] J. Martinez, Mining software artefact variants for product line migration
and analysis, Ph.D. thesis, University Pierre et Marie Curie and University
of Luxembourg (2016).

[17] T. Thüm, T. Leich, S. Krieter, Feature modeling and development with
featureide, Modellierung 2018 (2018).

[18] L. Northrop, P. Clements, F. Bachmann, J. Bergey, G. Chastek, S. Cohen,
P. Donohoe, L. Jones, R. Krut, R. Little, et al., A framework for soft-
ware product line practice, version 5.0, SEI.–2007–http://www. sei. cmu.
edu/productlines/index. html (2007).

[19] K. Pohl, G. Böckle, F. J. van Der Linden, Software product line engineer-
ing: foundations, principles and techniques, Springer Science & Business
Media, 2005.

[20] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature
models 20 years later: A literature review, Inf. Syst. 35 (6) (2010) 615–
636. doi:10.1016/j.is.2010.01.001.
URL http://dx.doi.org/10.1016/j.is.2010.01.001

[21] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Automating
the extraction of model-based software product lines from model variants
(T), in: 30th IEEE/ACM, ASE , Lincoln, NE, USA,, 2015, pp. 396–406.

[22] W. K. G. Assunção, S. R. Vergilio, Feature location for software product
line migration: a mapping study, in: 18th SPLC, Companion Volume,
Italy, 2014, pp. 52–59.

[23] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Bottom-up
technologies for reuse: automated extractive adoption of software product
lines, in: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume, 2017, pp. 67–70.

[24] L. Li, J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Mining
families of Android applications for extractive SPL adoption, in: Proceed-
ings of the 20th SPLC 2016, Beijing, China, 2016, pp. 271–275.

21

https://doi.org/http://dx.doi.org/10.1016/j.scico.2012.06.002
https://doi.org/http://dx.doi.org/10.1016/j.scico.2012.06.002
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001

[25] M. L. Kerdoudi, T. Ziadi, C. Tibermacine, S. Sadou, A bottom-up ap-
proach for reconstructing software architecture product lines, in: Proc. of
the 13th ECSA: Companion Proceedings, ACM, 2019, pp. 46–49.

[26] J. McAffer, P. VanderLei, S. Archer, OSGi and Equinox: Creating highly
modular Java systems, Addison-Wesley Professional, 2010.

[27] G. Perrouin, J. Klein, N. Guelfi, J.-M. Jézéquel, Reconciling automation
and flexibility in product derivation, in: Proc of. the 12th SPLC, IEEE,
2008, pp. 339–348.

[28] T. Ziadi, L. Frias, M. A. A. da Silva, M. Ziane, Feature identification from
the source code of product variants, in: 16th CSMR 2012, Hungary, 2012,
pp. 417–422. doi:10.1109/CSMR.2012.52.

[29] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, Y. L. Traon, Name sug-
gestions during feature identification: The VariClouds approach, in: Pro-
ceedings of the 20th SPLC , Beijing, China, 2016, pp. 119–123.

[30] P. B. Kruchten, The 4+ 1 view model of architecture, IEEE software
12 (6) (1995) 42–50.

[31] A. Bryan, J. Ko, S. Hu, Y. Koren, Co-evolution of product families and
assembly systems, CIRP annals 56 (1) (2007) 41–44.

[32] J. C. Kirchhof, M. Nieke, I. Schaefer, D. Schmalzing, M. Schulze, Variant
and product line co-evolution, in: Model-Based Engineering of Collabo-
rative Embedded Systems, Springer, 2021, pp. 333–351.

[33] C. Seidl, F. Heidenreich, U. Aßmann, Co-evolution of models and feature
mapping in software product lines, in: Proceedings of the 16th Interna-
tional Software Product Line Conference - Volume 1, SPLC ’12, Asso-
ciation for Computing Machinery, New York, NY, USA, 2012, p. 76–85.
doi:10.1145/2362536.2362550.
URL https://doi.org/10.1145/2362536.2362550

[34] Z. Wen, V. Tzerpos, An effectiveness measure for software clustering al-
gorithms, in: Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004., IEEE, 2004, pp. 194–203.

[35] E. Foundation, Eclipse trace compass project,
https://www.eclipse.org/tracecompass/.

[36] E. Foundation, Eclipse parallel tools platform (ptp),
https://www.eclipse.org/ptp/.

[37] S. Mak, P. Bakker, Java 9 Modularity: Patterns and Practices for Devel-
oping Maintainable Applications, ” O’Reilly Media, Inc.”, 2017.

[38] G. Salton, M. J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, Inc., New York, NY, USA, 1986.

[39] T. Ziadi, L. M. Hillah, Software product line extraction from bytecode
based applications, in: Proc. of the 23rd (ICECCS), IEEE, 2018, pp. 221–
225.

[40] D. Wille, S. Schulze, I. Schaefer, Variability mining of state charts, in:
Proceedings of the 7th International Workshop on Feature-Oriented Soft-
ware Development, 2016, pp. 63–73.

[41] S. Ducasse, D. Pollet, Software architecture reconstruction: A process-
oriented taxonomy, IEEE TSE 35 (4) (2009) 573–591.

[42] O. Maqbool, H. Babri, Hierarchical clustering for software architecture
recovery, IEEE TSE 33 (11) (2007) 759–780.

[43] S. Chardigny, A. Seriai, M. Oussalah, D. Tamzalit, Extraction of
component-based architecture from object-oriented systems, in: Proc. of
WICSA, IEEE, 2008, pp. 285–288.

[44] A. Seriai, S. Sadou, H. A. Sahraoui, Enactment of components extracted
from an object- oriented application, in: Proc. ECSA, Springer, 2014, pp.
234–249.

[45] S. Allier, H. A. Sahraoui, S. Sadou, S. Vaucher, Restructuring object-
oriented applications into component-oriented applications by using con-
sistency with execution traces, in: Proc. of the 13th CBSE’10, Springer,
2010, pp. 216–231.

[46] S. Allier, S. Sadou, H. A. Sahraoui, R. Fleurquin, From object-oriented
applications to component-oriented applications via component- oriented
architecture, in: Proc. of the 9th WICSA, Colorado, USA, IEEE, 2011,
pp. 214–223.

[47] A. Seriai, S. Sadou, H. Sahraoui, S. Hamza, Deriving component inter-
faces after a restructuring of a legacy system, in: Proc. of WICSA, IEEE,
2014, pp. 31–40.

[48] M. L. Kerdoudi, C. Tibermacine, S. Sadou, Opening web applications for
third-party development: a service-oriented solution, Journal of SOCA
10 (4) (2016) 437–463.

[49] A. Shatnawi, A. Seriai, H. A. Sahraoui, T. Ziadi, A. Seriai, Reside:
Reusable service identification from software families, J. Syst. Softw.
(JSS) 170 (2020) 110748. doi:10.1016/j.jss.2020.110748.

URL https://doi.org/10.1016/j.jss.2020.110748

[50] G. Huang, H. Mei, F.-Q. Yang, Runtime recovery and manipulation of
software architecture of component-based systems, Journal of ASE 13 (2)
(2006) 257–281.

[51] M. L. Kerdoudi, C. Tibermacine, S. Sadou, Spotlighting use case specific
architectures, in: Proc. the 12th ECSA, Springer, 2018, pp. 236–244.

[52] D. Wille, K. Wehling, C. Seidl, M. Pluchator, I. Schaefer, Variability min-
ing of technical architectures, in: Proceedings of the 21st SPLC - Volume
A, ACM, 2017, pp. 39–48.

[53] W. K. Assunção, S. R. Vergilio, R. E. Lopez-Herrejon, Automatic extrac-
tion of product line architecture and feature models from uml class dia-
gram variants, Information and Software Technology 117 (2020) 106198.

[54] C. Lima, I. Machado, M. Galster, C. von Flach G. Chavez, Recovering
architectural variability from source code, in: Proceedings of the 34th
Brazilian Symposium on Software Engineering, 2020, pp. 808–817.

[55] C. Lima, W. K. Assunção, J. Martinez, I. do Carmo Machado, C. von
Flach G. Chavez, W. D. Mendonça, Towards an automated product line
architecture recovery: the apo-games case study, in: Proceedings of the
VII Brazilian Symposium on Software Components, Architectures, and
Reuse, 2018, pp. 33–42.

[56] J. Lee, T. Kim, S. Kang, Recovering software product line architecture
of product variants developed with the clone-and-own approach, in: 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC), IEEE, 2020, pp. 985–990.

[57] J. Font, L. Arcega, Ø. Haugen, C. Cetina, Achieving feature location in
families of models through the use of search-based software engineering,
IEEE Transactions on Evolutionary Computation 22 (3) (2017) 363–377.

[58] M. Balları́n, A. C. Marcén, V. Pelechano, C. Cetina, On the influence of
model fragment properties on a machine learning-based approach for fea-
ture location, Information and Software Technology 129 (2021) 106430.

[59] C. S. Corley, K. Damevski, N. A. Kraft, Exploring the use of deep learn-
ing for feature location, in: 2015 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE, 2015, pp. 556–560.

[60] A. C. Marcén, J. Font, Ó. Pastor, C. Cetina, Towards feature location in
models through a learning to rank approach, in: Proceedings of the 21st
International Systems and Software Product Line Conference-Volume B,
2017, pp. 57–64.

22

https://doi.org/10.1109/CSMR.2012.52
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1145/2362536.2362550
https://doi.org/10.1016/j.jss.2020.110748
https://doi.org/10.1016/j.jss.2020.110748
https://doi.org/10.1016/j.jss.2020.110748
https://doi.org/10.1016/j.jss.2020.110748

	Introduction
	Background & Problem Illustration
	Software Product Line Engineering
	Extractive Adoption of SPLs
	Problem Illustration

	Approach Overview
	Bottom-Up Process for Recovering SAPL
	SAPL Meta-model for Component-Based Software Architecture Variants
	Mapping of the SAPL Metamodel to OSGi Component Model
	Reverse-Engineering of Software Architecture Variants
	SAPL Construction

	SAPL Forward-Engineering Process
	Experimentation and Validation
	Dataset: Eclipse Variants
	Evaluation Metrics
	Answering Research Question 1
	Results of using the first Dataset
	Results of using the second Dataset

	Answering Research Question 2
	Genericity Guidelines
	Threats to Validity

	Related Work
	Conclusion

