

A possible strong impact of tidal power plant on silver eels' migration

Thomas Trancart, Nils Teichert, Jézabel Lamoureux, Elouana Gharnit,

Anthony Acou, Eric de Oliveira, Romain Roy, Eric Feunteun

► To cite this version:

Thomas Trancart, Nils Teichert, Jézabel Lamoureux, Elouana Gharnit, Anthony Acou, et al.. A possible strong impact of tidal power plant on silver eels' migration. Estuarine, Coastal and Shelf Science, 2022, 278, pp.108116. 10.1016/j.ecss.2022.108116. hal-03887351

HAL Id: hal-03887351 https://hal.sorbonne-universite.fr/hal-03887351v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 TITLE

- 2 A possible strong impact of tidal power plant on silver eels' migration
- 3

4 AUTHOR LIST AND AFFILIATIONS

Thomas TRANCART^{1*}, Nils TEICHERT¹, Jézabel LAMOUREUX¹, Elouana GHARNIT¹, Anthony ACOU²,
 Eric DE OLIVEIRA³, Romain ROY³, Eric FEUNTEUN¹

- 7
- 8 * : Corresponding author

9 1 : Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD,
10 SU, UCN, UA, Station Marine de Dinard – CRESCO, 38 rue du Port Blanc 35800 Dinard, France

2 : Agence Française pour la Biodiversité, UMS AFB-CNRS-MNHN PatriNat, Station Marine du MNHN,Dinard, France

13 3 : EDF R&D LNHE - Laboratoire National Hydraulique et Environnement, 6 Quai Watier, 78401,
 14 Chatou, Cedex, France

15

16 ABSTRACT

Very few tidal power plants exist in the world. The first one was built in the Rance estuary
(Brittany, France) in 1966 and the second one in South Korea. However, with the increasing demand
in renewable energy, other tidal power plant projects are being studied.

These power plants are larger than unidirectional fluvial hydropower plants and strongly modify the natural tidal cycle in estuarine systems. As such, their effect on megafaunal movements might strongly differ from those caused by unidirectional fluvial hydropower plants and should be specifically considered and studied before the development of similar constructions.

In this study, an acoustic telemetry array was deployed to track 25 silver eels released 16 km upstream of the Rance tidal power dam. Only 1/3 of the tagged eels passed the dam and reached the sea. Data suggested that eels interrupted their migration up to 5 km upstream of the dam. We assume that the noise and tidal disturbance generated by the dam could lead to a disruption of a high proportion of silver eels' reproductive migration.

30 KEYWORDS

- 31 Anguilla Anguilla
- 32 Escapement
- 33 Conservation policy
- 34 Acoustic telemetry
- 35 Hydropower plant
- 36 Turbines
- 37 Tidal power plant
- 38

39 1. INTRODUCTION

40 In France, the proportion of renewable energy raw consumption increased significantly from 41 about 9% in 2005 to 19.1 % in 2020 (Phan et al., 2021). Investments should increase massively in the 42 coming years as the French directive 2009/28/CE set a global target of 33 % by 2030. In comparison 43 to the total energy production in France by year, i.e. 307 TWh, the contribution of marine energy 44 remains very low, with only 0.5 TWh produced. However, this production is made by only one facility: 45 the tidal power plant of Rance. The Rance estuary, in northwestern France, is one of the rare estuaries in the world equipped with a tidal power plant. This plant is the second largest in the world, 46 47 measuring 750 m long and creating an upstream retention basin of 22 km², which is a natural ria of 48 20 m maximum depth. The power plant can produce around 500 GWh per year and participate in up 49 to 17 % of the Region's energy production, which provides approximately the supply for a city of c.a. 200,000 inhabitants. This estuary is also an area with a large fish biodiversity (Le Mao, 1985), and the 50 51 eel population appears quite important across the river basin, although this is not verified (no 52 fisheries and no regular scientific sampling).

53 As the recruitment rate of European eels has dramatically declined (factor of ten since the late 54 1970s, (Dekker et al., 2003; ICES, 2021, 2018), since 2014 the species is considered as a critically 55 endangered species by the International Union for Conservation of Nature (Jacoby and Gollock, 56 2014). In order to restore the European eel stock, the European Union has adopted an eel regulation 57 which mandates, in each member state, the implementation of measures to reduce anthropogenic 58 impact on eels (e.g. reducing commercial fishing activity, taking measures to make rivers passable or temporary switching-off of hydro-electric power turbines, restoring habitats, etc.) (ICES, 2022). 59 60 Hydroelectric turbines are listed as a major impact on silver eel migration, causing injuries (Bruijs and 61 Durif, 2009), direct mortality (Winter et al., 2006; Bruijs and Durif, 2009), delays to the timing of migration (Behrmann-Godel and Eckmann, 2003), and hinder downstream migration (Durif et al.,
2003). A common objective of an escapement to the sea of at least 40 % of the silver eel biomass
"relative to the best estimate of escapement that would have existed if no anthropogenic influences
had impacted the stock" was also set (UE Regulation No.1100/2007, European Commission, 2007).

66 The silver eel stage corresponds to the downstream migrants, leaving the watersheds after 67 several years of growth to reach the Sargasso Sea for breeding (Aarestrup et al., 2009; Tesch, 1977). 68 The downstream migration of European silver eels depends on local conditions that act at three 69 different phases. First, temperature, photoperiod and food regime influence the growth and maturation of the eels during their growth phase (yellow eels, Daverat et al., 2012). Second, the 70 71 increase in temperature and photoperiod during spring stimulates the neuroendocrine system that 72 promotes metamorphosis from yellow to silver eels (Dufour, 2003; van den Thillart et al., 2009. Third, 73 at the end of summer, silver eels are physiologically ready to migrate (Durif et al., 2006), with 74 migratory behaviour being triggered and driven by environmental factors such as strong water 75 discharge along rivers (rainfall, flood events, dam openings, and atmospheric depression) and low 76 light conditions (increased turbidity and moon phases) (Winter et al., 2006; Bultel et al., 2014).

77 Because of the scarcity of tidal power plants in the world, at the best of our knowledge, no 78 study investigated the silver eel movement or migration in such highly modified estuary. In contrast, 79 numerous studies have focused on direct impacts of turbines on eel migration (e.g. mortalities or 80 injuries) in classical hydropower turbines, *i.e.* dams with turbines on unidirectionnal-water-flow river 81 (see for instance Winter, Jansen, & Bruijs, 2006; Bruijs & Durif, 2009). However, the structure and 82 functioning of tidal power plants remain strongly different from classical hydropower dams for four 83 main reasons. Firstly, their sizes are often more important, i.e. the Rance tidal power plant is 750 m 84 long, with 24 turbines for a 240 MW total instantaneous power and in South-Korea, the Sihwa Lake 85 plant (the most powerful tidal power plant in the world), is 10 km long and 254 MW total power. 86 Fluvial hydropower dams on a large rivers are usually equipped by 4 to 8 turbines, as for instance the Kembs (6 turbines, 170 m long) or Fessenheim (4 turbines, 120 m long) plants in the Rhine River, 87 88 which are two of the most largest river powerplants in France. Secondly, tidal power plants are 89 bidirectional as they operate during the two tidal ways (ebb and flood tides). Thirdly, these dams 90 maximize the hydraulic potential between high and low tides, which creates artificial tidal rhythms 91 and sharply modifies hydrodynamic regimes (duration of the tides and velocity of the currents). 92 Finally, the turbine rotation speeds are lower than in large rivers hydropower turbines (93 Hz in 93 Rance versus >100 Hz for others). Given these particularities, specific studies on tidal power plants 94 should be implemented to investigate their impacts compared to a classic fluvial hydropower power 95 plant.

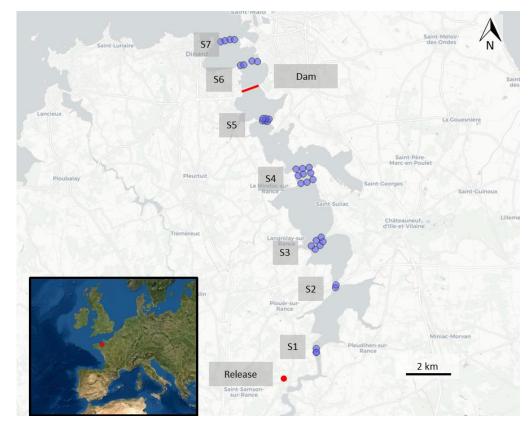
Accordingly, this study aimed to investigate the complete silver eel migration based on acoustic telemetry approach, from the top of the estuary to the mouth, via the tidal power plant. In this aim, the escapement of silver eels (number of tagged eels that reached the sea versus the total number of tagged eels that started the migration) and the progression in the estuary will be precisely described.

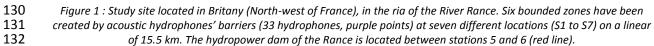
101 2. MATERIAL AND METHODS

102

2.1. Study sites and hydrophone arrays

The study took place in the Rance estuary which opens into the English Channel (48°38'01.5"N 103 104 2°02'24.4"W), but is impaired by a large 750 m long hydropower dam (Fig. 1). The overall length of the river is 127 km and the watershed is 1,117 km². Close to the estuary (10 km from tidal limit), the 105 river has a minimum discharge of 0.055 m³·s⁻¹ to reach 0.55 m³·s⁻¹ during flooding periods (Guenroc -106 1938/2014, barrage de Rophemel - Banque HYDRO, DREAL Bretagne). Fish downstream and 107 108 upstream movement to cross plant is possible by three ways: 1) a lock on its left bank, 2) a tidal 109 power plant composed of 24 Kaplan turbines (4 blades and a rotation speed of 93 rpm, diameter = 5.35 m), 3) and six sluice gates on its right bank (Fig. 2). The Kaplan turbines, that are the most 110 prevalent in Europe, induce a mortality of 8.7 % for eels in the Rance tidal power plant (Briand et al., 111 112 2016). The particularity of tidal barrage is to make use of the potential energy by maximizing the water level difference between high and low tides, creating strong artificial tidal rhythms, both 113 114 during filling and emptying the basin (double action cycle).


115


116

2.2. Acoustic telemetry system

Passive acoustic telemetry affords valuable information about escapement rates, activity 117 periods, swimming distances, speeds, and route choices (Trancart et al., 2018) even if the exact 118 119 position of the tagged individuals is not known between two successive detection events. Therefore, 120 prior to eel migration period, we deployed 33 hydrophones (Thelma TBR700 and Vemco VR2W) 121 along the Rance estuary from the tidal limit to the mouth of the Rance river, totalising 15.5 km of 122 survey. Each hydrophone was attached about 15 cm from the bottom to a mooring weight of 80 kg. Preliminary range tests indicated that each hydrophone could detect fish within a radius of 200 m in 123 124 classic water turbidity and current conditions. To maximise the probability of detection, the hydrophone network was designed with seven acoustic arrays (composed of two to six 125 126 hydrophones), creating six bounded zones (Fig 1). Stations S1 to S5 were located 12.8 km to 1.5 km

- 127 upstream of the dam whereas stations S6 and S7 were deployed downstream of it. The 33
- 128 hydrophones were deployed until mid-May 2020, when eel migration was over.

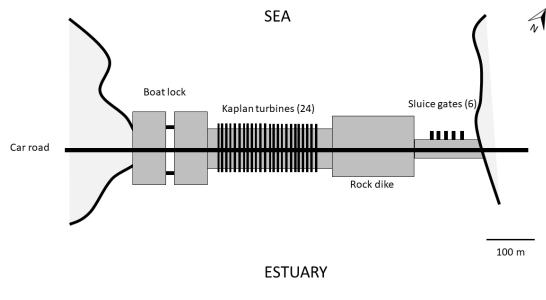


Figure 2: Scheme of the dam on the Rance river.

137 2.3. Collection and tagging of silver eels

138 Scientific capture of silver eel in the Rance river being unsuccessful, individuals (n = 25) were 139 captured in fall 2019 by a professional fishery using triple fyke nets in the lake Grand lieu (47°05'31.8"N 1°38'59.0"W), located about 200 km away from the Rance estuary. All eels were 140 transported to the laboratory (200 km) for tagging and maintained in large tanks (2 x 400 l) filled with 141 water from the Grand lieu lake. The same day fish were transported, they were anesthetized with 142 143 benzocaine (150 mg/L) and tagged with acoustic transmitter (ID-LP9L-69 kHz Thelma Biotel, Trondheim, Norway; transmission interval 30-90 seconds) of 9 mm diameter, 24 mm long and 144 145 weighing 4 g in air, respecting the 2% transmitter/body mass ratio (Winter, 1996) in internal cavity. 146 Incisions (20 mm long) were located on the ventral face, 10 cm before the anus, closed with 147 absorbable sterile sutures (3–0 Ethicon Monocryltm, Ethicon Ltd., Livingston, UK) and disinfected 148 with bactericidal antiseptic (0.05% chlorhexidine). Once the eels were anesthesied, the durations of 149 anaesthesia were under 5 minutes. Total length (mm), body weight (g) of each individual was 150 recorded as well as pectoral fin length (mm) and average eye diameter (mm) to determine the 151 maturation stage. The mean total length was 728 mm (sd = 74 mm), the mean total weight 802 g (sd 152 = 287 g), and all the tagged eels were classified as silver eels using standard external characteristics 153 of silvering (Acou et al., 2005). All tagged eels were assumed to be females based on body length that 154 represent well known sexually dimorphic features (Tesch, 2003). Eels equipped with transmitters 155 were finally released after one hour of acclimatation in a small brackish tributary of the river Rance 156 (i.e. Le moulin River) on the 21st of November 2019, about 16 km upstream from the dam and 2 km 157 from station 1 (Fig. 1). All fish were handled following the European Union regulations concerning 158 the protection of experimental animals. Accordingly, the research protocol was approved by the Ethics and Animal Experimentation Committee of the MNHN (CEEA – 068, # 2019-68-108) and the 159 160 French Ministry of research and the tagging was realized by an authorized person only.

161

162 **2.4.** Individual metrics

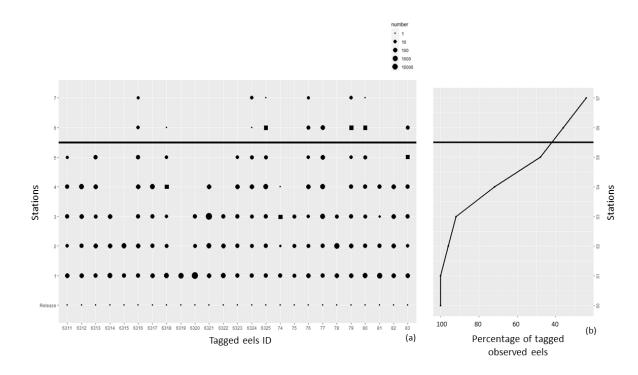
Following eel release, both date and time of the beginning of the migration were determined by the first detection at the first station. The proportion of downstream migrants was defined as the number of tagged silver eels observed at the first station in comparison to the total number of tagged eels (n = 25). The individual progression of fish in the estuary was investigated by computing the presence of tagged eels at each station and the total number of individual detections at each station. A large number of detections for a given fish at a specific station indicates a slow passage or a stationary phase close to the hydrophone. To remove obvious detection failures, a fish observed at a given station was considered as observed at all the previous stations. These extrapolated data were used to compute the line loss and the escapement rate, but not for temporal estimation. The line loss along the estuary was investigated by computing the percentage of tagged eels observed at each station in comparison to the total number of tagged eels (n = 25). A polynomial model (degree 3) was then fitted, and the derivative was computed to determine the slope breaks, corresponding to stations where the longitudinal progression dropped.

176 Finally, the escapement success was estimated with several metrics. The final escapement was 177 defined as the total number of tagged eels detected by at least at one station located downstream of 178 the tidal power plant against the total number of tagged eels. The time to cross the estuary was 179 defined by the time difference between the last upstream (station 1) and the first downstream 180 detections (stations 6 or 7). The time to cross the tidal power station was defined by the time 181 difference between the last upstream (station 5) and the first downstream detections (stations 6 or 182 7). The individual date and time of escapement was then linked with the tidal power plant log to 183 determine the operational status of the dam, i.e. turbines power turn on or off. At the power plant, 184 silver eel may escape to the sea via three different ways: passing through one of the 24 turbines, 185 through the boat lock or the sluice gates. All the opening of the boat lock are summarized in a log 186 book, and linked with the individual time-date of escapement in order to see if the boat lock was a 187 possible escapement way for each tagged eel.

188

189 **2.5.** Array efficiency

190 The efficiency of the hydrophone array was determined for each station (except the last) as 191 the ratio between the number of eels detected versus the total number of eels that cross the station 192 (i.e. detected and extrapolated).


193 **3. RESULTS**

All the tagged silver eels were detected by at least one hydrophone located in the estuary, indicating that they all displayed a migratory behavior (Fig.3). The efficiency of the array was constant and high through the upstream estuary, ranged from 92 to 100 % (S5 – S1). Only the detection in the station 6 (downstream the power plant) was lower (66.7 %, Table 1). Among the 25 tagged eels, 76 % (n = 19) moved before the third day after their release and 100 % before the 12^{th} day. A non-constant line loss was observed along the estuary, i.e. 100% of tagged eels were detected at the first station, 96 % at the second, 92 % at the third, and 72 % at the fourth (Fig. 3). But only 48

- % of tagged eels were detected at the fifth station, located just before the tidal power plant. Analysis
 of the slope of the derivative showed an inflexion point located between stations S4 and S5. Finally,
 36 % of silver eels were detected downstream of the tidal power dam, representing an escapement
 rate of 75 % (ratio between the total number of tagged eels observed at station #5, and the number
 of eels observed at stations #6 and #7).

Table 1: Efficiency of the detection array

Station	Efficiency
	(%)
\$1	100
S2	100
S3	95.6
S4	94.4
S5	91.6
S6	66.7

210

Figure 3-a: Variation of spatial detection evolution of the 25 tagged silver eels within the Rance estuary for each detection station ordered from upstream release site to the sea (S7). The size of the dots indicates the number of records. Black squares indicate extrapolated detections. Figure 3-b: Percentage of tagged observed eels at each stations. The black lines indicate the position of the tidal power plant.

The median time to cross the estuary and the power plant was 6 days with a range from 4.0 to 82.2 days. Among the 9 individuals that crossed the dam, 8 (98%) did it during night-time (between 9 PM and 4 AM) and all the tagged eels crossed the tidal power plant through one of the 24 turbines during ebb-tide periods. None of the date and time of crossing events corresponded to the timing of opening of the boat lock (no boat traffic at night during the study period) or the sluice gates. The median time to pass the dam was 68.4 minutes, ranging from 53 to 122 minutes. Finally, for the 9 escaped eels, no reverse movement from station S5 to upper stations was observed.

222 No significative difference occurred between the eels that crossed the dam and the eels 223 blocked in the estuary either in the total length (GLM, p = 0.3) or in total weight (GLM, p = 0.55).

224

4. DISCUSSION

The most striking result of this study is the low apparent escapement of silver eels (36%). The range of silver eels escapement from a hydropower station is very large, with a lot of adapted structures with low impact, as for instance in Behrmann-Godel and Eckmann (2003, 78 % of escapement), in Brown et al. (2009, 90 % of escapement) and Piper et al. (2013, 76 and 65 % in two successive years with 5 different blocking structures). On the other hand, some hydropower 231 structures enable very low escapement down to 23%, as for instance Pedersen et al. (2012) . In the 232 present study, the escapement from the tidal powerplant, defined as the ratio of tagged eels 233 observed in station S5 versus the number of tagged eels observed in stations 6 & 7 was 75 %, as 234 classically reported. On the opposite, the movements in the upper estuary (from release site to 235 station S5) was lower (48 %) and led to a global low escapement rate from the Rance ria (power plant 236 + estuary). Data on eel migration in free-flowing rivers are scarce. For instance, in the Loire river, in a 237 80 km long study site without dam, 94 % of tagged silver eels escaped to the sea (Bultel et al., 2014). 238 Consequently, regarding the distance between the release site and station S5 (10 km), the number of 239 tagged eels reached this station appeared to be low.

240 Firstly, a possible explanation to understand the low number of tagged eels is a default in the 241 array efficiency close to the dam. Indeed, it is acknowledged that a noisy environment may reduce 242 acoustic detection capacity. However we showed in preliminary 24h field tests that no significant 243 decrease in detection capacity was observed. Moreover, the array efficiency was evaluated from our 244 data, and the efficiency was high and constant from stations S1 to S5. Only the station S6 showed 245 lower detection efficiency. This result seems consistent, because the station S5 located 1.5 km from 246 the turbines and the hydrophone were placed close to the ground, where the water current is lower 247 due to the friction force. Finally, the low number of tagged eels detected in the station S5 should not 248 be considered as an artefact or a technical biais.

249 To explain this low number of tagged eels reached the station S5, we speculate that the fish 250 translocation had a limited bias on this result. On Rhine River, an acoustic survey was deployed along 251 a 70 km river with silver eels from four different origin sites (Trancart et al., 2018). Seven kilometers 252 after the release site, the proportion of each origin site of observed tagged eels was similar to the 253 release. Seventy kilometers after the release site, the proportions of observed tagged eels were still 254 unchanged. The only factor that seems to be influenced by the translocation was the time to start the migration, but this study showed that the beginning of the migration was precipitated when the 255 origin site was smaller (size and water flow) than the release site (Trancart et al., 2018 and 256 257 unpublished data). In the present study, the tagged eels were collected in a lake, without water flow, 258 and released in a small running stream. In our study, the majority of eels started their migration 259 within three days and arrived up to station S4, which suggests a limited effect of translocation 260 because the migration behaviour seemed comparable to observations in other systems (Besson et 261 al., 2016; Trancart et al., 2018, 2020). More recently, Piper et al. (2020) compared the behaviour and 262 the final escapement between natural and translocated eels. Migration patterns and behaviours 263 were broadly similar between the translocated eels and river eels with 86 and 90 % of each group successfully reaching the sea, respectively. Consequently, translocation should not be considered asan important factor explaining the low escapement in the upper part of the estuary.

266 Another possible cause to explain the low number of tagged eels reached the station S5 could 267 be the tidal distortion in the Rance estuary due to the tidal power dam. As for an important number 268 of aquatic species, it is now clearly established that silver eels use selective tidal-stream transport 269 (Forward and Tankersley, 2001) (downstream movement during ebb tide) in order to reduce energy 270 expenditure (McCleave and Arnold, 1999; Parker and McCleave, 1997; Verhelst et al., 2018) during 271 their downstream migration. In this type of transport, the orientation is ruled by the water current 272 reversal cycle. However, in the Rance Estuary, the dam modifies the natural cycle of tides to produce 273 electricity during long ebb episodes and shorter flood episodes through turbines and valves. 274 Consequently, the flood tide currents are stronger than ebb currents. A strong behavioural 275 disturbance caused by "fake" tidal distortion, leading to disorientation in the estuary should also be 276 considered.

277 A remaining factor explaining the low number of tagged eels reached the station S5 was the 278 dam effect, with probable high noise and vibration likely perceived by migrating silver eels in a large 279 area upstream the tidal power plant. The noise and vibrations of dam were frequently cited as 280 possible blocking factors on silver eel migration (Trancart et al., 2017; Bolland et al., 2019; van 281 Keeken et al., 2020, 2021), but unfortunately, this factor was never really tested in field conditions. 282 Silver eels face a diversity of structures with contrasted designs. The main problem for this species is 283 generally injury or direct mortality (Bruijs and Durif, 2009; Winter et al., 2006), higher than for other fish because of their length (Larinier and Travade, 2002). In addition to direct mortality, the impacts 284 285 of hydroelectric complexes are well-known, causing injuries (Bruijs and Durif, 2009), delay in the timing of migration (Behrmann-Godel & Eckmann, 2003; Besson et al., 2016; Trancart et al., 2019), 286 287 and hindrance or blocking of downstream migration (Durif et al., 2003; Trancart et al., 2020). 288 However, a fundamental difference is the distance from the dam. All the effects previously cited 289 occurred at a very low distance from the structures. In the present study, the main problem was the 290 low proportion of tagged eels observed in front of the tidal power plant. One assumption can be the 291 higher noise generated by the tidal power plant than by classical river hydroelectric structures 292 because of the high number of turbines. In the Rance River, there is 24 Kaplan turbines, while the 293 most important hydropower dams in the main French rivers are a maximum of 6 or 8 turbines. 294 Further acoustic measures should thus be made in the Rance estuary in order to confirm or remove 295 this assumption.

Finally, the last reason to explain the low number of tagged eels observed in station S5 is a possible mortality. It is a recurrent problem in telemetry study to know if the tagged and tracked fish

are still alive during the tracking. Eels could die as a consequence of the tagging procedure or natural mortality. For this reason, we considered that eels blocked in the estuary could be dead. Few possible predators are present in estuary, except cormorants, but regarding the mean size of tagged eels (800g – 73 cm), an eventual predation should be very low. Although post-surgery death is possible, but we are confident that the tagging protocol we applied induced low to nil post-surgery mortality as shown in previous studies we performed (Bultel et al., 2014; Trancart et al., 2017).

304 As discussed previously, a part of the low total escapement (estuary + dam) could be 305 associated to the powerplant crossing. A possible explanation could be a low detection range 306 downstream of the tidal power plant, leading to a mis-detection of escaped individuals. Such 307 imperfect detection is possible since three tagged eels (# 6325, # 79 and # 80, Fig. 3) were recorded 308 at station S7 without being detected at station S6. But among the 16 tagged eels that were 309 considered as blocked (or dead) in the estuary at the end of the study, only 2 were observed for the 310 last time at station 5. For these two eels, although the probability of escapement without been 311 detected in stations 6 and 7 is low, it remains possible. So, it has to be considered that the "maximal" 312 escapement including these two eels remains low (44%).

313 Finally, Kaplan turbines generally cause eel mortality rates ranging between 20 and 38% (Bruijs 314 & Durif, 2009), but a previous study indicated a mortality of 8.7% for eels through Kaplan turbines in 315 the Rance tidal power plant (Briand et al., 2016). In the present study, there is unfortunately no way 316 to conclude if the tagged eels that passed through the power plant turbines were injured or dead. 317 The two downstream stations were located at 1 km and 2.6 km from the dam. At this small distance, 318 a dead or dying eels could be carried by the high-water flow released from the tidal power plant 319 towards the sea. Nevertheless, for the tagged eels that reached the station 5, the impact of the tidal 320 power plant seemed to be very low: 75% of success rate with a median crossing time of one hour. 321 Two different migration behavior types seemed to occur in this study. First group seemed not to be 322 impacted, and crossed the estuary and the tidal power plant without real difficulty. On the other hand, the second group seemed to be significantly impacted, and failed to escape. No difference was 323 324 observed between these two groups for total length, total weight and maturation stage, suggesting a 325 possible effect of behavioral traits rather than a control of morphological traits.

326 5. CONCLUSION

This study clearly highlighted a likely strong impact of tidal power plant on the silver eel migration. This result should be confirmed by another field study with native silver eels and with higher number of tagged eels, in order to remove potential biases. If confirmed, this impact should be taken into consideration in next future, when marine renewable energy will be widespread in our society. The European eel is a sensitive species, but other threatened diadromous fish species such as shads, salmons or lampreys could be impacted in the same manner. More generally this study poses the question of the effects of tidal hydropower dams on the ecological continuity between the estuarine ecosystems and the open sea, and the potential disruption of key ecological functions and services played by estuarine systems for marine species.

336 6. BIBLIOGRAPHY

- Aarestrup, K., Økland, F., Hansen, M.M., Righton, D., Gargan, P., Castonguay, M., Bernatchez, L.,
- Howey, P., Sparholt, H., Pedersen, M.I., McKinley, R.S., 2009. Oceanic Spawning Migration of
- the European Eel (Anguilla anguilla). Science (80-.). 325, 1660.
- 340 https://doi.org/10.1126/science.1178120
- Acou, A., Boury, P., Laffaille, P., Crivelli, A.J., Feunteun, E., 2005. Towards a standardized
- characterization of the potentially migrating silver European eel (*Anguilla anguilla*, L.). Arch. für
 Hydrobiol. 164, 237–255.
- Behrmann-Godel, J., Eckmann, R., 2003. A preliminary telemetry study of the migration of silver
 European eel (*Anguilla anguilla* L.) in the River Mosel, Germany. Ecol. Freshw. Fish 12, 196–202.
- Besson, M., Trancart, T., Acou, A., Charrier, F., Mazel, V., Legault, A., Feunteun, E., 2016. Disrupted
- downstream migration behaviour of European silver eels (Anguilla anguilla, L.) in an obstructed
 river. Environ. Biol. Fishes 99, 779–791. https://doi.org/10.1007/s10641-016-0522-9
- Bolland, J.D., Murphy, L.A., Stanford, R.J., Angelopoulos, N. V., Baker, N.J., Wrigh, R.M., Reeds, J.D.,
- 350 Cows, I.G., 2019. Direct and indirect impacts of pumping station operation on downstream
- migration of critically endangered European eel. Fish. Manag. Ecol. v. 26, 76-85–2019 v.26 no.1.
 https://doi.org/10.1111/fme.12312
- Briand, C., Legrand, M., Chapon, P.-M., Beaulaton, L., Germis, G., Arago, M.-A., Besse, T., Canet, L.D.,
- 354 Steinbach, P., 2016. Mortalité cumulée des saumons et des anguilles dans les turbines du bassin
 355 Loire-Bretagne.
- Brown, L., Haro, A.J., Castro-Santos, T., 2009. Three-dimensional movement of silver-phase American
 eels in the forebay of a small hydroelectric facility.
- Bruijs, M.C.M., Durif, C.M.F., 2009. Silver eel migration and behaviour, in: Spawning Migration of the
- 359 European Eel: Reproduction Index, a Useful Tool for Conservation Management. Springer, pp.
- 360 75–95. https://doi.org/10.1007/978-1-4020-9095-0_4

- Bultel, E., Lasne, E., Acou, A., Guillaudeau, J., Bertier, C., Feunteun, E., 2014. Migration behaviour of
 silver eels (*Anguilla anguilla*) in a large estuary of Western Europe inferred from acoustic
- telemetry. Estuar. Coast. Shelf Sci. 137, 23–31.

364 https://doi.org/http://dx.doi.org/10.1016/j.ecss.2013.11.023

- 365 Daverat, F., Beaulaton, L., Poole, R., Lambert, P., Wickstrom, H., Andersson, J., Aprahamian, M.,
- Hizem, B., Elie, P., Yalcin-Ozdilek, S., Gumus, A., 2012. One century of eel growth: Changes and

367 implications. Ecol. Freshw. Fish 21, 325–336. https://doi.org/10.1111/j.1600-0633.2011.00541.x

- Dekker, W., Casselman, J.M., Cairns, D.K., Tsukamoto, K., Jellyman, D.J., Lickers, H., 2003. Worldwide
 decline of eel resources necessitates immediate action. Fisheries 28, 28–30.
- Dufour, S., 2003. Reproductive endocrinology of the European eel, *Anguilla anguilla*, in: Eel Biology.
 pp. 373–383.
- 372 Durif, C., Dufour, S., Elie, P., 2006. Impact of silvering stage, age, body size and condition on

373 reproductive potential of the European eel. Mar. Ecol. Prog. Ser. 327, 171–181.

- Durif, C., Elie, P., Gosset, C., Rives, J., Travade, F., 2003. Behavioral study of downstream migrating
- eels by radio-telemetry at a small hydroelectric power plant, in: DA, D. (Ed.), Biology,
- Management, and Protection of Catadromous Eels. American Fisheries Society Symposium,
 Bethesda, Maryland, pp. 343–356.
- 378 European Commission, 2007. Council Regulation(EC) No 1100/2007 of 18 September 2007.
- 379 Establishing measures for the recovery of the stock of European eel. Official J. Eur. Union.
- Forward, R.B., Tankersley, R.A., 2001. Selective tidal-stream transport of marine animals. Oceanogr.
 Mar. Biol. an Annu. Rev. 39, 305–353.
- ICES, 2022. EU request for technical evaluation of the Eel Management Plan progress reports.
 https://doi.org/10.17895/ICES.ADVICE.19902958.V2
- 384 ICES, 2021. European eel (Anguilla anguilla) throughout its natural range.
- 385 ICES, 2018. Report of the Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). Kavala, Greece.
- Jacoby, D., Gollock, M., 2014. Anguilla anguilla [WWW Document]. IUCN Red List Threat. Species.
- 387 https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T60344A45833138.en
- Larinier, M., Travade, F., 2002. Downstream migration: Problems and facilities. Bull. Français la Pêche
 la Piscic. 181–207.
- Le Mao, P., 1985. Peuplements piscicole et teuthologique du bassin maritime de la Ranc : impact de
 l'aménagement marémoteur. Université de Rennes 1.

- McCleave, J.D., Arnold, G.P., 1999. Movements of yellow- and silver-phase European eels (Anguilla
 anguilla L.) tracked in the western North Sea. ICES J. Mar. Sci. 56, 510–536.
- Parker, S.J., McCleave, J.D., 1997. Selective tidal stream transport by American eels during homing
 movements and estuarine migration. J. Mar. Biol. Assoc. United Kingdom 77, 871–889.
- Pedersen, M.I., Jepsen, N., Aarestrup, K., Koed, A., Pedersen, S., Økland, F., 2012. Loss of European
- 397 silver eel passing a hydropower station. J. Appl. Ichthyol. 28, 189–193.
- 398 https://doi.org/10.1111/J.1439-0426.2011.01913.X
- 399 Phan, C., Plouhinec, C., Andreï, A., Beck, S., Foussard, A., Laghouati, R., Lauverjat, J., Lemaire, D.,
- 400 L'Homond-Fernandez, S., Misak, É., Nauroy, F., Ricaud, É., 2021. Objectifs 2020 et situation
 401 actuelle de la France | Chiffres clés des énergies renouvelables.
- 402 Piper, A.T., Rosewarne, P.J., Wright, R.M., Kemp, P.S., 2020. Using 'trap and transport' to facilitate
- 403 seaward migration of landlocked European eel (Anguilla anguilla) from lakes and reservoirs.
- 404 Fish. Res. 228, 105567. https://doi.org/https://doi.org/10.1016/j.fishres.2020.105567
- 405 Piper, A.T., Wright, R.M., Walker, A.M., Kemp, P.S., 2013. Escapement, route choice, barrier passage
 406 and entrainment of seaward migrating European eel, Anguilla anguilla, within a highly regulated
 407 lowland river. Ecol. Eng. 57, 88–96.
- 408 https://doi.org/https://doi.org/10.1016/j.ecoleng.2013.04.030
- 409 Tesch, F.W., 2003. The eel. Biology and management of anguillid eels. Chapman & Hall., London.
- 410 Tesch, F.W., 1977. The eel. . Chapman and Hall, London LB CR.
- 411 Trancart, T., Carpentier, A., Acou, A., Charrier, F., Mazel, V., Danet, V., Feunteun, É., 2020. When
- 412 "safe" dams kill: Analyzing combination of impacts of overflow dams on the migration of silver
- 413 eels. Ecol. Eng. 145, 105741. https://doi.org/10.1016/J.ECOLENG.2020.105741
- 414 Trancart, T., Carpentier, A., Acou, A., Danet, V., Elliott, S., Feunteun, É., 2019. Behaviour of
- 415 endangered European eels in proximity to a dam during downstream migration: Novel insights
- 416 using high accuracy 3D acoustic telemetry. Ecol. Freshw. Fish n/a.
- 417 https://doi.org/10.1111/eff.12512
- 418 Trancart, T., Feunteun, E., Danet, V., Carpentier, A., Mazel, V., Charrier, F., Druet, M., Acou, A., 2017.
- 419 Migration behaviour and escapement of European silver eels from a large lake and wetland
- 420 system subject to water level management (Grand-Lieu Lake, France): New insights from
- 421 regulated acoustic telemetry data. Ecol. Freshw. Fish 1–10. https://doi.org/10.1111/eff.12371
- 422 Trancart, T., Tétard, S., Acou, A., Feunteun, E., Schaeffer, F., de Oliveira, E., 2018. Silver eel

- 423 downstream migration in the River Rhine, route choice, and its impacts on escapement: A 6-
- 424 year telemetry study in a highly anthropized system. Ecol. Eng. 123, 202–211.
- 425 https://doi.org/10.1016/J.ECOLENG.2018.09.002
- 426 van den Thillart, G., Dufour, S., Rankin, J.C., 2009. Spawning Migration of the European Eel. Springer
 427 Netherlands. https://doi.org/10.1007/978-1-4020-9095-0
- 428 van Keeken, O.A., van Hal, R., Volken Winter, H., Tulp, I., Griffioen, A.B., 2020. Behavioural responses
- 429 of eel (Anguilla anguilla) approaching a large pumping station with trash rack using an acoustic
- 430 camera (DIDSON). Fish. Manag. Ecol. 27, 464–471.
- 431 https://doi.org/https://doi.org/10.1111/fme.12427
- 432 van Keeken, O.A., van Hal, R., Winter, H.V., Wilkes, T., Griffioen, A.B., 2021. Migration of silver eel,
- 433 Anguilla anguilla, through three water pumping stations in The Netherlands. Fish. Manag. Ecol.
- 434 28, 76–90. https://doi.org/https://doi.org/10.1111/fme.12457
- 435 Verhelst, P., Bruneel, S., Reubens, J., Coeck, J., Goethals, P., Oldoni, D., Moens, T., Mouton, A., 2018.
- 436 Selective tidal stream transport in silver European eel (Anguilla anguilla L.) Migration
- 437 behaviour in a dynamic estuary. Estuar. Coast. Shelf Sci. 213, 260–268.
- 438 https://doi.org/10.1016/J.ECSS.2018.08.025
- 439 Winter, H. V, Jansen, H.M., Bruijs, M.C.M., 2006. Assessing the impact of hydropower and fisheries
- on downstream migrating silver eel, *Anguilla anguilla*, by telemetry in the River Meuse. Ecol.
 Freshw. Fish 15, 221–228.
- 442
- 443
- 444
- 445