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Abstract 

Background: Studies revealed long-term associations between noise exposure and 

cardiovascular health, but the underlying short-term mechanisms remain uncertain. 

Objectives: To explore the concomitant and lagged short-term associations between personal 

exposure to noise and heart rate variability (HRV) in a real life setting in the Île-de-France 

region. 

Methods: The RECORD MultiSensor Study collected between July 2014 and June 2015 

noise and heart rate data for 75 participants, aged 34 to 74 years, in their living environments 

for 7 days using a personal dosimeter and electrocardiography (ECG) sensor on the chest. 

HRV parameters and noise levels were calculated for 5-minute windows. Short-term 

relationships between noise level and log-transformed HRV parameters were assessed using 

mixed effects models with a random intercept for participants and a temporal autocorrelation 

structure, adjusted for heart rate, physical activity (accelerometry), and short-term trends. 

Results: An increase by one dB(A) of A-weighted equivalent sound pressure level (Leq) was 

associated with a 0.97% concomitant increase of the Standard deviation of normal to normal 

intervals (SDNN) (95% CI: 0.92, 1.02), of 2.08% of the Low frequency band power (LF) 

(95% CI: 1.97, 2.18), of 1.30% of the High frequency band power (HF) (95% CI: 1.17, 1.43), 

and of 1.16% of the LF/HF ratio (95% CI: 1.10, 1.23). The analysis of lagged exposures to 

noise adjusted for the concomitant exposure illustrates the dynamic of recovery of the 

autonomic nervous system. Non-linear associations were documented with all HRV 

parameters with the exception of HF. Piecewise regression revealed that the association was 

almost 6 times stronger below than above 65 Leq dB(A) for the SDNN and LF/HF ratio. 
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Conclusion: Personal noise exposure was found to be related to a concomitant increase of the 

overall HRV, with evidence of imbalance of the autonomic nervous system towards 

sympathetic activity, a pathway to increased cardiovascular morbidity and mortality. 

 

Keywords: Noise, Heart Rate Variability, Sensors, Autonomic nervous system.
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INTRODUCTION 1 

Previous literature has established the effects of noise exposure on health [1-3]. In addition to 2 

hearing impairment after repeated exposure to high noise levels, there are effects of noise on 3 

sleep quality, hypertension, and the development of cardiovascular disease [4]. WHO 4 

estimates that the number of healthy life years lost due to noise exposure is between 1 and 1.6 5 

million years for the Western Europe population each year [5]. This quantification takes into 6 

account the impact of ischemic heart disease, cognitive disorders in children, sleep disorders, 7 

and of "noise annoyance" caused by long-term exposure to noise. 8 

The general theory of stress [6] serves as a basis for the hypothesis linking noise exposure, 9 

the autonomic nervous system and the endocrine system, the homeostasis of the human body 10 

[7], and in the long run the development of cardiovascular diseases [8]. Babisch et al. [9] 11 

distinguished an indirect effect of noise mediated by the subjective perception and cognitive 12 

interpretation of sounds and a direct effect based on the interaction of the acoustic nerve with 13 

other parts of the central nervous system, the two of which are expected to affect the 14 

autonomic nervous system. 15 

The autonomic nervous system regulates different functions of the body including heart 16 

rate. The study of heart rate variability (HRV) thus enables to explore whether and how the 17 

autonomic nervous system is disrupted by noise levels. In addition, HRV has also been 18 

identified as a risk factor with a reduced HRV being associated with the occurrence of 19 

cardiovascular events [10]. 20 

Several studies have documented associations between noise exposure and an increased 21 

heart rate [11-13]. However, few studies have examined the link between exposure to noise 22 

and HRV. In an experimental setting, an increase of sympathetic activity was observed in 23 

subjects exposed to a noise level of 95 dB(A) Leq during 135 minutes [14]. Another 24 

experiment showed that a noise level as low as 45 dB(A) affected HRV parameters [15]. 25 
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To our knowledge, only three studies were carried out with a non-simulated exposure. One 26 

study asked 40 healthy participants to sit for 2 hours either in a traffic area or in a park [16]. 27 

Associations between short-term exposure to noise and decreased HRV were found as well as 28 

associations with the sympathovagal balance with an increased sympathetic activity and 29 

decreased parasympathetic activity. A similar imbalance was found in the second study, in 30 

which 36 healthy participants were instructed to follow a pre-determined route covering 31 

various sites in the city of Tel Aviv for two sequential days [17]. In the third study [18], the 32 

only one in a non-experimental setting we are aware of, 110 individuals underwent personal 33 

noise monitoring and continuous electrocardiography (ECG) 4 times every 4 to 6 weeks 34 

during their daily activities. Associations were documented between noise exposure and HRV 35 

parameters in concomitant windows. 36 

Overall, previous literature is scarce and primarily based on controlled settings or 37 

experimental designs, raising the question of the generalizability of the findings. Thus the 38 

objective of this study was to explore the concomitant and lagged short-term associations 39 

between personal exposure to noise and HRV in a real life setting in the Île-de-France region. 40 

 41 

METHODS 42 

Data collection and processing 43 

Population 44 

Participants came from the RECORD Cohort Study [19], and more particularly from the 45 

RECORD MultiSensor sub-study, which aimed at investigating the relationships between 46 

transport and health using sensor-based measurement. Participants of the RECORD Cohort 47 

were born between 1928 and 1978, were residing at baseline in 10 districts of Paris and 111 48 

other municipalities of the Ile-de-France region, and were recruited without a priori sampling 49 

during preventive checkups performed by the IPC Medical Centre between 2007 and 2008. 50 
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During the second wave of the RECORD Study, a fraction of the participants were invited 51 

to enter the RECORD MultiSensor Study, between July 2014 and June 2015. After 52 

completing their health checkups, these participants were asked to wear an accelerometer and 53 

an ECG sensor during their waking hours, from the day of completion of the checkup D0 up 54 

to D8. Since the checkup could happen at different hours during D0, only measurements 55 

between D1 (3 am) and D8 (3 am) were taken into account, i.e., 7 days of data collection. 56 

Among the 129 participants of this group, 78 also carried a personal noise dosimeter. The 57 

inner clock of each ECG sensor, accelerometer, and noise dosimeter was synchronized with 58 

the Internet Time of the computer before giving it to the participants. Participants wearing a 59 

pacemaker or with hearing problems were not included. Written informed consent was 60 

obtained from all participants. The RECORD Multisensor Study was approved by the French 61 

Data Protection Authority (CNIL).  62 

 63 

HRV parameters 64 

The participants wore a BioPatch BHM 3 (Zephyr Technology, Annapolis, MD) on the chest, 65 

an ECG with two electrodes, a technology which was validated against a 12-lead ECG for 66 

HRV measurement [20]. They were instructed to keep it on from the moment they woke up 67 

until they went to bed since they had to charge it overnight. The two electrodes were changed 68 

every day. From the ECG sampled at 1 kHz, inter-beat (RR) intervals were generated by the 69 

BioPatch at an 18Hz frequency. HRV parameters were calculated based on these RR 70 

intervals. The entire signal processing was carried out under R version 3.4.0 [21] and the 71 

calculation of HRV parameters through the RHRV package version 4.2.3 [22]. 72 

 73 

Data selection. The raw data of RR intervals extracted from the BioPatch were cut into 74 

continuous observation sequences of any length, corresponding to the sequences remaining 75 
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after excluding periods where the sensor was not worn or where the sensor had lost contact 76 

with the skin. The continuous sequences of less than 20 beats were excluded at this stage. 77 

 78 

Filtering. Based on the RHRV package, two types of filters were applied to RR intervals: a 79 

fixed filter retaining the physiologically acceptable values [25-200 bpm] and a dynamic filter 80 

comparing the value of the RR interval with the value of the preceding interval, the value of 81 

the following interval, and with an average of the values of the 50 preceding intervals [23]. If 82 

the absolute difference in percentage was lower than a given threshold for at least one of the 83 

comparisons, the interval was retained. The threshold was computed every 50 intervals, taking 84 

into account the standard deviation of these intervals, but is bounded between 12% and 20%. 85 

 86 

Interpolation. After filtering, the remaining RR intervals were interpolated at a frequency of 87 

4Hz [24] using a cubic spline function [25] in order to produce a uniformly sampled signal. 88 

Empty sequences with more than 30s of continuous filtered RR intervals were not 89 

interpolated. Interpolation had a dual function. On one hand, producing a uniformly sampled 90 

signal enabled us to meet the prerequisites of frequency analysis. On the other hand, it 91 

generated values for the filtered RR intervals. 92 

 93 

Windowing. Each day (24h) was cut into successive and mutually exclusive windows of 5 94 

minutes for a theoretical maximum of 288 windows per day. Windows having less than 200 95 

beats or with more than 20% of RR interval removed during the filtering step (even if 96 

subsequently re-interpolated) were excluded [26]. 97 

 98 

HRV parameters calculation. The standard deviation of normal to normal RR intervals 99 

(SDNN) was computed for each window. It was expressed in milliseconds. The frequency 100 
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domain parameters were extracted through a Daubechie Least Asymetric(8) wavelet 101 

transform [27]. This method was selected for its ability to decompose non-stationary signals, 102 

unlike the Fourier transform [28]. The frequency bands were defined according to the 103 

recommendations [29]: 104 

• Low Frequencies (LF): 0,04 – 0,15 Hz 105 

• High Frequencies (HF): 0,15 – 0,40 Hz 106 

The power of each band (in ms²) was computed, as well as the LF/HF ratio. Total Power 107 

(TP), and normalized LF (LFnu) and HF (HFnu) bands powers (each divided by the sum of 108 

HF and LF bands powers) were also computed, but not considered in the models because of 109 

the mathematical redundancy of HFnu and LFnu with the LF/HF ratio [30, 31] and TP with 110 

SDNN, since the first one represents the variance of HRV, while the second represents its 111 

standard deviation [29]. 112 

The four parameters (SDNN, LF and HF bands, and LF/HF ratio) were expressed as 113 

continuous variables in descriptive statistics and were log-transformed in the models in order 114 

to correct for heteroscedasticity. 115 

 116 

Individual noise exposure 117 

The assessment of individual noise exposure was performed with a wearable Class II 118 

dosimeter Wed007 - 01dB (ACOEM Limonest, France) allowing noise level measurements 119 

between 40 and 120 dB(A) (tolerance ± 1.0 dB) every second. The measurement was A-120 

weighted [dB(A)], a weighting that corresponds to the sensitivity of the human ear. During 121 

the day, participants were instructed to wear the dosimeter on the belt while placing the 122 

microphone near the ear and above the clothing and charge the device overnight.  123 

Similarly to HRV parameters, noise data were aggregated in 5-minute windows. This 124 

aggregation used the notion of equivalent sound level (Leq). The Leq is a representation of 125 
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the constant noise level that would have been produced with the same energy than the noise 126 

actually perceived during the given period. It is expressed in dB and is calculated as follows: 127 

𝑳𝒆𝒒 = 10 log  ×  
1

𝑇
∫ 10

𝐿(𝑡)
10  𝑑𝑡

𝑇

0

 128 

𝑳𝒆𝒒: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑜𝑢𝑛𝑑 𝑙𝑒𝑣𝑒𝑙  129 

𝑳(𝒕): 𝑛𝑜𝑖𝑠𝑒 𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 130 

𝑻: 𝑝𝑒𝑟𝑖𝑜𝑑′𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 131 

The noise level was used in its continuous form and expressed in Leq dBA. For each 5-minute 132 

window, the noise level of the three preceding windows was also computed in order to 133 

represent lagged noise at -5 minutes, -10 minutes, and -15 minutes. 134 

 135 

Individual exposure to sound level was assessed with a wearable Class II dosimeter Wed007 - 136 

01dB (ACOEM Limonest, France) allowing for A-weighted measurements - a weighting that 137 

corresponds to the sensitivity of the human ear - between 40 and 120 dB(A) (tolerance ± 1.0 138 

dB) every second (LAeq,1s). During the day, participants were instructed to place the 139 

microphone near the ear and over the clothing, to wear the dosimeter on the belt and to charge 140 

the device overnight. All of the dosimeters were calibrated at the beginning of the study 141 

following the manufacturer’s instructions using a standard acoustic calibrator (1 KHz sine 142 

wave at 94 dB). 143 

 144 

Based on the A-weighted Leq,1s (LAeq,1s), the equivalent sound level (LAeq) was computed 145 

within each time window. The LAeq is a representation of the constant sound level that would 146 

have been produced with the same energy than the varying sound level actually produced 147 

during the given period. It is one of the main sound level indicators used in environmental 148 

noise assessment [32]. 149 

 150 
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Accelerometer data 151 

Participants wore an Actigraph wGT3X+ tri-axial accelerometer on the right hip with a 152 

dedicated elastic belt for the recruitment day and 7 additional days. They were asked to 153 

remove the belt only when sleeping and when they were in contact with water. Accelerometry 154 

was collected for 5 second epochs and aggregated over the 5-minute windows. Vector 155 

magnitude was used as an indicator of physical activity in the regression analysis and was 156 

computed as follows: 157 

𝑉𝑀 =  √𝐴𝑥𝑖𝑠 12 + 𝐴𝑥𝑖𝑠 22 + 𝐴𝑥𝑖𝑠 32 158 

 159 

Other covariates 160 

Sociodemographic and health variables were collected from the IPC medical questionnaire 161 

and RECORD questionnaire filled in during the health checkup. Age, sex, medical histories 162 

(of hypertension, myocardial infarction, angina, and angioplasty), occupation, and educational 163 

level were considered. Age was coded as a continuous variable and the 4 medical history 164 

variables as separate binary variables.  165 

Education was coded in 4 categories: low (no education, primary education, or lower 166 

secondary education); medium-low (higher secondary education and lower tertiary education, 167 

i.e., 1 or 2 years); medium-high (intermediate tertiary education: 3 or 4 years); and high 168 

(upper tertiary education: 5 years or more). Employment status was divided into employed, 169 

unemployed, retired, and other employment statuses. 170 

 171 

Statistical analysis 172 

Linear mixed models applied to the 5-minute measurement windows were used to estimate 173 

associations between individual exposure to noise and HRV parameters. To take the repeated 174 

measures into account, a mixed model with a random intercept at the individual level was 175 



11 
 

used. Short-term trends over the day were taken into account with smoothing splines 176 

estimated for each participant. Preliminary analyses showed no long term-trend at the scale of 177 

the week or the year. 178 

We successively estimated models with linear associations including only the concomitant 179 

noise exposure variable and models including together the concomitant and progressively 180 

added lagged noise variables before adjusting for time-varying variables (heart rate and 181 

accelerometer vector magnitude). We conducted sensitivity analyses limiting the dataset to 182 

windows with no filtered RR intervals and to windows with stationary RR sequences. 183 

Stationarity within each 5-minute window was assessed with the augmented Dickey–Fuller 184 

test [33]. 185 

Non-linear associations were then considered including second to third degree polynomials 186 

and natural cubic splines separately for concomitant noise and lagged noise. The linear or 187 

non-linear associations minimizing the Bayesian information criterion (BIC) were selected for 188 

the final models. In addition to the non-linear associations, piecewise regressions were 189 

considered in order to produce interpretable coefficients. A common breakpoint value was 190 

chosen for all the HRV parameters for ease of interpretation by looking at the breakpoints 191 

minimizing the BIC for each HRV parameter. 192 

In the nonlinear association models and the piecewise regression, temporal autocorrelation 193 

between the repeated measurements of each participant was taken into account by an 194 

autoregressive model of order 1 AR(1) [34, 35]. This covariance structure assigns to each pair 195 

of measures of a participant a correlation that decreases with the increase of the time interval 196 

separating the measures. The correlation is expressed as 𝜌𝑘, where k is the time interval 197 

separating each pair of observations (number of 5-minute windows) and ρ the correlation of a 198 

pair of successive observations (range between 0 and 1) [36]. All analyses were performed in 199 



12 
 

R version 3.4.0 [21]. Mixed models were estimated with the nlme package version 3.1-131 200 

[37] and smoothing splines with the lmeSplines package version 1.1-10 [38]. 201 

 202 

RESULTS 203 

Sample description 204 

From the initial sample of 78 individuals, 14 129 and 6381 hours of measurements were 205 

collected by the noise dosimeter and ECG sensor respectively (unlike the noise sensor, the 206 

ECG sensor did not collect data during sleep). Three participants were excluded because 207 

either the ECG sensor, the noise dosimeter, or the accelerometer did not work or was not 208 

worn. Only windows with concurrent measures of noise level, HRV, and accelerometry were 209 

retained. Afterwards, windows with any missing noise data were removed (n = 60), as were 210 

those where more than 20% of the RR intervals stemmed from the interpolation and / or those 211 

with less than 200 beats (n = 592). In the end, the study sample considered in this work 212 

comprised 53 969 windows of 5 minutes (4497.4 hours in total) of concomitant noise, HRV, 213 

and accelerometry measurements for 75 individuals over 7 days. Table 1 summarizes the 214 

participants’ main characteristics. 215 

The sample included individuals aged 34 to 74 years with an average age of 51.5 years 216 

(SD: 10.4). It was mainly composed of men (64%), employed people (65.3%), and people 217 

with a high level of education (52% of the participants had 3 or more years of tertiary 218 

education). Of the participants, 21 (28%) had a history of hypertension defined as “self-219 

reported blood pressure equal to or greater than 140 mmHg repeatedly”, while 12 participants 220 

(16%) were taking blood pressure lowering medications. None of the participants had a 221 

history of myocardial infarction or angina pectoris. 222 

 223 

Measurement windows and noise levels 224 
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As shown in Table 2, the distribution of the number of measurement windows was equivalent 225 

across the days (ANOVA test, p = 0.25), with a decline at the end of the week. Figure 1 226 

shows the distribution of measurement windows by time across the day (average of all days). 227 

Most of the measures were taken between 8am and 10pm, an interval covering 87% of the 228 

observations. 229 

Figure 2 shows the histogram of measured noise levels, ranging from 32.6 to 113.7 Leq 230 

dB(A) with an average of 66.1 and a standard deviation of 10.9 Leq dB(A). 231 

 232 

Correlations between the cardiovascular parameters 233 

Figure 3 represents the correlation between the different cardiovascular parameters. TP and 234 

SDNN are highly correlated (r = 0.94) as the first one represents the variance of HRV and the 235 

second one its standard deviation. HFnu and LFnu have a perfect correlation of -1, while they 236 

both share with LF/HF a correlation of 0.79, positive for LFnu and negative for HFnu. LF and 237 

HF are correlated between them (r = 0.80) as well as with both TP and SDNN, with 238 

correlations ranging from 0.59 to 0.79. Heart rate is mildly correlated with most of the HRV 239 

parameters with the exception of HF. 240 

 241 

Concomitant measures of noise and HRV 242 

Table 3 provides the average values of heart rate and HRV parameters over four increasing 243 

noise level categories. The mean values of all parameters showed an increasing trend 244 

confirmed by the Jonckheere-Terpstra trend test. 245 

 246 

Mixed-effects models: linear associations 247 

Table 4 reports the linear relationships of HRV parameters with (A) concomitant and 248 

progressively added lagged noise, (B) adjusted for heart rate and accelerometer vector 249 
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magnitude. Since the HRV parameters were log-transformed, the associations in the Table 250 

represent changes in percentage of the mean outcome for an increase of one Leq dB(A). In the 251 

models including only concomitant noise, positive associations were documented with all four 252 

HRV parameters. When adding lagged noise, these associations were pulled towards higher 253 

values, while lagged noise was systematically negatively associated with all HRV parameters, 254 

with however smaller magnitudes than the concomitant noise. When adjusted for heart rate 255 

and accelerometer vector magnitude, SDNN and LF and HF powers associations with 256 

concomitant and lagged noise were pulled towards the positive while the association of 257 

LF/HF with noise was pulled towards the negative. The variance inflation factor of the 258 

independent variables for every HRV parameter remained below 3 (Supplementary material 259 

I). 260 

Models C and D in Table 4 report also the associations for (C) windows including no 261 

filtered RR intervals and (D) for windows with stationary RR sequences as a sensitivity 262 

analysis. There are no noticeable changes in term of direction of the associations. The 263 

coefficients were also quite stable between the different models, with two exceptions: (i) the 264 

reduction of the association of HF power with concomitant noise between models (B) and (C), 265 

moving from 1.30% to 0.86%, the effects of which are also observable on LF/HF; (ii) the 266 

reduction in the association between concomitant noise and SDNN between models (B) and 267 

(D), moving from 0.97% to 0.72%. 268 

History of hypertension, blood pressure lowering medication intake, educational level, and 269 

employment status were not associated with any of the HRV parameters and were therefore 270 

not included in the models. 271 

 272 

Mixed-effects models: non-linear associations and piecewise regression 273 
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Figure 4 represents both the non-linear associations between concomitant noise and the HRV 274 

parameters, as well as the piecewise regression with concomitant and lagged noise for models 275 

adjusted for heart rate, accelerometer vector magnitude, and short-term trend with a temporal 276 

autocorrelation structure. The specifications of each model are available in the supplementary 277 

material II. 278 

The best association, based on the BIC, between noise and the different HRV parameters 279 

was the natural cubic spline with the exception of HF power, for which it was the linear 280 

association. Regarding piecewise regression (numerical values shown in supplementary 281 

material III), a breakpoint at 65 Leq dB(A) was chosen based on the examination of which 282 

breakpoint ranging from 61 to 66 Leq dB(A) gave the best BIC for each HRV parameter. 283 

For concomitant noise levels below 65 Leq dB(A), a quasi-linear increase was documented 284 

for all HRV parameters, starting at the lowest measured noise levels. Piecewise regression 285 

showed that that the slope of the association was much weaker above 65 Leq dB(A) than 286 

below this noise level, at the most 6 times weaker for the SDNN and LF/HF ratio. 287 

As shown in Supplementary material III, the piecewise regression associations between 288 

lagged noise exposure variables and the HRV parameters were either negative or null (after 289 

mutual adjustment and adjustment for concomitant noise). Below 65 Leq dB(A), the different 290 

lagged noises were all negatively associated, with the exception of the 5 min lagged noise 291 

with LF and HF powers which did not show any association. Above 65 Leq dB(A), the lagged 292 

noise variables did not show any association with the HRV parameters, with the exception of 293 

the 5 min lagged noise associations with SDNN and LF/HF. In this piecewise regression 294 

analysis, there was no identifiable pattern of associations with increasing lag. 295 

 296 

DISCUSSION 297 

Summary of results 298 
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This study aimed to explore the relationship between individual acute exposure to noise and 4 299 

HRV parameters (SDNN, LF, HF, LF/HF ratio). Concomitant noise was positively associated 300 

with all 4 HRV parameters, after adjustment for heart rate, accelerometry, short-term trend, 301 

and even after controlling for the lagged noise variables. After mutual adjustment for the 302 

concomitant and lagged exposures, the lagged noise exposures were negatively associated 303 

with all 4 HRV parameters. Analyses restricted to sequences without removed RR intervals or 304 

to stationary RR sequences supported the same conclusions. Piecewise regression with a 305 

breakpoint at 65 Leq dB(A) demonstrated that the association was stronger below this 306 

threshold. 307 

 308 

Strengths and limitations 309 

First, the use of wearable sensors enabled to accurately measure continuously over time the 310 

personal noise exposure, HRV parameters, and physical activity as a confounder. We could 311 

reduce misclassification biases that would have resulted from the use of proxy indicators of 312 

noise exposure derived from interpolated measurements or modeling work. Similarly, this 313 

approach allowed us to escape from controlled laboratory environments and permitted 314 

observation in a “real life” context. This non-constrained observation over a week in various 315 

living environments yielded a wide range of situations of exposure to noise and related 316 

reactions of the autonomic nervous system. 317 

A related strength of this study lies in the large number of observations that were collected. 318 

Indeed, a total of 4497.4 hours of concomitant noise, HRV, and accelerometry measurements 319 

from 75 individuals were analyzed in this study. This is considerably more than in the three 320 

other studies that have addressed the problem, that relied on 156 hours (n = 40), 321 

approximately 100 hours (n = 36), and 1785 hours (n = 110) of observation, respectively [16-322 

18], although the third one had a larger number of participants. 323 
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However, as a weakness resulting from this strength, this considerable amount of data 324 

could only be handled by automated processes, made of filtering and calculation rules. Thus, 325 

each of the signal processing steps leading to the calculation of the HRV parameters may be a 326 

source of measurement bias [39]. First, the identification of beats and RR intervals from the 327 

ECG was performed by the internal algorithm of the BioPatch. Although its ability to 328 

correctly measure heart rate at different levels of physical activity has been verified by the 329 

manufacturer, the specificity and sensitivity of the algorithm are unknown, as well as their 330 

variation according to the wearer’s activity. The filtering of ectopic and abnormal beats can 331 

also be a source of bias. Filtering was performed on the sequences of intervals, which provide 332 

limited information for the identification and selection of valid heartbeats. The filtering step is 333 

crucial for calculating the HRV parameters, since even a small proportion of ectopic beats can 334 

seriously affect the measurements [40]. While the approach to retain only sequences without 335 

removed RR intervals was explored in this study, it could however introduce problematic 336 

selection biases [29]. The same statement applies to restricting data to stationary sequences. 337 

The subsequent signal processing steps can also be a source of heterogeneity between 338 

studies, affecting their comparability. The latest recommendations related to the measurement 339 

of HRV were drafted in 1996 [29]; they do not cover all processing stages and do not include 340 

methods introduced since then (e.g., wavelet transformation for calculating HRV frequency 341 

domain parameters). Various software are available for the calculation of HRV parameters, 342 

but it seems that no clear consensus has been reached as to the exact sequence of signal 343 

processing steps needed from the recording to the calculation of HRV parameters [39]. 344 

Another limitation of the study pertains to the lack of information about confounders like 345 

tobacco and alcohol consumption during the observation week, or personal air pollution 346 

measurements which effects on HRV have been previously described [16] 347 



18 
 

Finally, the study design allowed us to analyze a large number of 5-min windows, but the 348 

small number of participants in this study (n = 75) limits the use of individual-level variables 349 

as stratifiers (the association estimated in each stratum would likely not represent the true 350 

association in this stratum).  351 

 352 

Interpretation of findings  353 

General framework 354 

Through the complementary HRV parameters, it is the state of the autonomic nervous system 355 

that is being assessed. The SDNN is a global measure of HRV, reflecting the combined state 356 

of the two branches of the autonomic nervous system. It thus masks the modulations of HRV 357 

caused by each branch of the autonomic nervous system. This decomposition of HRV is 358 

however possible through frequency domain parameters breaking down HRV according to the 359 

frequencies of heart rate modulations. Two of these frequency bands were considered in this 360 

study: the low frequency band LF (0.04 to 0.15 Hz) and the high frequency band HF (0.15 to 361 

0.40 Hz). The HF band reflects parasympathetic activity [41] while the LF band, which was 362 

initially described as a reflection of the sympathetic system [42], is currently considered as the 363 

result of the combined effects of the two branches of the autonomic nervous system [43]. The 364 

LF/HF ratio is in turn an index of the sympathetic / parasympathetic balance. 365 

Several studies have shown that a reduction of the SDNN is associated with the occurrence 366 

of cardiovascular events and with cardiovascular mortality [10, 44-46]. The Framingham 367 

Heart study [47] has found, of numerous HRV parameters, the SDNN to be the best predictor 368 

of new cardiac events with a reduction of one standard deviation being linked with a 50% 369 

increase in the risk of cardiovascular events over 3.5 years. 370 

 371 

Concomitant associations 372 
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In this study, an increase in noise level was associated with a concomitant increase in SDNN, 373 

in the power of the LF band and the HF band, and in the LF/HF ratio. The concomitant 374 

increase in SDNN with noise stems from the association of noise with both the LF band 375 

power and HF band power, suggesting that noise exposure increased both the low frequency 376 

and high frequency modulations of heart rate. Thus in this study, a higher exposure to noise 377 

was not associated with an overall concomitant reduction in HRV, which was also observed in 378 

other studies [18, 48]. An increase in personal noise exposure was also associated with a 379 

concomitant increase in the LF/HF ratio. Together with the observed increases with noise of 380 

LF and HF band powers, this higher LF/HF ratio reflects a comparatively larger increase in 381 

sympathetic activity than parasympathetic activity, implying an imbalance of the autonomic 382 

nervous system associated with noise exposure. These results are in line with the reaction 383 

scheme formalized by Babisch and colleagues [9], as noise acts as a stressor triggering the 384 

fight or flight response with an activation of the sympathetic branch of the autonomic nervous 385 

system. This was documented by several studies with either simulated [49, 50] or non-386 

simulated [17, 18] noise exposure. It is this imbalance that is conceptualized as a bridge 387 

between noise exposure and the subsequent development of cardiovascular diseases [9]. In 388 

terms of heart rate, this sympathetic dominance over the parasympathetic system leads to high 389 

heart rate values, as the first increases heart rate and the role of the second is to decrease it. 390 

This is consistent with our finding that higher noise levels were also associated with an 391 

increased heart rate in adjusted models (data not shown). 392 

 393 

Mutually adjusted lagged and concomitant associations 394 

When associations with concomitant and lagged noise were mutually adjusted, the 395 

associations of concomitant noise with HRV parameters were slightly pulled towards the 396 

positive while lagged noise showed negative associations with HRV parameters. The negative 397 
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association between lagged noise and SDNN might express a recovery of the autonomic 398 

nervous system, after the increase in SDNN with a concomitant exposure to noise, which was 399 

of much larger magnitude. Kraus and colleagues reported somewhat comparable patterns of 400 

associations with, e.g., a positive association of concomitant noise with SDNN but negative 401 

associations of lagged noise variables with SDNN when such exposure variables were 402 

mutually adjusted for [18]. As speculated by Kraus and colleagues, this positive and negative 403 

associations of, respectively, concomitant and lagged noise with HRV parameters may be 404 

attributable to an overreaction and self-regulation of the autonomic nervous system but further 405 

research is needed in order to better understand those short-term dynamics. 406 

 407 

Non-linear and piecewise regression 408 

With the exception of the HF band power, non-linear associations were documented between 409 

concomitant noise level and the HRV parameters. These associations shared a similar shape, 410 

with a decreasing slope as the noise level increased. This was explicitly reflected with the 411 

piecewise regression showing that the slope was much steeper below then above 65 Leq 412 

dB(A), mainly for the SDNN and the LF/HF ratio.  413 

In our study, the associations of concomitant and lagged noise levels with HRV started at 414 

the lowest observed noise levels (around 40 Leq dB(A)) and reached a maximum after 65 Leq 415 

dB(A). Kraus and colleagues reported similar results in the case of the SDNN and the LF/HF 416 

ratio with a similarly chosen breakpoint at 65 Leq dB(A). 417 

This threshold is however of limited clinical significance as it hides individual variations. 418 

It was slightly different depending on the HRV parameter, may have been influenced by the 419 

distribution of noise values, and does not strictly identify the beginning of the plateau but is 420 

close to where the biggest shift in slope occurs. 421 

 422 

Conclusion 423 
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In this study, a higher exposure to noise in real life settings was associated with increases in 424 

the LF and HF band powers, thus with an increase in the overall HRV (as expressed with the 425 

SDNN). Our analysis of the lagged noise exposures adjusted for the concomitant exposure 426 

showed evidence of a recovery starting after a 5-minute lag. Non-linear and piecewise 427 

regressions allowed us to identify a breakpoint at 65 dB(A) Leq, below which the reported 428 

association was much stronger. Future research will be needed to better understand the 429 

dynamics through which and timescales over which noise exposure influences the autonomic 430 

nervous system. Perspectives for this work include a better characterization of the daily 431 

activity of the participants during the observation windows in order to contextualize the 432 

reported association, the use of different summary measures for noise, and the consideration 433 

of the effects of air pollution in conjunction with those of noise to assess both their potential 434 

for reciprocal confounding and their synergistic effects on cardiovascular health.435 
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Table 1 Descriptive statistics for the sample (N = 75) 

Variable n (%) 

Men 48 (64%) 

History of hypertension 21 (28%) 

Intake of antihypertensive medications 12 (16%) 

Employment status  

   Employed 49 (65.3%) 

   Unemployed 11 (14.7%) 

   Retired 13 (17.3%) 

   Other 2 (2.7%) 

Educational level  

   No education, primary, lower secondary 13 (17.3%) 

   Higher secondary, lower tertiary 23 (30.7%) 

   Intermediate tertiary 19 (25.3%) 

   Upper tertiary 20 (26.7%) 

 



Table 2 Distribution of the 5-minute 

windows per participant over the week* 

(n = 53969) 

Day Mean ± σ 

Monday 103.1 ± 70.1 

Tuesday 105.3 ± 64.0 

Wednesday 111.9 ± 61.8 

Thursday 111.4 ± 60.2 

Friday 103.3 ± 61.4 

Saturday 95.9 ± 57.7 

Sunday 88.7 ± 60.7 

ANOVA p = 0.25 

*Number of follow-up days = 6.0 ± 1.5; 

number of windows per participant = 

719.6 ± 268.3 

 



Table 3 Mean and standard deviation of HRV parameters and heart rate according to four increasing categories of noise 

level 
 

 HR (bpm) SDNN (ms) LF/HF (w.u) LF power (ms²) HF power (ms²) 

Noise Leq 

[dB(A)] 
n Mean σ Mean σ Mean σ Mean σ Mean σ 

[30,45] 2395 71.0 ±11.7 50.5 ±26.6 12.8 ±9.4 1119.9 ±1516.0 447.3 ±753.1 

(45,65] 19767 75.6 ±13.0 61.0 ±29.0 15.7 ±9.9 1453.5 ±1666.5 477.1 ±721.4 

(65,80] 27560 82.4 ±14.3 62.7 ±28.3 17.4 ±10.2 1603.9 ±1816.5 545.0 ±850.5 

(80,110] 4246 86.3 ±15.1 59.5 ±27.7 16.9 ±10.0 1650.3 ±1887.8 627.4 ±941.9 

Trend p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 

Abbreviations: HR: Heart rate; Leq [dB(A)]: A-weighted equivalent sound pressure level in dB; bpm: beats per minute; 

ms: milliseconds; w.u: without unit 

Trend tested using Jonckheere-Terpstra test with the alternative hypothesis being “increasing” 

 



Table 4 Linear associations between concomitant and lagged noise exposure variables and log-transformed HRV parameters 

 SDNN  LF/HF  LF  HF 

 0 min 5 min 10 min 15 min  0 min 5 min 10 min 15 min  0 min 5 min 10 min 15 min  0 min 5 min 10 min 15 min 

A 

+0.52     +1.23     +1.01     +0.37    

+0.83 −0.45    +1.33 −0.15    +1.41 −0.59    +0.74 −0.53   

+0.88 −0.23 −0.37   +1.35 −0.08 −0.12   +1.51 −0.21 −0.65   +0.83 −0.17 −0.62  

+0.90 −0.21 −0.22 −0.25  +1.35 −0.08 −0.08 −0.07  +1.54 −0.17 −0.41 −0.41  +0.86 −0.13ns −0.39 −0.39 

B +0.97 −0.16 −0.17 −0.19  +1.16 −0.14 −0.12 −0.12  +2.08 +0.01ns −0.31 −0.30  +1.30 +0.04ns −0.28 −0.25 

C +0.95 −0.12 −0.21 −0.12  +1.41 −0.06ns −0.14 −0.15  +2.08 +0.03ns −0.33 −0.25  +0.86 −0.03ns −0.25 −0.15 

D +0.72 +0.03ns −0.19 −0.17  +1.11 −0.03ns −0.10ns −0.10ns  +1.92 +0.01ns −0.25 −0.34  +1.23 −0.10ns −0.23ns −0.35 

For each HRV parameter, each line represents a different model. Associations represent changes in percentage of the mean outcome for an increase of one Leq [dB(A)]. 

They were estimated from models with a random effect at the individual level and adjusted for short-term trends. Models A include only concomitant and progressively 

added lagged noise, while models B are additionally adjusted for heart rate and accelerometer vector magnitude. Models C include only windows without filtered RR (n = 

17 321). Models D include only stationary RR sequences (n = 14 350). 

The associations are statistically significant (p < 0.05) unless stated otherwise. 

Abbreviations: Leq [dB(A)]: A-weighted equivalent sound pressure level in dB; SDNN: Standard deviation of RR intervals; LF/HF: Low frequency to high frequency ratio; 

LF: Low frequency band power in ms²; HF: High frequency band power in ms²; ns: not significant. 

 

 



Fig. 1 Distribution of the analyzed 5-minute windows over the day 

Fig. 2 Histogram of measured noise levels in Leq dB(A) 

Fig. 3 Correlations between the cardiovascular parameters 

Fig. 4 Plot of the nonlinear and piecewise associations between concomitant or lagged noise and the 4 

HRV parameters, estimated from models with a random effect at the individual level and a temporal 

autocorrelation structure, adjusted for heart rate, accelerometer vector magnitude, and short term trend 
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Supplementary material 

I. Variance inflation factor of the linear association models 

 SDNN LF/HF LF HF 

Noise - 0 min 2.07 2.03 2.05 2.05 

Noise - 5 min 2.65 2.59 2.63 2.62 

Noise - 10 min 2.65 2.59 2.62 2.62 

Noise - 15 min 1.99 1.95 1.97 1.97 

Heart rate 1.74 1.74 1.74 1.74 

Vector magnitude 1.67 1.67 1.67 1.67 

 

II. Models’ specification for the non-linear association models 

ln(SDNN) = ncs(Concomitant noise) + poly2(Lagged noise (5 min)) + poly2 (Lagged noise (10 min)) 

+ poly2 (Lagged noise (15 min)) + Heart Rate + Vector magnitude 

ln(LFHF) = ncs(Concomitant noise) + poly1(Lagged noise (5 min)) + poly1 (Lagged noise (10 min)) + 

poly1(Lagged noise (15 min)) + Heart Rate + Vector magnitude 

ln(LF) = ncs(Concomitant noise) + poly2(Lagged noise (5 min)) + poly2(Lagged noise (10 min)) + 

poly2(Lagged noise (15 min)) + Heart Rate + Vector magnitude 

ln(HF) = poly1(Concomitant noise) + poly1(Lagged noise (5 min)) + poly1 (Lagged noise (10 min)) + 

poly1(Lagged noise (15 min)) + Heart Rate + Vector magnitude 

All the models included a temporal autocorrelation structure and were adjusted for short term trends. 

Abbreviations: 

ncs = natural cubic spline with two boundary knots and two internal knots at the 33rd and 66th 

quantiles. 

Polyx = x th degree polynomial 

  



III. Piece-wise regression: Numerical values 

 SDNN 
 <65 dB(A) >65 dB(A) 

Noise - 0 min +1.61 [+1.54 to +1.68] +0.27 [+0.19 to +0.35] 

Noise - 5 min −0.28 [−0.35 to −0.21] −0.15 [−0.23 to −0.07] 

Noise - 10 min −0.41 [−0.48 to −0.34] −0.01 [−0.09 to +0.07] 

Noise - 15 min −0.25 [−0.31 to −0.18] −0.06 [−0.14 to +0.01] 
 LF/HF 
 <65 dB(A) >65 dB(A) 

Noise - 0 min +1.85 [+1.76 to +1.94] +0.31 [+0.21 to +0.41] 

Noise - 5 min −0.10 [−0.18 to −0.01] −0.26 [−0.36 to −0.17] 

Noise - 10 min −0.19 [−0.28 to −0.11] −0.08 [−0.18 to +0.02] 

Noise - 15 min −0.15 [−0.23 to −0.07] +0.02 [−0.07 to +0.12] 
 LF 
 <65 dB(A) >65 dB(A) 

Noise - 0 min +2.82 [+2.67 to +2.97] +1.15 [+0.99 to +1.32] 

Noise - 5 min −0.02 [−0.16 to +0.12] −0.13 [−0.29 to +0.03] 

Noise - 10 min −0.64 [−0.78 to −0.50] −0.07 [−0.23 to +0.09] 

Noise - 15 min −0.43 [−0.56 to −0.29] +0.01 [−0.16 to +0.17] 
 HF 
 <65 dB(A) >65 dB(A) 

Noise - 0 min +1.57 [+1.38 to +1.76] +0.97 [+0.77 to +1.18] 

Noise - 5 min −0.11 [−0.29 to +0.07] +0.02 [−0.19 to +0.22] 

Noise - 10 min −0.61 [−0.78 to −0.43] −0.10 [−0.30 to +0.10] 

Noise - 15 min −0.39 [−0.57 to −0.22] +0.01 [−0.19 to +0.21] 

 

The coefficients represent changes in percentage of the mean outcome for an increase of one Leq 

dB(A). 95% confidence interval are reported. 




