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ON THE HOCHSCHILD HOMOLOGY OF SINGULARITY

CATEGORIES

YU WANG, UMAMAHESWARAN ARUNACHALAM, AND BERNHARD KELLER

Abstract. Let k be an algebraically closed field and A a finite-dimensional k-algebra.
In this note, we determine complexes which compute the Hochschild homology of the
canonical dg enhancement of the bounded derived category of A and of the canonical
dg enhancement of the singularity category of A. As an application, we obtain a new
approach to the computation of Hochschild homology of Leavitt path algebras.

1. Reminder on Hochschild homology of algebras and categories

Let k be a field. We write ⊗ for ⊗k. Let A be a k-algebra (associative, with 1). We write
ModA for the category of all (right) A-modules and DA = D(ModA) for its unbounded
derived category. Let Ae = A ⊗ Aop be the enveloping algebra of A so that Ae-modules
identify with A-bimodules. The Hochschild homology of A is defined by

HHp(A) = TorA
e

p (A,A) , p ∈ Z.
Alternatively, we may define it as the pth homology group of the Hochschild chain complex
HH(A) of A, i.e. the complex C∗A concentrated in homological degrees ≥ 0

A A⊗A . . . A⊗p A⊗(p+1) . . .

with CpA = A⊗(p+1), p ≥ 0, and differential given by

(1.0.1) d(a0, . . . , ap) =

p−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ap) + (−1)p(apa0, . . . , ap−1) ,

where we write (a0, . . . , ap) for a0 ⊗ · · · ⊗ ap. Notice that the first differential takes a ⊗ b
to the commutator ab− ba.

We see that HH0(A) is the quotient A/[A,A] of the vector space A by its subspace
generated by all commutators and that HHp(A) and HH(A) ∈ Dk are functorial in the
algebra A. The definitions extend from k-algebras to small k-categories. For example, the
Hochschild complex then becomes the complex⊕

A(X0, X0)
⊕
A(X1, X0)⊗A(X0, X1)oo . . .oo

whose pth term (p ≥ 0) is the sum⊕
A(Xp, X0)⊗A(Xp−1, Xp)⊗ · · · ⊗ A(X0, X1)

taken over all sequences of objects X0, X1, . . . , Xp of A and whose horizontal differential
is given by formula (1.0.1). One then shows that the inclusion A → proj (A) of the one-
object category given by A into the category proj (A) of finitely generated projective right
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A-modules induces a quasi-isomorphism

HH(A) ∼−→ HH(projA).

In particular, this yields Morita invariance of Hochschild homology. The definitions fur-
ther extend to small differential graded (=dg) categories A, for example the dg category
Cbdg(projA) of bounded complexes over proj (A). We refer the reader to [9] for more infor-

mation on this example and dg categories in general. The inclusion proj (A)→ Cbdg(projA)
yields an isomorphism

HH(projA) ∼−→ HH(Cbdg(projA))

and this yields the invariance of Hochschild homology under derived equivalences. We will
need the following localization theorem.

Theorem 1.1 ([8]). Let

A F // B G // C
be a sequence of dg categories such that the induced sequence of derived categories

0 // DA F ∗
// DB G∗

// DC // 0

is exact. Then there is a canonical triangle

HH(A)
HH(F )

// HH(B)
HH(G)

// HH(C) // ΣHH(A)

in Dk and hence long exact sequences in Hochschild (and cyclic) homology.

Let Q be a finite quiver and I an admissible ideal in kQ, i.e. a two-sided ideal contained
in the square of the ideal generated by the arrows and such that the quotient kQ/I is
finite-dimensional. Let R be the quotient of A by its radical. Thus, as an A-module, the
algebra R is the direct sum of the simple A-modules. Following [7], we define the Koszul
dual of A to be the dg algebra

A! = RHomA(R,R).

Thus, if P is a projective resolution of the A-module R, then the Koszul dual is quasi-
isomorphic to the dg endomorphism algebra HomA(P, P ) of P . The following theorem is a
special case of Corollary D.2 of Van den Bergh’s [12]. We write D for the dual Homk(?, k)
over the ground field.

Theorem 1.2 (Van den Bergh). We have a canonical isomorphism

HH(A!) ∼−→ DHH(A).

We refer to [6] for a comparison taking into account much more structure.

2. Hochschild homology of derived categories and singularity categories

Let Q be a finite quiver and I an admissible ideal in kQ. Let modA be the category
of k-finite-dimensional right A-modules. Denote by Db(A) = Db(modA) the bounded
derived category of A and by per (A) the perfect derived category, i.e. the thick subcategory
generated by the free A-module of rank 1. Following Buchweitz [2] and Orlov [10], one
defines the singularity category of A as the Verdier quotient

sg(A) = Db(A)/per (A).

Using the canonical dg enhancements of Db(A) and per (A), cf. [9], we obtain a canonical
exact sequence of dg categories

0 // per dg(A) // Dbdg(A) // sgdg(A) // 0 ,
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where the dg quotient sgdg(A) yields a canonical dg enhancement for sg(A). It is not hard
to see that, in the homotopy category of dg categories, it is functorial with respect to
bimodule complexes X ∈ D(Aop ⊗ B) such that XB is perfect over B and AX is perfect
over A. From the localization theorem 1.1, we deduce a triangle

(2.0.1) HH(per dg(A)) // HH(Dbdg(A)) // HH(sgdg(A)) // ΣHH(per dg(A))

in the derived category of vector spaces.

Theorem 2.1. We have a canonical isomorphism HH(Dbdg(A)) ∼−→ DHH(A).

Proof. Recall that we have defined R to be the quotient of A by its radical and the Koszul
dual A! as RHomA(R,R). Since the module R is a classical generator of the bounded
derived categoryDb(A), we deduce from the results of [7] that we have a triangle equivalence

RHomA(R, ?) : Db(A)
∼ // per (A!).

This lifts to a quasi-equivalence

Dbdg(A) ∼−→ per dg(A
!).

By Morita invariance of Hochschild homology, we have

HH(A!) ∼−→ HH(per dg(A
!)).

By Van den Bergh’s theorem 1.2, we have

HH(A!) ∼−→ DHH(A).

The claim follows if we combine these isomorphisms.
√

Define a linear map τ : A→ DA by sending an element a ∈ A to the linear form which
takes b ∈ A to the trace of the linear map

λaρb : A→ A , x 7→ axb ,

where λa is left multiplication by a and ρb right multiplication by b. Notice that since A
is finite-dimensional, this is well-defined. Moreover, the value of 〈a, b〉 = (τ(a))(b) only
depends on the classes of a and b in HH0(A), which is canonically isomorphic to R. It is
not hard to check that in the basis formed by the ei, the matrix of the induced bilinear
form

HH0(A)×HH0(A)→ k

is the Cartan matrix of A, whose (i, j)-entry is the dimension of eiAej . Define the double
Hochschild complex of A to be the complex

. . .
b // A⊗A b // A

τ // DA
Db // D(A⊗A)

Db // . . . ,

where DA sits in degree 0, the differentials b are those of the Hochschild complex and the
Db their duals.

Let us abbreviate S = sgdg(A).

Theorem 2.2. In Dk, we have a canonical isomorphism between HH(S) and the double
Hochschild complex of A.

Notice that this implies in particular that HHn(S) is finite-dimensional for all n. This
is surprising since the singularity category sg(A) is usually not Hom-finite (except if A is
Gorenstein), cf. for example [3].
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Proof. We use the triangle

HH(per dg(A)) // HH(Dbdg(A)) // HH(S) // ΣHH(per dg(A))

obtained from the localization theorem 1.1. We have already seen that it is isomorphic to
a triangle

HH(A)→ HH(A!)→ HH(S)→ ΣHH(A) ,

where the first morphism is induced by the inclusion per dg(A) → Dbdg(A). Thus, the

complex HH(S) identifies with the mapping cone over the morphism HH(A)→ HH(A!).
Let us determine this morphism explicitly. Recall that the functor HH, considered as a
functor on the homotopy category of small dg categories with values in the derived category
Dk, commutes with tensor products. We have the following commutative square

per dg(A
op)⊗ per dg(A) per dg(k)

per dg(A)op ⊗Dbdg(A) per dg(k)

Here, a pair (P1, P2), P1 ∈ proj (Aop), P2 ∈ proj (A) is taken to P2⊗A P1 by the top arrow
and to (HomA(P1, A), P2) by the left vertical arrow. It follows from Appendix D in [12]
that the lower horizontal arrow induces a non degenerate pairing

HH(A)⊗HH(Dbdg(A))→ HH(k) = k.

A direct computation now shows that the morphism

HH(A)→ DHH(A)

is the composition

HH(A)→ HH0(A)→ DHH0(A)→ DHH(A)

where the middle morphism is induced by the map τ .
√

Corollary 2.3. For n ≥ 2, we have canonical isomorphisms

HHn(S) ∼−→ HHn−1(A) ∼−→ DHH1−n(S).

Moreover, we have

HH1(S) ∼−→ ker(HH0(A)
τ→ DHH0(A)) ∼−→ DHH0(S).

3. Application: Hochschild homology of dg Leavitt path algebras

Let Q be a finite quiver, for example a quiver with one vertex and a unique loop α. Let
A be the associated radical square zero algebra, i.e. the quotient of kQ by the square of
the ideal generated by the arrows. So for the one-loop quiver, we have A = k[ε]/(ε2). Let
Q∗ be the graded quiver obtained from the opposite quiver of Q by assigning each arrow
α∗ : j → i corresponding to an arrow α : i → j of Q the degree +1. For each vertex i of
Q, consider the arrows α∗

s : i→ t(α∗
s), 1 ≤ s ≤ ti, starting in Q∗ at i. Let

ϕi : Pi →
ti⊕
s=1

ΣPt(α∗
s)
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be the morphism with components α∗
s, where Pi = eikQ

∗. For example, for the one-loop
quiver, we just have ϕ(1) = α∗ : P1 → ΣP1. Note that if i is a sink of Q, then

ti⊕
s=1

Pt(α∗
s)

= 0.

For each vertex i ∈ Q0, let

ϕ(i)−1 = [βi,1, . . . , βi,ti ] :

ti⊕
s=1

ΣPt(α∗
s)
→ Pi

be the formal inverse of ϕ(i). The graded Leavitt path algebra of Q is obtained from kQ∗

by adjoining all coefficients βij of all formal inverses ϕ(i)−1, i ∈ Q0. We endow LQ with
the grading inherited from Q∗ and with d = 0.

Theorem 3.1 (Smith [11] , Chen–Yang [5]). We have a triangle equivalence per (LQ) ∼−→
sg(A) taking eiLQ to the simple Si.

Corollary 3.2. The Hochschild homology HH∗(LQ) of the Leavitt path algebra is computed
by the double Hochschild complex

. . .
b // A⊗A b // A

τ // DA
Db // D(A⊗A)

Db // . . . ,

(with DA in degree 0). In particular, we have

dimHHp(LQ) = 0 <∞
for all p ∈ Z.

A different description of the Hochschild homology of Leavitt path algebras is due to
Ara–Cortiñas [1].

4. Beyond radical square zero

Let Q be a finite quiver and A = kQ/I the quotient of its path algebra by an admissible
ideal. Let J be the radical of A and R = kQ0 so that we have A = R⊕ J as R-bimodules.
Let A0 = (TRJ)/(J ⊗R J) be the radical square zero algebra associated with A. Thus, we
have A0 = R ⊕ J = A as R-bimodules but we have xy = 0 in A0 for any two elements of
J . We view A0 as a degeneration of A and A as a deformation of A0. As pointed out by
Chen–Wang [4], this suggests that the singularity category sg(A) is a deformation of the
singularity category sg(A0), which is equivalent to the perfect derived category per (LA0) of
the graded Leavitt path algebra LA0 . Hence we can hope for the existence of a dg algebra
LA obtained from LA0 by deformation such that per (LA) is equivalent to sg(A). We sum
up the situation in the following diagram

A0 A
deformation

sg(A0) sg(A)

per (LA0) per (LA)

deformation

∼ ∼

deformation?

LA0 LAdeformation? ?

?

The following theorem confirms this hope.
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Theorem 4.1 (Chen–Wang [4]). The graded algebra LA0 admits a canonical differential
dA such that for LA = (LA0 , dA), we have a triangle equivalence

per (LA) ∼−→ sg(A).

Corollary 4.2. The Hochschild homology of the dg Leavitt path algebra LA is computed
by the double Hochschild complex of A.
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