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Abstract

Recent advances in adversarial attacks and
Wasserstein GANs have advocated for use of neu-
ral networks with restricted Lipschitz constants.
Motivated by these observations, we study the
recently introduced GroupSort neural networks,
with constraints on the weights, and make a the-
oretical step towards a better understanding of
their expressive power. We show in particular
how these networks can represent any Lipschitz
continuous piecewise linear functions. We also
prove that they are well-suited for approximating
Lipschitz continuous functions and exhibit upper
bounds on both the depth and size. To conclude,
the ef�ciency of GroupSort networks compared
with more standard ReLU networks is illustrated
in a set of synthetic experiments.

1 Introduction

In the past few years, developments in deep learning have
highlighted the bene�ts of operating neural networks with
restricted Lipschitz constants. An important illustration is
provided by robust machine learning, where networks with
large Lipschitz constants are prone to be more sensitive to
adversarial attacks, in the sense that small perturbations
of the inputs can lead to signi�cant misclassi�cation er-
rors (e.g., Goodfellow et al., 2015). In order to circumvent
these limitations, Gao et al. (2017), Esfahani and Kuhn
(2018), and Blanchet et al. (2019) studied a new regular-
ization scheme based on penalizing the gradients of the
networks. Constrained neural networks also play a key role
in the different but not less important domain of Wasser-
stein GANs (Arjovsky et al., 2017), which take advantage
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of the dual form of the1-Wasserstein distance expressed as
a supremum over the set of1-Lipschitz functions (Villani,
2008). This formulation has been shown to bring training
stability and is empirically ef�cient (Gulrajani et al., 2017).
In this context, many different ways have been explored to
restrict the Lipschitz constants of the discriminator. One
possibility is to clip their weights, as advocated by Arjovsky
et al. (2017). Other solutions involve enforcing a gradient
penalty (Gulrajani et al., 2017) or penalizing norms of the
matrices of the weights (Miyato et al., 2018).

However, all of these operations are delicate and may signif-
icantly affect the expressive power of the neural networks.
For example, Huster et al. (2018) show that ReLU neural
networks with constraints on the weights cannot represent
even the simplest functions, such as the absolute value. In
fact, little is known regarding the expressive power of such
restricted networks, since most studies interested in the ex-
pressiveness of neural networks (e.g., Hornik et al., 1989;
Cybenko, 1989; Raghu et al., 2017) do not take into account
eventual constraints on their architectures. As far as we
know, the most recent attempt to tackle this issue is by Anil
et al. (2019). These authors exhibit a family of neural net-
works, with constraints on the weights, which is dense in
the set of Lipschitz continuous functions on a compact set.
To show this result, Anil et al. (2019) make critical use of
GroupSort activations.

Motivated by the above, our objective in the present article is
to make a step towards a better mathematical understanding
of the approximation properties of Lipschitz feedforward
neural networks using GroupSort activations. Our contribu-
tions are threefold:

(i) We show that GroupSort neural networks, with con-
straints on the weights, can represent any Lipschitz
continuous piecewise linear function and exhibit up-
per bounds on both their depth and size. We make a
connection with the literature on the depth and size of
ReLU networks (in particular Arora et al., 2018; He
et al., 2018).

(ii ) Building on the work of Anil et al. (2019), we offer
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upper bounds on the depth and size of GroupSort neu-
ral networks that approximate1-Lipschitz continuous
functions on compact sets. We also show that increas-
ing the grouping size may signi�cantly improve the
expressivity of GroupSort networks.

(iii ) We empirically compare the performances of Group-
Sort and ReLU networks in the context of function
regression estimation and Wasserstein distance ap-
proximation.

The mathematical framework together with the necessary
notation is provided in Section 2. Section 3 is devoted to
the problem of representing Lipschitz continuous functions
with GroupSort networks of grouping size2. The extension
to any arbitrary grouping size is discussed in Section 4 and
numerical illustrations are given in Section 5. For the sake
of clarity, all proofs are gathered in the Appendix.

2 Mathematical context

We introduce in this section the mathematical context of
the article and describe more speci�cally the GroupSort
neural networks, which, as we will see, play a key role
in representing and approximating Lipschitz continuous
functions.

Throughout the paper, the ambient spaceRd is assumed to
be equipped with the Euclidean normk�k. ForE a subset of
Rd, we denote byLip1(E) the set of1-Lipschitz real-valued
functions onE, i.e.,

Lip1(E) =
�

f : E ! R : j f (x) � f (y)j 6 kx� yk; (x;y) 2 E2	

Let k > 2 be an integer. We letDk = f Dk;a : a 2 L g be the
class of functions fromRd to R parameterized by feedfor-
ward neural networks of the form

Dk;a (x) = Vq
1� vq� 1

sk( Vq� 1
vq� 1� vq� 2

� � � sk( V2
v2� v1

sk( V1
v1� D

x+ c1
v1� 1

)

+ c2
v2� 1

) + cq� 1
vq� 1� 1

) + cq
1� 1

; (1)

whereq > 2 and the characters below the matrices indicate
their dimensions (lines� columns). For q = 1, we simply
let Dk;a (x) = V1x+ c1 be a simple linear regression inR
without hidden layers. Thus, a network inDk has(q� 1)
hidden layers, and hidden layers from depth1 to (q � 1)
are assumed to be of respective widthsvi , i = 1; : : : ;q� 1,
divisible byk. Such a network is said to be of depthq and
of sizen1 + � � � + nq� 1. The matricesVi are the matrices of
weights between layeri and layer(i + 1) and theci 's are the
corresponding offset vectors (in column format). So, alto-
gether, the vectorsa = ( V1; : : : ;Vq;c1; : : : ;cq) represent the
parameter spaceL of the functions inDk. With respect to
the activation functionssk, we propose to use the GroupSort
activation, which separates the pre-activations into groups
and then sorts each group into ascending order.

Figure 1: GroupSort activation with a grouping size 5.
Source: Anil et al. (2019).

The GroupSort function splits the input inton different
groups ofk elements each:G1 = f x1; : : : ;xkg; : : : ;Gn =
f xnk� (k� 1) ; : : : ;xnkg, and then orders each group by decreas-
ing order. Thus, the GroupSort function with a grouping size
k > 2 is applied on a given vector(x1; : : : ;xkn) as follows:

sk(x1; : : : ;xk; : : : ;xnk� (k� 1) ; : : : ;xnk) =
�
xG1

(k) ; : : : ;x
G1
(1) ; : : : ;x

Gn
(k) ; : : : ;x

Gn
(1)

�
;

where(xGi
(k) ; : : : ;x

Gi
(1)) corresponds to the decreasing ordering

in the groupGi .

This activation is applied on groups ofk components, which
makes sense in(1) since the widths of the hidden layers are
assumed to be divisible byk. GroupSort has been introduced
in Anil et al. (2019) as a1-Lipschitz activation function that
preserves the gradient norm of the input. An example with
a grouping sizek = 5 is given in Figure 1. With a slight
abuse of vocabulary, we call a neural network of the form
(1) a GroupSort neural network. We note that the Group-
Sort activation can recover the standard recti�er function.
For example,s2(x;0) = ( ReLU(x); � ReLU(� x)) , but the
converse is not true.

Throughout the manuscript, the notationk � k (respec-
tively, k � k¥ ) means the Euclidean (respectively, the supre-
mum) norm onR p, with no reference top as the con-
text is clear. ForW = ( wi; j ) a matrix of sizep1 � p2,
we let kWk2 = supkxk= 1kWxk be the2-norm ofW. Sim-
ilarly, the ¥ -norm of W is kWk¥ = supkxk¥ = 1kWxk¥ =
maxi= 1;:::;p1 å p2

j= 1 jwi; j j. We will also use the(2;¥ )-norm of
W, i.e.,kWk2;¥ = supkxk= 1kWxk¥ . The following assump-
tion plays a central role in our approach:

Assumption 1. For all a = ( V1; : : : ;Vq;c1; : : : ;cq) 2 L ,

kV1k2;¥ 6 1; max(kV2k¥ ; : : : ;kVqk¥ ) 6 1;

and max(kcik¥ : i = 1; : : : ;q) 6 K2;

where K2 > 0 is a constant.

This type of compactness requirement has already been
suggested in the statistical and machine learning community
(e.g., Arjovsky et al., 2017; Anil et al., 2019; Biau et al.,
2020). In the setting of this article, its usefulness is captured
in the following simple but essential lemma:

Lemma 1. Assume that Assumption 1 is satis�ed. Then, for
any k> 2, Dk � Lip1(Rd).
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Combining Lemma 1 with Arzelà-Ascoli theorem, it is easy
to see that, under Assumption 1, the classDk restricted to
any compactK � Rd is compact in the set of continuous
functions onK with respect to the uniform norm. From this
point of view, Assumption 1 is therefore somewhat restric-
tive. On the other hand, it is essential in order to guarantee
that all neural networks inDk are indeed 1-Lipschitz. Prac-
tically speaking, various approaches have been explored in
the literature to enforce this1-Lipschitz constraint. Gulra-
jani et al. (2017), Kodali et al. (2017), Wei et al. (2018),
and Zhou et al. (2019) proposed a gradient penalty term,
Miyato et al. (2018) applied spectral normalization, while
Anil et al. (2019) have shown the empirical ef�ciency of the
orthonormalization of Björck and Bowie (1971).

Importantly, Anil et al. (2019, Theorem 3) states that, un-
der Assumption 1, GroupSort neural networks are universal
Lipschitz approximators on compact sets. More precisely,
for any Lipschitz continuous functionf de�ned on a com-
pact, one can �nd a neural network of the form(1) verifying
Assumption 1 and arbitrarily close tof with respect to the
uniform norm. Our objective in the present article is to ex-
plore the properties of these networks. We start in the next
section by examining the case of piecewise linear functions.

3 Learning functions with a grouping size 2

For this section, we only consider GroupSort neural net-
works with a grouping size 2 and aim at studying their
expressivity. The capacity of GroupSort networks to approx-
imate continuous functions is studied via the representation
of piecewise linear functions. For feedforward ReLU net-
works, their ability to represent such functions has been
largely studied. In particular, Arora et al. (2018, Theo-
rem 2.1) reveals that any piecewise linear function from
Rd ! R can be represented by a ReLU network of depth
at mostdlog2(d+ 1)e (the symbold�estands for the ceiling
function), whereas He et al. (2018) specify an upper bound
on their size. In the present section, we extend these results
and �rst tackle the problem of representing piecewise linear
functions with constrained GroupSort networks. Then we
move to the non-linear case.

3.1 Representation of piecewise linear functions

Let us start gently by �xing the vocabulary.

De�nition 1. A continuous functionf : Rd ! R is said to
be (continuous)mf -piecewise linear (mf > 2) if there exist
a partitionW = f W1; : : : ;Wmf g of Rd into polytopes and a
collection`1; : : : ; `mf of af�ne functions such that, for all
x 2 Wi , i = 1; : : : ;mf , f (x) = ` i(x).

At this stage no further assumption is made on the sets
W1; : : : ;Wmf , which are just assumed to be polytopes inRd.
An example of piecewise linear function on the real line
with mf = 4 is depicted in Figure 2. As this �gure suggests,

Figure 2: A4-piecewise linear function on the real line
and the associated partitionsW = f W1; : : : ;W4g andW̃ =
f W̃1; : : : ;W̃7g. The partitionW̃ is �ner thanW.

the ambient spaceRd can be further covered by a second
partitionW̃ = f W̃1; : : : ;W̃M f g of M f polytopes (M f > 1), in
such a way that the sign of the differences` i � ` j , (i; j) 2
f 1; : : : ;mf g2, does not change on the subsetsW̃1; : : : ;W̃M f .
It is easy to see that the partitioñW is �ner thanW since, for
eachi 2 f 1; : : : ;M f g there existsj 2 f 1; : : : ;mf g such that
W̃i � Wj . This implies in particular thatM f > mf .

The usefulness of the partitioñW is demonstrated by He et al.
(2018, Theorem 5.1), which states that anymf -piecewise
linear functionf can be written as

f = max
16 k6 M f

min
i2Sk

` i ; (2)

where eachSk is a non-empty subset off 1; : : : ;mf g. This
characterization of the functionf is interesting, since it
shows that anymf -piecewise linear function can be com-
puted using only a �nite number ofmaxandmin operations.
As identity (2) is essential for our approach, this justi�es
spending some time examining it.

Lemma 2. Let f : Rd ! R be anmf -piecewise linear func-

tion. Then mf 6 M f 6 min(2m2
f =2; (mf =

p
2)2d).

Lemma 2 is an improvement of He et al. (2018, Lemma 5.1),
which shows thatM f 6 mf !. Our proof method exploits
the inequalityM f 6 Cmf (mf � 1)=2;d, whereCn;d denotes the
number of arrangements ofn hyperplanes in a space of
dimensiond (Devroye et al., 1996, Chapter 5). Another
application of(2) is encapsulated in Proposition 1 below,
which will be useful for later analysis, in combining maxima
and minima in neural networks of the form (1).

Proposition 1. Let f1; : : : ; fm : Rd ! R be a collection of
functions (m> 2), each represented by a neural network of
the form(1), with common depthq and sizessi , i = 1; : : : ;m.

In the speci�c case wherem= 2n for somen > 1, there exist
neural networks of the form(1) (with grouping size2) with
depthq+ log2(m) and size at mosts1 + � � � + sm + m� 1
that represent the functionsf = max( f1; : : : ; fm) andg =
min( f1; : : : ; fm).
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If mis arbitrary, then there exist neural networks of the form
(1) with depthq+ dlog2(m)eand size at mosts1 + � � � + sm+
2m� 1 that represent the functions f and g.

Interestingly, Arora et al. (2018, Lemma D.3), which is
the analog of Proposition 1 asserts that the size with ReLU
activations is at mosts1 + � � � + sm+ 8m� 4. For the speci�c
computation of maxima/minima of functions, it should be
stressed that GroupSort activations slightly reduces the size
of the networks. By combining Lemma 2, Proposition 1,
and identity(2), we are led to the following theorem, which
reveals the ability of GroupSort networks for representing
1-Lipschitz piecewise linear functions.

Theorem 1. Let f 2 Lip1(Rd) that is alsomf -piecewise
linear. Then there exists a neural network of the form
(1) verifying Assumption 1 that representsf . Besides, its
depth isdlog2(M f )e+ dlog2(mf )e+ 1 and its size is at most
3mf M f + M f � 1.

This result should be compared with state-of-the-art results
known for ReLU neural networks. In particular, Arora et al.
(2018, Theorem 2.1) reveals that anymf -piecewise linear
function f can be represented by a ReLU network with
depth at mostdlog2(d+ 1)e. The upper bound of Theorem
1 can be larger since it involves bothM f andmf . On the
other hand, the upper boundO(mf M f ) on the size signi�-
cantly improves on He et al. (2018, Theorem 5.2), which
is at leastO(d2mf M f ). This improvement in terms of size
can be roughly explained by the depth/size trade-off results
known in deep learning theory. As a matter of fact, many
theoretical research papers have underlined the bene�ts of
depth relatively to width for parameterizing complex func-
tions (as, for example, in Telgarsky, 2015, 2016). For a �xed
number of neurons, when comparing two neural networks,
the deepest is the most expressive one (Lu et al., 2017).

It turns out that Theorem 1 can be signi�cantly re�ned
when the partitionW satis�es some geometrical proper-
ties. Our next proposition examines the case where the sets
W1; : : : ;Wmf are convex.

Corollary 1. Let f 2 Lip1(Rd) that is alsomf -piecewise
linear with convex subdomainsW1; : : : ;Wmf . Then there
exists a neural network of the form(1) verifying Assumption
1 that representsf . Besides, its depth is2dlog2(mf )e+ 1
and its size is at most3m2

f + mf � 1.

Corollary 1 offers a signi�cant improvement over Theorem
1, since in generalM f � mf . We note in passing that the
result of this proposition is dimension-free.

3.2 GroupSort neural networks on the real line

Piecewise linear functions de�ned onR deserve a special
treatment, since in this case, any connected subset is convex.

Proposition 2. Let f 2 Lip1(R) that is alsomf -piecewise
linear. Then there exists a neural network of the form(1)

verifying Assumption 1 that representsf . Besides, its depth
is 2dlog2(mf )e+ 1 and its size is at most3m2

f + mf � 1.

In the speci�c case wheref is convex (or concave), then
there exists a neural network of the form(1) verifying As-
sumption 1 that representsf . Its depth isdlog2(mf )e+ 1
and its size is at most3mf � 1.

Whenf is convex (or concave) andmf = 2n for somen > 1,
then there exists a neural network of the form(1) verifying
Assumption 1 that representsf . Its depth islog2(mf ) + 1
and its size is at most2mf � 1.

This proposition is the counterpart of Arora et al. (2018,
Theorem 2.2), which states that anymf -piecewise linear
function fromR ! R can be represented by a2-layer ReLU
neural network with a size at leastmf � 1 . He et al. (2018,
Theorem 5.2) shows that the upper-bound on the size of
ReLU networks isO(2m2+ 2(m� 1)). Thus, for the representa-
tion of piecewise linear functions on the real line, GroupSort
networks require larger depths but smaller sizes. Besides,
bear in mind that the obtained ReLU neural networks do
not necessarily verify a requirement similar to the one of
Assumption 1.

Regarding the number of linear regions of GroupSort net-
works on the real line, we have the following result:

Lemma 3. Any neural network of the form(1) on the real
line, with depthq and widthsn1; : : : ;nq� 1, parameterizes a
piecewise linear function with at most2q� 2 � (n1=2+ 1) �
n2 � � � � � nq� 1 linear subdomains.

We deduce from this lemma that for a neural network of
the form(1) with depthq > 2 and constant widthn, the
maximum number of linear regions isO(2q� 3nq� 1). Simi-
larly to ReLU networks (Montúfar et al., 2014; Arora et al.,
2018), the maximum number of linear regions for Group-
Sort networks with grouping size2 is also likely to grow
polynomially inn and exponentially inq.

Our next corollary now illustrates the trade-off between
depth and width for GroupSort neural networks.

Corollary 2. Let f 2 Lip1(R) be anmf -piecewise linear
function. Then, any neural network of the form(1) verifying
Assumption 1 and representing f with a depth q, has a size
s at least12(q� 1)m1=(q� 1)

f .

The lower bound highlighted in Corollary 2 is dependent
on the depthq of the neural network. By looking at the
minimum of the function, we get that any neural network

representingf has a sizes >
eln(mf )

2 . Thus, merging this
result with Proposition 2, we have that for anymf -piecewise
linear function fromR ! R, there exists a GroupSort net-
work verifying Assumption 1 with a sizessatisfying

eln(mf )
2

6 s6 3m2
f � mf � 3:
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We realize that this inequality is large but, up to our knowl-
edge, this is �rst of this type for GroupSort neural networks.

3.3 Approximating Lipschitz continuous functions on
compact sets

Following our plan, we tackle in this subsection the task of
approximating Lipschitz continuous functions on compact
sets using GroupSort neural networks. The space of con-
tinuous functions on[0;1]d is equipped with the uniform
norm

k f � gk¥ = max
x2[0;1]d

j f (x) � g(x)j:

The main result of the section, and actually of the article, is
that GroupSort neural networks are well suited for approxi-
mating functions in Lip1([0;1]d).

Theorem 2. Let e > 0 andd > 2, f 2 Lip1([0;1]d). Then
there exists a neural networkD of the form(1) verifying
Assumption 1 such thatk f � Dk¥ 6 e. The depth ofD is
O(d2 log2( 2

p
d

e )) and its size is O(( 2
p

d
e )d2

).

To the best of our knowledge, Theorem 2 is the �rst one that
provides an upper bound on the depth and size of neural
networks, with constraints on the weights, that approximate
Lipschitz continuous functions.

As for the representation of piecewise linear functions, one
can, for the sake of completeness, compare this bound with
those previously found in the literature of ReLU neural net-
works. Yarotsky (2017) establishes the density of ReLU
networks in Sobolev spaces, using a different technique of
proof. In particular, Theorem 1 of this paper states that
for any f 2 Lip1([0;1]d) continuously differentiable, there
exists a ReLU neural network approximatingf with preci-
sione, with depth at mostc(ln(1=e) + 1) and size at most
ce� d(ln(1=e)+ 1) (with a constantc function ofd). Com-
paring this result with our Theorem 2, we see that, with
respect toe, both depths are similar but ReLU networks
are smaller in size. However, one has to keep in mind that
both lines of proof largely differ. Besides, our formulation
ensures that the approximator is also a1-Lipschitz function,
a feature that cannot be guaranteed under the formulation
of Yarotsky (2017).

It turns out however that our framework provides smaller
neural networks as soon asd = 1.

Proposition 3. Let e > 0 and f 2 Lip1([0;1]). Then there
exists a neural networkD of the form(1) verifying As-
sumption 1 such thatk f � Dk¥ 6 e. The depth ofD is
2dlog2(1=e)e+ 1 and its size is O(( 1

e)2).

Besides, iff is assumed to be convex or concave, then the
depth of D isdlog2(1=e)e+ 1 and its size is O( 1

e).

4 Impact of the grouping size

The previous section paved the way for a better understand-
ing of GroupSort neural networks and their ability to ap-
proximate Lipschitz continuous functions. As mentioned
in Section 2, one can play with the grouping sizek of the
neural network when de�ning its architecture. However, it
is not clear how changing this parameter might in�uence
the expressivity of the network. The present section aims at
bringing some understanding. Following a similar reason-
ing as in Section 3, we start by analyzing how GroupSort
networks with an arbitrary grouping sizek > 2 can represent
any piecewise linear functions:

Proposition 4 (Extension of Proposition 1). Let f1; : : : ; fm :
Rd ! R be a collection of functions (m> 2), each repre-
sented by a neural network of the form(1), with common
depth q and sizes si , i = 1; : : : ;m.

In the speci�c case wherem= kn for somen > 1, there exist
neural networks of the form(1) (with grouping sizek) with
depthq+ logk(m) and size at mosts1 + � � � + sm+ m� 1

k� 1 � 1
that represent the functionsf = max( f1; : : : ; fm) andg =
min( f1; : : : ; fm).

Similarly to Section 3, this leads to the following corollary:

Corollary 3 (Extension of Corollary 1). Let f 2 Lip1(Rd)
that is alsomf -piecewise linear with convex subdomains
W1; : : : ;Wmf such thatmf = kn for somen > 1. Then there
exists a neural network of the form(1) verifying Assumption
1 that representsf . Besides, its depth is2dlogk(mf )e+ 1

and its size is at most
m2

f � 1
k� 1 .

Proposition 4 and Corollary 3 exhibit the nice properties
of using larger grouping sizes. Indeed, for a givenq > 1,
there exists a neural network with depth2q+ 1 and grouping
sizek representing a function withkq pieces. Consequently,
the use of larger grouping sizes helps have more expressive
neural networks. The ef�ciency of larger grouping sizes
may also be explained by the following result for GroupSort
networks on the real line:

Lemma 4 (Extension of Lemma 3). Any neural network
of the form(1) on the real line, with depthq, widths
n1; : : : ;nq� 1, and grouping sizek, parameterizes a piece-

wise linear function with at mostkq� 2 � ( (k� 1)n1
2 + 1) �

n2 � � � � � nq� 1 linear subdomains.

Thus, the number of linear regions of a GroupSort network
is likely to increase polynomially with the grouping size,
which highlights the bene�ts of using larger groups. Sim-
ilarly to Section 3, when moving to the approximation of
Lipschitz continuous functions on[0;1]d, we are lead to the
following theorem:

Theorem 3(Extension Theorem 2). Lete > 0, d > 2, and
f 2 Lip1([0;1]d). Then there exists a neural networkD
of the form(1) verifying Assumption 1 with grouping size
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Methods Up Depth Up Size Down Size Reference
Representingm= kn-PWL functions in Rd with a constant width n
ReLU dlog2(d+ 1)e+ 1 O(d2m2

) O(m) He et al. (2018)

GroupSortGS= k d2logk(m)e+ 1 m2� 1
k� 1

n logk(m)
2 logk(n) present article

Approximating 1-Lipschitz continuous functions in [0;1]d

ReLU O(ln( 1
e)) O( ln(1=e)

ed ) n Yarotsky (2017)

GroupSortGS= d2
p

d
e e O(d2) O(( 2

p
d

e )d2� 1) n present article

Approximating 1-Lipschitz continuous functions in [0;1]
ReLU (PWL representation) 2 O(21=e2+ 2=e) n He et al. (2018)

ReLU (different approach) O(ln( 1
e)) O( ln(1=e)

e ) n Yarotsky (2017)

Adaptative ReLU 6 O( 1
eln(1=e) ) n Yarotsky (2017)

GroupSortGS= d1
ee 3 O( 1

e) n present article

Table 1: Summary of the results shown in the present paper together with results previously found for ReLU networks. “Up
Depth” refers to upper bounds on the depths, “Up Size” to upper bounds on the sizes, and “Down Size” to lower bounds on
the sizes. The symbol “n” means that no result is known (up to our knowledge).

d2
p

d
e e such thatk f � Dk¥ 6 e. The depth ofD is O(d2)

and its size is O(( 2
p

d
e )d2� 1).

Using a grouping size proportional to1=e, we thus have a
bound on the depth that is independent from the error rate.
The uni-dimensional case leads to a different result:

Proposition 5 (Extension of Proposition 3). Lete > 0 and
f 2 Lip1([0;1]). Then there exists a neural networkD of
the form(1) verifying Assumption 1 (with grouping sizek)
such thatk f � Dk¥ 6 e. The depth ofD is 2dlogk(

1
e)e+ 1

and its size is at most O( 1
ke2 ).

In particular, if k is chosen to be equal tod1
ee, then the depth

of D is 3 and its size is O( 1
e).

When approximating real-valued functions, the use of larger
grouping sizes can signi�cantly decrease the required size
since it goes fromO(1=e2) in Proposition 3 toO(1=e) in
Proposition 5. Whenf is assumed to be convex or concave,
the depth of the networkD can further be reduced to 2.

Using a different approach for approximating Lipschitz
continuous functions in[0;1], Yarotsky (2017, Theorem
1) shows that ReLU networks with a depth ofO(ln(1=e)) is
needed together with a sizeO( ln(1=e)

e ) to approximate with
an error ratee. To sum-up, when compared with ReLU net-
works, GroupSort neural networks with well-chosen group-
ing size can be signi�cantly more expressive.

Table 1 summarizes the results shown in the present paper
together with results previously found for ReLU networks.
Bear in mind that GroupSort neural networks also have the
supplementary condition that any parameterized function
veri�es the 1-Lipschitz continuity.

5 Experiments

Anil et al. (2019) have already compared the performances
of GroupSort neural networks with their ReLU counterparts,
both with constraints on the weights. In particular, they
showed that ReLU neural networks are more sensitive to ad-
versarial attacks while stressing the fact that if their weights
are limited, then these networks lose their expressive power.
Building on these observations, we further illustrate the
good behavior of GroupSort neural networks in the context
of estimating a Lipschitz continuous regression function
and in approximating the Wasserstein distance (via its dual
form) between pairs of distributions.

Impact of the depth. We start with the problem of learn-
ing a functionf in the modelY = f (X), whereX follows a
uniform distribution on[� 8;8] and f is 32-piecewise linear.
To this aim, we use neural networks of the form(1) with re-
spective depthq = 2, 8, 14, 20, and a constant widthn = 50.
Since we are only interested in the approximation proper-
ties of the networks, we assume to have at hand an in�nite
number of pairs(Xi ; f (Xi)) and train the models by mini-
mizing the mean squared error. We give in the Appendix,
the full details of our experimental setting. The quality of
the estimation is evaluated using the uniform norm between
the target functionf and the output network. In order to
enforce Assumption 1, GroupSort neural networks are con-
strained using the orthonormalization of Björck and Bowie
(1971). The results are presented in Figure 3. Note that
throughout this section, con�dence intervals are computed
over 20 runs. In line with Theorem 1, which states thatf is
representable by a neural network of the form(1) with size
at most3� 322 + 32� 1 = 3104, we clearly observe that,
as the depth of the networks increases, the uniform norm de-
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(a)q = 2 (b) q = 20

(c) Uniform norm (d) Lipschitz constants

Figure 3: Reconstruction of a32-piecewise linear function
on [� 8;8] with a GroupSort neural network of the form(1)
with depthq= 2, 8, 14, 20, and a constant widthn = 50(the
thickness of the line represents a95%-con�dence interval).

creases and the Lipschitz constant of the network converges
to 1. The reconstruction of this piecewise linear function is
even almost perfect for the depthq= 20, i.e., with a network
of size only20� 60= 1200, a value signi�cantly smaller
than the upper bound of the theorem.

We also illustrate the behavior of GroupSort neural net-
works in the context of WGANs (Arjovsky et al., 2017). We
run a series of small experiments in the simpli�ed setting
where we try to approximate the1-Wasserstein distance
between two bivariate mixtures of independent Gaussian
distributions with4 components. We consider networks
of the form(1) with grouping size2, a depthq = 2 and
q = 5, and a constant widthn = 20. For a pair of distribu-
tions (m;n), our goal is to exemplify the relationship be-
tween the1-Wasserstein distancesupf 2Lip1(R2)(Em � En)
(approximated with the Python package by Flamary and
Courty, 2017) and the neural distancesupf 2D 2

(Em � En)
(Arora et al., 2017) computed over the class of functions
D2. To this aim, we randomly draw40 different pairs of
distributions. Then, for each of these pairs, we compute an
approximation of the1-Wasserstein distance and calculate
the corresponding neural distance. Figure 4 depicts the best
parabolic �t between1-Wasserstein and neural distances,
and shows the corresponding Least Relative Error (LRE)
together with the width of the envelope. The take-home
message of this �gure is that both the LRE and the width are
signi�cantly smaller for deeper GroupSort neural networks.

(a)q = 2 (b) q = 5

Figure 4: Scatter plots of40pairs of Wasserstein and neural
distances computed with GroupSort neural networks, for
q = 2;5. The underlying distributions are bivariate Gaus-
sians. The red curve is the optimal parabolic �tting and
LRE refers to the Least Relative Error. The red zone is the
envelope obtained by stretching the optimal curve.

Impact of the grouping size. To highlight the bene�ts of
using larger grouping sizes, we show the impact of increas-
ing the grouping size from2 in Figure 5a to5 in Figure
5b for the representation of a20-piecewise linear function.
This is corroborated by Figure 5c, which illustrates that the
uniform norm with a64-piecewise linear function decreases
when the grouping size increases. As already underlined in
Lemma 4, this may be explained by the fact that the num-
ber of linear regions signi�cantly grows with the grouping
size—see Figure 5d.

(a) Grouping size = 2 (b) Grouping size = 6

(c) Uniform norm (d) Linear regions

Figure 5: Reconstruction of a20-piecewise linear func-
tion on [� 5;5] (top line) and a64-piecewise linear func-
tion (bottom line) with GroupSort neural networks of the
form (1) with depth q = 4 and varying grouping sizes
k = 2;4;6;8;10.
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(a) Prediction quality (b) Lipschitz constants (c) Number of linear regions

(d) Prediction quality (e) Lipschitz constant (f) Number of linear regions

Figure 6: (Top line) Estimating the functionf (x) = ( 1=15) sin(15x) on [0;1] in the modelY = f (X), with a dataset of size
n = 100. (Bottom line) Estimating the functionf (x) = ( 1=15) sin(15x) on [0;1] in the modelY = f (X)+ e, with a dataset
of sizen = 100 (the thickness of the line represents a 95%-con�dence interval).

Comparison with ReLU neural networks. Next, in a
second series of experiments, we compare the performances
of GroupSort networks against two baselines: ReLU neural
networks without constraints on the weights (dense in the
set of continuous functions on a compact set; see Yarotsky,
2017), and ReLU neural networks with orthonormalization
of Björck and Bowie (1971). The architecture of the ReLU
neural networks in terms of depth and width is the same as
for GroupSort networks:q= 2, 4, 6 ,8, andw= 20. The task
is now to approximate the1-Lipschitz continuous function
f (x) = ( 1=15) sin(15x) on [0;1] in the modelsY = f (X)
(noiseless case) andY = f (X) + e (noisy case), whereX
is uniformly distributed on[0;1] ande follows a Gaussian
distribution with standard deviation0:05. In both cases, we
assume to have at hand a �nite sample of sizen = 100and
�t the models by minimizing the mean squared error.

Both results (noiseless case and noisy case) are presented in
Figure 6. We observe that in the noiseless setting Figure 6a,
6b, and 6c, ReLU neural networks without normalization
have a slightly better performance with respect to the uni-
form norm with, however, a Lipschitz constant larger than 1.
On the other hand, in the noisy case, ReLU neural networks
without constraints have a tendency to over�tting (a high
Lipschitz constant close to2:7), leading to a deteriorated
performance, contrary to GroupSort neural networks. Fur-
thermore, in both cases (noiseless and noisy), ReLU with

constraints are found to perform worse (due to a Lipschitz
constant much smaller than1) than their GroupSort counter-
parts in terms of prediction. Interestingly, we see in the two
examples shown in Figure 6e and Figure 6f, that the number
of linear regions for GroupSort neural networks is smaller
than for ReLU networks.

Finally, we quickly show in Appendix a comparison be-
tween GroupSort and ReLU networks when approximating
Wasserstein distances. The take home message is that, on
this speci�c task, GroupSort networks perform better.

6 Conclusion

The results presented in this article show the advantage
of using GroupSort neural networks over standard ReLU
networks. On the one hand, ReLU neural networks with-
out any constraints are sensitive to adversarial attacks (as
they may have a large Lipschitz constant) and, on the other
hand, lose expressive power when enforcing limits on their
weights. On the opposite, GroupSort neural networks with
constrained weights are proved to be both robust and expres-
sive, and are therefore an interesting alternative. Moreover,
by allowing larger grouping sizes for GroupSort networks,
one can further increase their expressivity. These proper-
ties open new perspectives for broader use of GroupSort
networks.
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A Technical results and complementary experiments

A.1 Proof of Lemma 1

We prove the result forD2. The result forDk holds following a similar argument.

Fix D2;a 2 D2, a 2 L . According to(1), we have, forx 2 Rd, D2;a (x) = fq � � � � � f1(x), where fi(t) = s2(Vit + ci) for
i = 1; : : : ;q� 1 (s2 is applied on pairs of components), andfq(t) = Vqt + cq. Therefore, for(x;y) 2 (Rd)2,

k f1(x) � f1(y)k¥ 6 kV1x� V1yk¥

(sinces2 is 1-Lipschitz)

= kV1(x� y)k¥

6 kV1k2;¥ kx� yk

6 kx� yk

(by Assumption 1):

Thus,

k f2 � f1(x) � f2 � f1(y)k¥ 6 kV2 f1(x) � V2 f1(y)k¥

(sinces2 is 1-Lipschitz)

6 kV2k¥ k f1(x) � f1(y)k¥

6 k f1(x) � f1(y)k¥

(by Assumption 1)

6 kx� yk:

Repeating this, we conclude that, for eacha 2 L and all(x;y) 2 (Rd)2, jD2;a (x) � D2;a (y)j 6 kx� yk, which is the desired
result.

A.2 Proof of Lemma 2

Recall thatmf > 2. Throughout the proof, we let� refer to the dot product inRd. Let (i; j) 2 f 1; : : : ;mf g2, i 6= j. There
exist(ai ;bi) 2 Rd � R and(a j ;b j ) 2 Rd � R such that̀ i = ai � x+ bi and` j = a j � x+ b j . Therefore,

` i(x) � ` j (x) 6 0 () x� (ai � a j ) 6 b j � bi :

So, there exist two subdomains̃W1 andW̃2, separated by an af�ne hyperplane, in which` i � ` j does not change sign. By
repeating this operation for themf (mf � 1)=2 different pairs(` i ; ` j ), we get that the numberM f of subdomains on which
any pair` i � ` j does not change sign is smaller than the maximal number of arrangements ofmf (mf � 1)=2 hyperplanes.

Denoting byCn;d the maximal number of arrangements ofn hyperplanes inRd, we know that whend > n thenCn;d = 2n,
whereas ifn > d the upper boundCn;d 6 (1+ n)d becomes preferable (Devroye et al., 1996, Chapter 30). Thus, we have

mf 6 M f 6 min
�
2m2

f =2; (mf =
p

2)2d�
:

A.3 Proof of Proposition 1

We prove the �rst part of the proposition by using an induction onn. The case wheren = 1 and thusm = 21 is clear
since the functionf = max( f1; f2) can be represented by a neural network of the form(1) with depthq+ 1 and size
s1 + s2 + 1. Now, letm= 2n with n > 1. We have thatm=2 = 2n� 1. By the induction hypothesis,g1 = max( f1; : : : ; fm=2)
andg2 = max( fm=2+ 1; : : : ; fm) can be represented by neural networks of the form(1) with depthsq+ n� 1, and sizes at most
s1 + � � � + sm=2 + m=2� 1 andsm=2+ 1 + � � � + sm+ m=2� 1, respectively. Consequently, the functionG(x) = ( g1(x);g2(x))
can be implemented by a neural network of the form(1) with depthq+ n� 1 and sizes1 + � � � + sm+ m� 2. Finally, by
concatenating a one neuron layer, we have that the functionf = max(g1;g2) can be represented by a neural network of the
form (1) with depthq+ n = q+ log2(m) and size at mosts1 + � � � + sm+ m� 1.

Now, let us prove the case wherem is arbitrary. Let f1; : : : ; fm : Rd ! R be a collection of functions (m > 2), each
represented by a neural network of the form(1) with depthq and sizesi , i = 1; : : : ;m. We prove below by an induction onn
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that there exists a neural network of the form(1) with depthq+ dlog2(m)e, a �nal layer of widthnq� 1 = 2, and a size at
mosts1 + � � � + sm+ 2dlog2(m)e � 1 that represents the functionsf = max( f1; : : : ; fm) andg = min( f1; : : : ; fm) (the symbol
d�estands for the ceiling function and the symbolb�cstands for the integer function).

The base casem= 2 is clear using the GroupSort activation andn1 = 2. Form> 2, let n > 2 be such that2n� 1 6 m< 2n. Let
g1 = max( f1; : : : ; f2n� 1) andg2 = max( f2n� 1+ 1; : : : ; fm). From the �rst part of the proof, we know thatg1 can be represented
by a neural network of the form(1) with depthq1 = q+ blog2mc = q+ n� 1 and sizes1 + � � � + s2n� 1 + 2n� 1 � 1. Also, by
the induction hypothesis,g2 can be represented by a neural network of the form(1) with depthq2 = q+ dlog2(m� 2n� 1)e
and size at mosts2n� 1+ 1 + � � � + sm+ 2dlog2(m� 2n� 1)e � 1. Therefore, by padding identity matrices with two neurons (recall
thatnq2� 1 = 2) on layers fromq+ dlog2(m� 2n� 1)e to q+ n� 1, we have:

2dlog2(m� 2n� 1)e � 1+ 2(n� 2� d log2(m� 2n� 1)e) =
k= dlog2(m� 2n� 1)e� 1

å
k= 0

2k +
k= n� 2

å
k= dlog2(m� 2n� 1)e

21

6
k= n� 2

å
k= 0

2k = 2n� 1 � 1:

Thus,g2 can be represented by a neural network of the form(1) with depthq2 = q+ blog2mc and size at mosts2n� 1+ 1 +
� � � + sm+ 2n� 1 � 1. Now, the bivariate functionG(x) = ( g1(x);g2(x)) can be implemented by a neural network of the form
(1) with depthq+ blog2(m)c and sizessuch that

s6 s1 + � � � + sm+ 2(2n� 1 � 1) = s1 + � � � + sm+ 2n � 2:

By concatenating a one neuron layer, we have that the functionf = max(g1;g2) can be represented by a neural network of
the form(1) with depthq+ dlog2(m)eand size at mosts1 + � � � + sm+ 2n � 1 = s1 + � � � + sm+ 2dlog2 me � 1. The conclusion
follows using the inequality 2dlog2 me 6 2m.

A.4 Proof of Theorem 1

Let f 2 Lip1(Rd) that is alsomf -piecewise linear. We know that each linear function can be represented by a1-neuron
neural network verifying Assumption 1 (no need for hidden layers). It is easy to see, using a small variant of Proposition 1,
that any collection of̃m linear functions withm̃6 mcan be represented by a neural network of depthdlog2(m)e+ 1 and size
at most3m� 1. Thus, combining(2) with Proposition 1, for eachk 2 f 1; : : : ;M f g there exists a neural network of the form
(1), verifying Assumption 1 and representing the functionmini2Sk ` i , with depth equal todlog2(mf )e+ 1 (sincejSkj 6 mf )
and size at most 3mf � 1.

Using again Proposition 1, we conclude that there exists a neural network of the form(1), verifying Assumption 1 and
representingf , with depthdlog2(M f )e+ dlog2(mf )e+ 1 and size at most 3mf M f + M f � 1.

A.5 Proof of Corollary 1

According to He et al. (2018, Theorem A.1), the functionf can be written as

f = max
16 k6 mf

min
i2Sk

` i ;

wherejSkj 6 mf . Using the same technique of proof as for Theorem 1, we �nd that there exists a neural network of the form
(1), verifying Assumption 1 and representingf , with depth equal to 2dlog2(mf )e+ 1 and size at most 3m2

f + mf � 1.

A.6 Proof of Proposition 2

Let f 2 Lip1(R) that is alsomf -piecewise linear. The proof of the �rst statement is an immediate consequence of Corollary
1 since connected subsets ofR are also convex.

As for the second claim of the proposition, considering the case wheref is convex, we know from He et al. (2018, Theorem
A.1) that f can be written as

f = max
16 k6 mf

`k:
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Each functioǹ k, k = 1; : : : ;mf , can be represented by a1-neuron neural network verifying Assumption 1. Hence, by
Proposition 1, there exists a neural network of the form(1), verifying Assumption 1 and representingf , with depth
dlog2(mf )e+ 1 and size at most 3mf � 1.

The last claim of the proposition form= 2n is clear using Proposition 1.

A.7 Proof of Lemma 3

The result is proved by induction onq. To begin with, in the caseq = 2 we have a neural network with one hidden layer.
When applying the GroupSort function with a grouping size2, every activation node is de�ned as the max or min between
two different linear functions. The maximum number of breakpoints is equal to the maximum number of intersections, that
is n1=2. Thus, there is at mostn1=2+ 1 pieces.

Now, let us assume that the property is true for a givenq > 3. Consider a neural network with depthq and widths
n1; : : : ;nq� 1. Observe that the input to any node in the last layer is the output of aR ! R GroupSort neural network with
depth(q� 1) and widthsn1; : : : ;nq� 2. Using the induction hypothesis, the input to this node is a function fromR ! R with
at most2q� 3 � (n1=2+ 1) � � � � � nq� 2 pieces. Thus, after applying the GroupSort function with a grouping size2, each
node output is a function with at most2� (2q� 3 � (n1=2+ 1) � n2 � � � � � nq� 2). With the �nal layer, we take an af�ne
combination ofnq� 1 functions, each with at most2q� 2 � (n1=2+ 1) � n2 � � � � � nq� 2 pieces. In all, we therefore get at
most 2q� 2 � (n1=2+ 1) � n2 � � � � � nq� 1 pieces. The induction step is completed.

A.8 Proof of Corollary 2

Let f be anmf -piecewise linear function. For a neural network of depthq and widthsn1; : : : ;nq representingf , we have, by
Lemma 3,

2q� 1 � (n1=2+ 1) � � � � � nq� 1 > mf :

By the inequality of arithmetic and geometric means, minimizing the sizes= n1=2+ � � � + nk subject to this constraint,
means settingn1=2+ 1 = n2 = � � � = nk. This implies thats> 1

2(q� 1)m1=(q� 1)
f .

A.9 Proof of Theorem 2

The proof follows the one from Cooper (1995, Theorem 3). Tesselate[0;1]d by cubes of sides= e=(2
p

d) and denote by
n = ( d1=se)d the number of cubes in the tesselation. Choosen data points, one in each different cube. Then any Delaunay
sphere will have a radiusR< e=2M f . Now, constructf̃ by linearly interpolating between values off over the Delaunay
simplices. According to Seidel (1995), the numbermf of subdomains isO(nd=2) and each of them is convex. Besides, by
Cooper (1995, Lemma 2),̃f guarantees an approximation errork f � f̃ k¥ 6 e.

Using Corollary 1, we know that there exists a neural network of the form(1) verifying Assumption 1 and representing
f̃ . Besides, its depth is2dlog2(mf )e+ 1 and its size is at most3m2

f + mf � 1. Consequently, we have that the depth of the

neural network is 2dlog2(mf )e+ 1 = O(d2 log2( 2
p

d
e )) and the size at mostO(m2) = O(( 2

p
d

e )d2
).

A.10 Proof of Proposition 3

Let f 2 Lip1([0;1]) and fm be the piecewise linear interpolation off with the following 2m + 1 breakpoints:k=2m,
k = 0; : : : ;2m. We know that the functionfm approximatesf with an errorem 6 2� m. In particular, for anym> log2(1=e),
we haveem 6 e. Besides, for anym, fm is a1-Lipschitz function de�ned on[0;1], piecewise linear on2m subdomains. Thus,
according to Proposition 2, there exists a neural network of the form(1), verifying Assumption 1 and representingfm, with
depth 2m+ 1 and size at most 3� 22m+ 2m � 1. Takingm= dlog2(1=e)eshows the desired result.

Let e > 0, let f be a convex (or concave) function inLip1([0;1]), and let fm be the piecewise linear interpolation off
with the following2m+ 1 breakpoints:k=2m, k = 0; : : : ;2m. The functionfm approximatesf with an errorem = 2� m. In
particular, for anym> log2(1=e), we haveem 6 e. Besides, for anym, fm is a2m-piecewise linear convex function de�ned
on [0;1]. Hence, by Proposition 2, there exists a neural network of the form(1), verifying Assumption 1 and representing
fm, with depthm+ 1 and size at most 2� 2m � 1. Takingm= dlog2(1=e)e leads to the desired result.
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A.11 Proof of Proposition 4

We prove the result by using an induction onn. The case wheren = 1 and thusm = k1 is true since the function
f = max( f1; : : : ; fk) can be represented by a neural network of the form(1) with grouping sizek, depthq+ 1, and size
s1 + � � � + sk + 1. Now, letm= kn with n > 1. We have thatbm=kc = dm=ke= m=k = kn� 1. Let g1 = max( f1; : : : ; fm=k);g2 =
max( fm=k+ 1; : : : ; f2m=k); : : : ;gk = max( f((k� 1)m=k)+ 1; : : : ; fm). By the induction hypothesis,g1; : : : ;gk can all be represented
by neural networks of the form(1) with grouping sizek, width depths equal toq+ n� 1 and sizes at mosts1 + � � � + sm=k +
kn� 1� 1

k� 1 ; : : : ;s(k� 1)m=k+ 1 + � � � + sm+ kn� 1� 1
k� 1 , respectively.

Consequently, the functionG(x) = ( g1(x); : : : ;gk(x)) can be implemented by a neural network of the form(1) with grouping
sizek, depthq+ n� 1, and size at mosts1 + � � � + sm+ m� 2. Finally, by concatenating a one neuron layer, we see that the
function f = max(g1; : : : ;gk) can be represented by a neural network of the form(1) with depthq+ n = q+ logk(m) and
size at most

s1 + � � � + sm+ k
� kn� 1 � 1

k� 1

�
+ 1 = s1 + � � � + sm+

kn � 1
k� 1

= s1 + � � � + sm+
m� 1
k� 1

:

A.12 Proof of Corollary 3

According to He et al. (2018, Theorem A.1), the functionf can be written as

f = max
16 k6 mf

min
i2Sk

` i ;

wherejSkj 6 mf andmf = kn for somen > 1. It is easy to see, using a small variant of Proposition 4, that any collection

of m̃ linear functions withm̃6 mf can be represented by a neural network of depthlogk(m) + 1 and size at most
mf � 1
k� 1 .

Therefore, by Proposition 4, there exists a neural network verifying Assumption 1 with grouping sizek representingmin
i2Sk

` i

with depth logk(m)+ 1 and size at most
mf � 1
k� 1 .

Using again Proposition 4, we �nd that there exists a neural network, verifying Assumption 1, with grouping sizek,
representingf with depth 2logk(mf ) + 1 and size at most

mf

� mf � 1
k� 1

�
+

mf � 1
k� 1

=
m2

f � 1

k� 1
:

A.13 Proof of Lemma 4

The result is proved by induction onq. To begin with, in the caseq = 2 we have a neural network with one hidden layer.
When applying the GroupSort function with a grouping sizek, the maximum number of breakpoints is equal to the maximum
number of intersections of linear functions. In each group ofk functions, there are at mostk(k� 1)

2 intersections. Thus, there

are at mostk(k� 1)
2 � n1

k = (k� 1)n1
2 breakpoints, that is(k� 1)n1

2 + 1 pieces.

Now, let us assume that the property is true for a givenq> 3. Consider a neural network with depthq and widthsn1; : : : ;nq� 1.
Observe that the input to any node in the last layer is the output of aR ! R GroupSort neural network with depth(q� 1)
and widthsn1; : : : ;nq� 2. Using the induction hypothesis, the input to this node is a function fromR ! R with at most

kq� 3 � ( (k� 1)n1
2 + 1) � � � � � nq� 2 pieces. Thus, after applying the GroupSort function with a grouping sizek, each node

output is a function with at mostk � (kq� 3 � ( (k� 1)n1
2 + 1) � n2 � � � � � nq� 2). With the �nal layer, we take an af�ne

combination ofnq� 1 functions, each with at mostkq� 2 � ( (k� 1)n1
2 + 1) � n2 � � � � � nq� 2 pieces. In all, we therefore get at

mostkq� 2 � ( (k� 1)n1
2 + 1) � n2 � � � � � nq� 1 pieces. The induction step is completed.

A.14 Proof of Theorem 3

The proof of Theorem 3 is straightforward and follows the one of Theorem 2 combined with the result obtained in Corollary
3.



Running heading author breaks the line

A.15 Proof of Proposition 5

Let f 2 Lip1([0;1]) and fm be the piecewise linear interpolation off with the followingkn+ 1 breakpoints:i=kn, k= 0; : : : ;kn.
We know that the functionfm approximatesf with an errorem 6 k� n. In particular, for anyn > logk(1=e), we haveen 6 e.
Besides, for anyn, fkn is a1-Lipschitz function de�ned on[0;1], piecewise linear onkn subdomains. Thus, according to
Corollary 3, there exists a neural network of the form(1), verifying Assumption 1 and representingfkn, with grouping sizek,
depth 2n+ 1, and size at mostk

2n� 1
k� 1 . Takingn = dlogk(1=e)eshows the desired result.

B Experiments: Extended comparison between GroupSort and ReLU networks

We provide in this section further results and details on the experiments ran in Section 5.

B.1 Task 1: Approximating functions

Piecewise linear functions. We complete the experiments of Section 5 by estimating the6-piecewise linear functionf in
the modelY = f (X) (noiseless case, see Figure 7 and Figure 8) and in the modelY = f (X)+ e (noisy case, see Figure 9
and Figure 10). Recall that in both cases,X follows a uniform distribution on[� 1:5;1:5] and the sample size isn = 100.
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Figure 7: Estimating the 6-piecewise linear function in the modelY = f (X), with a dataset of sizen = 100(the thickness of
the line represents a 95%-con�dence interval).
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Figure 8: Reconstructing the 6-piecewise linear function in the modelY = f (X), with a dataset of sizen = 100.
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Figure 9: Estimating the 6-piecewise linear function in the modelY = f (X)+ e, with a dataset of sizen = 100(the thickness
of the line represents a 95%-con�dence interval).
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Figure 10: Reconstructing the 6-piecewise linear function in the modelY = f (X)+ e, with a dataset of sizen = 100.

The sinus function. We provide in this subsection additional details for the learning of the sinus functionf (x) =
(1=15) sin(15x) de�ned on[0;1] (see Section 5). Figure 11 is the case without noise while Figure 12 is the case with noise.
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Figure 11: Reconstructing the functionf (x) = ( 1=15) sin(15x) in the modelY = f (X), with a dataset of sizen = 100.
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Figure 12: Reconstructing the functionf (x) = ( 1=15) sin(15x) in the modelY = f (X)+ e, with a dataset of sizen = 100.

B.2 Task 2: Calculating Wasserstein distances

(a)D = ReLU network (b) D = bjorckReLU network (c) D = bjorckGroupSort network

Figure 13: Scatter plots of40 pairs of Wasserstein and neural distances, forq = 2. The underlying distributions are bivariate
Gaussian distributions with4 components. The red curve is the optimal parabolic �tting and LRE refers to the Least Relative
Error. The red zone is the envelope obtained by stretching the optimal curve.

C Study of increasing group sizes for GroupSort networks

(a) Grouping size = 2 (b) Grouping size = 5 (c) Grouping size = 10

Figure 14: Reconstruction of a 20-piecewise linear function with varying grouping sizes (k = 2;5;10).
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(a) Grouping size = 2 (b) Grouping size = 5 (c) Grouping size = 10

Figure 15: Reconstruction of a 40-piecewise linear function with varying grouping sizes (k = 2;5;10).

D Shared architecture for both GroupSort and ReLU networks

Operation Feature Maps Activation

D(x)
Fully connected -q layers widthw {GroupSort, ReLU}
Width w {50}
Depthq {2, 4, 6, 8}

Batch size 256
Learning rate 0.0025
Optimizer Adam:b1 = 0:5 b2 = 0:5

Table 2: Hyperparameters used for the training of all neural networks
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