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A B S T R A C T   

Introduction: Breast cancer (BC) is frequent with a poor prognosis in case of metastasis. The role of the envi-
ronment has been poorly evaluated in its progression. We searched to assess whether a mixture of pollutants 
could be responsible of BC aggressiveness. 
Methods: Patients undergoing surgery for their BC were prospectively included in the METAPOP cohort. Forty- 
two POPs were extracted, among them 17 dioxins (PCDD/F), 16 polychlorobiphenyls (PCB), 8 poly-
bromodiphenylethers (PBDE) and 2,2′,4,4′,5,5′-hexabromobiphenyl (PBB153) were measured in the adipose 
tissue surrounding the tumor. BC aggressiveness was defined using tumor size and metastasis (distant or lymph 
nodes). Two complementary models were used to evaluate the impact of the mixture of pollutants: the BKMR 
(Bayesian Kernel machine regression) and WQS (weighted quantile sum regression) models. The WQS estimates 
the weight (positive or negative) of a certain chemical based on its quantile and the BKMR model applies a 
kernel-based approach to estimate posterior inclusion probabilities. The sub-group of patients with a body mass 
index (BMI) > 22 kg/ m2 was also analyzed. 
Results: Ninety-one patients were included. Of these, 38 patients presented a metastasis, and the mean tumor size 
was 25.4 mm. The mean BMI was 24.5 kg/m2 (+/- 4.1). No statistical association was found in the general 
population. However, in patients with a BMI > 22 kg/ m2, our mixture was positively associated with tumor size 
(OR: 9.73 95 %CI: 1.30–18.15) and metastasis (OR = 3.98 95 %CI = 1.09–17.53) using the WQS model. 
Moreover, using the BKMR model on chemical families, dioxin like chemicals and PCDD were associated with a 
higher risk of metastasis. 
Discussion: These novel findings identified a mixture associated with breast cancer aggressiveness in patients with 
a BMI > 22 kg/ m2.   

1. Introduction 

Breast cancer is the most frequent female malignancy and it was 
responsible for 684 996 deaths in 2020 worldwide (Globocan, 2012). 
The five-year survival rate is 90 % when the cancer is diagnosed at an 
early stage. This rate drops drastically to 86 % and 28 % when the 
disease spreads to the lymph nodes or is characterized by distant 
metastasis, respectively (Siegel et al., 2021). The incidence of breast 
cancer has been associated with age, genetic mutations (e.g. BRCA 1, 2), 

obesity or hormonal exposure (Sun et al., 2017), however, risk factors 
for breast cancer progression and metastatic evolution are poorly known 
and the molecular processes involved in the initiation/promotion of a 
cancer cell are completely different than the ones triggering metastasis. 

There is a growing concern about the role of the environment on 
breast cancer progression, notably persistent organic pollutants (POPs) a 
vast family of environmental pollutants listed in the Stockholm 
Convention and strongly regulated worldwide due to its hydrophobic, 
persistent and toxicological properties (Koual et al., 2020). For instance, 
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we have previously found that low-doses of pollutants such as the 
2.3.7.8-tetrachlorodibenzo-p-dioxin (TCDD) and coplanar poly-
chlorinated biphenyls (PCB) 77 and 169 were individually associated 
with breast cancer metastasis and tumor size (Koual et al., 2019). Those 
associations were substantially strengthened among overweight women 
(body mass index, BMI > 25 kg/m2) suggesting an effect modification 
driven by adiposity as discussed elsewhere (Bokobza et al., 2021). Other 
studies also support the link between several POPs and tumor size or 
breast cancer recurrence, however, in all cases, each chemical was 
studied individually (Demers et al., 2000; Høyer et al., 2001; Muscat 
et al., 2003) yet complex mixtures of POPs are likely to occur. 

Single pollutant models are constrained to recapitulate the real-life 
scenarios, hence, there is an increasing interest in developing and 
applying novel statistical approaches to assess the impact of pollutants 
as mixtures (Carlin et al., 2013; Lee et al., 2017). Indeed, people are 
exposed during the entire lifespan to multiple chemicals from different 
environmental sources, through different routes and duration of expo-
sure, resulting in diversified and dynamic patterns of accumulation 
(Drakvik et al., 2020; Barouki et al., 2022). During the last years, 
chemical mixtures has been listed among public health priorities and 
have been addressed in regulations around the world (Drakvik et al., 
2020; Barouki et al., 2022) to better represent the daily real-life in 
chemical risk assessment (Woodruff et al., 2011). The joint effect of 
chemical mixtures takes into account the cumulative effects and in-
teractions between pollutants such as: additive (the effect of a mixture is 
the sum of pollutant A and B), synergistic (the effect is superior to the 
sum of A and B), potentializing (A alone has no effect, but has an effect 

only in the presence of B), antagonistic (the effect is inferior to the sum 
of A and B) or dose dependent (Braun et al., 2016). The joint effect can 
be measured using the maximum cumulative ratio or the summation of 
concentrations grouping pollutants by class such as structural similarity, 
biological class or toxic equivalent factors (TEF) (Burns et al., 2011; 
Price and Han, 2011). 

During the last few years, different statistical methods have been 
used to assess the effect of a mixture in observational studies, with a 
particular interest on weighted quantile sum regression (WQS) and 
Bayesian Kernel machine regression (BKMR) (Gibson et al., 2019). On 
the one hand, WQS estimates the weight (positive or negative) of a 
certain chemical based on its quantile (Carrico et al., 2015). On the other 
hand, the BKMR model applies a kernel-based approach to estimate the 
exposure–response function incorporating complex interactions be-
tween pollutants, with flexibility to fit nonlinear associations (Bobb 
et al., 2015). Whereas WQS provides a straightforward and interpretable 
way to assess the overall effect of a mixture dealing with collinearity 
issues, the method may be constrained by the assumptions of direc-
tionality, presence of interactions or non-linearity (Lazarevic et al., 
2019). 

The general aim of our study was to extend our previous single- 
pollutant analysis (Koual et al., 2019) and to characterize the impact 
of mixtures of POPs in adipose tissue from women with breast cancer 
based on different hallmarks of aggressiveness using two complemen-
tary analyses: the BKMR and WQS models. Specifically, we aimed: a) to 
characterize the joint effect of chemicals, b) to identify relevant chem-
icals within the mixture and c) to gain insight about potential 

Fig. 1. Forest plots depicting the associations between persistent organic pollutants and metastatic cancer risk for all women (Panel A) or only women with body 
mass index above 22 kg/m2 (Panel B), or tumor size (dichotomized at 20 mm, Panel C and D). Results are represented by the respective odds ratios (OR) and 95 % 
confidence intervals (CI). All models were adjusted by age, body mass index, personal history of breast cancer, smoking and menopause status. Statistically significant 
associations are highlighted with white circles. 
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interactions between chemicals. 

2. Material and methods 

2.1. Study population 

The present study uses data from METAPOP study described 

elsewhere (Koual et al., 2019). This monocentric cohort comprised of 
patients with breast cancer followed at the department of gynecological- 
oncological surgery at the Georges-Pompidou European Hospital 
(HEGP, Paris, France) from December 2013 until November 2017. 
Included participants were female patients over 18 years old, presenting 
a newly diagnosed breast cancer and benefitting from surgery for a uni- 
or multifocal lesion with the main lesion being > 1 cm in size or 

Fig. 2. Heatmap displaying the Spearman coefficients for the bivariate correlations between chemicals.  

Fig. 3. Concentrations of chemicals in adipose tissue from patients with metastatic and non-metastatic breast cancer. Panel A depicts toxic equivalents (TEQ) for 
dioxin-like chemicals, panel B depicts the concentrations of non-dioxin like polychlorinated biphenyls (PCBs) and panel C brominated flame retardants (BFRs). 
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palpable. Patients with a non-palpable lesion, male patients or patients 
already participating in multiple study protocols were excluded. All 
patients gave informed consent to participate in the study. The study 
was approved by the ‘Comité de Protection des Personnes’ in 2013 
[French equivalent of an Institutional Review Board (IRB)]. 

2.2. Data collection and outcome ascertainment 

Patients benefitted from a partial or total mastectomy. Lymph node 
biopsy and/or axillary lymph node removal (depending upon the lymph 
node biopsy results) were performed according to the American Society 
of Clinical Oncology (ASCO) guidelines. The malignant tissue removed 
during the surgery was sent for pathology assessment. During surgery, 
an adipose tissue sample (1–3 g) was removed at a distance of 1 cm from 
the palpable tumor for the dosage of POPs and stored at the hospital 
Biological Resources Center and Tumor Bank Platform (BB-0033- 
00063). Nodal status was obtained for each patient. Data concerning: i) 
demographic characteristics (parity, menopausal status, age at diag-
nosis, work, smoking status, body mass index [BMI]), ii) tumor char-
acteristics (hormonal receptors, her2 status, tumor grade, Ki67, tumor 
size), and iii) tumor extension (lymph node status, metastasis) were 
assessed by gynecologists specialized in oncology using standard pro-
tocols. Smoking was classified as “former, current, never”. The year of 
the start of smoking and the number of cigarettes per day were collected 
for current smokers and the number of years when the patient smoked 
was gathered for past smokers. Patient data were anonymized and 
recorded on a computerized database. 

2.3. Chemical measurement 

The POPs were measured in adipose tissue for each patient. The 
isolation, detection and quantification of the targeted POPs was 
measured using ultra-trace methods based on gas chromatography 
(Agilent 7890A) coupled to high-resolution mass spectrometry (GC- 
HRMS) as previously described elsewhere (Koual et al., 2019). Forty-two 
POPs were measured, among them 17 dioxins (PCDD/F), 16 poly-
chlorobiphenyls (PCB), 8 polybromodiphenylethers (PBDE) and 
2,2′,4,4′,5,5′-hexabromobiphenyl (PBB153). The complete list can be 
found in Supplemental Table S1. PCBs were separated in dioxin-like and 
non-dioxin like PCBs. 

2.4. Statistical analysis 

Demographic characteristics were summarized using mean and 
standard deviation (SD), as well as median and interquartile range (IQR) 
for continuous variables and frequency and percentage for categorical 
variables. Continuous variables were log-transformed, centered to the 
mean, and scaled to the SD. Comparison of variables between cancer 
groups were performed with Mann–Whitney U test for continuous data 
and Fisher’s exact test for categorical data. Unsupervised analysis such 
as principal component analysis (PCA) was used to characterize the 
chemical mixture structure. Spearman’s Rank-Order correlation analysis 
was used to assess the bivariate associations between chemicals in the 
ensemble of participants and stratified considering the metastatic cancer 
status. In addition, principal component analysis was used to explore the 
overall data structure and the projection of observations. 

The main hallmarks of cancer aggressiveness were used as outcomes 
in the multivariate regression analysis and multipollutant models: 
presence of metastatic breast cancer (yes/no, binary), tumor size (>20 
mm/<20 mm, binary), tumor size (mm, continuous). All models were 
adjusted for the confounding variables: age, BMI, smoking, menopause, 
and family history of breast cancer. 

Single-pollutant models were fit using logistic and lineal multivariate 
regressions. For the main analysis, we used two complementary multi-
pollutant approaches: the WQS and BKMR models. The WQS models 
were built using the “Gaussian” and “binomial” link function in positive 
and negative directionality mode with the R package “gWQS” v 4.04.4. 
Under the assumption of homogeneity of direction of effects and no 
interactions, WQS compute overall scoring weights for positive and 
negative directions with the relative weight of each chemical. Consid-
ering the modest sample size, the model was fitted to the full dataset 
without splitting, as previously suggested, through 1000 iterations 
(Carrico et al., 2015). Bayesian Kernel Machine Regression (BKMR) was 
conducted with R package ‘bkmr’ v4.0.4 using the probit (binomial) link 
function for binary outcomes and “Gaussian” function for continuous 
outcomes considering default prior parameters and 10,000 iterations to 
ensure convergence (Bobb et al., 2015). Considering the high correlation 
between POPs from certain families, different strategies were used for 
variable selection including a) the component-wise approach, b) a hi-
erarchical variable selection grouped by chemical families, c) a hierar-
chical variable selection grouped by Spearman’s Rank correlation 
coefficients. In addition, the analyses were conducted specifically for 

Fig. 4. Identification of relevant chemicals in the mixture using weighted quantile sum regression (WQS). Bar plot depicting the negative and positive weights 
attributed to each persistent organic pollutant in the mixture model for metastatic risk (Panel A) or tumor size (Panel B) using weighted quantile sum regression, for 
the sub-group of participants with body mass index above 22 kg/m2. 
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each chemical family and stratified by BMI (BMI > 22 kg/m2). This 
threshold of BMI was set at 22 kg/m2 in order to ensure a minimal 
sample of observations to converge the models. All analyses were con-
ducted with R software version 4.0.2. 

3. Results 

3.1. Characteristics of participants 

Out of ninety-one females with breast cancer included, 38 presented 
a metastasis (Table S2). For the whole population, the mean age was 62 
years old (+/- 14 years old, range 37–93), 72.5 % were menopaused 
(66/91) and the mean BMI was 24.5 kg/m2 (+/- 4.1, range 17–34). 
Concerning tumor characteristics, the mean tumor size was 25.4 mm 
(+/- 14.6 mm, range: 4–80 mm), the majority of patients had tumors 
measuring > 2 cm (52,7%) and most had an invasive ductal carcinoma 
(78 %). The most frequent immunohistochemistry finding was luminal B 

(53/91), followed by luminal A (24/91), triple negative (11/91) and 
Her2+ (3/91) cancers (Prat et al., 2015). Distributions of POPs in adi-
pose tissue of these patients have been extensively reported elsewhere 
(Koual et al., 2019). 

3.2. Single pollutant models 

As previously reported (Koual et al., 2019), the single pollutant 
models globally showed lack of associations between POPs and the odds 
of presenting a metastatic breast cancer or a tumor size higher than 20 
mm (Fig. 1), except for 2.3.7.8-TCDD, positively associated with tumor 
size (Fig. 1C and 1D). For the sub-group of women with body mass index 
above 22 kg/m2, significant associations were found between 2.3.7.8- 
TCDD, some PCBs (156, 157, 167, 169 and 189) and PBDE153 with 
metastatic risk, suggesting a potential modification effect due to the 
adiposity (Fig. 1B). 

Fig. 5. Identification of relevant chemicals in the mixture using the Bayesian Kernel Machine Regression models (BKMR). Scatter plot depicting the posterior in-
clusion probabilities (PIP) of persistent organic pollutants included in the BKMR models conducted with hierarchical variable sectioned for the subset with body mass 
index (BMI) above 22 kg/m2 for metastatic risk (A) or tumor size (B). The PIP can be interpreted as the relative influence of each variable in the model. 
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3.3. Unsupervised chemical mixture characterization 

Strong positive correlations (rho > 0.6) are present between most 
PCDD/Fs and PCBs with some minor exceptions showing mild or no 
correlations, such as OCDF or 1.2.3.4.7.8.9 HpCDF (Fig. 2). Interest-
ingly, the congeners from groups of PBDEs were not correlated with the 
rest of POPs, except for PBB153 that correlated with PCBs (180 and 
189). A similar correlation pattern of POPs in adipose tissue was 
observed among the group of patients with metastatic and non- 
metastatic breast cancer as previsouly published (Koual et al., 2019) 
Supplemental Fig. S1. Concentrations of dioxin-like toxic equivalents 
(TEQ) were slightly higher among women with non-metastatic cancer, 
who in turn, presented lower concentrations of non-dioxin-like PCBs and 
brominated flame retardants (BFRs) (Fig. 3A-C). The relative abundance 
of congeners was similar among cancer groups for most congeners 
except for PBDE209 and PBDE47, slightly higher and lower in the 
metastatic group, respectively (Fig. 3C). The principal component 
analysis showed clear overlap of patients based on cancer type 
(Fig. S2A). In turn, the hierarchical clustering based on those principal 
components showed that main discrimination was driven by age 
(Fig. S1B). Similar results were found in the sub-group of patients with a 
BMI > 22 kg/m2 (results not shown). 

3.4. Identification of chemicals with major contribution in the mixture 

The chemicals with major contribution to the global association of 
the mixture were identified using the WQS and BKMR models. For the 
WQS regression model, pollutants are ranked by the probability that the 
chemical has the most weight in the mixture and therefore an important 
role. They are separated in positive and negative weights. Details are 
presented in Fig. 4 for metastatic risk and tumor size in the sub-group of 
patients with a body mass index above 22 kg/m2. The top three pol-
lutants most relevant for metastatic risk were PBDE 209, PCB 180 and 
PCB 167 for positive weights and PBB 153, PCB 123 and 1.2.3.7.8.9- 
HxCDF for negative weights (Fig. 4A). For tumor size, the top three 

pollutants most relevant were OCDF, 1.2.3.4.7.8-HxCDD and PBDE 209 
for positive weights and PBDE 183, 1.2.3.4.7.8.9-HpCDF and PBDE 100 
for negative weights (Fig. 4B). Results for metastatic risk and tumor size 
from all participants are presented Supplemental Figs. S2 and S3 . 

Using the BKMR model, relevant chemicals are defined by their 
global weights and are identified without the type of association (posi-
tive or negative weights). The posterior inclusion probability (PIP) is 
used and can be interpreted as the relative influence of each variable in 
the model. PCB 52, PCB 180 and 1.2.3.6.7.8-HxCDF were the top three 
most relevant chemicals for metastatic risk and PBDE 100, 1.2.3.4.8.9- 
HpCDF and 1.2.3.4.6.7.8-HpCDD for tumor size in the sub-group of 
patients with a BMI above 22 kg/m2 (Fig. 5). Results for all participants 
are presented in Supplemental Fig. S4. 

3.5. Overall effect estimation 

For the WQS model, the overall mixture effect of chemicals with a 
positive weight were significantly associated with metastatic risk for the 
sub-group of patients with a BMI > 22 kg/m2 with an OR = 3.98 95 %CI 
= 1.09–17.53 (Fig. 6A). The mixture of pollutants with a negative 
weight were not significantly associated with metastatic risk. The 
overall mixture effect of chemicals with a positive weight were also 
significantly associated with tumor size for the sub-group of patients 
with BMI > 22 kg/m2 with an OR: 9.73 95 %CI: 1.30–18.15 (Fig. 6B). 
Results of the WQS model for tumor size and metastatic risk for the 
entire group of patients are presented Supplemental Fig. S5. 

For the BKMR model, the mixture had a non-significant association 
with metastatic risk in the sub-group of patients with BMI > 22 kg/m2 

(Fig. 7A) and no association for tumor size (Fig. 7B). Results for tumor 
size and metastatic risk for the entire group of patients are presented in 
Supplemental Fig. S7. In a secondary analysis, chemicals were then 
separated into different chemical classes: dioxins (all dioxins and dioxin- 
like compounds), PCDD, PCDF, dioxin-like PCB, non-dioxin like PCB and 
brominated flame retardants in order to identify group-specific associ-
ations. For the group of PCDDs and all dioxins/dioxin-like compounds a 

Fig. 6. Overall associations of the mixture with metastatic risk for women with a body mass index (BMI) above 22 kg/m2 using the weighted quantile sum regression 
for metastatic risk (A) or tumor size (B) for women with body mass index (BMI) above 22 kg/m2. Statistically significant associations are highlighted with 
white circles. 
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significant association between the cumulative exposure to the mixture 
with metastatic risk was observed only for the middle quantiles (Fig. 8). 
The rest of results for tumor size and metastatic risk for the presented 
Supplemental Fig. S7-9. 

3.6. Interactions 

The graphical visualization of interactions between chemicals esti-
mated from the BKMR models did not suggest statistical interactions 
(Supplemental Fig. S11-14). 

4. Discussion 

To the best of our knowledge, this is the first study attempting to 
explore the associations between breast cancer aggressiveness and 
mixtures of pollutants in the adipose tissue surrounding breast tumors. 

The results with the entire group of participants did not reveal statisti-
cally significant associations with metastatic risk or tumor size. None-
theless, some associations were found between mixtures of POPs and 
tumor size and metastasis in the sub-group of patients with a BMI > 22 
kg/m2, mainly driven by dioxins and chemical homologues. 

The analysis of mixtures of POPs are especially challenging due to 
the high correlation between compounds demanding the use of 
advanced computational methods. We applied two complementary 
models, WQS and BKMR, allowing to address major questions about 
chemical mixtures (Gibson et al., 2019; Lazarevic et al., 2019). The re-
sults from both methods provide specific information valuable for this 
analysis (Guillien et al., 2021). In both cases, we found a modifying 
effect of the BMI when we focused the analysis, excluding women with 
lowest adiposity. We were not surprised to find different results between 
the two models. The WQS assesses the overall positive and negative 
effects of the mixture and identifies the most relevant pollutants with an 
easy and visual interpretation of the results. “Good” and “bad” actors are 
identified, and the overall weight of the mixture is evaluated (Carrico 
et al., 2015). The main setback of this model is that is does not consider 
interactions between pollutants, only additivity. The BKMR model also 
assesses the overall effect of the mixture (Bobb et al., 2015). The 
advantage is that it evaluates interactions between pollutants and non- 
linear associations. This model provided specific information about 
the exposure–response shape, suggesting a non-linear effect of the 
mixtures and allowed the exploration of interactions. 

Using the WQS regression, the three pollutants with the highest 
positive weights were PBDE 209, PCB 180 and PCB 167 for metastatic 
risk and OCDF, 1.2.3.4.7.8.HxCDD and PBDE 209 for tumor size in the 
sub-group of patients with a BMI > 22 kg/m2. The overall effect of the 
mixture was associated with metastatic risk and tumor size. In the BKMR 
model, PCB 52, PCB 180 and 1.2.3.6.7.8-HxCDF were the most relevant 
chemicals for metastatic risk and PBDE 100, 1.2.3.4.8.9-HpCDF and 
1.2.3.4.6.7.8-HpCDD for tumor size in this sub-group of women. Our 
findings are consistent with previously published epidemiological and 
toxicological studies. For instance, PBDE 209, frequently highlighted 
across models and outcomes, presents estrogen-like activities and has a 
pro-tumor effect in breast cancer cell models probably due to an 
immunosuppressing effect (Barber et al., 2006; Li et al., 2012). Likewise, 
several PCBs were recurrent in our mixtures. This vast family of com-
pounds is known for its dioxin-like activity for several POPs, their po-
tential for inducing cytochrome P450 enzymes or estrogenicity 
(McFarland and Clarke, 1989; Wolff et al., 1997) but also their suspected 
role in breast cancer (Wolff et al., 1997; Soto et al., 1995; Pěnčíková 
et al., 2018). However, the overall evidence is inconclusive (Brody et al., 
2007; Negri et al., 2003; Moysich et al., 2002). Only few studies have 
evaluated the metastatic and recurrence risk for breast cancer and PCB 
153 was found to be predictive of lymph node invasion (OR 2.12; 95 % 
CI,1.05–4.30; third tercile versus first) (Demers et al., 2000) and PCBs in 
peri-tumoral adipose tissue were associated with an increased risk of 
breast cancer recurrence (OR 2.9; 95 % CI, 1.02–8.2) (Muscat et al., 
2003). In turn, patients with ER-positive cancers with the highest sum of 
serum PCB, had a higher risk of breast cancer death (OR 2.5, 95 % CI, 
1.1–5.7) (Høyer et al., 2001). PCB 180, associated with metastatic risk 
using the BKMR and WQS models has already been correlated to breast 
cancer incidence and aggressiveness (Høyer et al., 2001; Holford et al., 
2000; He et al., 2017). To date, no previous studies have conducted 
multipollutant analysis of associations between organochlorinated POPs 
and breast cancer metastasis risk. However, a multipollutant analysis on 
breast cancer risk using a penalized ridge regression revealed PCB 
congener-specific effects, either protective or adverse, whereas total 
PCBs were not associated with breast risk (Holford et al., 2000). More-
over, the relevance of the susceptibility window of exposure was also 
highlighted by Cohn et al., who found an association between exposure 
to PCB 167, 187 and 203 in the post-partum period and an increased risk 
of breast cancer incidence after a follow-up of 17 year on average (Cohn 
et al., 2012). In our analysis by chemical family, using the BKMR model, 

Fig. 7. Overall associations of the mixture (percentile increase) with metastatic 
risk for women with a body mass index (BMI) above 22 kg/m2 using the 
Bayesian Kernel Machine Regression models (BKMR). The plots display the 
estimated change on metastatic risk (A) or tumor size (B) and respective 95 % 
credible intervals when all chemicals are at specific percentiles (x-axis) 
compared to the lowest (10th) quantile. The most influential chemicals of the 
mixtures for metastatic risk are displayed in Fig. 8 were the posterior inclusion 
probabilities computed with the hierarchical variable selection are displayed. 
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we found that the group of PCDD and dioxins were associated with a 
nonlinear association with metastatic risk. Dioxins are a group of highly 
toxic pollutants, whose disruptive roles in immunological, endocrino-
logical, lymphatic-hematopoietic cancer and reproductive diseases, has 
been extensively studied (Eskenazi et al., 2018. Epidemiologic studies 
have reported associations between exposure to dioxins and breast 
cancer mortality (Manz et al., 1991; Manuwald et al., 2012; Revich 
et al., 2001). 

Some in vitro studies have also evaluated the impact of POPs mixtures 

on cancer cell proliferation or estrogenicity with diverging results 
(depending on cell type, estrogenicity, pollutants used…) (Shan et al., 
2020; Aubé et al., 2011; Arcaro et al., 1998; Rajapakse et al., 2002; Silva 
et al., 2002). For instance, a complex mixture of 15 organochlorines 
increased proliferation in MCF-7 cells (ER-positive) whereas it decreased 
proliferation in triple negative MDA-MB − 231 cells and had no effect on 
ER-positive T47D cells (Aubé et al., 2011). Our analysis also showed that 
some congeners like PCB28 were inversely associated with metastasis 
risk, thus suggesting a “protective” effect for some POPs. The inverse 

Fig. 8. Joint associations of persistent organic pollutant mixtures with metastatic risk for women with body mass index (BMI) above 22 kg/m2 estimated with 
Bayesian kernel machine regression models for the different chemical families. Panel A displays the effect of all of dioxins and dioxin-like polychlorinated biphenyls 
(PCB); Panel B, the sub-group of polychlorinated dibenzodioxins (PCDD); Panel C; the sub-group of polychlorinated dibenzofurans (PCDF), Panel D the group of 
dioxin-like PCB; Panel E, non-dioxin-like PCB and Panel F, the group of brominated flame retardants. The plots display the estimated change on metastatic risk and 
respective 95 % credible intervals when all chemicals are at specific percentiles (x-axis) compared to the lowest (10th) quantile. 
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associations between low-chlorinated PCBs and breast cancer risk have 
been previously reported, mostly for PCB28 and PCB52 (Huang et al., 
2019) but also PCB153 (Bachelet et al., 2019). Some authors have 
attributed these unexpected associations to the statistical instability of 
models (i.e. small changes on input parameters may have large influence 
on final estimates), caused by co-linearity (Holford et al., 2000). Another 
explanation could be due to the overexpression of cytochrome P450 2B 
(CYP2B) among metastatic cases with respect to non-metastatic cases. 
This enzyme is induced by a large number of PCBs and dioxins and is the 
main enzyme catalyzing the low chlorinated PCBs metabolism into 
reactive quinones (Maldonado-Rojas et al., 2016; Lin et al., 2009). 
Hence, it may be plausible that high CYP2B inducers would present the 
lowest concentrations of low-chlorinated PCBs, however this must be 
confirmed in experimental studies. This also raises several questions 
regarding the exposure to other contaminants, drugs or food compo-
nents which are able to induce CYP2B and subsequently to larger mix-
tures of chemicals. 

The results of this exploratory study should be considered taking into 
account some limitations. First, the small size of our sample of partici-
pant which can impair the stability of our estimates, especially regarding 
the specific congeners selected as main contributors of the overall as-
sociations. In order to evaluate the stability of our findings, we re-ran the 
models, multiple times (e.g. seeds), finding consistent results across the 
entire sets. Under high correlation data-sets, there is a risk of selecting a 
wrong biomarker highly correlated to the real one if the first one has 
lower instrumental error associated (Gibson et al., 2019; Pollack et al., 
2013). Unfortunately, this issue cannot be alleviated with larger sample 
size (Agier et al., 2016), but eventually expert toxicological knowledge 
can be used to inform the congeners selection. Novel statistical methods 
incorporating that a priori toxicological information in the model 
(McGee et al., 2022), will be of high utility to integrate the consolidated 
AOP framework information of breast cancer metastasis (Benoit et al., 
2022), in multipollutant analysis. In addition, other multipollutant 
models are currently available including extending WQS in a Bayesian 
framework (Colicino et al., 2020) or overcoming the assumption of 
directional homogeneity through quantile g-computation and out-
performing WQS in some scenarios (Keil et al., 2020). Second, adipose 
tissue sampling was carried out once and at time of surgery due to the 
cost and invasiveness, thus reverse causality cannot be completely ruled 
out. For instance, drastic weight loss can lead to increased serum POPs 
and to a significant 15 % decrease in total PCB body burden (Kim et al., 
2011). In our case, in order to prevent the potential impact of weight loss 
during the diagnostic period of cancer (Fénichel et al., 2021), we 
preferred the use of adipose tissue over serum. Also, inherent to any 
observational study, some residual confounding could persist, despite 
the fact that the models were adjusted for age, BMI, history of breast 
cancer, smoking and menopausal status based on the current literature 
(Brody et al., 2007; Zhang et al., 2004; Laden et al., 2002). Other con-
founding factors tested (breastfeeding, parity, professional category, 
living area, hormonal contraception) were not pertinent here..Finally, 
the BMI cut-off of 22 kg/m2 used here for computational convenience, 
may appear unorthodox since overweight is defined as a BMI > 25 kg/ 
m2. However, it is noteworthy, that conventional BMI cutoffs from 
general population may not be sensitive to classify adiposity sub-groups 
among older population above 60 years ols with an uncertainty ranging 
between 1 and 5 BMI points depending on the studies (Batsis et al., 2016; 
Donini et al., 2020). Moreover, even if a BMI above 25 may be predictive 
of cardiovascular diseases may it does not mean that it should be pre-
dictive of environmentally related diseases/effects. 

In conclusion, this exploratory study supports the interest of using 
multipollutant statistical methods to gain insight on the relationships 
between POPs and metastasis risk. The results support that mixtures of 
dioxin-like pollutants may be associated with metastasis and tumor size 
in patients with a BMI > 22 kg/m2. These clinical results are coherent 
with in vitro studies (Koual et al., 2021). Despite several low-chlorinated 
PCB congeners being negatively associated with metastatic risk, 

interactions between POPs were not identified. These findings urge to 
conduct a study with a larger sample size in order to validate these 
findings. 
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