
HAL Id: hal-03909874
https://hal.sorbonne-universite.fr/hal-03909874

Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised thermal-to-visible domain adaptation
method for pedestrian detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben
Amara

To cite this version:
Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara. Unsupervised
thermal-to-visible domain adaptation method for pedestrian detection. Pattern Recognition Letters,
2022. �hal-03909874�

https://hal.sorbonne-universite.fr/hal-03909874
https://hal.archives-ouvertes.fr


Unsupervised thermal-to-visible domain adaptation
method for pedestrian detection

Mohamed Amine Marnissi∗†, Hajer Fradi‡, Anis Sahbani§¶ and Najoua Essoukri Ben Amara∗
∗Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent Systems, 4023, Sousse, Tunisie;
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Abstract—Pedestrian detection is a common task in the re-
search area of video analysis and its results lay the foundations
of a wide range of applications. It is commonly known that under
challenging illumination and weather conditions, conventional
visible cameras perform poorly and this limitation could be
catered using thermal imagery. But, due to the fact that annotated
thermal datasets are less available compared to the visible ones,
in this paper we emphasis the need for leveraging information
from both domains at no additional annotation cost. Precisely,
we propose a domain adaptation method by incorporating
feature distribution alignments into Faster R-CNN architecture
at different levels and at different stages of the network. The
resulting proposed thermal-to-visible adaptive detector has the
advantage of covering different aspects of the domain shift in
order to improve the overall performance. The proposed detector
is evaluated on KAIST multispectral dataset and the obtained re-
sults demonstrate its effectiveness by improving the adaptability
in the thermal domain. Also, by means of comparisons to other
existing works, better results are obtained.

I. INTRODUCTION

The past few decades have witnessed a widespread growth
in the use of infrared cameras in many fields, including mil-
itary and civilian ones especially for automotive applications,
medical imaging, robotics and video surveillance [1], [2], [3].
These cameras form an image by detecting infrared radiations
emitted by an object having a high temperature. The main
advantage using infrared cameras is that they could easily
distinguish warm objects from other surrounding objects.
Consequently, these cameras are proven to be more convenient
at nighttime and in adverse weather conditions compared to
the conventional visible cameras [4], [1], [5]. Despite the
usefulness of these cameras in such situations, there are some
limitations that have to be considered, essentially about the
expensive cost of high-resolution ones. This could explain the
fact that thermal data is usually of bad quality and is less
available compared to visible one [6], [7], [8], [4].

In this paper, we essentially focus on the problem of
pedestrians detection and localization. This problem has been
extensively studied on visible datasets using deep learning
networks [9], [10], [11], [12]. It is commonly known that
these networks rely on a large labeled training data, which
might incur at least two problems in the thermal domain: first,
less available data compared to the visible domain; second,

the annotation task for object detection which is particularly
time-consuming task since each object category in every image
must be precisely delimited with a bounding box.

To mitigate these problems, we intend in this present paper
to adapt the abundance of annotated visible images to the
thermal domain at no additional annotation cost. Precisely,
we propose to incorporate feature distribution alignments into
a baseline detector. The key idea is basically inspired from
[13] and [14], but a more complete architecture is proposed
by performing alignments at multiple levels and at two phases
of the network for complementary aspect to further improve
the overall performance.

The proposed adaptive detector covering different aspects
of the domain shift is considered as the main contribu-
tion of this current paper. It has also the advantage to be
trained in unpaired setting with unlabeled thermal images.
Such unsupervised adaptation of object detectors from source
to target domains has been previously employed on other
domains in the visible spectrum. But it is proposed for the
first time in thermal and visible domains. Targeting such
dissimilar domains is particularly challenging, since they ex-
hibit different visual characteristics. The proposed thermal-
to-visible adaptation is of significant interest since it allows
faster execution time and less consumption of resources by
reducing the annotation costs associated with detection and
applying a single adaptive detector for both domains. Despite
its relevance in real applications, such unsupervised adaptation
for detection in these domains is not yet investigated in the
literature, as far as we know. Consequently, we consider that
this paper could potentially open a new path for improving
the domain adaptability of existing detectors in thermal and
visible domains. In addition, the effectiveness of the proposed
adaptation method is demonstrated by improving the detection
results with a significant margin compared to the baseline
method and to recently published works in the field.

The rest of the paper is organized as follows: in Section
II, an overview of the existing methods for object detection
and domain adaptation is presented. Then, our proposed ap-
proach of thermal-to-visible domain adaptation for detection
is detailed in Section III. The conducted experiments and the
obtained results are discussed in Section IV. Finally, in Section



V we conclude and give some potential perspectives.

II. RELATED WORK

In this section, we first give an overview of the existing de-
tectors in visible, thermal and in both domains. This overview
includes adaptive person detectors in different domains as well.

A. Pedestrian Detection

Object detection consists of precisely identifying and lo-
calizing pertinent objects in a given image by classification
or by regression. The current popular detectors make use of
deep learning networks such as Fast R-CNN [15], Faster R-
CNN [16], Single Shot Detector (SSD) [17], You Only Look
Once (YOLO) [18], [19], EfficientDet [20], and RetinaNet
[21]. Generally, object detection models can be divided into
two categories: one-stage and two-stage detectors. The first
category is based on one single shot to detect several objects
such as SSD and YOLO detectors. The second category
requires two stages: the first one consists of generating region
proposal networks (RPN) and the second one aims at detecting
objects of each proposal as the case of Fast R-CNN and Faster
R-CNN detectors.

In this paper, we precisely focus on the problem of pedes-
trians detection and localization. This problem has attracted
research attention because of its usefulness in many appli-
cations including video surveillance and driving assistance
systems. Thanks to the availability of visible cameras, it has
been often studied in the visible spectrum [9], [10], [11], [22],
[12]. Despite their widespread applications, visible cameras
are not convenient in some situations for instance, in nighttime,
bad lighting conditions, adverse weather conditions or in total
darkness [23], [24]. In such situations, thermal cameras have
instead been proven effective.

In this context, some research studies for detection using
thermal imagery have been conducted in the literature [4],
[8], [24], [25], [26], [27]. These studies can be categorized
into three parts: thermal images only, fusion of thermal and
visible images, and thermal images with transfer. For the first
category, few works have addressed the problem of detection
using only thermal imagery [4], [8], [28], [25]. For instance,
in [4] thermal images augmented with their saliency maps to
serve as an attention mechanism for the pedestrian detector are
employed. From the obtained results, it has been shown that
the saliency maps provide complementary information to the
pedestrian detector resulting in a significant improvement in
performance over the baseline approach. Also, an enhancement
architecture based on Generative Adversarial Network, and
composed of contrast enhancement and denoising modules
is proposed in [8]. The proposed architecture has shown its
advantage to enhance the overall thermal image quality and to
further improve the detection results.

To deal with vast range of weather and lighting conditions
(rain, fog, daytime and nighttime), multispectral detectors that
combine information from thermal and visible images have
been proposed [29], [30], [23], [31], [32], [33]. Related work
in this context includes the different fusion schemes (early,

halfway, late and score) introduced in [32] to combine pairs
of visible and thermal images. Also, an aligned region CNN to
handle the weakly aligned multispectral data in an end-to-end
way is proposed in [33]. MSDS-RCNN [23] is another fusion
method composed of a multispectral proposal network (MPN)
and a multispectral classification network (MCN).

Usually, these multispectral detectors are based on more
complex network architectures compared to the detection in
a single spectrum visible/thermal. Moreover, these detectors
rely in most cases on aligned sensors (thermal and visible) at
inference time, which could limit their feasibility in real-time
applications. Because of the aforementioned reasons, some
recent works instead operate on one single-modality (usu-
ally thermal one) and leverage information from the visible
spectrum by means of transfer learning or domain adaptation.
Related works in this field are reviewed in details in the next
section.

B. Domain Adaptation for Detection

Domain adaptation has been widely studied in the field
of computer vision for various visual applications including
image classification, object detection, fine-grained recognition
and semantic segmentation [34], [35], [36], [14], [37], [38].
Conventional methods essentially include domain transfer
multiple kernel learning, asymmetric metric learning, feature
alignment, subspace interpolation, subspace alignment, and
covariance matrix alignment [14].

Different from other domain adaptation methods, adaptation
for detection is particularly challenging since both object
category and location have to be predicted. Related works
for detection operate either in one single spectrum (visible
or thermal) or between thermal and visible spectrums. In the
thermal spectrum, a task-conditioned domain adaptation be-
tween daytime and nighttime is proposed in [1]. Precisely, an
auxiliary classification task that distinguishes between daytime
and nighttime thermal images is added to the main detection
task. This classification task is used to condition a YOLOv3
in order to improve its adaptation to the thermal domain.

Other research studies are conducted for adaptation from
thermal to visible domains. Among these studies, some works
aim at generating a perceptually realistic RGB image from
an input thermal image (commonly known as colorization)
usually by means of generative networks [39], [26], [40]. How-
ever, in this overview, we are interested in the existing works
that perform this transformation to enable better detection. It
is the case of [26], where a Cycle-GAN for unpaired image-to-
image translation of thermal to pseudo-RGB data is proposed
to fine-tune a multimodal Faster-RCNN detector.

For adaptation in the opposite direction from visible to
thermal domains, in [27] visible images are transformed to
synthetic thermal images. This transformation acts as a data
augmentation for training a pedestrian detector to work on
thermal imagery. Also, a cross-modality learning framework
composed of a Region Reconstruction Network (RRN) and
Multi-Scale Detection Network (MDN) is proposed in [5].
RRN is used to learn a non-linear mapping from the RGB



channels to the thermal channel in order to improve detection
results from visible data. In [41], a domain adaptation method
based on style consistency is used to transfer low-level features
from the visible to the infrared domains. The cross-domain
model with style consistency is used for object detection in the
infrared spectrum. Compared to the previous works, in [42] an
unified detection network by defining a common feature space,
which makes intermediate features from the two domains is
proposed.

Unlike the existing adaptation works for detection that
require annotated data for both thermal and visible domains, in
this paper our primary goal is to perform adaptation without
the need for annotating thermal data. In the literature, only
few works that tackled the task of unsupervised adaptation for
detection have been proposed in other domains but always
in the visible spectrum [14], [43], [13]. Domain adaptive
Faster R-CNN [14] is one of the most known unsupervised
adaptive detectors, where an image-level and an instance-level
adaptation components are proposed to alleviate the perfor-
mance drop caused by the domain shift. These adaptation
components are based on adversarial training of H-divergence.
A consistency regularizer is also employed to learn a domain-
invariant RPN for the Faster R-CNN model. The robustness of
the proposed adaptive detector is evaluated on different domain
shift scenarios using different datasets such as Cityscapes and
KITTI.

In [43], another unsupervised adaptive object detector is
proposed. It is based on strong local and weak global align-
ments for unsupervised adaptation. The weak alignment model
focuses on the adversarial alignment loss on images that are
globally similar and puts less emphasis on aligning images
that are globally dissimilar. And the strong domain alignment
model is designed to only consider local receptive fields of
the feature maps. Another recent approach called Hierarchical
Transferability Calibration Network (HTCN) [13] to harmo-
nize transferability and discriminability for cross-domain ob-
ject detection is proposed. The idea consists of regularizing
the adversarial adaptation by calibrating the representation
transferability with improved discriminability.

Following the same strategy, in this current paper, we
make use of such techniques of adaptation without additional
supervision in the target domain. But differently from the
previous works, where images from two domains but always
in the same spectrum (visible) are aligned, our proposed
architecture aims at aligning images from different domains
(thermal and visible) exhibiting different visual features. In
addition, we propose a more complete architecture, where
feature distributions are aligned at different levels and at
different stages of the network.

III. DOMAIN ADAPTATION COMPONENTS FOR DETECTION

In this section, the main domain adaptation components of
our proposed adaptive detector are presented. Precisely, we
choose to incorporate this adaptation into Faster R-CNN which
is a representative two-stage detector [16]. Practically, an input
image is fed to the backbone network in order to produce a

feature map. Then, Region Proposal Network (RPN) generates
region proposals based on this feature map in a first stage and
Faster R-CNN feeds the region proposals and feature map into
ROI pooling layer in a second stage.

In our proposed approach, the adaptation consists of align-
ing feature distributions at both sub-networks of Faster R-
CNN. Precisely, global and local alignments are performed
at the backbone network. Details about alignments at this first
sub-network are presented in section III-A. In the second sub-
network that consists of RPN and ROI, the alignments are
performed at image and instance levels, with a consistency
regularization. Details about alignments at this second sub-
network are given in section III-B.

For every alignment step, a domain classifier is defined. It
is a neural network that aims at predicting whether the feature
distribution is from the source or the target domain. These
alignments at multiple levels and at different sub-networks are
combined in section III-C in order to cover different aspects of
the domain shift such as image style, scale, illumination, object
appearance, and size. An algorithm showing in pseudo-code an
overview of the proposed detector is given as well. The overall
proposed architecture is shown in Fig. 1. The same notations
in this figure are used in the remainder of this section, where
we describe each of these architecture components.

A. First Sub-network Alignments

In our architecture, we use ResNet-101 as backbone network
which is composed of two feature extractors G1 and G2 (see
Fig. 1). The first one is employed for the extraction of low-
level features and the second one for high-level features. In
this section, we explain how local and global alignments are
performed at low-level and high-level features, respectively.

1) Local Feature Alignment: Given two images from the
two domains, since some local regions could be more impor-
tant than others, we propose an attention module that matches
the corresponding regions from both domains in unsupervised
way. The semantic coherence between domains is considered
by calculating masks of local features. It can be done by a
local domain classifier D1, which is defined to highlight local
features by producing a domain prediction map, that has the
same size WxH as the output of G1 in the backbone network.

D1 is considered as a pixel-wise discriminator based on
few convolutional layers with a kernel size 1 [13]. Following
[44], the least square loss is employed since it has been
proven to be stable in the training of the domain classifier
and to be useful for aligning low-level features. The pixel-
wise adversarial training loss Lloc of local alignment for each
domain is defined as:

Lloc
V =

1

WH

W∑
w=1

H∑
h=1

D1(G1(x
v))2wh (1)

Lloc
T =

1

WH

W∑
w=1

H∑
h=1

(1−D1(G1(x
t))2)wh (2)
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Fig. 1. The architecture of the proposed thermal-to-visible domain adaptation for detection. This adaptation is performed at different levels in the two phases
of Faster R-CNN detector. The notations used in this figure are the same used in section III.

where xv and xt denote unpaired visible and thermal input
images. The two defined pixel-wise adversarial training losses
are combined in Lloc by:

Lloc =
1

2
(Lloc

V + Lloc
T ) (3)

2) Global Feature Alignment: Following [43], in the feature
space the target samples can be divided into two parts: Easy-
to-classify if they are far from the source samples, and Hard-
to-classify if they are close to the source. Therefore, to align
domains, we focus on samples that are Hard-to-classify and
we put less emphasis on Easy-to-classify samples. At this
stage, the focal loss is used to train a domain classifier D2 for
global features alignment. This loss function is used instead of
the cross-entropy loss since this latter reinforces the domain
classifier D2 to classify both of the Easy-to-classify and Hard-
to-classify samples.

To train a global-level domain classifier D2, the loss func-
tion Lglob based on the focal loss is expressed for visible and
thermal domains, respectively as follows:

Lglob
V = −(1−D2(G2(x

v)))γ log(D2(G2(x
v)) (4)

Lglob
T = −(D2(G2(x

t)))γ log(1−D2(G2(x
t)) (5)

Lglob =
1

2
(Lglob

S + Lglob
T ) (6)

where γ is used to weight Hard-to-classify samples during the
training process.

3) Contextual Regularization : In the field of adaptive
domain segmentation [38], where the goal is to simultaneously
generate the domain label and semantic segmentation map,
the regularization of the domain classifier together with the
segmentation loss have been proven to be efficient to stabilize
the adversarial training. Based on that, we choose to integrate
a regularization technique in our adaptive model to enhance
its performance and to stabilize the training of the domain
classifier. Practically, this regularization is applied on the two

extracted feature vectors fc1 and fc2 (outputs of G1 and G2).
Each vector includes some contextual information describing
the image content. These vectors are then concatenated with
the output of ROI-pooling [13]. By doing that, the contextual
regularization aims at minimizing the detection loss on visible
samples and the domain classification loss while training the
domain classifiers D1 and D2, as illustrated in Fig. 1.

B. Second Sub-network Alignments
At this stage, alignments are applied in the second sub-

network of Faster R-CNN composed of RPN and ROI layer
at image and instance levels, with a consistency regularization.

1) Image-Level Alignment: To enforce coherency between
the two domains, the detection results have to be the same
for a given image whether is the domain to which it belongs.
In Faster R-CNN model, the image representation I is the
resulting feature map of backbone network. Consequently, to
solve the domain shift problem, the distributions of the image
representation from the two domains have to be the same.

Since, in practice, it is not trivial to reach such alignment at
image level, a domain classifier D3 is employed to minimize
the domain distribution difference. D3 is trained at each
activation of feature maps. Then, it predicts the domain label
for every image patch, with 0 for the visible domain and 1
for the thermal domain. The advantage of this image-level
alignment is that it can generally reduce the amount of shift
caused by the differences in the global image such as style,
scale and illumination [45], [14]. Using the cross entropy, the
adaptation loss at image level denoted as Limg

V and Limg
T in

visible and thermal domains is defined as follows:

Limg
V = −

∑
m,n

log(1− pm,n) (7)

Limg
T = −

∑
m,n

log(pm,n) (8)

where pm,n is the output of the domain classifier D3 for given
activations of feature maps located at (m,n) position after



applying backbone network on input image. The two defined
adaptation loss functions are combined in Limg by:

Limg =
1

2
(Limg

V + Limg
T ) (9)

In addition, we employ a gradient reverse layer (GRL) [46]
which aims at optimizing the parameters of the domain clas-
sifier and the base network, simultaneously. The gradient sign
is inversed while passing through the GRL layer to achieve
the primary objective of aligning the domain distributions by
applying adversarial learning.

2) Instance-Level Alignment: In our method, we also con-
sider instance-level adaptation. It enables reducing the dif-
ference of local instance representations between the two
domains, such as the appearance and the size of the objects. To
reach the semantic consistency, the image region that contains
an object and its corresponding category label have to be the
same in the visible and thermal domains.

In our proposed adaptive detector, the instance-level repre-
sentation is used based on the output feature vectors of ROI
pooling, that are obtained before being fed to the final category
classifier. Since bounding box annotations are known in visible
domain but not in thermal domain, a domain classifier D4 is
trained on the feature vectors to align distributions at instance
level. The adaptation loss at instance level denoted as Lins

V and
Lins
T in visible and thermal domains is defined as follows:

Lins
V = −

∑
j

log(1− sj) (10)

Lins
T = −

∑
j

log(sj) (11)

where sj is the output of the domain classifier of the j-th region
proposal in the input image. The two defined adaptation loss
functions are combined in Lins by:

Lins =
1

2
(Lins

V + Lins
T ) (12)

Similar to the domain classifier at image level, we add
the gradient reverse layer beforehand in order to apply the
adversarial training strategy.

3) Consistency Regularization: To align domains at image
and instance levels, the distributions of image representation
and instance representation have to be the same in the two
domains. To solve that, two domain classifiers are trained,
where the input could be either the image representation or
the instance representation and the output is a probability to
predict if an input sample belongs to the thermal domain
or not. The consistency between the domain classifiers at
different levels (image and instance) allows to learn the cross-
domain robustness of the bounding box predictor [47]. It can
be defined in visible and thermal domains as:

Lcst =
∑
j

∥ 1

| I |
∑
m,n

pm,n − sj ∥2 (13)

where | I | is the total number of activations in a feature map,
and ∥ . ∥ is the l2 norm.

C. Overall Loss

For a given input visible image xv with its corresponding
bounding boxes yv , the detection loss of our proposed adaptive
Faster R-CNN detector is defined as:

Ldet = Lreg(R(G2(x
v)), yv) + Lcls(R(G2(x

v)), yv) (14)

where the output of G2 is fed to RPN module (denoted as R).
Ldet combines the classification and the regression losses per
bounding box.

To train the proposed adaptive detector, the detection loss
Ldet defined in eq.14 is combined with the adversarial loss
Ladv:

Ladv = Lglob + Lloc + Limg + Lins + Lcst (15)

in an overall objective function L defined as:

L = Ldet + λLadv (16)

where λ is used to weight the adversarial loss.

D. Summary of the Adaptive Detection Algorithm

Algorithm 1 shows in pseudo-code an overview of the
training phase of our proposed adaptive detector by integrating
different alignments into the baseline detector Faster R-CNN.
Once the detector model is obtained, tests can be performed
either in the thermal or the visible domains.

IV. EXPERIMENTAL RESULTS

A. Dataset and Experiments

The proposed unsupervised adaptive detector is evaluated on
KAIST (Korea Advanced Institute of Science & Technology)
dataset [48]. It is one of the largest multi-spectral pedestrian
dataset composed of aligned visible and Long-Wave Infrared
(LWIR) images under adverse illumination conditions, day
and night. It roughly contains 95k frames on urban traffic
environment and of dense annotations for 1182 different
pedestrians. This dataset is divided into a training set of 50.2k
images from Set 00 to Set 05, and a test set of 45.1k images
from Set 06 to Set 11. In our work, both thermal and visible
images of this dataset are used, but only labels of visible data
are employed to train the proposed architecture.

For pedestrian detection, we train our proposed adaptive
detector following the benchmark protocol that comes with
KAIST dataset and we adopt the evaluation method presented
in [4]. Precisely, we select every 3 frames from training sets
and every 20 frames from testing sets, and we only consider
the non-occluded, non-truncated and large instances (> 50).
This results in a training set of 7601 images for both thermal
and visible sets, and a testing set of 2252 thermal images (1455
day and 797 night).

The performance of pedestrian detection is evaluated in
terms of miss rate as a function of False Positives Per Image
(FPPI) and log-average miss rate over the range of [10−2, 100].
Intersection Over Union (IOU) equal to 0.5 compared to the
ground truth is used. The obtained results by our proposed
adaptive detector are to the baseline detector trained on visible
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Fig. 2. Comparisons using miss rate vs. FPPI curves of our proposed adaptive detector to other unsupervised domain adaptation methods on KAIST pedestrian
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Algorithm 1: Proposed adaptive detector
Input :
V = {xv

i , y
v
i }1≤i≤N : a set of labeled visible images.

T = {xt
i}1≤i≤N : a set of unlabeled thermal images.

Output :
Training model of the adaptive detector.

Initialize:
Initialize (θd, θloc, θglob, θins, θimg) parameters of the

network and learning rate µ
while not converge do

for (i← 1 to N ) do
1) Adaptation losses at backbone network

• Compute local adaptation loss Lloc

• Compute global adaptation loss Lglob

2) Consistency regularization loss
• Compute image-level loss Limg to train D3

• Set pm,n to the output of D3 for given activation
of feature maps

• Compute instance-level loss Lins to train D4

• Set sj to the output of D4 of j-th region proposal
• Compute consistency regularization Lcst(pm,n, sj)

3) Combine in adversarial loss:

Ladv = Lglob + Lloc +Limg + Lins + Lcst

4) Compute detection loss Ldet

5) Backpropagation step
θd ← θd - µ (∂L

det

∂θd
- λ Ladv

θd
)

θloc ← θloc - µ ∂Lloc

∂θloc

θglob ← θglob - µ ∂Lglob

∂θglob

θins ← θins - µ ∂Lins

∂θins

θimg ← θimg - µ ∂Limg

∂θimg

data and tested on thermal images. Also, comparisons to other
existing unsupervised domain adaptation methods for detection
are considered, namely, Domain Adaptive Faster R-CNN (DA-
Faster) [14], Strong-Weak Distribution Alignment (SWDA)
[43], and Hierarchical Transferability Calibration Network
(HTCN) [13].

B. Implementation Details

Following Faster-RCNN configuration [16], we used the
ResNet-101 [49] architecture as backbone network. The pa-
rameters of ResNet-101 are fine-tuned from the pre-trained
model on ImageNet and the shorter side of every image is
set to 600. For optimization, we use the stochastic gradient
descent (SGD) optimizer in the training step, with an initial
learning rate set to 0.001 which is brought down to 0.0001
after 50K iterations. We use a mini-batch size of one visible
image and one thermal image. Also, our proposed adaptive
detector is trained on 6 epochs. γ defined in equations 4 and
5 to weight Hard-to-classify examples is set to 3.0 and the
weight λ of adversarial loss defined in eq. 16 is set to 0.1. For
all experiments, PyTorch framework is used and the model is
learned on NVIDIA Titan RTX GPU with 24 GB RAM.

C. Results and Analysis

At a first stage, the performance of the baseline Faster R-
CNN detector trained on visible data and tested on thermal
images from KAIST dataset is evaluated. In terms of log-
average miss rate 87.1% is obtained compared to 48.59% when
tests are performed on visible data. This performance drop is
expected because of the distribution mismatch between train-
ing (visible) and testing (thermal) data. This result complies
with our observation stated at the beginning of the paper, that
object detection typically assumes that training and testing data
are drawn from similar distribution. That was our motivation
to rather refer to adaptation by aligning feature distributions
in order to perform well in both domains at no additional
annotation cost, which is our main proposal in this paper.

Fig. 2 presents the miss rate vs. FPPI curves and their corre-
sponding log-average miss rates (reported in the figure legend)
of our proposed adaptive detector. Not surprisingly, as shown



(a) Ours (b) DA-Faster (c) SWDA (d) HTCN
Fig. 3. Qualitative detection results of our proposed detector compared to other existing adaptive detectors. From left to right: results of (a) our method (b)
DA-Faster [14], (c) SWDA [43], and (d) HTCN [13]. From top to bottom: results of 3 sample images in both visible and thermal domains, each sample is
shown in two rows (the first for the results in the visible domain and the second for the thermal domain). For each sample image, the detection results are
shown in red color and the corresponding annotated bounding boxes in green color.



the figure the detection performance is significantly improved
by adaptation compared to the baseline method (original Faster
R-CNN trained on visible data and tested on thermal data
without adaptation) by 42.5% relative reduction of the error.
This significant margin of improvement regarding the baseline
detector proves the relevance of applying domain adaptation
for detection to be tested on another domain (thermal). Also,
by comparing day and night results, better results are obtained
in nighttime (only 28.79% as miss rate) since thermal data is
proven to be more effective at that time.

In the same figure, our results are compared to other existing
adaptation methods, precisely we only consider unsupervised
methods (DA-Faster, SWDA, and HTCN) for comparisons. It
can be clearly observed that our proposed adaptive detector
outperforms the existing unsupervised adaptation methods by
a significant margin, on daytime, nighttime and all images.
It achieves the best result by 17.37%, 13.82%, and 4.41%
relative reduction of the error compared to DA-Faster, SWDA
and HTCN, respectively. These obtained results comply with
our expectations, since the proposed detector has the advantage
of performing alignments at different levels in the two phases
of the network. This results in a more complete architecture
compared to the other adaptive detectors, where only align-
ments in the backbone network are performed in [43], [13]
and alignments at RPN and ROI stages are performed in
[14]. Combining different alignments in our proposed adaptive
detector leads to an overall performance.

The corresponding qualitative results on some sample im-
ages from KAIST dataset are shown in Fig. 3. These results
also indicate the performance increase by our adaptive detector
compared to the others. Precisely, in the sample visual results,
it is shown that some false positives and false negatives are
corrected by our detector compared to [14], [43], [13]. It is
also important to mention that our proposed adaptive detector
performs well in the visible domain as well. It achieves
40.01% in terms of miss rate, which is a good result compared
to the thermal domain (44.6%), and more importantly, it is
better than the original result of Faster R-CNN trained and
tested on visible data without adaptation (48.59%).

To better highlight the importance and the relevance of each
alignment considered in our adaptation method, we evaluate
the results by removing one of them each time. As depicted in
Table I and following the same notations in [43], [13], G, L,
CTX refer to global alignment, local alignment, and context-
vector based regularization, respectively. Compared to [43],
[13], since we also consider other alignments in the second
phase of the network (RPN and ROI), we add R to refer
to them. As demonstrated from these results, even though
some alignments affect the results more than others (such
as the case of the global alignment G), but combining all
of them together achieves an overall performance. Mainly by
considering other alignments at the second part of the detector,
the results are further improved. These results justify our
choice of combining different alignments at different levels
and phases in order to respond to different aspects of the
domain shift.

TABLE I
RESULTS OF OUR PROPOSED ADAPTIVE DETECTOR IN TERMS OF

LOG-AVERAGE MISS RATE BY ELIMINATING EACH TIME ONE OF THE
ALIGNMENTS. G, L, CTX , AND R REFER TO GLOBAL ALIGNMENT,

LOCAL ALIGNMENT, CONTEXT-VECTOR AND ALIGNMENTS IN THE
SECOND SUB-NETWORK.

Method G L CTX R MR (%)

Ours ✗ ✓ ✓ ✓ 66.00
✓ ✓ ✗ ✓ 55.76
✓ ✗ ✓ ✓ 51.00
✓ ✓ ✓ ✗ 49.01
✓ ✓ ✓ ✓ 44.46

V. CONCLUSION

In this paper, we proposed a novel thermal-to-visible adap-
tive detector leveraging information from both domains in
unpaired setting and at no additional annotation cost. This de-
tector incorporating feature distribution alignments into Faster
R-CNN has the advantage of combining different domain clas-
sifiers in order to achieve an overall performance. Despite its
relevance for practical applications since only one model that
bridges the gap between the two domains without additional
annotations, such unsupervised adaptation for detection in
thermal and visible domains is not yet investigated. By means
of tests on KAIST dataset, the effectiveness of the proposed
detector is proven by obtaining better results compared to the
baseline method with an outstanding margin. Its performance
also exceeds some recently published works in the field of un-
supervised domain adaptation for detection in other domains.

There are several possible extensions of this work. For
example, the proposed features distribution alignment which
is incorporated into Faster R-CNN architecture for illustrative
purpose, can readily be replaced by other deep detectors.
Also, since this work specifically addresses the problem of
pedestrian detection, natural directions for future research
include investigating the detection of other objects.

ACKNOWLEDGMENTS

This work has been supported by the DGVR research fund
from the Tunisian Ministry of Higher Education and Scientific
Research that is gratefully acknowledged.

REFERENCES

[1] M. Kieu, A. D. Bagdanov, M. Bertini, and A. D. Bimbo, “Task-
conditioned domain adaptation for pedestrian detection in thermal im-
agery,” in Computer Vision - ECCV, 2020.

[2] S. Park, J. Hwang, J.-E. Park, Y.-C. Ahn, and H. W. Kang, “Application
of ultrasound thermal imaging for monitoring laser ablation in ex vivo
cardiac tissue,” Lasers in surgery and medicine, vol. 52, no. 3, pp. 218–
227, 2020.

[3] G. Lu, Y. Yan, L. Ren, P. Saponaro, N. Sebe, and C. Kambhamettu,
“Where am i in the dark: Exploring active transfer learning on the use
of indoor localization based on thermal imaging,” Neurocomputing, vol.
173, pp. 83–92, 2016.

[4] D. Ghose, S. M. Desai, S. Bhattacharya, D. Chakraborty, M. Fiterau,
and T. Rahman, “Pedestrian detection in thermal images using saliency
maps,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2019, pp. 0–0.



[5] D. Xu, W. Ouyang, E. Ricci, X. Wang, and N. Sebe, “Learning
cross-modal deep representations for robust pedestrian detection,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5363–5371.

[6] F. Lai, J. Kandukuri, B. Yuan, Z. Zhang, and M. Jin, “Thermal image
enhancement through the deconvolution methods for low-cost infrared
cameras,” Quantitative infrared thermography journal, vol. 15, no. 2,
pp. 223–239, 2018.

[7] Y. W. K. Zoetgnande, J.-L. Dillenseger, and J. Alirezaie, “Edge focused
super-resolution of thermal images,” in 2019 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[8] M. Mohamed Amine, F. Hajer, S. Anis, and E. B. A. Najoua, “Thermal
image enhancement using generative adversarial network for pedestrian
detection,” International Conference on Pattern Recognition, 2020.

[9] C. Lin, J. Lu, G. Wang, and J. Zhou, “Graininess-aware deep feature
learning for robust pedestrian detection,” IEEE transactions on image
processing, vol. 29, pp. 3820–3834, 2020.

[10] A. Mhalla, T. Chateau, S. Gazzah, and N. Essoukri Ben Amara, “An
embedded computer-vision system for multi-object detection in traffic
surveillance,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 11, pp. 4006–4018, 2018.

[11] W. Ouyang, X. Zeng, and X. Wang, “Learning mutual visibility relation-
ship for pedestrian detection with a deep model,” International Journal
of Computer Vision, vol. 120, no. 1, pp. 14–27, 2016.

[12] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic feature
detection: A new perspective for pedestrian detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 5187–5196.

[13] C. Chen, Z. Zheng, X. Ding, Y. Huang, and Q. Dou, “Harmonizing
transferability and discriminability for adapting object detectors,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8869–8878.

[14] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive
faster r-cnn for object detection in the wild,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 3339–
3348.

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[19] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[20] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10 781–10 790.

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[22] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-aware fast r-
cnn for pedestrian detection,” IEEE transactions on Multimedia, vol. 20,
no. 4, pp. 985–996, 2017.

[23] C. Li, D. Song, R. Tong, and M. Tang, “Multispectral pedestrian detec-
tion via simultaneous detection and segmentation,” in British Machine
Vision Conference, BMVC, 2018.

[24] M. Kieu, A. D. Bagdanov, M. Bertini, and A. Del Bimbo, “Domain
adaptation for privacy-preserving pedestrian detection in thermal im-
agery,” in International Conference on Image Analysis and Processing.
Springer, 2019, pp. 203–213.

[25] J. Baek, S. Hong, J. Kim, and E. Kim, “Efficient pedestrian detection
at nighttime using a thermal camera,” Sensors, vol. 17, no. 8, p. 1850,
2017.

[26] C. Devaguptapu, N. Akolekar, M. M Sharma, and V. N Balasubramanian,
“Borrow from anywhere: Pseudo multi-modal object detection in thermal
imagery,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019.

[27] T. Guo, C. P. Huynh, and M. Solh, “Domain-adaptive pedestrian
detection in thermal images,” in 2019 IEEE International Conference
on Image Processing (ICIP). IEEE, 2019, pp. 1660–1664.

[28] V. John, S. Mita, Z. Liu, and B. Qi, “Pedestrian detection in thermal
images using adaptive fuzzy c-means clustering and convolutional neural
networks,” in 2015 14th IAPR International Conference on Machine
Vision Applications (MVA). IEEE, 2015, pp. 246–249.

[29] D. Guan, Y. Cao, J. Yang, Y. Cao, and M. Y. Yang, “Fusion of
multispectral data through illumination-aware deep neural networks for
pedestrian detection,” Information Fusion, vol. 50, pp. 148–157, 2019.

[30] D. Konig, M. Adam, C. Jarvers, G. Layher, H. Neumann, and
M. Teutsch, “Fully convolutional region proposal networks for multi-
spectral person detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017, pp. 49–56.

[31] S. W. Jingjing Liu, Shaoting Zhang and D. Metaxas, “Multispectral deep
neural networks for pedestrian detection,” in Proceedings of the British
Machine Vision Conference (BMVC), 2016.

[32] J. Wagner, V. Fischer, M. Herman, and S. Behnke, “Multispectral
pedestrian detection using deep fusion convolutional neural networks.”
in ESANN, 2016.

[33] L. Zhang, X. Zhu, X. Chen, X. Yang, Z. Lei, and Z. Liu, “Weakly
aligned cross-modal learning for multispectral pedestrian detection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 5127–5137.

[34] P. Panareda Busto and J. Gall, “Open set domain adaptation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 754–763.

[35] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified deep
supervised domain adaptation and generalization,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 5715–
5725.

[36] W. Li, Z. Xu, D. Xu, D. Dai, and L. Van Gool, “Domain generalization
and adaptation using low rank exemplar svms,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 5, pp. 1114–1127,
2017.

[37] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 289–305.

[38] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa,
“Learning from synthetic data: Addressing domain shift for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3752–3761.

[39] A. Berg, J. Ahlberg, and M. Felsberg, “Generating visible spectrum
images from thermal infrared,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2018, pp.
1143–1152.

[40] X. Kuang, J. Zhu, X. Sui, Y. Liu, C. Liu, Q. Chen, and G. Gu, “Thermal
infrared colorization via conditional generative adversarial network,”
Infrared Physics & Technology, p. 103338, 2020.

[41] F. Munir, S. Azam, M. A. Rafique, A. M. Sheri, and M. Jeon, “Thermal
object detection using domain adaptation through style consistency,”
arXiv preprint arXiv:2006.00821, 2020.

[42] M. Kim, S. Joung, K. Park, S. Kim, and K. Sohn, “Unpaired cross-
spectral pedestrian detection via adversarial feature learning,” in 2019
IEEE International Conference on Image Processing (ICIP). IEEE,
2019, pp. 1650–1654.

[43] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Strong-weak distri-
bution alignment for adaptive object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6956–6965.

[44] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2794–2802.

[45] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in European conference on computer
vision. Springer, 2016, pp. 694–711.

[46] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” in International conference on machine learning. PMLR,
2015, pp. 1180–1189.

[47] H. Zhang, Z. Zhang, A. Odena, and H. Lee, “Consistency regularization
for generative adversarial networks,” arXiv preprint arXiv:1910.12027,
2019.



[48] S. Hwang, J. Park, N. Kim, Y. Choi, and I. So Kweon, “Multispectral
pedestrian detection: Benchmark dataset and baseline,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1037–1045.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.


