
HAL Id: hal-03909913
https://hal.sorbonne-universite.fr/hal-03909913v1

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature distribution alignments for object detection in
the thermal domain

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben
Amara

To cite this version:
Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara. Feature dis-
tribution alignments for object detection in the thermal domain. The Visual Computer, 2022,
�10.1007/s00371-021-02386-x�. �hal-03909913�

https://hal.sorbonne-universite.fr/hal-03909913v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Feature distribution alignments for object detection
in the thermal domain

Mohamed Amine Marnissi · Hajer Fradi ·
Anis Sahbani · Najoua Essoukri Ben Amara

Received: date / Accepted: date

Abstract Infrared imaging has recently played an important role in a wide range
of applications including video surveillance, robotics and night vision. However,
the manufacturing cost of high-resolution infrared cameras is more expensive re-
garding similar quality in visible cameras. This could explain the fact that thermal
databases are less available compared to visible ones. In this paper, we mainly em-
phasis the need for aligning features from visible and thermal domains for object
detection in order to ensure effective results in both domains without the need to
retrain data and to perform additional annotations. To address that, we incorpo-
rate feature distribution alignments into Faster R-CNN architecture at different
levels. The resulting proposed adaptive detector has the advantage of covering
different aspects of the domain shift in order to improve the overall performance.
Using KAIST and FLIR ADAS datasets, the effectiveness of the proposed detec-
tor is assessed and better results are obtained compared to the baseline detec-
tor and to the obtained results by other existing works.Our code is available at
https://github.com/AmineMarnissi/UDAT.

Mohamed Amine Marnissi
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1 Introduction

An infrared camera is a device that forms an image using infrared radiations, com-
pared to the commonly used visible cameras that form an image using visible light
[26,6,49]. This camera forms an image by detecting infrared radiations emitted by
an object based on its temperature. The main advantage using infrared cameras
is that they could easily distinguish warm objects from other surrounding objects
even in bad lighting and adverse weather conditions [15].

For the aforementioned reasons, the past few decades have witnessed a widespread
growth in the use of infrared cameras in many fields, including military and civil-
ian ones especially for automotive applications, medical imaging, robotics and
video surveillance [9,6,15,32,10,42,28,22]. Despite the usefulness of these cam-
eras mainly at nighttime, there are some limitations that have to be considered,
essentially about the compromise between the cost and the image quality. It is im-
portant to mention that the manufacturing cost of high-resolution infrared cameras
is more expensive regarding similar quality in visible cameras. This could explain
the fact that thermal data is less available compared to visible one. Also, for the few
available datasets, the visual quality of thermal images is usually poor since low-
resolution thermal cameras are more commonly used [49,26,10]. Low-resolution
together with bad acquisition conditions in some cases present multiple challenges
that impede infrared imaging applications to perform well. It is essentially the case
of various video analysis applications such as object detection, object tracking and
activity recognition [10,22,21].

Precisely, in this paper, we focus on the problem of object detection and lo-
calization from infrared cameras for surveillance applications. This problem has
been extensively studied using visible data and good results are usually obtained
[20,23]. However, in some situations for instance in nighttime, bad lighting con-
ditions, total darkness, or in adverse weather conditions, the performance of the
state-of-the-art detectors dramatically drops [41,7]. Here comes the importance of
using thermal cameras for detection since they could better discern warmer target
objects than other surrounding ones.

Even though object detection using infrared cameras is more convenient in
some situations, it is still subject to errors if we consider the inherent problems of
low-resolution and insufficient available data. This topic has been widely studied in
the recent years using deep neural networks [20,11,25,40,29,23]. It is commonly
known that these networks rely on a large labeled training data, which might
incur at least two problems in the thermal domain: first, less data is available
compared to the visible domain; second, the annotation task for object detection
is particularly time-consuming process since each object category in every image
must be precisely delimited with a bounding box.

To mitigate these problems, we intend in this present work to harness the
abundance of annotated visible images by adapting them to the thermal domain
at no additional annotation cost. Basically inspired from [4] and [3], we propose
to cover the domain shift by means of multiple feature distribution alignments.
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The proposed alignment process, where different cues are merged together, is in-
tegrated into a two-stage-detector in order to improve its domain adaptability.
Precisely, feature alignments are performed at image and instance levels in order
to reduce the shift between thermal and visible domains caused by variations in
scale, illumination, object appearance and size, etc. To reinforce alignments at
these two levels, a consistency regularization is added. The proposed adaptation
scheme also includes local and global alignments of low-level and high-level fea-
tures extracted from the backbone network in order to strictly align the image
style across domains.

The resulting proposed adaptive detector aligning feature distributions at mul-
tiple levels is considered as the main contribution of this present paper. It has also
the advantage of being trained in an unpaired setting with unlabeled thermal
images. This unsupervised adaptation of object detectors from source to target
domains has been commonly employed in the visible domain to essentially deal
with adverse weather conditions [41,3,4,36]. In this paper, it is proposed for the
first time in thermal and visible domains, as far as we know. Targeting such dis-
similar domains is challenging, since they exhibit different visual characteristics
[39]. Unlike existing multispectral detectors from both visible and thermal do-
mains, our proposed adaptation scheme is of significant interest since it enables
detections in the thermal domain even though the corresponding annotations are
not used in the training step. The idea consists of reducing the domain shift to
adapt the same detector from the source to the target domain without the need to
retrain data, and more importantly, at no additional annotation cost in the target
domain. The effectiveness of the proposed adaptation method is demonstrated on
the detection performance by obtaining better results with a significant margin
compared to the baseline detector and to recently published works in the field of
domain adaptation using two popular datasets.

The remainder of the paper is organized as follows: in Section 2, an overview of
the existing transfer learning and domain adaptation methods for object detection
is presented. Then, our proposed approach of unsupervised domain adaptation
for object detection in thermal and visible domains is detailed in Section 3. The
conducted experiments and the obtained results are discussed in Section 4. Finally,
we briefly conclude and give an outlook of possible future works in Section 5.

2 Related work

In this section, we give an overview of some existing methods that perform domain
adaptation in thermal and visible domains. Precisely, we focus on the studies
that perform this adaptation for object detection by means of generative and non
generative models. This overview includes as well a general introduction of transfer
learning and domain adaptation for computer vision applications.

2.1 Transfer learning and domain adaptation

It is commonly known that deep learning networks mostly require large-scale
datasets because of the huge number of parameters that have to be trained [1].
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Since collecting and annotating datasets for every new task or domain is time-
consuming process, transfer learning can be used as an alternative solution to
handle that. Globally, transfer learning can be divided into three main categories:
unsupervised, inductive and transductive methods [30,39]. Domain Adaptation
(DA) is a special case of transfer learning that makes use of annotated data in
a source domain to perform another or the same task in a target domain. Ac-
cording to [39], DA belongs to transductive transfer learning solutions with the
assumption that tasks are similar and the difference is only due to the domain
divergence. Depending on the domain divergence, domain adaptation can be itself
divided into homogeneous and heterogeneous DA. Homogeneous DA refers to the
case of data distribution shift, and heterogeneous DA refers to the case of feature
space difference due to the use of different sensors.

To cover the domain divergence, discrepancy-based methods can be used if
fine-tuning deep network models is effective enough [19,45]. Reconstruction-based
methods in which data reconstruction of the source or target samples acts as an
auxiliary task to feature invariance can be instead employed [44,13]. As another
alternative solution, adversarial-based methods can be applied using domain dis-
criminators to boost domain confusion through an adversarial objective [43,33].
These adversarial-based methods could be performed by means of generative or
non-generative models.

2.2 Domain adaptation for object detection in thermal and visible domains

Domain adaptation has been widely studied in the field of computer vision for
various visual applications including image classification, object detection, fine-
grained recognition and semantic segmentation [31,27,18,4,50,37]. Different from
other domain adaptation methods, adaptation for detection is particularly chal-
lenging since both object category and location have to be predicted. Related
works for detection fall into two categories: homogeneous and heterogeneous DA.
As already mentioned, heterogeneous DA is the case of feature space divergence
using different sensors (e.g. thermal vs. visible or RGB vs. depth). In this sec-
tion, we essentially present the related work of DA for detection in thermal and
visible domains. We also review some existing methods of homogeneous DA for
detection, mainly those requiring only annotations in the source domain (refer to
unsupervised DA), which is our primary goal in this work. More details about these
methods are given in the following sections by categorizing them into generative
and non-generative models.

2.2.1 Generative models

Generative models basically consist of generating synthetic data that is similar
to the target data and shares the annotations of the source domain. One typical
example is the generation of a visible image from an input thermal image. This
transformation aims at enhancing thermal image quality by converting it to per-
ceptually realistic RGB image in order to enable better content interpretation,
usually difficult for untrained operators. Commonly known as colorization, this
transformation has been the subject of many studies in the literature [17,2,7]. For
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instance, in [17] TIC-CGAN which refers to conditional generative adversarial net-
work is proposed to address thermal infrared colorization problem. Compared to
[2] that only restored rough luminance and chrominance information, TIC-CGAN
uses a coarse-to-fine generator and a composite objective function that combines
content, adversarial, perceptual and total variation losses to produce results with
realistic colors and fine details. However, it is important to remind that in this
study we are merely interested in performing this transformation to enable better
detection. It is the case of [7], where a Cycle-GAN for unpaired image-to-image
translation of thermal to pseudo-RGB data is proposed to adapt a multimodal
Faster-RCNN detector.

The transformation mapping from the source thermal domain to the target
visible domain, as proposed in [2,7], could potentially fail in our case since it aims
at generating a realistic RGB image, without any focus on particular objects in
the image, which is our primary goal in this study. This motivates us to rather
refer to other existing works that incorporate this transformation in the detection
architecture in order to enable better detection beyond generation. More details
are given in the next section dedicated to present non-generative models.

2.2.2 Non-Generative Models

Instead of generating synthetic target data, non-generative models aim at learning
a domain-invariant representation, where the distribution of both domains can be
similar enough such that the classifier can be directly employed in the target do-
main, while being trained on samples from the source domain. Non-generative
models are basically inspired from GAN architectures, but trained through a
domain-confusion loss without generators [8,38]. In the specific case of thermal
and visible domains, only very few works that tackled the task of DA for detection
by means of non-generative models have been proposed. For instance, in [16], an
unified detection network by defining a common feature space, which makes inter-
mediate features from the two domains is proposed. To be trained, the proposed
unified detector requires supervision in both domains.

Unlike existing adaptation works for detection that require annotated data for
both thermal and visible domains, in this paper we intend to perform adaptation
without the need to annotate thermal data. To the best of our knowledge, such
unsupervised domain adaptation has not been proposed before in heterogeneous
domains such as the case of thermal and visible. This category of domain adap-
tation has been mainly studied in homogeneous domains, where the difference is
only in terms of data distributions as proposed in [4,36,3].

Domain Adaptive Faster R-CNN (DA-Faster) [4] is one of the most known
unsupervised adaptive detectors, where an image-level and an instance-level adap-
tation components are proposed to alleviate the performance drop caused by the
domain shift. These adaptation components are based on adversarial training of H-
divergence. A consistency regularizer is also employed to learn a domain-invariant
RPN of Faster R-CNN model. The robustness of the proposed adaptive detector
is evaluated on different domain shift scenarios. Scale-Aware Domain Adaptive
Faster R-CNN [5] is an extension of DA-Faster which is mainly proposed to im-
prove the detection results by dealing with the variation of object scales in cross
domain-adaptation. To handle that, the object scale is considered in the alignment
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process by adopting the feature pyramid network (FPN) that produces feature
maps at different scales.

In [36], another adaptive object detector based on strong local-alignment and
weak-global alignment is proposed. The weak alignment model focuses on the ad-
versarial alignment on images that are globally similar and puts less emphasis on
aligning images that are globally dissimilar. The strong domain alignment model
is designed to only consider local receptive fields of the feature maps. Another
approach called Hierarchical Transferability Calibration Network (HTCN) [3] to
harmonize transferability and discriminability in the context of adversarial adapta-
tion for cross-domain object detection is proposed. The idea consists of regularizing
the adversarial adaptation by calibrating the representation transferability with
improved discriminability.

Following the same strategy, in this current paper, we intend to make use of
such techniques of adaptation without additional supervision in the target domain.
But differently from the previous works, where homogeneous domains are aligned,
our proposed architecture aims at aligning images from heterogeneous domains
(thermal and visible) exhibiting different features. In addition, compared to [4,
36,3] we propose a more complete architecture, where feature distributions are
aligned at different levels and at two phases of the network.

3 Proposed Approach

In this paper, we propose a novel approach of unsupervised domain adaptation
for object detection dedicated to operate in the target domain at no additional
annotation cost. In our specific case, it is about heterogeneous adaptation setting,
where visible is the source domain, since it is more commonly used, and thermal
is the target domain. The proposed adaptation scheme falls into the category of
adversarial-based DA methods by means of non-generative models. To cover dif-
ferent aspects of the domain divergence, we propose to perform feature alignments
at multiple levels. The alignment process is incorporated at two phases of a base-
line detector. The resulting overall proposed architecture is shown in Figure 1, in
which the notations are the same used in the remainder of this section, where we
describe each of the architecture components. Precisely, the problem of domain
adaptation is formulated in section 3.1. The detection loss function is then pre-
sented in section 3.2. Details about how the problem of adaptation is solved is
provided in Section 3.3, along with the corresponding loss functions.

3.1 Problem Formulation

Following the common terminology in the field of domain adaptation, a domain
D is characterized by a feature space X and a marginal probability distribution
P (X), where X = {x1, ..., xn} ∈ X . As defined in [39], a task consists of a feature
space Y and a conditional probability distribution P (Y |X). In our case, it is about
detection task in heterogeneous DA setting, in which the feature spaces between
the source (visible) and target (thermal) domains are different (X s 6= X t). The
dimension of feature spaces could be different as well. We assume that the source



Feature distribution alignments for object detection in the thermal domain 7

Gradient Reversal Layer Gradient Reversal Layer Gradient   Reversal LayerGradient   Reversal Layer

Local Domain Classifier

fc1 fc2

Concat

ROI-Pooling

RPN

Consistency 
regularization

D𝒍𝒐𝒄

Instance

feature

Visible domain

Thermal domain

Context 

vector

Instance-level 

Domain Classifier
Global Domain Classifier

D𝒈𝒍𝒐𝒃 D𝐢𝐦𝐠

Image-level 

Domain Classifier

D𝒊𝒏𝒔

...
...

G2G1
Ltot

Backpropagation

Lloc Lglob Limg Lins

Ladv

Lcls

Lreg

Fig. 1 The proposed architecture for object detector adaptation in visible and thermal do-
mains. This adaptation is performed by means of multiple feature alignments and is integrated
in two phases of Faster R-CNN detector. The notations used in this figure are the same used
in section 3.

domain V = {Xv, P (Xv)} is labeled, and by means of unsupervised domain adap-
tation the detection model is adapted to the target domain T = {Xt, P (Xt)}.
For the task of object detection, P (Y |X) can be formulated as P (C,B | I), where
C ∈ {1, ...K} is the object class with K is the total number of classes, B refers to
the bounding box of an object, and I is the image representation.

Following the notations of [4] and by fitting them to our case, a domain shift be-
tween visible and thermal domains can be expressed as: PV(C,B, I) 6= PT (C,B, I),
where P (C,B, I) refers to the joint probability distribution of training samples for
object detection. During the training process, we analyze the problem of domain
shift by calculating PT (C,B, I), even though the corresponding annotations of
bounding-box B and class C are unknown for training samples in the thermal
domain.

3.2 Detection loss

For detection, we choose Faster R-CNN [34] as a representative two-stage detector
since it is one of the most popular object detectors that achieves a good com-
promise between the speed and the accuracy. In a first stage, Region Proposal
Network (RPN) generates region proposals based on the feature map produced by
the backbone network. Then, Faster R-CNN feeds the region proposals and fea-
ture map into ROI pooling layer in a second stage. As backbone network, we use
ResNet-101 which is composed of two feature extractors G1 and G2 (see Figure 1).
The first one is employed for the extraction of low-level features and the second
one for high-level features.

Since in our case thermal images are not annotated, the detection loss is com-
puted in the visible domain. For a given set of annotated source visible images
{Xv, Y v}, where each image is denoted as xvi and yvi is its corresponding bounding
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boxes, the detection loss Ldet that combines the classification and the regression
losses is defined as:

Ldet(Xv, Y v) =
1

Nv

Nv∑
i=1

Lreg(R(G2(xvi )), yvi ) + Lcls(R(G2(xvi )), yvi )

(1)

where the output of G2 is fed to RPN module (denoted as R) and Nv indicates
the total number of samples from the source visible domain.

3.3 Domain Adaptation Components

In this section, the main domain adaptation components of our proposed adaptive
detector are presented. This adaptation consists of aligning feature distributions
at two phases of the network and at different levels. For each alignment step, a
domain classifier is defined. It is a neural network that aims at predicting whether
the feature distribution is from the source or the target domain. Precisely, in the
sub-network composed of RPN and ROI, the alignments are performed at image
and instance levels, with a consistency regularization. Details about alignments at
this phase are given in sections 3.3.1, 3.3.2 and 3.3.3. In addition, global and local
alignments are performed at the backbone network (ResNet-101) on the features
generated by G1 and G2, as explained in section 3.2. Details about alignments at
this phase are presented in sections 3.3.4, 3.3.5 and 3.3.6.

3.3.1 Image-Level Alignment

As already formulated in section 3.1, the domain shift problem can be expressed by
the joint probability distribution P (C,B, I), which can be decomposed according
to Bayes’ theorem as:

P (C,B, I) = P (C,B | I)P (I) (2)

As any classification problem, we adopt the covariate shift hypothesis for object
detection [4], i.e. the conditional probability P (C,B|I) has to be the same for both
domains, and the domain shift is only due to the marginal distribution difference
P (I).

Basically, to enforce coherency between the two domains, the detection results
have to be the same for a given image whether is the domain to which it belongs.
In Faster R-CNN model, the image representation I is in fact the resulting feature
map of backbone network. Consequently, to solve the domain shift problem, the
distributions of the image representation from the two domains (i.e. PV(I) =
PT (I)) have to be the same.

Practically, since it is not trivial to reach such alignment at image level, a
domain classifier Dimg is employed to minimize the domain divergence. Dimg
is trained at each activation of feature maps, then, it predicts the domain label



Feature distribution alignments for object detection in the thermal domain 9

for every image patch. The advantage of this image-level alignment is that it can
generally reduce the amount of shift caused by the domain differences in the global
image such as style, scale and illumination [14,4]. Using the cross entropy, the
adaptation loss at image level denoted as LV

img and LT
img in visible and thermal

domains is accordingly defined as follows:

LV
img = − 1

Nv

Nv∑
i

∑
u,v

log(1− pi(u, v)) (3)

LT
img = − 1

Nt

Nt∑
i

∑
u,v

log(pi(u, v)) (4)

where pi(u, v) is the output of the domain classifier Dimg for given activations of
feature maps located at (u, v) position after applying backbone network on the ith

input image. Nv and Nt indicate the total number of visible and thermal samples,
respectively. The two defined adaptation loss functions are combined in Limg by:

Limg =
1

2
(LV
img + LT

img) (5)

In addition, we employ a Gradient Reverse Layer (GRL) [8] which aims at
optimizing the parameters of the domain classifier and the base network, simul-
taneously. The gradient sign is inversed while passing through the GRL layer to
achieve the primary goal of aligning the domain distributions by applying adver-
sarial learning.

3.3.2 Instance-Level Alignment

Instance-level alignment is also considered in order to reduce the difference of local
instance representations between the two domains, such as the appearance and the
object size. The joint probability distribution can be alternatively decomposed as:

P (C,B, I) = P (C | B, I)P (B, I) (6)

Following again the hypothesis of covariate shift, the conditional probability P (C |
B, I) is the same in the two domains and the shift is due to the difference in the
marginal distribution P (B, I) [4]. To reach the semantic consistency, the image
region that contains an object and its corresponding category label have to be the
same in the visible and thermal domains. Consequently, the distribution represen-
tation of instances is the same in both domains i.e. PV(B, I) = PT (B, I).

In our proposed adaptive detector, the instance-level representation (B, I) is
employed based on the output feature vectors of ROI pooling, that are obtained
before being fed to the final category classifier. Since bounding box annotations
are only known in the visible domain, a domain classifier Dins is trained on the
feature vectors in order to perform alignment at instance level. The adaptation
loss at instance level denoted as LV

ins and LT
ins in visible and thermal domains is

defined as follows:

LV
ins = − 1

Nv

Nv∑
i

∑
j

log(1− si(j)) (7)
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LT
ins = − 1

Nt

Nt∑
i

∑
j

log(si(j)) (8)

where si(j) is the output of the domain classifier of the j-th region proposal in the
i-th image. The two defined adaptation loss functions are combined in Lins by:

Lins =
1

2
(LV
ins + LT

ins) (9)

Similar to the domain classifier at image level, the gradient reverse layer is added
beforehand in order to fit the adversarial training strategy.

3.3.3 Consistency Regularization

To align domains at image and instance levels, the distributions of image P (I)
and instance representations P (B, I) have to be the same in both domains. Since
it is not trivial to reach such alignments, two domain classifier are trained. For
each classifier, the input could be either the image representation I or the instance
representation (B, I) and the output is a probability to predict if an input sample
belongs to the thermal domain or not.

We denote by P (D | I) and P (D | B, I) the outputs of the image-level and
the instance-level domain classifiers, respectively, with D is the domain label.
Following [4], the problem can be formulated according the Bayes’ theorem as:

P (D | B, I)P (B | I) = P (B | D, I)P (D | I) (10)

where P (B | D, I) and P (B | I) are a domain-dependent and a domain-invariant
bounding box predictors, respectively. Since we are only able to learn PV(B | D, I)
in the visible domain, P (B|D, I) can be calculated by enforcing the consistency
(eq. 10) between the two domain classifiers, i.e., P (D | B, I) = P (D | I). Once
P (B | D, I) is calculated, P (B | I) can be estimated in the thermal domain as
well.

The consistency between the domain classifiers at two levels (image and in-
stance) allows to learn the cross-domain robustness of the bounding box predictor
[47]. It can be defined for visible and thermal domains as:

Lcst =
∑
i

∑
j

‖ 1

| I |
∑
u,v

pi(u, v)− si(j) ‖2 (11)

where | I | is the total number of activations in a feature map, and ‖ . ‖ is the l2
norm.

3.3.4 Local Feature Alignment

Given two images from the two domains, since some local regions can be more
important than others, we propose an attention module that matches the corre-
sponding regions from both domains in unsupervised way. The semantic coherence
between domains is considered by calculating masks of local features. It can be
done by a local domain classifier Dloc, which is defined to highlight local features



Feature distribution alignments for object detection in the thermal domain 11

by producing a domain prediction map, that has the same size WxH as the output
of the feature extractor G1 in the backbone network.

Dloc is considered as a pixel-wise discriminator based on few convolutional
layers with a kernel size of 1 [3]. Following [24], the least-square loss is employed
since it has been proven to be stable in the training of the domain classifier and
to be useful for aligning low-level features. The pixel-wise adversarial training loss
Lloc of local alignment for each domain is defined as:

LV
loc =

1

HWNv

Nv∑
i

W∑
w=1

H∑
h=1

Dloc(G1(xvi ))2wh (12)

LT
loc =

1

HWNt

Nt∑
i

W∑
w=1

H∑
h=1

(1−Dloc(G1(xti))
2)wh (13)

where xvi and xti denote unpaired visible and thermal input images. The two defined
pixel-wise adversarial training losses are combined in Lloc by:

Lloc =
1

2
(LV
loc + LT

loc) (14)

3.3.5 Global Feature Alignment

Following [36], the target samples can be divided into two parts: Easy-to-classify if
they are far in the feature space from the source samples, and Hard-to-classify oth-
erwise. Therefore, to align domains, we focus on samples that are Hard-to-classify
and we put less emphasis on Easy-to-classify samples. The feature alignment at
this stage is performed at global level for fully matching of the distributions be-
tween source and target images. This kind of matching is expected to perform well
in the case of small domain divergence. In this context, the focal loss is used to
train a domain classifier Dglob for global features alignment. This loss function is
used instead of the cross-entropy function since the latter reinforces the domain
classifier Dglob to consider both of Easy-to-classify and Hard-to-classify samples
[36].

To train the global-level domain classifier Dglob, the loss function Lglob based
on the focal loss is expressed for visible and thermal domains as follows:

LV
glob = − 1

Nv

Nv∑
i

(1−Dglob(G2(xvi )))γ log(Dglob(G2(xvi )) (15)

LT
glob = − 1

Nt

Nt∑
i

(Dglob(G2(xti)))
γ log(1−Dglob(G2(xti)) (16)

Lglob =
1

2
(LV
glob + LT

glob) (17)

where γ is used to weight Hard-to-classify samples during the training process.



12 Mohamed Amine Marnissi et al.

3.3.6 Contextual Regularization

In the field of adaptive domain segmentation [37], where the goal is to simultane-
ously generate the domain label and a semantic segmentation map, the regulariza-
tion of the domain classifier together with the segmentation loss have been proven
to be efficient to stabilize the adversarial training. Based on that, we choose to
integrate a regularization technique in our adaptive model in order to enhance its
performance and to stabilize the training of the domain classifier using the detec-
tion loss computed on visible samples. Practically, this regularization is applied
on the two extracted feature vectors fc1 and fc2 (outputs of G1 and G2, respec-
tively). Each vector includes some contextual information describing the image
content. These vectors are then concatenated with the output of ROI-pooling [3].
By doing that, the contextual regularization aims at minimizing the detection loss
on visible samples and the domain classification loss while training the domain
classifiers Dloc and Dglob, as illustrated in Figure 1.

3.4 Summary of the proposed adaptive detector

In order to cover different aspects of the domain shift, all alignments detailed in
the previous section are combined in a total adversarial loss Ladv defined as:

Ladv = Limg + Lins + Lcst + Lglob + Lloc (18)

Afterwards, to train our proposed adaptive detector, the resulting adversarial loss
Ladv is added to the detection loss Ldet defined in eq. 1 in an overall objective
function formulated as:

Ltot = Ldet + αLadv (19)

where α is used to weight the adversarial loss.

Once the total loss Ltot is calculated by mini-batch size in the training set, its
gradient is backpropagated and the weights are updated accordingly following:

W ←W − µ(
∂Ldet
∂W

+ α
∂Ladv
∂W

) (20)

Also, backpropagation steps are conducted for each domain classifier using the
gradient of the corresponding loss functions at the same learning rate µ:

Wloc ←Wloc − µ
∂Lloc
∂Wloc

Wglob ←Wglob − µ
∂Lglob
∂Wglob

Wins ←Wins − µ
∂Lins
∂Wins

Wimg ←Wimg − µ
∂Limg
∂Wimg

(21)
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4 Experimental results

4.1 Datasets

The proposed approach is evaluated within two challenging datasets widely used
for multispectral object detection, namely FLIR ADAS [46] and KAIST [12] datasets.
FLIR (Forward Looking InfraRed) ADAS is a recently published dataset for multi-
object detection, that approximately contains 10k thermal and visible images col-
lected during daytime and nighttime. Since in this work annotated visible data is
required, we made use of an updated version of FLIR published in [46]. Following
[46], only “Bicycle”, “Car” and “Person” classes are considered. This version of
FLIR contains 5142 well-aligned image pairs of resolution 640 × 512. Precisely
4129 pairs are used for training and 1013 pairs for testing.

KAIST (Korea Advanced Institute of Science & Technology) [12] is another
widely used dataset to assess pedesterian detection algorithms. It is one of the
largest multi-spectral pedestrian dataset composed of aligned visible and Long-
Wave Infrared (LWIR) images under adverse illumination conditions, day and
night. It approximately consists of 95k frames of resolution 640 x 480 on urban
traffic environment and of dense annotations for 1182 different pedestrians. This
dataset is divided into a training set of 50.2k images from Set 00 to Set 05, and
a test set of 45.1k images from Set 06 to Set 11. In our work, thermal and visible
images from this dataset are used, but only labels of visible data are employed to
train the proposed architecture.

4.2 Experiments

For object detection, we train the proposed detector following the benchmark
protocols and the evaluation metrics that come with the datasets. Precisely, while
all images from FLIR ADAS dataset are assessed for training and testing the
detector, only every 3 frames from training sets and every 20 frames from testing
sets are selected for KAIST dataset. In addition, for the latter, only non occluded,
non-truncated and large instances (> 50) are considered. This results in a training
set of 7601 images for both thermal and visible sets, and a testing set of 2252
thermal images (1455 day, 797 night) for KAIST dataset.

For both datasets, the performance of the detector trained on visible data and
tested on thermal images is evaluated in terms of mean Average Precision (mAP)
at Intersection Over Union (IOU) equal to 0.5 regarding the ground truth. These
results are compared to those obtained by our proposed adaptive architecture.
Also, comparisons to the existing unsupervised domain adaptation methods for
detection are considered, namely, Domain Adaptive Faster R-CNN (DA-Faster) [4],
Scale-Aware Domain Adaptive Faster R-CNN (SA-DA-Faster) [5], Strong-Weak
Distribution Alignment (SWDA) [36], and Hierarchical Transferability Calibration
Network (HTCN) [3]. These comparisons include as well other existing methods
based on generative models from thermal to visible domains, precisely, CycleGAN
[48] and TIC-CGAN [17].
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4.3 Implementation details

Following the configuration of Faster-RCNN architecture [35], the parameters of
ResNet-101 are fine-tuned from the pre-trained model on ImageNet and the shorter
side of every image is set to 600. For optimization, we use the stochastic gradient
descent (SGD) optimizer in the training step, with an initial learning rate set to
0.001 which is brought down to 0.0001 after 50K iterations. We use a mini-batch
size of one visible image and one thermal image. Also, our proposed detector is
trained on 12 epochs. γ defined in equations 15 and 16 to weight Hard-to-classify
samples is set to 1.0 and the weight α of adversarial loss defined in eq. 19 is
empirically set to 0.1. For all the experiments, PyTorch framework is used and we
learned our model on NVIDIA Titan RTX GPU with 24 GB RAM.

4.4 Results and Comparisons with State-of-the-Arts

At a first stage, we evaluate the performance of the baseline Faster R-CNN de-
tector trained on visible data and tested on thermal images for both datasets. By
doing that, only 34.04% in terms of mAP is obtained compared to 51.35% if the
tests are performed on visible data using FLIR dataset. The same observation is
made on KAIST dataset, in which 21.98% as mAP is obtained compared to 58%
if the tests are performed on visible data. As expected, the domain mismatch be-
tween training visible samples and testing thermal samples leads to a significant
performance drop (of 17.31% and 36.2% in terms of mAP for FLIR and KAIST
datasets, respectively). These results comply with our main observation stated at
the beginning of the paper, that feature spaces between thermal and visible do-
mains are nonequivalent. These initial low results justify the need for performing
domain adaptation by means of feature alignment in order to perform well in the
target domain, which is our main proposal in this paper.

Our obtained results of the proposed unsupervised domain adaptive detector
and the results of the baseline Faster R-CNN without adaptation (both trained on
visible data and tested on thermal data) on FLIR dataset are reported in Table
1. These results are compared in the same table to other unsupervised domain
adaptation detectors (DA-Faster, SA-DA-Faster, SWDA, and HTCN). For the
different detectors, the results are given for three object classes (“Car”, “Bicycle”
and “Person”) and the average results are shown in the last column.

Table 1 Comparisons of the proposed unsupervised adaptive detector to the baseline Faster R-
CNN detector and to other existing domain adaptation detectors on FLIR dataset, all evaluated
in terms of mAP. The average mAP is given in the last column.

Detector Car Bicycle Person average mAP

Baseline 53.19 23.95 24.98 34.04
DA-Faster [4] 59.90 24.30 26.60 36.93

SA-DA-Faster [5] 70.38 33.30 47.27 50.30
SWDA [36] 58.96 32.02 32.32 41.40
HTCN [3] 56.37 37.95 33.17 42.49

Ours 66.83 49.34 43.41 53.19
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Following the same protocol of evaluation, these comparisons on KAIST dataset,
but only on pedestrian class are reported in Table 2. Results are given at daytime,
nighttime and for all images.

Table 2 Comparisons of our proposed detector to the baseline method and to other existing
domain adaptation methods, all evaluated in terms of mAP on KAIST dataset. Details of the
corresponding results at daytime and nighttime are given as well.

Detector night day all

Baseline 22.20 21.86 21.98
DA-Faster [4] 54.19 42.99 45.50
SA-DA-Faster [5] 64.6 41.6 48.7
SWDA [36] 61.04 43.03 48.90
HTCN [3] 70.70 55.40 59.75
Ours 74.05 60.07 64.01

As shown in tables 1 and 2, for both datasets, our proposed adaptive detector
outperforms the baseline method and the other existing unsupervised adaptive
detectors. Using FLIR dataset, it achieves the best average result on the three
classes; 53.19% in terms mAP with a significant margin of 19.15% compared to
the baseline Faster R-CNN detector and a margin of 16.26%, 2.89%, 11.79%, and
10.7% compared to DA-Faster, SA-DA-Faster, SWDA and HTCN, respectively.
Also, the best result is obtained on KAIST dataset; 64.01% in terms mAP with a
margin of 42,03%, 18.52%, 15.31%, 15.11%, and 4,26% compared to the baseline
detector, DA-Faster, SA-DA-Faster, SWDA, and HTCN, respectively. On the same
dataset KAIST, by comparing day and night results, better results are obtained
at nighttime (74.05% as mAP) since thermal data is proven to be more effective
at that time.

From these obtained results, the relevance of performing domain adaptation
for detection to be tested on another domain is proven. The margin regarding
the baseline method is significant for our proposed detector and for the other
adaptive detectors as well. Also, by comparing different adaptive detectors, our
obtained results are consistent with our expectations, since the proposed detector
has the advantage of performing multiple alignments at different levels in the two
phases of the network. This results in a more complete architecture compared
to the other adaptive detectors, where only alignments in the backbone network
are performed in [36,3] and alignments at RPN and ROI are performed in [4,
5]. Combining different alignments in our proposed adaptive detector leads to an
overall performance.

The corresponding qualitative results on some sample images from FLIR and
KAIST datasets are shown in Figure 2. These results also indicate the performance
increase by our adaptive detector compared to others. Precisely, in the sample
visual results, it is shown that some false positives and false negatives results are
corrected by the proposed detector compared to [4,5,36,3].
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(a) Ours (b) DA (c) SA-DA (d) SWDA (e) HTCN

Fig. 2 Qualitative detection results of our proposed detector on FLIR ADAS and KAIST
datasets compared to other adaptive detectors. From left to right results of (a) Our proposed
detector (b) DA-Faster [4], (c) SA-DA-Faster [5] (d) SWDA [36], and (e) HTCN [3]. From top
to bottom: results of 4 sample images in thermal domain, the two first rows showing results on
FLIR dataset and the two last rows for KAIST dataset. For each sample image, the detection
results are shown in red color and the corresponding annotated bounding boxes in green color.

4.5 Ablation Study

To better highlight the importance and the relevance of each alignment considered
in our adaptation method, we evaluate the results by removing one of them each
time as shown in Table 3. As depicted in this table and following the same notations
in [36], G, L, CTX refer to global alignment, local alignment, and context-vector
based regularization, respectively. Compared to [36], since we also consider other
alignments (image, instance, and consistency regularization) in the second phase
of the network, we add R to refer to them.

Table 3 Results on FLIR ADAS and KAIST datasets of our proposed detector in terms
of mAP by eliminating each time one of the alignments. G, L, CTX, and R refer to global
alignment, local alignment, context-vector and alignments in the second phase of the network.

Detector G L CTX R FLIR KAIST

Ours 7 X X X 47.87 26.2
X 7 X X 50.11 54.4
X X X 7 48.59 59.5
X X X X 53.19 64.01
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As demonstrated from these results, even though some alignments affect the
results more than others, such as the case of the global alignment G, but combining
all of them together achieves an overall performance. Mainly by considering other
alignments at the second phase of the detector, the results are further improved,
whether is the dataset. These results justify our choice of combining different
alignments at different levels and phases in order to respond to different aspects
of the domain divergence.

4.6 Comparisons with generative models

To further justify the choices presented in this paper, mainly about the non-
generative vs. generative models, we evaluate in this section some existing genera-
tive models for detection. As already discussed, the goal of this particular type of
adaptation is to generate a realistic RGB image from every thermal input image
in order to improve its visual quality. Particularly, we evaluate and compare the
detection performance of the existing generative models mapping from thermal
to visible domains presented in section 2.2.1, namely, CycleGAN [48] and TIC-
CGAN [17]. The corresponding results are reported in Table 4 and compared to
the baseline detector in terms of mAP.

Table 4 Comparisons in terms of mAP of the baseline detector to some existing generative
models from visible to thermal domains for detection using Faster R-CNN.

Model FLIR KAIST
Baseline 34.04 21.98
CycleGAN [48] 8.60 21.82
TIC-CGAN [17] 16.00 18.31

As shown in the table, the baseline results are not improved by means of gener-
ative models from thermal to visible domains. Worse results are instead obtained,
mainly on FLIR dataaset since its visual quality in the thermal domain is initially
satisfactory. These results are explained by the fact that such techniques aim at
improving the visual quality, without focusing on any target object in the image.
This observation stated at the beginning of the current paper, is confirmed by
the underlying obtained results. This was our main motivation to rather refer to
the non-generative models, which are incorporated in the detector architecture
in order to align features. To better confirm these observations, some qualitative
results on four sample images from KAIST and FLIR datasets are also shown in
Figure 3. From these results, we can clearly observe that whether is the used gen-
erative model (CycleGAN [48] or TIC-CGAN [2]), target objects mainly persons
on KAIST dataset are usually suppressed in the generated images.

5 Conclusion

In this paper, we proposed a novel approach for domain adaptation in the thermal
domain at no additional annotation cost. As far as we know, it is the first time
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(a) Input image (b) Ground truth (c) CycleGAN (d) TIC-CGAN

Fig. 3 Qualitative results of CycleGAN [48] and TIC-CGAN [2] on two sample thermal images
(the input) with their corresponding visible images (the target) for each dataset. From top to
bottom: results of 4 sample images, two first rows showing results on FLIR dataset and the
two last rows on KAIST dataset. For each sample image, annotations of target objects present
in the input thermal images are drawn with green bounding boxes.

that such unsupervised domain adaptation method is employed for detection in
heterogeneous thermal and visible domains. The proposed detector incorporating
feature distribution alignments into Faster R-CNN architecture has the advantage
of combining different domain classifiers in order to achieve an overall performance.
Despite its relevance for practical applications, such adaptation for detection in
thermal and visible domains is not yet investigated. By means of tests on two
widely used datasets for multispectral detection, the effectiveness of the proposed
detector is proven by obtaining better results compared to the baseline detector
with an outstanding margin. Its performance also exceeds some existing unsuper-
vised domain adaptation methods for detection in homogeneous domains.

There are several possible extensions of this work. For instance, as detection
is a basis step to perform other tasks in video analytic, the impact of the ob-
tained improvement could be investigated on other applications such as tracking
and activity recognition. Also, the proposed feature alignment approach which is
incorporated into Faster R-CNN architecture for illustrative purpose, can readily
be replaced by other deep detectors.
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