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Abstract. Inertial Measurement Units (IMU) are in highlight for joint and motion 

monitoring applications. Several IMU sensor fusion algorithms have been proposed 

in literature. Kalman Filter and its variants are the most used for more precision. 

However, they are computationally expensive. However, for faster computations, 

researchers and industry use complementary filter. More recently, a new variant of 

Kalman Filter was introduced as a Double Stage Kalman Filter in order to reduce 

the Kalman Filters computation cost. Our research investigates the performance of 

the Complementary and Double Stage Kalman filters in monitoring of joints in 

serial manipulators using Microelectromechanical-system MEMS based IMU. This 

study carried dynamic experiments using a serial robot to estimate the orientation 

of IMU, thus the joint angle of the associated segment. The study showed that both 

filters yield accurate estimations. The study showed also that Double Stage Kalman 

Filter has lower RMSE and achieves more precise estimates than Complementary 

filter mainly when the movement is around IMU x- and y- axis. Our findings 

indicate that the Double Stage Kalman Filter can achieve higher precision than the 

complementary filter using lower computation time than the former variants of the 

Kalman Filters in serial manipulator joint monitoring applications. 

Keywords: Complementary Filter, Double Stage Kalman Filter, Data Fusion, Joint 

monitoring, Serial Manipulator.  
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1 Introduction 

Information about a serial manipulator joint angle is crucial in applications 

including serial robots joint monitoring, human motion assessment, exoskeletons, 

etc. In this context, several techniques have been proposed by literature (Rosado et 

al. 2014; Choi et al. 2017; Littrell et al. 2018). Among all these techniques, the 

sensor fusion of Inertial Measurement Unit (IMU) is of importance since it provides 

information about joint motion from multi-sensor observations: gyroscope, 

accelerometer and, sometimes, magnetometer. While it is possible to obtain the 

relative orientation of the IMU from the gyroscope, the latter tends to drift over 

time. The orientation of the IMU can also be determined from the accelerometer 

and magnetometer with respect to the gravity and earth magnetic field. However, 

they can be very noisy. In this context, sensor fusion algorithms give solutions to 

compensate the gyroscope drift using accelerometer and magnetometer 

measurements. Several sensor fusion algorithms have been reported in literature. 

However, Kalman filter (KF) and complementary filter (CF) are the most used. KF 

is a highly efficient iterative filter, but it is very complex computationally. In fact, 

KF requires the knowledge of the mathematical model of the system, and it is very 

sensitive to its noise parameters (Kalman 1960). Although several variants of the 

KF have been made, they are still computationally complex (Wu 2019). In contrast, 

CF does not require any prior knowledge of the mathematical model of the system 

nor its environment. CF is based on inexpensive computations, and it is easy to 

implement (Colton 2007). Because of that, it is preferred for embedded applications. 

More recently, another variant of the KF, double stage Kalman filter (DSKF) was 

designed to overcome some of the KF issues (Sabatelli et al. 2012). Mainly, the 

reduction of the complexity of KF computations. This paper investigates the 

behavior of the CF and DSKF and their performance in estimating serial 

manipulator joint angles. 

2 Methods  

For this study, we used a 9-DoF MPU-9250 microelectromechanical System 

(MEMS) based IMU combining an accelerometer, a gyroscope, and a 

magnetometer. The gyroscope measures the rate of rotation around IMU x-, y- and 

z- axis. The accelerometer measures the acceleration by calculating the forces acting 

on the center of gravity along the IMU x-, y- and z- axis. The magnetometer 

measures the strength and direction of the magnetic field along x-, y- and z- axis. 

All three sensor types use MEMS hardware. This means that even if the device is in 

a static position the sensors will return values other than zero. Each sensor has its 

own unique bias sources and types (Novatel 2014). The static bias is caused by 

manufacturing and material characteristics. The value of this bias must be calculated 
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each time the sensor is powered up because it can change due to the initialization of 

the signal processor in the IMU. In addition, accelerometer, gyroscope, and 

magnetometer are capacitive sensors which measure data indirectly. This results in 

a scaling bias due to an incorrect scaling factor between the measured data and 

scaled output. The measurements of the Magnetometer are also sensitive to noise 

sources. The accuracy of these measurements is degraded by two disturbances: hard 

ion effects and soft ion effects. To correct the magnetometer measurements, 

difference between the measured magnetic field ellipsoid and a perfect sphere must 

be calculated. The gyroscope mathematical model is given by equation (1) where, 

𝜔 ̃ is the data measured by the gyroscope;  𝑘𝑔 is the scale factor of the gyroscope; 

𝜔 is the true gyroscope rate;  𝑏𝑔 is the static bias of the gyroscope; and 𝑛𝑔 is a zero 

mean Gaussian noise corrupting the gyroscope measurements. The accelerometer 

mathematical model is given by equation (2) where �̃� is the data measured by the 

accelerometer; 𝑘𝑎 is the scale factor of the accelerometer; 𝑎 is the true acceleration; 

𝑔 is the gravitational acceleration; 𝑏𝑎 is the static bias of the accelerometer; And 𝜂𝑎 

is a zero mean Gaussian noise corrupting the accelerometer measurements. The 

magnetometer mathematical model is given by equation (3) where �̃� is the data 

measured by the magnetometer; 𝑘𝑚 is the scale factor of the magnetometer; 𝑚 is 

the true magnetic field; 𝐴𝑚 and 𝑏𝑚 are the magnetometer calibration parameters. 

 

𝜔 ̃ = 𝑘𝑔 𝜔 + 𝑏𝑔 + 𝑛𝑔 (1) 

�̃� = 𝑘𝑎𝑎 − 𝑔 + 𝑏𝑎 + 𝜂𝑎 (2) 

�̃� = (𝑘𝑚𝑚 − 𝑏𝑚) ∗ 𝐴𝑚 (3) 

  

Needless to say, each sensor needs its biases calculated to allow for sensor 

calibration and measurements correction. 

 

2.1. Complementary Filter  

 

The CF was introduced by (Colton 2007) to compensate the drift of the 

gyroscope. Contrarily to the accelerometer and the magnetometer, the gyroscope is 

reliable on the short term. However, on the long term, the accelerometer becomes 

reliable but the gyroscope drifts. The CF takes advantage of the reliability of the 

gyroscope on the short term and accelerometer on the long term to estimate the 

orientation of the sensor.  In fact, this filter applies a High-pass and a low pass filter 

on the data obtained from the gyroscope and the accelerometer, respectively. The 

high-pass filter lets through the short-duration reliable gyroscope data while 

filtering out the unreliable accelerometer data. The low-pass filter allows the passing 

of the long-duration reliable accelerometer signals but prevent the drifting 

gyroscope signals from passing through. This filter is implemented during the data 

fusion process within a loop as shown by fig. 1. Gyro data are integrated over time 

to yield an initial estimation of the IMU orientation. The equation (4) sums up the 

complementary filter. If the accelerometer data are within a proper magnitude 

interval and could be a real gravity force vector, the roll and pitch orientations are 
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updated with tilt angles estimated from the accelerometer. Otherwise, it will be 

considered as a disturbance.  Similarly, we can update the yaw orientation with the 

tilt angle estimated from the magnetometer readings. 

 

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = ∝∗ 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + (1− ∝) ∗ [𝑅𝑜𝑙𝑙𝑎 𝑃𝑖𝑡𝑐ℎ𝑎 𝑌𝑎𝑤𝑚] (4) 

 

The filter parameter α takes a value between 0 and 1. The lower this value is, the 

more the orientation estimation relies on the data obtained from the accelerometers. 

It is recommended to use a high α value, but it relies heavily on experience. In this 

study, we used α = 0.98.  

 

 
Fig. 1 Complementary filter data fusion flowchart. 

Given that accelerometers measure the acceleration of the IMU, it is possible to 

determine the orientation with respect to gravity by calculating the ratio of the 

gravity measured along each axis. The equations (5) and (6) below describe the 

relationship between the accelerometer readings and the sensor orientation where, 

𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are the calibrated accelerometer readings along the x-, y- and z-axis 

of the IMU respectively (Pedly 2013). Since the accelerometer determines the 

orientation with respect to the direction of the gravity, z-axis in this case, it is not 

possible to determine the yaw using it. That’s why the magnetometer is commonly 

used to determine the yaw rotation. Since the earth magnetic field measured by the 

magnetometer is perpendicular to the direction of the gravity, it is possible to 

determine the rotation in the horizontal plane. Since the roll and pitch are different 

from zero when the sensor is tilted, the yaw rotation is therefore calculated using 

the equation (7), Where 𝑀𝑥 , 𝑀𝑦 and 𝑀𝑧 are the calibrated magnetometer 

measurements along the x-, y- and z-axis of the IMU respectively.  

𝑅𝑜𝑙𝑙𝑎 = 𝐴rctan (
𝐴𝑦

√𝐴𝑥
2 + 𝐴𝑧

2
) 

(5) 

𝑃𝑖𝑡𝑐ℎ𝑎 = 𝐴rctan (−
𝐴𝑥

√𝐴𝑦
2 + 𝐴𝑧

2 
) 

(6) 

𝑌𝑎𝑤𝑚 = 𝐴𝑟𝑐𝑡𝑎𝑛 (−
𝑀𝑦𝐶𝑜𝑠(𝑟𝑜𝑙𝑙)  + 𝑀𝑧𝑆𝑖𝑛(𝑟𝑜𝑙𝑙)

𝑀𝑥𝐶𝑜𝑠(𝑝𝑖𝑡𝑐ℎ) + 𝑀𝑦𝑆𝑖𝑛(𝑟𝑜𝑙𝑙) + 𝑀𝑧 𝐶𝑜𝑠(𝑟𝑜𝑙𝑙)𝑆𝑖𝑛(𝑝𝑖𝑡𝑐ℎ)
) 

(7) 

 

 

2.2. Double stage Kalman Filter  

 

DSKF was introduced by (Sabatelli et al., 2012) to reduce the complexity of KF 

algorithms. As its name indicates, the data fusion is performed by dividing the KF 

into two stages: the first stage deals with the corrections using the accelerometer, 
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and the second stage deals with the corrections using the magnetometer. The filter 

is iterative, and it is implemented as explained by the Fig. 2. The data obtained from 

the gyroscope are used to obtain an initial estimation of the IMU orientation. The 

orientation of the system with respect to its inertial frame is described using 

quaternion algebra. The equation (8) represents the state equation of the IMU with 

respect to its inertial frame, where 𝐴𝑘 =  (𝐼 + 
1

2
𝛺𝑘∆𝑡) and 𝛺𝑘  is the rotational 

matrix formed by the angular velocities measured by the gyroscope at iteration k; 

∆𝑡 is the time between two iterations and 𝑞(𝑘 − 1) is the quaternion representing 

the rotation of the IMU at the previous iteration.  

𝑞(𝑘) = 𝐴𝑘𝑞(𝑘 − 1)  (8) 

 
Fig. 2 Double stage Kalman filter data fusion flowchart. 

The first stage estimates the roll and pitch orientations of the IMU by the means of 

the comparison of the accelerometer data with the estimated gravity vector. 

Knowing the equation (8), the estimated gravity vector at the iteration k can be 

determined by the equation (9).  

ℎ1̃(𝑘) = |𝑔| [

2𝑞2(𝑘)𝑞4(𝑘) − 2𝑞1(𝑘)𝑞3(𝑘)

2𝑞1(𝑘)𝑞2(𝑘) + 2𝑞3(𝑘)𝑞4(𝑘)

𝑞1
2(𝑘) − 𝑞2

2(𝑘) − 𝑞3
2(𝑘) + 𝑞4

2(𝑘)

] 

(9) 

The correction quaternion, 𝑞𝑒1𝑘, is calculated by the means of the multiplication of 

the difference between the accelerometer data and the estimated gravity vector, 

ℎ1̃(𝑘), by a first computed Kalman gain. To make sure that the yaw orientation is 

not affected by the correction using the accelerometers, the fourth element of the 

correction quaternion 𝑞𝑒1𝑘 is set to 0. A first correction of the estimated orientation 

quaternion is then obtained using equation (10). At the end of the first stage, the 

post error covariance matrix is updated.  

𝑞(𝑘) = 𝑞(𝑘) +   𝑞𝑒1𝑘 (10) 

The second stage estimates the yaw orientation of the IMU by the means of the 

comparison of the magnetometer data with the estimated magnetic vector. 

Similarly, knowing equation (8) the magnetic vector can be estimated using the 

equation (11). 

ℎ2̃(𝑘) = [

2𝑞2(𝑘)𝑞3(𝑘) + 2𝑞1(𝑘)𝑞4(𝑘)

𝑞1
2(𝑘) − 𝑞2

2(𝑘) − 𝑞3
2(𝑘) − 𝑞4

2(𝑘)

2𝑞3(𝑘)𝑞4(𝑘) − 2𝑞1(𝑘)𝑞2(𝑘)

] 

(11) 

 

   

 

 

        

 

            

          

             

          

               

          

                

          

       

            

          



6  Baklouti S, Rezgui T, Chaouch A, Chaker A, Mefteh S, Sahbani A, and Bennour S. 

A second correction quaternion 𝑞2𝑒  is calculated by the means of the multiplication 

of the difference between the magnetometer measurements and the estimated 

magnetic vector, ℎ2̃(𝑘), by a second computed Kalman gain. Since the second stage 

deals only with the correction of the yaw orientation, the second and third elements 

of the correction quaternion 𝑞𝑒2𝑘 are set to 0. Finally, we obtain a second correction 

of the orientation quaternion estimate using equation (12). At the end of the second 

stage, the post error covariance matrix is updated. 

𝑞(𝑘) = 𝑞(𝑘) +   𝑞𝑒2𝑘 (12) 

3 Simulation  

 The CF and DSKF filters were implemented in a post data acquisition algorithm 

to test their behaviors and study the accuracy to which they can estimate the joint 

angles of a serial manipulator. For the simulation, we used an IMU MPU-9250, 

ARDUINO ATmega2560 microcontroller and a 5-axis SCORBOT ER-9 PRO 

robot. The aim of this simulation is investigating the performance of the two 

algorithms in determining the joint angles of the end effector of the robot. All 

calculations were performed with MATLAB software package. To monitor serial 

manipulators joints, IMUs are equipped to each segment.  The IMU axis coinciding 

with the segment relative frame. After that rotation matrices can calculated using 

the Denavit-Hartenberg model (Denavit and Hartenberg 1955) and from the Euler 

angles obtained from the IMUs. The equality between the two matrices allows the 

calculation of joints angles from the data fusion results. For the experiment, the IMU 

was positioned on the end effector of the robot in a way that its axis coincides with 

the end effector joint axis to simplify calculations. In this study, the robot is 

maintained extended and only joint angles around the 1st, 2nd, and 5th axis of the 

robot are tested as demonstrated by the fig. 3. The change from encoder 

measurements to angles is done by multiplying these values by the resolution of the 

joint. The resolution of the joint is the smallest possible increment that the control 

system can identify and theoretically control. The resolution of the joint is 

determined by means of equation (13), where  𝑆𝐸 is the resolution of the encoder 

and 𝑁𝐴𝑋𝐼𝑆 is the overall gear ratio of the axis (Interlink Inc 2011). 

 
Fig. 3 SORBOT ER-9 PRO kinematics scheme and simulation test setup 

Axis 1

Axis 5

IMU
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𝑆𝐽𝑂𝐼𝑁𝑇 =
𝑆𝐸

𝑁𝐴𝑋𝐼𝑆

 
(13) 

For the simulation, 3 tests were performed. 5 repetitions of rotation around the 

IMU x-axis (Robot z-axis), the IMU y-axis (Robot y-axis) and the IMU z-axis 

(Robot x-axis) were performed and recorded during the 1st test (Fig. 4), 2nd test (Fig. 

5), and 3rd test (Fig. 6), respectively. Three repetitions of each test were performed. 

We obtained averaged correlation coefficients  𝑟2 between the encoder and the data 

obtained from the IMU of 0.993, 0.994 and 0.979 against 0.993, 0.993, and 0.978 

for Ɵ1, Ɵ2, and Ɵ3 estimated from the DSKF and the CF, respectively. Both filters 

show comparable and high 𝑟2 coefficients indicating that both filters describe the 

variation in the joint angles accurately. 

 
Fig. 4 Estimated joint angles during rotations around robot z-axis 
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Fig. 5 Estimated joint angles during rotations around robot y-axis 

 

 
Fig. 6 Estimated joint angles during rotations around robot x-axis 

The Fig. 7 shows the averaged root mean square error. This result indicates that 

DSKF estimates the joint angles around the 1st, 2nd, and 5th axis of the robot with an 

RMSE of 1.8° ±0.9, 4.5° ±3, and 7.3° ±6 respectively. Compared to 3.5° ± 1.2, 4.9° 
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±4, and 7.5° ±6 estimated by CF around the 1st, 2nd, and 5th axis, respectively. 

Accordingly, the DSKF is more precise in estimating the joint angles especially for 

rotations around the 1st and 2nd axis of the robot, thus x- and y- axis of the IMU.  

 
Fig. 7 Averaged RMSE of estimated joint angles during all tests. 

4 Conclusion  

In this study, we investigate the behavior of the complementary and double stage 

Kalman filters. These filters are computationally inexpensive and are commonly 

implemented in embedded applications. The aim of this research was to study the 

accuracy to which each filter estimates the joint angles in a serial manipulator. 

Preliminary experiments show that estimates from both filters describes the angular 

variations of the serial manipulator accurately. However, the double stage Kalman 

filter estimates the joint angles more precisely when the movement is around the 

IMU x- and y-axis. Nevertheless, when the movement is around the IMU z-axis, 

both filters showed comparable RMSE values. Therefore, we suggest using double 

stage Kalman filter data fusion algorithm to monitor angles around serial 

manipulators joints. The results of this research will serve as a support for further 

research dealing with joint monitoring ranging from clinical applications like upper 

limb joints assessment and gait analysis to industrial applications like robot 

precision enhancement.  
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