
HAL Id: hal-03918318
https://hal.sorbonne-universite.fr/hal-03918318v1

Submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BullsEye : Scalable and Accurate Approximation
Framework for Cache Miss Calculation

Nilesh Rajendra Shah, Ashitabh Misra, Antoine Miné, Rakesh Venkat,
Ramakrishna Upadrasta

To cite this version:
Nilesh Rajendra Shah, Ashitabh Misra, Antoine Miné, Rakesh Venkat, Ramakrishna Upadrasta. Bulls-
Eye : Scalable and Accurate Approximation Framework for Cache Miss Calculation. ACM Transac-
tions on Architecture and Code Optimization, 2023, 20 (1), pp.1-28. �10.1145/3558003�. �hal-03918318�

https://hal.sorbonne-universite.fr/hal-03918318v1
https://hal.archives-ouvertes.fr

BullsEye: Scalable and Accurate Approximation Framework
for Cache Miss Calculation

NILESH RAJENDRA SHAH, ASHITABH MISRA, ANTOINE MINÉ, RAKESH VENKAT,
and RAMAKRISHNAUPADRASTA, Department of CSE, IIT Hyderabad, India and Sorbonne Université,
CNRS, LIP6, F-75005 Paris, France

For Affine Control Programs or Static Control Programs (SCoP), symbolic counting of reuse distances could
induce polynomials for each reuse pair. These polynomials along with cache capacity constraints lead to
non-affine (semi-algebraic) sets; and counting these sets is considered to be a hard problem. The state-of-the-
art methods use various exact enumeration techniques relying on existing cardinality algorithms that can
efficiently count affine sets.

We propose BullsEye, a novel, scalable, accurate, and problem-size independent approximation framework.
It is an analytical cache model for fully associative caches with LRU replacement policy focusing on sampling
and linearization of non-affine stack distance polynomials. Firstly, we propose a simple domain sampling
method that can improve the scalability of exact enumeration. Secondly, we propose linearization techniques
relying on Handelman’s theorem, and Bernstein’s representation. To improve the scalability of the Handelman’s
theorem linearization technique, we propose template (Interval or Octagon) sub-polyhedral approximations.

Ourmethods obtain significant compile-time improvementswith high-accuracywhen compared toHayStack
on important polyhedral compilation kernels such as nussinov, cholesky, and adi from PolyBench, and
harris, gaussianblur from LLVM-TestSuite. Overall, on PolyBench kernels, our methods show upto 3.31×
(geomean) speedup with errors below ≈ 0.08% (geomean) for the octagon sub-polyhedral approximation.

CCS Concepts: • Software and its engineering→ Compilers; Software performance.

Additional Key Words and Phrases: Static analysis, cache model, performance analysis

1 INTRODUCTION AND MOTIVATION
An important program analysis that reduces naturally to a counting problem is the Cache Miss
Calculation (CMC) problem; namely, to estimate the number of cachemisses in a given program loop.
CMC estimation has large implications for program optimization. An efficient algorithm that can
estimate the cache misses could be effectively used to find out which of the legal transformations of
a given program loop lead to the most efficient code. To model the cache behaviour, some previous
works use simulation [9], or instrumentation [20, 25, 68] of the input program on the hardware.
These approaches are expensive as they are resource intensive. Therefore, analytical methods of
cache modeling were proposed [10, 32], targeting affine programs.
Recently, there were major strides in this area: two exact and sound analytical cache modeling

algorithms have been proposed: PolyCache by Bao et al. [2], and HayStack by Gysi et al. [35]. The
above works rely on symbolic counting of parametric integer sets and maps. In particular, they rely
on the Barvinok algorithm [3] to perform symbolic counting (cardinality).

For fully associative caches, the total cachemisses include the compulsory/cold misses, in addition
to the capacity misses. However, cold misses can be easily computed by counting the first accesses
of each reference pair by a single call to an Integer Linear Programming (ILP) solver, relying on
a lexmin computation. On the other hand, computing capacity cache misses involves a precise
modeling of the subsequent accesses to the particular cache line using reuse distance, and counting
integer sets/maps that affect the performance and scalability of the model.

Authors’ address: Nilesh Rajendra Shah, cs19mtech11021@iith.ac.in; Ashitabh Misra, misra8@illinois.edu; Antoine
Miné, antoine.mine@lip6.fr; Rakesh Venkat, rakesh@cse.iith.ac.in; Ramakrishna Upadrasta, ramakrishna@cse.iith.ac.in,
Department of CSE, IIT Hyderabad, India, Sorbonne Université, CNRS, LIP6, F-75005 Paris, France .

2 Nilesh Rajendra Shah et al.

To count the capacity misses for fully associative LRU caches, HayStack [35] calculates the stack
distance [46] for each memory access. The stack distance (also referred to as reuse distance [6]) is
defined to be the cardinality of the set of unique memory accesses between successive references
to the same memory location. Beyls et al. [7] proposed techniques to analytically count these stack
distances to obtain stack distance polynomials. In general, these stack distance polynomials are
non-affine and are Ehrhart polynomials [21–23].

106 107 108 109 1010 1011
1

10

100

1.98

11.8

64.4

11.8

HayStack
BullsEye

Memory Accesses

Exec.
time
(secs) cholesky

nussinov

Fig. 1. Execution time of HayStack
vs. BullsEye. (Handelman theorem
Linearization using Octagon template.)

The classic Barvinok algorithm [3] can compute
the cardinality of parametric affine sets by using
Presburger arithmetic [36, 51], returning the
symbolic count as Ehrhart polynomials. It is
implemented in various libraries [1, 62], but faces the
limitation that it can count only (parametric) affine
sets. To overcome the above limitation, HayStack
counts the non-affine stack distance polynomials
using partial (or full) enumeration. This leads to the
Barvinok library being called for each point in the
non-affine dimensions. For some polyhedral kernels
like 3mm and fdtd-2d (from PolyBench [50]), where
the non-affine polynomials are few and the domains
are small, the above method works very well.
However, for kernels like nussinov and cholesky,
this technique is computationally expensive.

In Fig. 1, we show the execution time comparison of HayStack vs. our new approximate cache
miss framework BullsEye. We obtain maximum speedups of 5.2× and 32.5×, and maximum errors
of 0.82% and 0.55% for nussinov and cholesky respectively. It can be seen that our approximation
provides good scalability and accuracy; it is also input problem-size independent.
Primary motivation: Here are some of our key motivations and insights:

(1) In their full generality, CMC formulations lead to non-affine (semi-algebraic) integer sets
that need to be counted. The state-of-the-art cache models like HayStack use (partial or
full) enumeration techniques on polynomials to iteratively count the exact cache misses.

(2) Counting integer polyhedra, involving Presburger arithmetic [30] is a theoretically unscalable
problem as it involves worst-case exponential-time complexity algorithms.

(3) In general, exact CMC estimates are not really needed. Approximations should be sufficient,
provided they are empirically good, and the CMC algorithm is scalable.

High-level summary of our approach. The following steps summarize our approach: (i) Obtain the
stack distance (affine or non-affine) polynomials and their domains from an existing model (like
HayStack). (ii) Apply heuristics to approximate the above (non-affine) polynomials. (iii) Count the
number of integer points in the resultant polyhedron, using either exact or approximate means.
Contributions. In this paper, we make the following contributions:
• A heuristic based on sampling the non-affine dimensions in the domain, to approximate

Cache Miss Count by reducing the number of explicit calls to Barvinok algorithm. (Sec. 4.2)
• An approximation framework based onHandelman’s theorem [37] that linearizes a non-affine
CMC polynomial constraint over a convex polytope. (Sec. 5.1)
• A new template (interval and octagon) sub-polyhedral approximation leading to a scalable
and problem-size independent formulation, that does not rely on parametric simplex, and
makes a single call to Barvinok. (Sec. 5.3)
• A linearization method based on Bernstein expansion over polytopes. (Sec. 6)

BullsEye: Approximation Framework for Cache Miss Calculation 3

• An detailed experimental results of our methods on PolyBench as well as additional
benchmarks. In particular, we show a comparison against HayStack [35], and Dinero [40]
simulator, on which we obtain significant speedups along with high accuracy. (Sec. 7)

Organization of this paper. In Sec. 2, we introduce some basic mathematical background. In Sec. 3, we
present an overview of HayStack algorithm and infrastructure. In Sec. 4, we present an overview
of our framework for calculating approximate cache misses, and present a sampling-based heuristic.
In Sec. 5, we present a new approximation framework that applies Handelman’s theorem based
linearizations using interval and octagon sub-polyhedra. In Sec. 6, we propose a Bernstein expansion
based approximation. In Sec. 7, we show experimental results of our various methods. In Sec. 8, we
discuss related works. In Sec. 9, we present our conclusions and directions for future work.
2 MATHEMATICAL BACKGROUND
In this section, we introduce the mathematical background for this paper. We broadly give the
lemmas and the mathematical explanation.
2.1 Integer sets, Integer maps, Cardinality and Barvinok
To obtain the cache miss count, we use integer sets and maps. An integer set Z𝑑 is a subset of real
numbers R𝑑 . They define a set of 𝑑-dimensional integer tuples that satisfy a set of affine constraints.
A integer set S in 2-dimensional integer space (𝑖, 𝑗) (in isl-notation)

S = [𝜂] → {[𝑖, 𝑗] : 0 ≤ 𝑖 ≤ 𝜂, 0 ≤ 𝑗 ≤ 𝜂}, (𝑖, 𝑗) ∈ Z2

is a set of integer tuples which satisfy affine constraints, with 𝜂 as a parameter. These constraints are
essentially Presburger formulas [36, 51] consisting of various operators and existential quantifiers.
Integer sets support various operations like intersection, union, difference, projection, and cardinality.

Relations between pairs of integer tuples satisfying affine constraints are defined as integer maps:
M = [𝜂] → {[𝑖, 𝑗] → [𝑖] : 0 ≤ 𝑖 < 𝜂, 0 ≤ 𝑗 < 𝜂},

In addition to various set operations, these maps also support inversion, composition and domain
intersection. They are provided by the ISL library [63] and can be used to define access relations.
For an integer set S, its cardinality is denoted as card(S) (computed through call to the Barvinok
library) and represents the number of integer points in S. We also use a newly defined function
affine(𝑔(𝑥1, . . . , 𝑥𝑚′)), which returns the affine terms of themultivariate polynomial𝑔(𝑥1, . . . , 𝑥𝑚′).
2.2 Bernstein representation of polynomials
We discuss Bernstein polynomials [4, 5, 26] that form a basis for the space of polynomials. This
representation allows any type of polynomial to be expressed using the Bernstein coefficients. In
addition, Bernstein expansion provides a way to bound polynomials over an interval or a convex
set [14, 17]. For the range [0,1], a univariate Bernstein basis of degree𝑚 can be written as:

𝑏𝑚
𝑘
(𝑥) ≜

(
𝑚

𝑘

)
(1 − 𝑥)𝑚−𝑘𝑥𝑘 , 𝑘 = 0, . . . ,𝑚,

(
𝑚

𝑘

)
=

(𝑚)!
(𝑚 − 𝑘)!(𝑘)!

We can express a given polynomial 𝑔(𝑥) of degree at most𝑚 as a linear combination of degree-𝑚
Bernstein base polynomials (𝑏𝑚

𝑘
(𝑥)) as shown in Eqn. 1. Meaning, for polynomials of degree at

most𝑚 restricted to 𝑥 ∈ [0, 1], the Bernstein base polynomials of degree-𝑚 form a basis.

𝑔(𝑥) ≜
𝑚∑︁
𝑘=0

𝑡𝑘𝑏
𝑚
𝑘
(𝑥), 𝑡𝑘 ∈ R (1)

Theorem 2.1. Let 𝑔(𝑥) be a polynomial of degree𝑚 with real-valued coefficients, then

min(𝑡𝑘 : 𝑘 = 0, . . . ,𝑚) ≤ 𝑔(𝑥) ≤ max(𝑡𝑘 : 𝑘 = 0, . . . ,𝑚),∀𝑥 ∈ [0, 1]
The lower (upper) bound is exact, if and only if it is equal to 𝑡0 (𝑡𝑚).

4 Nilesh Rajendra Shah et al.

Let us see an example of a polynomial in its Bernstein form and apply the above Theorem 2.1.

Example 2.2 (Bernstein expansion). Let 𝑔(𝑥) = 4𝑥2 + 3𝑥 + 5 = 5𝑏20 (𝑥) + (132)𝑏
2
1 (𝑥) + 12𝑏22 (𝑥), where

𝑏20 (𝑥) = (1 − 𝑥)2, 𝑏21 (𝑥) = 2𝑥 (1 − 𝑥) and 𝑏22 (𝑥) = 𝑥2. On the interval [0,1], 𝑔(𝑥) is bounded by
minimum and maximum Bernstein coefficients 𝑡0 = 5 and 𝑡2 = 12. Both bounds are exact.
Bernstein representation over a convex polytope. The Bernstein representation of a polynomial [14, 15]
can be defined over a convex polytope 𝑃 ⊂ Q𝑚′ represented [57, 72] by a convex hull of its
generators. To compute the bounds on a multivariate polynomial 𝑔(𝑥1, . . . , 𝑥𝑚′) over 𝑃 , we write 𝑥
(=[𝑥1, . . . , 𝑥𝑚′]) as the convex combination of vertices and substitute in 𝑔(𝑥1, . . . , 𝑥𝑚′). Next, each
term is made homogeneous, and the relevant generalized Bernstein coefficients [14] (of 𝑏𝑚

𝑘
(𝑥)) are

computed.
min
𝑘∈𝑆

𝑡𝑘 ≤ 𝑔(𝑥1, . . . , 𝑥𝑚′) ≤ max
𝑘∈𝑆

𝑡𝑘 ∀𝑥𝑖 ∈ [0, 1], {𝑖 = 1, . . . ,𝑚′}

where: 𝑆 = {(𝑘1, 𝑘2, . . . , 𝑘𝑚′) ∈ R𝑚
′ : 𝑘𝑖 ≥ 0, 𝑘1 + . . . + 𝑘𝑚′ =𝑚}

The ISL library [63] provides an interface to obtain lower/upper bounds [14] over a polynomial
using Bernstein representation.
2.3 Positive polynomials over a Polytope
We apply Handelman’s theorem [37] to obtain the linearization of a polynomial. It states that a
polynomial 𝑔 is strictly positive in a bounded polyhedron 𝐷 iff it can be represented as a positive
linear combination of monomials in 𝐷 for a positive finite bound parameter 𝐾 on the degree of the
monomials. In practice, 𝐾 is taken as a user defined parameter for computational reasons.

Theorem 2.3 (Handelman’s theorem [37]). Let D be a polytope in R𝑑 defined by a system of n
affine inequalities:

𝐷 = {𝑥 | 𝑝𝑖 (𝑥) ≥ 0; 𝑖 = 1, . . . , 𝑛}
and 𝑔, a polynomial in 𝑑 variables that is strictly positive in 𝐷 iff 𝑔 can be expressed as a positive
linear combination of products of monomials 𝑝𝑖 (𝑥) in 𝐷 as:

𝑔(𝑥) ≡
∑︁
𝐼 ∈N𝑛

𝜆𝐼𝑝
𝑘1
1 (𝑥) . . . 𝑝

𝑘𝑛
𝑛 (𝑥) (2)

where 𝐼 = (𝑘1, 𝑘2, . . . , 𝑘𝑛), each 𝜆𝐼 is non-negative, and at least one 𝜆𝐼 is non-zero. Also, the sum of
degrees of monomials is bounded by 𝐾 , with 𝑘1 + 𝑘2 + · · · + 𝑘𝑛 ≤ 𝐾 .

Here, a Handelman product is an element of a set of products P: 𝑝𝑘11 (𝑥)...𝑝
𝑘𝑛
𝑛 (𝑥) for a given set

of indices 𝐼 = (𝑘1, . . . , 𝑘𝑛). Handelman’s theorem is applicable to bounded rational non-parametric
domains and can be used for constructing a positivity certificate. Handelman’s theorem can be
seen as a strict extension of the widely used Farkas Lemma [57, 72] that has been used in seminal
polyhedral works like that by Feautrier [27].

Theorem 2.4 (Schweighofer’s theorem [58]). Let T be a semi-algebraic set in R𝑑 with some
polynomial constraints of degree greater than one and the set of affine inequalities in T defines a
bounded polyhedron (polytope):

T = {𝑥 | 𝑝𝑖 (𝑥) ≥ 0; 𝑖 = 1, 𝑛}
Then, a polynomial 𝑔 is strictly positive on T iff 𝑔 can be expressed as shown in Eqn. 2.
Schweighofer [58] is an extension of Handelman’s Theorem 2.3 for semi-algebraic sets T that

contain polynomial constraints of degree ≥ 2 and the affine constraints of T define a polytope.
2.4 Sub-Polyhedra: Intervals and Octagons
Intervals. A 𝑑-dimensional interval polyhedron has only one variable per inequality. Its constraints
are defined as follows: ±𝑥𝑖 ≤ 𝛼𝑖 .

BullsEye: Approximation Framework for Cache Miss Calculation 5

1 int s = 1;
2 for(int i=0; i < 2000;i++){
3 for(int j=0; j < 2000;j++)
4 S0: A[j] = j;
5 for(int p=0; p < i ;p++)
6 for(int q=0; q < i;q++)
7 S1: s += B[p][q] ;
8 for(int k=0; k < 2000;k++)
9 S2: A[1999-k] = 50;
10 }

(𝑎) (𝑏)
Fig. 2. (a) Example code, and (b) Illustration of full enumeration of HayStack (L1 cache, 𝑐 = 512).

Table 1. Number of Affine (Af) and Non-affine (Naf) (with maximum degree=2) polynomials from PolyBench.

3m
m

ad
i

ch
ol
es
ky

co
rr
el
at
io
n

co
va
ri
an

ce
de
ri
ch
e

du
rb
in

fd
td
-2
d

ge
m
ve
r

lu
lu
dc
m
p

m
vt

nu
ss
in
ov

tr
is
ol
v

2m
m

at
ax

bi
cg

do
itg

en
flo

yd
-w

ar
sh
al
l

ge
m
m

ge
su
m
m
v

gr
am

sc
hm

id
t

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d

se
id
el
-2
d

sy
m
m

sy
r2
k

sy
rk

tr
m
m

Af 32 255 58 111 83 74 102 72 53 149 171 25 143 25 45 26 21 40 150 22 18 41 180 24 72 49 120 85 38 34
Naf 1 58 37 4 3 6 4 2 4 62 64 2 96 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Octagons (UTVPI). A𝑑-dimensional Octagon, or Unit-Two-Variable-per-Inequality (UTVPI) polyhedron
has at most two variables per inequality, with only ±1 as their coefficients. They can be defined as:

±𝑥𝑖 ± 𝑥 𝑗 ≤ 𝛼𝑖 𝑗 , ∀ (𝑥𝑖 , 𝑥 𝑗) ∈ S
where S = {𝑥1, . . . , 𝑥𝑑 } is the set of dimensions of the UTVPI polyhedron.
3 OVERVIEWOFHAYSTACKEXACTENUMERATIONALGORITHM& INFRASTRUCTURE
Gysi et al. [35] proposed the HayStack tool that statically models fully associative caches with LRU
replacement policy using exact enumeration. Here, we talk about its algorithm and infrastructure.
For each pair of references in the input program, HayStack constructs a distance mapM𝑑 that
relates every statement instance to the set of array references accessed after the last access of the
same array element. CountingM𝑑 results in a pair1 ⟨𝑔, 𝐷⟩, where 𝑔 is a parametric stack distance
polynomial, and 𝐷 is called a validity domain, which is a subset of the input iteration domain. (If
D𝐼 is the input iteration domain, 𝐷 ⊆ D𝐼 .)
HayStack algorithm: We summarize the HayStack algorithm based on the pair ⟨𝑔, 𝐷⟩. We assume
the cache has size 𝐶 bytes (could be L1, or L2, or L3 cache), with the number of cache-lines 𝑐:

• If 𝑔 is affine, then compute the cache miss set𝑀 , defined by {𝑔 > 𝑐} ∧ 𝐷 . This set contains
all the memory accesses with stack distance larger than 𝑐 . Find the cardinality of𝑀 using
Barvinok algorithm to count the capacity cache misses. (card(𝑀))
• Else, if 𝑔 is non-affine, then pre-process it using different simplification techniques to
remove floor terms. Enumerate 𝑔 over non-affine terms using:
– Partial Enumeration: If𝑔 contains at least one affine dimension, then find the enumeration

domain 𝐸 of non-affine dimensions. To count the non-affine miss set𝑀 , for each integer
point in 𝐸, get the affine miss set𝑀 by instantiating and perform symbolic counting.

– Full Enumeration: If all dimensions in 𝑔 are non-affine, for each point in 𝐷 , evaluate
the point in 𝑔 and explicitly check the constraint 𝑔 > 𝑐 for a capacity miss.

As noted earlier, the enumeration of non-affine cache miss sets is expensive. In Fig. 2, on an
example code, we show the scalability issues of HayStack resulting from a full enumeration of𝑀 .

1In the HayStack paper, this pair is referred to as a piece.

6 Nilesh Rajendra Shah et al.

Example 3.1 (HayStack method of explicit (full) enumeration.). Let 𝑔(𝑖, 𝑝, 𝑞) be a non-affine stack
distance polynomial with domain 𝐷 :

𝑔(𝑖, 𝑝, 𝑞) = 1
16𝑖𝑞 −

1
16𝑞 + 𝑖 + 124 , 𝐷 =

{
(𝑖, 𝑝, 𝑞) ∈ Z2

���� (𝑞)𝑚𝑜𝑑 (16) = 0 , 𝑝 = 0 , 𝑖 ≤ 1999,
𝑞 ≥ −17 + 𝑖 , 𝑞 ≥ 16 , 𝑞 ≤ −2 + 𝑖

}
The result of the full enumeration to 𝑔(𝑖, 𝑝, 𝑞) ∀𝑖, 𝑝, 𝑞 ∈ 𝐷 is shown in Fig. 2(b).
Here, in 𝑔, we have a non-affine term 𝑖 ∗ 𝑞. All the dimensions i.e., 𝑖 ,and 𝑞, are non-affine in the

stack distance polynomial. As shown in Fig. 2, HayStack performs full enumeration. Testing for
each point in the domain for polynomial inequality is expensive for larger iteration domains.

Example 3.2 (HayStackmethod of converting non-affine to affine sets by partial enumeration.). Let
𝑔(𝑖, 𝑗) = 𝑎𝑖2 + 𝑏 𝑗 + 10 be a non-affine stack distance polynomial and 𝐸 = {1 ≤ 𝑖 ≤ 1000}. Applying
the partial enumeration to 𝑔(𝑖, 𝑗) ∀𝑖 ∈ 𝐸 gives the following sets.

𝑔(𝑖 = 1, 𝑗) =𝑎 + 𝑏 𝑗 + 10 𝑔(𝑖 = 2, 𝑗) = 4𝑎 + 𝑏 𝑗 + 10 𝑔(𝑖 = 3, 𝑗) = ...

It is easy to see that each of the resulting polynomials are specializations for each value of 𝑖 , and
are indeed affine sets and amenable to be handled by Barvinok. HayStack exploits this insight
and uses the partial and full enumeration techniques, along with other strategies, for effective
enumeration to compute an exact cache miss count.
HayStack infrastructure: HayStack could also be seen as an infrastructure for computing cache
misses using stack distance of a reuse pair for affine programs. It is implemented using the following
tools: the Polyhedral extraction tool (PET) [64] to extract the polyhedral representation of the input
program, the ISL library [63] to represent and manipulate integer sets and maps, and the Barvinok
library [62] to count integer sets and maps.
4 OVERVIEW OF BullsEye FRAMEWORK AND APPROXIMATION USING SAMPLING
In this section, we discuss the polynomials obtained, give a brief overview of BullsEye and propose
a simple method using statistical sampling to show the effectiveness of approximations.
Polynomial Analysis. Stack distance polynomials are parametric in the input dimensions. Some
memory access patterns induce non-affine terms (like 𝑖 ∗ 𝑗 , 𝑖2) in the polynomial. We begin with
showing an analysis of the stack distance polynomials in various kernels of PolyBench. It should
be noted that 16/30 of the PolyBench kernels have stack distance polynomials that are already
affine, and can be directly counted by using Barvinok without the need for any preprocessing. This
includes kernels like 2mm, heat-3d, gemm, jacobi-1d, etc. On the other hand, non-affine polynomials
are present in important kernels like 3mm, nussinov, cholesky, adi, etc. In PolyBench, 14/30
kernels induce non-affine stack distance polynomials. We term them as PolyBench-Non-Affine.
The number of affine and non-affine polynomials in PolyBench is tabulated in Table 1.
4.1 Overview of our proposed system
In Fig. 3, we show the flow-diagram of HayStack, and our approximation framework BullsEye.
The input to BullsEye is a SCoP and cache parameters. BullsEye uses, and builds from, the
implementation of Beyls formulation available in the HayStack infrastructure. As discussed earlier,
for each reuse pair, it computes a stack distance polynomial with a validity domain. Thereafter,
standard methods suggested in HayStack are applied to obtain a simplified miss set𝑀 .
We propose various approximations of Miss set 𝑀 in Sec. 4.2, Sec. 5, and Sec. 6. In Sec. 4.2,

we propose a simple statistical approximation. In Sec. 5, our mathematical theory is based on
Handelman’s theorem [37]. We extend the earlier characterization of positive polynomials over a
polytope by Feautrier [28], and polynomial linearizations by Maréchal et al. [45]. In Sec. 5.3, we
propose to approximate𝑀 using sub-polyhedral (interval and octagon) template polyhedra [54–56]
to provide a highly scalable linearization. In Sec. 6, our mathematical theory is based on Bernstein
polynomials [4, 5, 26], and Bernstein expansion over convex polytope by Clauss et al. [14, 15].

BullsEye: Approximation Framework for Cache Miss Calculation 7

Apply
Simplification
Techniques

PARTIAL
ENUMERATION (non-

affine dimension)

FULL ENUMERATION
(all input non-affine

dimensions)Initialize model
with cache
parameters

Create Access
Maps for Program

statements

Compute STACK
DISTANCE

POLYNOMIALS for
each REUSE PAIR

COUNT
TOTAL
CACHE
MISSES

(i + (-5/8 + 2*floor(i/8)) * j)

(i + (-5/8 + 2*floor(i/8)) * j)

(i^2 + j + 4)

.......
for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)

A[i][j] = A[i][j] - a*
 (B[i][j+1] - B[i][j]) ;

........

SPARSE Domain
Enumeration

LINEARIZE
Polynomial Constraint

APPROXIMATE Pieces
(Sec. 3.3)

Handelman
Linearization

(Sec. 4)

COUNT Affine
Pieces (Barvinok

Algorithm)

(i^2 + j + 4)
(5*i + j)

Bernstein
Approximation

(Sec. 5)

Sub-Polyhedral
Approximation

(Sec. 4.3)

(5*i + j)

Fig. 3. Flow diagram of HayStack and (our proposed system) BullsEye.
4.2 Sparse Domain Enumeration (SparseEnum)
For arrays, it is known that the memory accesses are sequential. In most SCoPs, sequential array
elements are stored in nearby cache blocks. This means that the reuse distance for a particular
reuse pair—as a measure of spatial locality [67]—is a function of its block size [71]. We observe that
reuse distances for nearby elements need not all be fully enumerated. Meaning that the cache miss
induced by one particular access can be used as an approximation for its nearby accesses as well.

We use the above intuition to build a sparse enumeration heuristic. We show the working of our
heuristic and its improvement over partial enumeration of HayStack using the following example.

Example 4.1 (SparseEnum). The example program in Fig. 2.(a) generates the following polynomial
𝑔(𝑖, 𝑗, 𝑘) with enumeration domain 𝐸:

𝑔(𝑖, 𝑗, 𝑘) = (𝑖2 + 𝑘 + 1); 𝐸 = {0 ≤ 𝑖 ≤ 1999}
In 𝑔(𝑖, 𝑗, 𝑘), the dimension 𝑖 is non-affine; the term 𝑖2 corresponds to the unique memory accesses

from statement S1 on line 7 between the reference pairs (A[j], A[1999-k]). The polynomial
𝑔(𝑖, 𝑗, 𝑘) is counted for each instance of reuse pair i.e., (A[0], A[0]), (A[1], A[1]) and so on.
These generate similar reuse distance values for the count. For example, reuse distance for reuse pairs
(A[0], A[0]), (A[1], A[1]) is almost same i.e., 𝑔(𝑖, 𝑗 = 0, 𝑘 = 1999) = 𝑔(𝑖, 𝑗 = 1, 𝑘 = 1998) + 1.
This means that we can approximate the stack distance of an instance of reuse pair with its previous
accesses defined by the same reference pair. This leads to a reduction in the number of calls to the
exponential-complexity Barvinok algorithm.

Our SparseEnum can also bemathematically seen as an approximation of the piecewise polynomial
sections by a step-function of a constant step size called 𝑠𝑝𝑎𝑛. For a reuse pair, we use uniform
sampling on 𝐸 to obtain the reuse distance of the sampled iterations, followed by counting the
cache misses at only these sampled iterations. The same cache miss count is assigned to all the
iteration points within the span. Thus, we reduce the number of points evaluated on 𝑔, and the
number of Barvinok calls by a factor of 𝑠𝑝𝑎𝑛 (to ≈ card(𝐸)/𝑠𝑝𝑎𝑛). The first sampled iteration is
selected by testing if the obtained affine domain is large enough to be counted by Barvinok.
For this example, setting 𝑠𝑝𝑎𝑛 = 100 leads to counting the following pieces: 𝑔(𝑖 = 0, 𝑘), 𝑔(𝑖 =

100, 𝑘), . . . , 𝑔(𝑖 = 1900, 𝑘), followed by extrapolation of the cache miss count within the 𝑠𝑝𝑎𝑛. For
example, the count obtained for 𝑔(𝑖 = 0, 𝑘) is assigned to all the 1 ≤ 𝑖 ≤ 99 pieces within the 𝑠𝑝𝑎𝑛.

Example 4.2 (SparseEnum). Let𝑔1 (𝑖, 𝑗) = (𝑖
2

16 +
𝑖
2 +

𝑗

8 +
7
4) be a non-affine stack distance polynomial

with a domain 𝐷1 as shown in Fig. 4:

𝐷1 =

{
(𝑖, 𝑗) ∈ Z2

���� (𝑖 − 2)𝑚𝑜𝑑 (8) = 0 , (𝑗)𝑚𝑜𝑑 (8) = 0
18 ≤ 𝑖 ≤ 3994 , 8 ≤ 𝑗 ≤ 𝑖 − 10

}
Π 𝑗

=⇒ 𝐸1 =

{
(𝑖 − 2) 𝑚𝑜𝑑 8 = 0,
18 ≤ 𝑖 ≤ 3994

}
Applying the SparseEnum to 𝑔1 (𝑖, 𝑗); ∀𝑖 ∈ 𝐸, gives the sets as shown in Fig. 4.
Here partial enumeration would have created (3994 − 18)/8 + 1 = 498 affine pieces for each

point in 𝐸1 of variable 𝑖 , and each such affine piece will lead to a call to card. If we empirically set

8 Nilesh Rajendra Shah et al.

1 for (i = N-1; i >= 0; i--) {
2 for (j=i+1; j<N; j++) {
3 if (j-1 >=0)
4 T[i][j] = max_score(T[i][j], T[i][j-1]);
5 if (i+1<N)
6 T[i][j] = max_score(T[i][j], T[i+1][j]);
7 if (j-1>=0 && i+1<N) {
8 if (i<j-1)
9 T[i][j]= max_score(T[i][j],T[i+1][j-1]
10 + match(seq[i],seq[j]));
11 else
12 T[i][j] = max_score(T[i][j], T[i+1][j-1]);
13 }
14 for (k=i+1; k<j; k++)
15 T[i][j]= max_score(T[i][j], T[i][k]+T[k+1][j]);
16 }
17 }

(𝑎)
Fig. 4. In (a), we show a selection of nussinov from PolyBench.
The highlighted reuse pairs in blue (red) are the ones which result
in Ex. 4.2 (Ex. 6.1). In (b) and (c), we show SparseEnum. In (b) is
Domain 𝐷1 (of Ex. 4.2) with sparse enumeration in 𝑖 dimension. In
(c), are the pieces counted with 𝑠𝑝𝑎𝑛 = 100.

𝑠𝑝𝑎𝑛 = 20, it reduces the number of calls to card to 25 (≈ ⌈ 49820 ⌉). This is an appreciable improvement
from the partial enumeration (with 498 card calls). There is no significant loss of accuracy from
this approximation; it yields ≈ ±2% error, when compared to HayStack exact enumeration.
5 LINEARIZING USING HANDELMAN’S THEOREM
In this section, we propose various techniques to linearize the non-affine terms in the stack distance
polynomial 𝑔 using Handelman’s theorem [37], so that we obtain an approximate integer polyhedron
𝑀 ′, which can be counted efficiently by Barvinok algorithm.

In Sec. 5.1, we propose our linearization framework and algorithm, and explain its working. We
show how Handelman’s theorem can be applied to CMC. This is an extension of the formulations
proposed by Maréchal et al. [45] for linearizations, and Feautrier [28] for finding positive template
polynomials over a polytope, though specialized for CMC. In Sec. 5.2, we illustrate the working of
the above framework using an example (Ex. 5.1), with the Miss set extracted from the nussinov
kernel from PolyBench [50]. In Sec. 5.3, we propose to over-approximate the Miss set using interval
and octagon sub-polyhedra. Fixing approximate templates [54–56] of the over-approximation a
priori to be intervals [18] or octagons [47, 48] has multiple advantages: (i) it leads to a smaller
problem size for the parametric LP formulation, (ii) the generated system has almost no redundant
constraints, and (iii) the cardinality on the approximate sub-polyhedron can be computed much
faster. In Sec. 5.4, we illustrate the working of the approximations proposed in Sec. 5.3 on a Miss
set extracted from the correlation kernel from PolyBench [50].
5.1 A framework for linearization using Handelman’s theorem
In this section, we explain the details of our proposed framework and walk through the steps of
Algorithm 1. The input to our algorithm is the Miss set 𝑀 for a particular cache level. A miss set is
a conjunction of a polynomial inequality 𝑔 > 𝑐 and its validity domain 𝐷 .
[Step 1.3-1.4] We use the method 𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑖𝑣𝑠 to remove the integer divisions or modulo

expressions from the domain 𝐷 to get the approximate domain 𝐷 ′ which does not contain divisions.
Similarly, we use the method 𝑅𝑒𝑤𝑟𝑖𝑡𝑒𝐹𝑙𝑜𝑜𝑟𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 to rewrite the polynomial 𝑔 without floor

BullsEye: Approximation Framework for Cache Miss Calculation 9

terms (for instance, ⌊𝑖/2⌋2 is rewritten as (𝑖/2)2) to obtain 𝑓 . Before proceeding forward, we see the
applicability of Handelman/s theorem on the polynomial constraint P := {𝑔 > 𝑐} over domain 𝐷 ′.
Algorithm 1 Approximation
using Linearization of Polynomial
1: procedure LinearizePolynomial(𝑀)
2: //𝑀 ← {(𝑔 > 𝑐) ∧ 𝐷}
3: 𝐷 ′ ← RemoveDivs(𝐷)
4: 𝑓 ← RewriteFloorExpression (𝑔)
5: // 𝜙 ← 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑑𝑥𝑑
6: P← computeProducts(𝐷 ′)
7: 𝑔′ ← (𝑓 − 𝑐) + P · ®𝝀
8: // ®𝝀 is the vector of multipliers
9: 𝜃 ← min(affine(𝑔′))
10: // 𝜃 is a function of 𝑥1, . . . , 𝑥𝑑
11: H← constructHmatrix(𝑔, P)
12: A ← FindAffineForms(𝜃,H, 𝐷 ′)
13: // A is a set of affine forms
14: 𝑀 ′ ← AddConstraints(𝐷)
15: for each 𝜙 ∈ A do
16: 𝑀 ′ ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝜙 ≥ 0,𝑀 ′)
17: 𝑣𝑜𝑙 ← card(𝑀 ′)
18: return 𝑣𝑜𝑙

Algorithm 2 Solve for Sub-polyhedral Approximate
Affine forms
1: procedure FindAffineForms(𝜃,H, 𝐷 ′)
2: A ← {}
3: for each 𝑣 ∈ V-form (𝐷 ′) do
4: // Instantiate parameters with vertex 𝑣
5: 𝜃 (𝑣) ← InstParam(𝜃, 𝑣)
6: switch (ApproxType) do
7: case 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 :
8: for each 𝑖∈{1, . . . , 𝑑} do
9: // 𝜙 ← 𝑎0 + 𝑎𝑖𝑥𝑖
10: 𝑏 ← SolveLP1(𝜃 (𝑣),H, 𝑖)
11: A ←addAffineForm(𝑏,A)
12: case 𝑂𝑐𝑡𝑎𝑔𝑜𝑛:
13: for each (𝑖, 𝑗)∈{1, . . . , 𝑑} do
14: // 𝜙 ← 𝑎0 + 𝑎𝑖𝑥𝑖 + 𝑎 𝑗𝑥 𝑗
15: 𝑏 ← SolveLP2(𝜃 (𝑣),H, 𝑖, 𝑗)
16: A ←addAffineForm(𝑏,A)
17: // Return list of affine forms
18: Return A

Given an input problem size, the iteration domain D𝐼 is always bounded. The validity domain
𝐷 ′ is non-parametric; it is also bounded, and a subset of D𝐼 . This means that 𝑔 is strictly positive
on 𝐷 ′. Therefore, by the application of Handelman’s theorem, we are looking for all such affine
forms which bound P on 𝐷 ′. Our goal is to find an affine form 𝜙 such that the polyhedral region
{𝜙 > 0 ∧ 𝐷} is an over-approximation of the target region𝑀 .
[Steps 1.5–1.7] We look to find an affine form 𝜙 which satisfies 𝜙 − (𝑓 − 𝑐) > 0 on 𝐷 ′. This

condition is sufficient to ensure that if 𝑓 − 𝑐 > 0 (on 𝐷 ′) then 𝜙 > 0 (on 𝐷 ′).
So, we represent 𝜙 − (𝑓 − 𝑐) using its Handelman representation as

𝜙 − (𝑓 − 𝑐) =
(∑︁
I∈N𝑛

𝜆I𝑝
𝑘1
1 · · · 𝑝

𝑘𝑛
𝑛

)
𝜙 = 𝑎0 +

𝑑∑︁
𝑖=1

𝑎𝑖𝑥𝑖 =

(
𝑓 − 𝑐 +

∑︁
I∈N𝑛

𝜆𝐼𝑝
𝑘1
1 · · · 𝑝

𝑘𝑛
𝑛

)
= (𝑓 − 𝑐 + 𝝈) = (𝑓 − 𝑐 + P · ®𝝀

⊤
) (3)

Here, 𝑥1, . . . , 𝑥𝑑 are the dimensions, and 𝑎0, . . . , 𝑎𝑑 are the coefficients of 𝜙 . We have 𝝈 as the
Handelman sum of 𝜙 − (𝑓 − 𝑐). The problem is to find the tightest 𝜙 such that the non-affine terms
in 𝑓 are canceled out by the non-affine terms of P, where P is the set of Handelman products.

[Steps 1.9 - 1.12] The above problem can be formulated (similarly to earlier works [28, 45]) as a
parametric linear programming as:

minimize (𝜙) = affine

(
𝑓 − 𝑐 +

∑︁
I∈N𝑛

𝜆𝐼𝑝
𝑘1
1 · · · 𝑝

𝑘𝑛
𝑛

)
= ®Λ⊤ · Ψ(𝑥1, . . . , 𝑥𝑑)

subject to H · ®Λ⊤ = [𝑎0, 𝑎1, . . . , 𝑎𝑑 , ®0]⊤
𝜆𝐼 ≥ 0

(4)

10 Nilesh Rajendra Shah et al.

(a) (b)

i
4000

2000
0

2000
4000j

4000 2000 0 2000 4000
g

2
1e8

0.0

0.2

0.4

0.6

0.8

1.0

(c)
Fig. 5. nussinov kernel example (Ex. 6.1 and Ex. 5.1) (a) Domain integer Polytope 𝐷2. (b) Stack distance
polynomial constraint P2 := {𝑔2 > 512} evaluated on points of domain 𝐷2. (c) P2 shown in light-blue. Miss
set𝑀′2 shown in dark green. It is the intersection of the affine approximation P′2, with 𝐷2.

In the Handelman matrixH, the first column contains the coefficients for the affine and non-affine
terms obtained for the polynomial 𝑓 . And, the rest of the columns are the coefficients for each
Handelman product. The column vector Λ⊤ = [1, ®𝝀]⊤ contains the constant 1 that corresponds to
the polynomial 𝑓 , and the other Handelman multipliers (®𝝀

⊤
) added for the set of products P. The

cost function is obtained from the affine part of the Handelman representation and the polynomial
(𝑓 − 𝑐) shown on line 9, which gives rise to the set of affine functions Ψ that are parametric in
𝑥1, . . . , 𝑥𝑑 . We compute the Handelman matrix H using method ConstructHmatrix on line. 11.

Here, the first set of constraints H · ®Λ⊤ = [𝑎0, 𝑎1, . . . , 𝑎𝑑 , ®0]⊤ represent the cancellation of the
non-affine terms, and they result in the affine coefficients of 𝜙 as 𝑎0 + 𝑎1𝑥1 + . . . + 𝑎𝑑𝑥𝑑 . Solving the
above parametric LP yields a set of affine forms A for different values of the 𝑥-parameters.
It is to be noted that Eqn. 4 describes a parametric LP formulation the cost function of which is

parametric; both Λ-vector2 and Ψ-vector are unknown. The constraints however describe a normal
(non-parametric) polyhedron in Λ. Such a formulation could be solved using a parametric rational3
linear solver, like the MPT solver [39] to obtain 𝜙 . The contexts obtained will have multiple non-
parametric polytope-regions; and for each of these non-parametric regions, the optimal solution is
naturally obtained at one of the extremal points of the context polyhedron.

In Sec. 5.3, we propose a novel method, that avoids calling a parametric solver, resulting in a set
of non-parametric cost functions, through the following steps: (i) restricting the shape of the affine
form 𝜙 to a fixed template (intervals/octagons), and (ii) instantiating the parameter vector (Ψ) using
vertices (of domain 𝐷 ′) to obtain a non-parametric 𝜃 . The result—Algorithm 2, FindAffineForms,
line 12—is a set of template affine forms A that define a sub-polyhedral system. It is obtained by a
small number of (non-parametric) simplex calls, and has almost no redundant constraints.
[Steps 1.15-1.16]We next construct a miss set𝑀 ′ by adding the constraints of domain 𝐷 and

then intersect its constraints with the affine constraints 𝜙 ≥ 0 constructed from ∀(𝜙) ∈ A.
[Step 1.17] Next, make a call to the Barvinok cardinality function card(𝑀 ′) to get the count of

Miss set𝑀 ′ as 𝑣𝑜𝑙 and return it as the capacity cache misses. The approximation that is obtained
is guaranteed to be an over-approximation of the input semi-algebraic set; this is because, the
linearization always contains the original input miss set.

2The Λ is the solution vector that is used to obtain 𝜙 .
3We found that relaxing the integer variables to rationals is sufficient as it returns a simple, fast, and reasonably accurate
approximation.

BullsEye: Approximation Framework for Cache Miss Calculation 11

5.2 Linearization of a polynomial from nussinov
Example 5.1 (Handelman Linearization). One of the polynomials 𝑔2 and domain 𝐷2 induced by

the nussinov kernel (from PolyBench) are as follows (also shown in Fig. 5(a) and Fig. 5(b)):

𝑔2 (𝑖, 𝑗) =
𝑖2

32 +
𝑗2

32 −
9𝑖
16 −

𝑗

2 −
𝑖 𝑗

16 +
186605
32 , 𝐷2 =

{
(𝑖, 𝑗) ∈ Z2

���� (𝑖 + 1)𝑚𝑜𝑑 (16) = 0 , 𝑖 ≥ 15,
(𝑗)𝑚𝑜𝑑 (16) = 0 , 17 + 𝑖 ≤ 𝑗 ≤ 5472

}
(5)

Let the number of cache lines for L1 be 𝑐𝐿1, and L2 be 𝑐𝐿2. Their polynomial inequalities are
P2 (𝐿1) := {𝑔2 > 𝑐𝐿1} for 𝐿1 cache, and P2 (𝐿2) := {𝑔2 > 𝑐𝐿2} for 𝐿2 cache. The intersection of the
polynomial inequality and domain 𝐷2 gives rise to a miss set𝑀2 that defines the capacity cache
misses for a reuse pair. For cache with 𝑐𝐿1 = 512, the miss set for 𝐿1 cache is:𝑀2 = {P2 (𝐿1) ∧𝐷2} =
{(𝑔2 (𝑖, 𝑗) > 512)∧𝐷2}. The capacity miss count of L1 cache is given by card(𝑀2).
We show the working of our Algorithm 1 on the Miss Set 𝑀2. We remove the existential

quantifiers from 𝐷2 and relax integers to rationals to obtain an approximate rational domain:
𝐷 ′2 =

{
(𝑖, 𝑗) ∈ Q2 �� 𝑖 ≥ 15, 17 + 𝑖 ≤ 𝑗 ≤ 5472

}
.

As shown in Tab. 1, for PolyBench-Non-Affine, all the non-affine stack distance polynomials
are of maximum degree 2. So, we can set a bound on the degree of monomials (𝐾) with 𝐾 = 2 (the
higher exponent monomials are not needed). So, the number of products is a quadratic number
(O(𝑛2)). Setting 𝐾 = 2 results in the following set of products:

P = [1, (𝑖 − 15), (𝑗 − 𝑖 − 17), (5472 − 𝑗), (𝑖 − 15) (𝑗 − 𝑖 − 17), (𝑖 − 15) (5472 − 𝑗),
(𝑗 − 𝑖 − 17) (5472 − 𝑗), (𝑖 − 15)2, (𝑗 − 𝑖 − 17)2, (5472 − 𝑗)2]

The above set of products, along with 𝜆-multipliers (®Λ⊤ = [1, ®𝝀]⊤ = [1, 𝜆0, . . . , 𝜆9]⊤) define the
following Handelman sum:

𝝈 = P · ®𝝀
⊤
= 𝜆0 + 𝜆1 (𝑖 − 15) + 𝜆2 (𝑗 − 𝑖 − 17) + 𝜆3 (5472 − 𝑗) + 𝜆4 (𝑖 − 15) (𝑗 − 𝑖 − 17)+

𝜆5 (𝑖 − 15) (5472 − 𝑗) + 𝜆6 (𝑗 − 𝑖 − 17) (5472 − 𝑗) + 𝜆7 (𝑖 − 15)2 + 𝜆8 (𝑗 − 𝑖 − 17)2 + 𝜆9 (5472 − 𝑗)2

For the parametric LP, we compute the cost function 𝜃 = affine(𝑔2 − 512 + 𝝈); this builds from
the affine part of polynomial 𝑔2 and the Handelman sum 𝝈 :
𝜃 = ((186605) − 512 ∗ 32 + 𝜆0 + 𝜆1 (𝑖 − 15) + 𝜆2 (𝑗 − 𝑖 − 17) + 𝜆3 (5472 − 𝑗) + 𝜆4 (−2𝑖 − 15 𝑗 + 15 ∗ 17)+

𝜆5 (5472𝑖 − 82080 + 15 𝑗) + 𝜆6 (5489 𝑗 − 5472𝑖 − 93024) + 𝜆7 (225 − 30𝑖) + 𝜆8 (289 + 34𝑖 − 34 𝑗)+
𝜆9 (5472 ∗ 5472 − 2 ∗ 5472 ∗ 𝑗))

We show the parametric LP formulation obtained from Eqn. 4 with the Handelman (H) matrix:

min 𝜃 =

10∑︁
𝑞=1

𝜆𝑞𝜓𝑞 (𝑖, 𝑗)

s.t Hnaf · ®Λ⊤ = ®0,
𝜆𝑞 ≥ 0; 𝑞 = 0, . . . , 9

(6)

H =

𝑔2 𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7 𝐻8 𝐻9 𝐻10©«
ª®®®®®¬

1 170221 1 −15 −17 5472 255 −82080−93024 225 289 54722
𝑖 −18 0 1 −1 0 −2 5472 −5472 −30 34 0
𝑗 −16 0 0 1 −1 −15 15 5489 0 −34 −10944

𝑖 ∗ 𝑗 −2 0 0 0 0 1 −1 1 0 −2 0
𝑖2 1 0 0 0 0 −1 0 0 1 1 0
𝑗2 1 0 0 0 0 0 0 −1 0 1 1

Haff}
Hnaf

In Eqn. 6,𝜓𝑞 (𝑖, 𝑗) is an affine function: (𝑖, 𝑗) → Q in cost function 𝜃 . The matrix H contains the
coefficients for affine and non-affine terms obtained for the polynomial in the first column, and for
each Handelman product from next column to the last one. This means that Haff is a sub-matrix of
H with each row corresponding to coefficients of the affine terms. Similarly, Hnaf is a sub-matrix of
H with each row corresponding to coefficients of the non-affine terms. For this particular example,
the affine part of the matrix H is Haff = H[0 : 2] [:], and the non-affine part is Hnaf = H[3 : 5] [:].

In Eqn. 6, the first set of constraints (Hnaf · ®Λ⊤ = ®0) are equations that enforce the cancellation of
non-affine terms of 𝑔2 with those of the matching products in 𝝈 . We need to find the set of lambda

12 Nilesh Rajendra Shah et al.

multipliers that result in the negative coefficients of the non-affine terms of 𝝈 , such that these
terms cancel out with the positive coefficients (with same magnitude) of the non-affine terms in 𝑔2.
Here, we search for the constraints of a convex polyhedron such that 𝜙 is an affine form in 𝑑

dimensions. To find the coefficients of the affine constraint 𝑎0 +𝑎1𝑖 +𝑎2 𝑗 ≥ 0, we solve the equation
Haff · ®Λ⊤ = [𝑎0, 𝑎1, 𝑎2]. One such solution is for: 𝜆1, 𝜆4 = 104; 𝜆5, 𝜆7 = 9999; 𝜆6 = 1; 𝜆0, 𝜆2, 𝜆3, 𝜆8, 𝜆9 = 0;
⇒ [𝑎0, 𝑎1, 𝑎2] = [−149503, 9966.85,−1] ⇒ 𝜙1 = −149503 + 9966.85𝑖 − 𝑗 ≥ 0.
We obtain the above set of affine constraints P′2 = {𝜙 ≥ 0 | ∀𝜙 ∈ A} which define a polyhedral

over-approximation of𝑀2. (In Fig. 5(c), we plot the domain 𝐷 ′2, polynomial inequality P2, and the
affine approximation P′2 to show𝑀 ′2, the approximation of miss set𝑀2.) We intersect P′2 with 𝐷2
to obtain the approximate miss set 𝑀 ′2, and call the Barvinok card(𝑀 ′2) function, resulting in a
cache miss count of 58311 for L1 cache with 𝑐𝐿1 = 512. In comparison, HayStack will perform full
enumeration ∀(𝑖, 𝑗) ∈ 𝐷2, with over 58 × 103 iteration points and return cache miss count as 58185.
It is evident that both miss count numbers are very close to each other, with an error of +0.2%.

It can be seen that counting the miss sets for domains with large number of non-affine iteration
points is expensive. An example is the cholesky from PolyBench, that has domains with 6.09×106
iteration points, and a corresponding number of card calls. Using our linearization technique, we
count the approximated set using a single call to Barvinok with 0% precision loss.

Using parametric simplex (Maréchal et al.’s method [45]): The formulation suggested by Maréchal
et al. [45] solves Eqn. 4 in the parametric space in 𝑑 dimensions; this involves solving a series of
parametric simplex problems resulting in a decision tree, the leaves of which are associated with
(i) a parametric polyhedral region (the context), and (ii) a cost function 𝜃 . Each of these contexts
needs to be solved further with a simplex call to obtain a (general) affine constraint 𝜙 ≥ 0.

For CMC, the above parametric simplex approach could be expensive: the number of contexts is
exponential (in 𝐾), and the constraint systems have high redundancy. Furthermore, obtaining 𝜙
involves the additional overhead of creating a decision tree and traversing it.

For example, it can be seen from Table 1 that the number of non-affine stack distance polynomials
induced by nussinov is 96, and for cholesky it is 37. For nussinov, solving the parametric LP
results in a variable number of contexts: 23–34 across all polynomials. Similarly, for cholesky, the
range of number of contexts is 27–56. Each of these contexts—after individually inducing a simplex
call—results in a constraint system that is an approximation of𝑀 . All these approximations have
large redundancy (≈ 50–90%) as well, missing the opportunities for further optimizations.
In contrast, the method we propose in the next section will solve the formulation with fewer

(non-parametric) simplex calls, leading to systems with no redundant constraints.
5.3 Linearization using sub-polyhedral approximations
The formulation described in Eqn. 4 solves for an affine form 𝜙 . In this section, we restrict the
template of 𝜙 to be of Interval or Octagon sub-polyhedral type. Such a restriction will describe an
(over-)approximation, and these sub-polyhedra have the advantage that they can be described by a
finite (and small, respectively O(𝑑) and O(𝑑2)) number of possible affine constraints [48, 49]. In
contrast, general convex polyhedra have no fixed “template” [54–56], and can lead to a constraint
system with a potentially unbounded number of constraints.
Interval and octagon sub-polyhedral formulations In Eqn. 7 and Eqn. 8, we show the

specialized parametric linear programming formulations for intervals and octagons respectively:
• Interval Approximations: To obtain the interval approximation Interval(𝑀), we look for

an affine function 𝜙 of the (“Interval”) form 𝑎0 + 𝑎1𝑥1. We ensure this in Eqn. 7 by canceling
the affine coefficients of all other dimensions other than 𝑥1.
• Octagon Approximations: To obtain the octagon approximation Octagon(𝑀), we look for
an affine function 𝜙 of the (“Octagon”) form 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2, with |𝑎1 | = |𝑎2 |.

BullsEye: Approximation Framework for Cache Miss Calculation 13

This means that the coefficients can only be equal (+𝑥1, +𝑥2), or opposite (+𝑥1,−𝑥2) (Eqn. 8).
For intervals we show the LP template for parametric dimension 𝑥1, and for octagons we show

the LP template for parametric dimensions 𝑥1 and 𝑥2.

min 𝜃 = ®Λ⊤ · Ψ(𝑥1, . . . , 𝑥𝑑)
s.t. Hnaf · ®Λ⊤ = ®0,

Haff [𝑥𝑖] · ®Λ⊤ = ®0, ∀𝑥𝑖 ∈ S\{𝑥1}

®Λ⊤ ≥ ®0
(7)

min 𝜃 = ®Λ⊤ · Ψ(𝑥1, . . . , 𝑥𝑑)
s.t. Hnaf · ®Λ⊤ = ®0,

Haff [𝑥1] · ®Λ⊤= 𝛽𝑥2 (Haff [𝑥2] · ®Λ⊤),{𝑥1, 𝑥2}∈S
Haff [𝑥𝑖] · ®Λ⊤ = ®0, ∀𝑥𝑖 ∈ S\{𝑥1, 𝑥2}
𝛽𝑥2 ∈ {1,−1}
®Λ⊤ ≥ ®0

(8)
As discussed earlier, the matrices Hnaf and Haff contain the set of coefficients for the non-affine

and affine terms obtained for each Handelman product respectively. The first (equality) constraint
(Hnaf · ®Λ⊤ = ®0) enforces cancellation of the non-affine part of the polynomial. Here, S is the set of
dimensions of the vector-space where the input polynomial 𝑔 is defined.

For Eqn. 7, the second constraint Haff [𝑥𝑖] · ®Λ⊤ = ®0 enforces cancellation of the affine coefficients
for dimensions other than 𝑥1 to be zero. And in Eqn. 8, the second constraint Haff [𝑥1] · ®Λ⊤ =

𝛽𝑥2 (Haff [𝑥2] · ®Λ⊤) enforces the coefficients to be of equal magnitude for the affine dimensions
involved in the affine function such that, for a pair of dimensions (𝑥1, 𝑥2), we have |𝑎1 | = |𝑎2 |. The
third constraint Haff [𝑥𝑖] · ®Λ⊤ = ®0 sets the coefficient of affine terms other than 𝑥1, 𝑥2 to be zero.

Finding affine forms using instantiationNote that formulation (Eqn. 7 for intervals, and Eqn. 8
for octagons) still has a parametric cost function. As discussed in Sec. 5.2, using a parametric simplex
solver for CMC is expensive. To avoid this scalability issue, we obtain a set of non-parametric
LP problems, the cost functions of which are linear, and the constraints of which define (non-
parametric) polyhedra. Solving these set of non-parametric LP problems will result in an interval
or octagon polyhedron that we can use to obtain the resulting Interval(𝑀) or Octagon(𝑀).

Next, we explain the working of Algorithm 2 for the interval and octagon sub-polyhedra using
LP1 shown in Eqn. 7 and LP2 shown in Eqn. 8:

[Step 2.3-2.5] It is possible to instantiate the cost function 𝜃 with any 𝑥 ∈ 𝐷 , i.e., the instantiating
point for the parameters𝑥1, . . . , 𝑥𝑑 is selected from the domain polyhedron𝐷 .We propose to improve
the efficiency of the search for the optimal affine (interval or octagonal) form by instantiating using
only the vertices (extremal points) of 𝐷 . In method FindAffineForms, we iterate over each vertex
𝑣 of domain 𝐷 on line 5. Thereby, we instantiate the parameters with 𝑣 using InstParam to obtain
the instantiated cost function 𝜃 (𝑣).

For polyhedral kernels (SCoPs in PolyBench), the validity domains4 𝐷 are mostly5 intervals or
octagons, and so our linearization is simpler, natural, and cheaper, with the octagons being more
accurate than the intervals. Also, in most cases𝐷 has less than 5 vertices. This is a very small number,
and it reduces the number of parametric regions to at most the number of vertices. Therefore,
finding affine forms does not get much affected by the exponentiality of vertices [12, 66, 72].
[Step 2.7-2.11] For Interval(𝑀), we iterate over each dimension 𝑖 ∈ S and use the same

instantiated linear cost function 𝜃 (𝑣). Then, on line 10, we call SolveLP1 to obtain the interval
affine form as 𝑏 and add 𝑏 to the list of affine forms A on line 11.

4As explained in Sec. 3, 𝐷 is a subset of the input iteration-domain D𝐼 , and the latter has been mostly established [60, 61]
to be simple domains like Two-Variables-Per-Inequality (TVPI) polyhedra, octagons, or intervals.
5PolyBench-Non-Affine induces 368 validity domains, where 287 are octagons, and 77 are intervals. The rest 4 are TVPI.

14 Nilesh Rajendra Shah et al.

[Step 2.12-2.16] For Octagon(𝑀), we select a pair of dimensions (𝑖, 𝑗) ∈ S and use the same
instantiated linear cost function 𝜃 (𝑣). Then, on line 15, we call SolveLP2 to obtain the octagonal
affine form as 𝑏, which we add to the list of affine forms A using method AddAffineForms.
[Step 2.18] Finally, we return the set of interval/octagonal affine forms as A.

Complexity analysis: If the validity domain has |𝑉 | vertices and 𝑑 dimensions, we make |𝑉 | × 𝑑
(|𝑉 | × 𝑑2/2) LP calls to find the interval (octagon) approximation. As mentioned earlier, this is a
very small number (around 8 for intervals, and 10 for octagons6 in most cases) of non-parametric
calls. By comparison, the method by Maréchal et al. [45] makes around 30 parametric LP calls.

Also, as intervals and octagons are mostly simplices, this has two additional advantages: reducing
the time taken to solve the LP formulation and the counting time by Barvinok card function for
counting the resulting approximate sub-polyhedra. We will also show in Sec. 7, that fixing the
over-approximation to be only intervals/octagons results in a scalable and accurate framework.
5.4 Linearization and counting of a polynomial from correlation

Example 5.2 (Interval and Octagon Approximations). The correlation kernel from PolyBench,
induces the following polynomial and domain:

𝑔3 (𝑖, 𝑗) =
(
975650 + (−2999 𝑗8 + 𝑖 𝑗8)

)
;𝐷3 =

{
(𝑖, 𝑗) ∈ Z2

���� (𝑗)𝑚𝑜𝑑 (8) = 0; 8 ≤ 𝑗 ≤ 2584;
1 ≤ 𝑖 ≤ 2998

}
The polynomial inequalities induced are P3 (𝐿1) := {𝑔3 > 𝑐𝐿1} with 𝑐𝐿1 = 512 for 𝐿1 cache. The

conjunction of the polynomial inequality and domain 𝐷3 gives rise to the following miss set𝑀3:

𝑀3 = {P3 ∧ 𝐷3} =
{
(𝑔3 (𝑖, 𝑗) > 512)

∧
𝐷3

}
We skip the steps of Algorithm 1, and show only the steps from Algorithm 2. We first compute

the parametric objective function 𝜃3 (𝑖, 𝑗) (Eqn. 6):
𝜃3 (𝑖, 𝑗) = (9765650 + −2999/8 ∗ 𝑗) − 512 + 𝜆1 ∗ (2998 − 𝑖) + 𝜆2 ∗ (2584 − 𝑗) + 𝜆4 (2998𝑖 − 2998 + 𝑖)

+ 𝜆3 + 𝜆5 (8 − 8 ∗ 𝑖 − 𝑗) + 𝜆6 (−2584 + 2584 ∗ 𝑖 + 𝑗) + 𝜆7 (−23984 + 8 ∗ 𝑖 + 2998 ∗ 𝑗)+
𝜆8 (7746832 − 2584 ∗ 𝑖 − 2998 ∗ 𝑗) + 𝜆9 (−20672 + 2592 ∗ 𝑗) + 𝜆14 ∗ (𝑖 − 1) + 𝜆15 ∗ (𝑗 − 8)
+ 𝜆12 (64 − 16 ∗ 𝑗) + 𝜆13 (6677056 − 5168 ∗ 𝑗) + 𝜆10 (1 − 2 ∗ 𝑖) + 𝜆11 (8988004 − 5996 ∗ 𝑖)

We use vertex 𝑣 = (1, 8) of 𝐷3 for instantiation, and obtain the following (non-parametric) cost
function using InstParam method:

min(𝜃3 (𝑣)) = min(2997𝜆1 + 2576𝜆2 + 𝜆3 + 𝜆4 − 8𝜆5 + 8𝜆6 + 8𝜆7 + 7720264𝜆8 + 64𝜆9 − 𝜆10
+ 8982008𝜆11 − 64𝜆12 + 6635712𝜆13 + 7777112)

(9)

Interval approximation: For an interval approximation, we solve the LP for each dimension of S
with the cost function shown in Eqn. 9; for dimension 𝑖 we obtain the following constraints:

(𝜆5 − 𝜆6 − 𝜆7 + 𝜆8) = −1, (−𝜆4 + 𝜆10 + 𝜆11) = 0, (−𝜆9 + 𝜆12 + 𝜆13) = 0
(−𝜆2 − 𝜆5 + 𝜆6 + 2998𝜆7 − 2998𝜆8 + 2592𝜆9 − 16𝜆12 − 5168𝜆13 + 𝜆14) = 2999 (10)

Here, the first three constraints ensure cancellation of non-affine terms of the polynomial and the
last equation adds a constraint to cancel affine coefficients for dimension 𝑗 ∈ S\{𝑖}. After solving
Eqn. 10, we solve it similarly for dimension 𝑗 . These two LP calls result in the following miss set:
𝑀 ′3 = {(𝑖, 𝑗) | 𝑖 ≥ −3009 , 𝑗 ≤ 5186} which is an interval polyhedron.
Octagon approximation: For an octagonal approximation, we solve the LP for each pair of dimensions
of S with cost function shown in Eqn. 9 and the following constraints for the (+𝑖, + 𝑗) ∈ S template.

6It is possible that these can be further reduced by using properties of vertices of these specific sub-polyhedral varieties [49].

BullsEye: Approximation Framework for Cache Miss Calculation 15

i
4000

2000
0

2000
4000j

4000 2000 0 2000 4000

g
2

1e8

0.0

0.2

0.4

0.6

0.8

1.0

(a)

i
4000

2000
0

2000
4000j

4000 2000 0 2000 4000

g
2

1e8

0.0

0.2

0.4

0.6

0.8

1.0

(b)
Fig. 6. Bernstein Illustration: nussinov kernel (Ex. 6.1): domain 𝐷2 shown in purple and polynomial 𝑔2 shown in blue. (a)
Sub-domain 𝐷𝑖 computed for upper bound on dimension 𝑖 shown in dark green. (b) Sub-domain 𝐷 𝑗 computed for lower
bound on dimension 𝑗 shown in red.

− 𝜆1 + 𝜆2 + 2999𝜆4 − 7𝜆5 + 2583𝜆6 − 2990𝜆7 + 414𝜆8 − 2592𝜆9 − 2𝜆10
− 5996𝜆11 + 16𝜆12 + 5168𝜆13 + 𝜆14 − 𝜆15 = −2999

(11)

We solve a LP, using the CPLEX LP solver, with Eqn. 9 as objective function and Eqn. 11 as
constraints. Similarly, we solve another LP for opposite sign constraints. These two LPs result in the
miss set:𝑀 ′′3 =

{
(𝑖, 𝑗)

�� −𝑖 − 𝑗 ≥ −7804102 , 𝑖 + 𝑗 ≥ −3001 , 𝑖 − 𝑗 ≥ −2602}, an octagon approximation.
For the interval approximation, we intersect 𝑀 ′3 with the input domain 𝐷3, and then call

card(𝑀 ′3 ∧ 𝐷3) to obtain an approximate cache miss count of 968354. Similarly, for the octagon
approximation, we intersect𝑀 ′′3 with the input domain 𝐷3, and then call card(𝑀 ′′3 ∧𝐷3) to obtain
an approximate count of 968351. HayStack using full enumeration gives an exact count of 968354.
In this case, the approximation is nearly exact for both intervals and octagons.

6 LINEARIZATION USING BERNSTEIN APPROXIMATION
In this section, we approximate the polynomial 𝑔 using Bernstein polynomial linearization. Given
a stack distance polynomial 𝑔, and a validity domain 𝐷 , Bernstein linearization works on the
vertex representation (V-form) of 𝐷 where 𝑔 is represented using the Bernstein basis. The set
of parametric Bernstein coefficients (𝑡𝑘) can be obtained from the symbolic representation of the
Bernstein basis [14, 15]. Using these coefficients, a polyhedron 𝑀 ′ that bounds the intersection
of 𝐷 , and the polynomial constraint P := {𝑔 > 𝑐} can be obtained. Also, due to the convex hull
property of Bernstein polynomials, 𝑔 is bounded by the value of min-max Bernstein coefficients.

One way to linearize 𝑔 is to find the range of each variable of 𝐷 and obtain interval bounds. This
range computed can be a linear approximation of the intersection of P and 𝐷 . Now, we show the
Bernstein approximation for a polynomial from nussinov:
Example 6.1 (Bernstein linearization). We reuse the Eqn. 5 for the nussinov kernel, with stack

distance polynomial 𝑔2 (𝑖, 𝑗) and validity domain 𝐷2 shown in Fig. 6.
As every point (𝑖, 𝑗) ∈ 𝐷2 which satisfies 𝑔2 (𝑖, 𝑗) > 512 will produce a cache miss, the Bernstein

approximation can be used to find the affine subdomain of 𝐷2 where 𝑔2 > 512. In Eqn. 12, we
introduce a single parametric dimension 𝑢 for obtaining an interval (lower/upper) bound over each
dimension. As 𝑔2 (𝑖, 𝑗) is monotonically decreasing in 𝑖 , we introduce 𝑢 as an upper bound (𝑖 ≤ 𝑢).
For all upper bound constraints of 𝑖 in 𝐷2, we add additional constraints by replacing 𝑖 with 𝑢.

S = [𝑢] →
{
𝑔2 (𝑖, 𝑗) :

(𝑖 + 1) mod 16 = 0, 𝑖 ≥ 15, 17 + 𝑖 ≤ 𝑗 ≤ 5472,
𝑗 mod 16 = 0, 𝑖 ≤ 𝑢,𝑢 ≤ 𝑗 − 17

}
(12)

Next, we estimate the values of 𝑢 for which the lower bound of 𝑔2 is greater than 512, i.e.,
𝑔2 − 512 > 0. Using ISL, we obtain the lower bound of 𝑔2 in terms of 𝑢 (where the degree of the

16 Nilesh Rajendra Shah et al.

Bernstein basis is𝑚 = 2):

𝑙𝑏 (S) = [𝑢] →
{
min((132𝑢

2 − 5481
16 𝑢 + 30041837

32), (9331116 − 17
16𝑢)) : 15 ≤ 𝑢 ≤ 5455

}
(13)

We seek the minimum value of the coefficient in the validity domain of 𝑢 (𝐷𝑢 : 15 ≤ 𝑢 ≤ 5455).
From Eqn. 13, let 𝑓1 and 𝑓2 be the Bernstein coefficients (𝑡𝑘) obtained from the lower bound
operation: 𝑓1 = (132)𝑢

2 − (548116)𝑢 + (
30041837

32) − 512, 𝑓2 = (9331116) − (
17
16)𝑢 − 512. The roots for

𝑓1 are 5354.87, 5607, and 𝑓2 is 5007. The second root of 𝑓1 can be discarded since 5607 ∉ 𝐷𝑢 .
For the remaining two solutions, i.e, 5354.87 and 5007, we estimate the minimum value. As
min (𝑓1 (5007), 𝑓1 (5345.87), 𝑓2 (5007), 𝑓2 (5354.87)) = 𝑓2 (5007), the min(𝑡𝑘) is obtained from 𝑓2. We
fix the value of parameter 𝑢 = 5007 in Eqn. 12.

𝐷𝑖 = {[𝑖, 𝑗] : (𝑖 + 1) mod 16 = 0, 𝑗 mod 16 = 0, 𝑖 ≥ 15, 17 + 𝑖 ≤ 𝑗 ≤ 5472, 𝑖 < 5007, 𝑗 ≥ 5024}
Similarly, we will estimate the bounds for 𝑗 with 𝑖 = 5007 such that 𝑔2 (5007, 𝑗) = 𝑗2/32 −

5015 𝑗/16 + 786454. Since, 𝑔2 (5007, 𝑗) is monotonically increasing in 𝑗 we will estimate the lower
bound of 𝑗 . In this case 𝑙 is the parametric dimension that is introduced.

𝑙𝑏 (S) = [𝑙] → {(𝑖, 𝑗) → 1
32𝑖

2 + 1
32 𝑗

2 − 9
16𝑖 −

1
2 𝑗 −

𝑖 𝑗

16 +
186605
32 : (𝑖 + 1) mod 16 = 0,

𝑗 mod 16 = 0, 𝑖 >= 15, 𝑗 ≥ 𝑙, 𝑖 = 5007, 𝑙 ≥ 17 + 𝑖, 𝑗 ≤ 5472}, (𝑖, 𝑗) ∈ Z2

We estimate the values of 𝑙 for which the lower bound is greater than 512. The Bernstein basis is:

𝑙𝑏 (S) = [𝑙] → {min(132𝑙
2 − 5015

16 𝑙 + 786454) : 5024 ≤ 𝑙 ≤ 5472}

Solving for the Bernstein coefficients in a similar fashion gives 𝑙 = 5024. The final domain is:
𝐷 𝑗 = {[𝑖, 𝑗] : (𝑖 + 1) mod 16 = 0, 𝑗 mod 16 = 0, 𝑖 >= 15, 𝑗 > 5024, 𝑗 ≤ 5472, 𝑖 = 5007}

The total cache miss is card(𝐷𝑖) + card(𝐷 𝑗) = 57904. 𝐷𝑖 (𝐷 𝑗) is shown in Fig. 6(a) (Fig. 6(b)).

7 EXPERIMENTAL EVALUATION
In this section, we show results on the performance (running time) and accuracy of our framework,
BullsEye, and compare them with HayStack [35].
Experimental setup. We use the following system setup for evaluation: Intel Xeon W-2133 processor,
32GB RAM with inclusive 384KB L1 (192KB data cache, 192KB instruction cache each with 32KB
per core), 6MB L2 caches, and a shared 8.25MB L3 cache.
We test our heuristics on PolyBench [50] kernels with Large (L) or Extra large (XL)

input size (referred to as PolyBench-L and PolyBench-XL), where each result is a median of 10
evaluations. As discussed in Sec. 3, we focus mainly on PolyBench-Non-Affine kernels. We also
test on Additional-Benchmarks which will mean 3 kernels (harris, bilateralfiltering, and
gaussianblur) from LLVM-TestSuite, 2 kernels (minver, and libud) from Embench, and 2 kernels
(regdetect, and dynprog) from PolyBench-3.2-XL. In LLVM-TestSuite, for bilateralfiltering,
the input problem size is 128 × 128. For harris and gaussianblur, the image size is 2048 × 2048;
in Embench, the input size for matrices is 3000 × 3000 for minver, and 1024 for libud.
The following are the (exact/approximate) analytical tools/algorithms that we compare, along

with Cache Simulator (Dinero [40]) and Cache Performance Counter (PAPI [59]).

• [HayStack [35]] (Sec. 3) After the Miss sets are constructed, the time taken by HayStack
is the time for partial/full enumeration and time for (multiple) calls to Barvinok.
• [SparseEnum] (Sec. 4.2) We show the results of SparseEnum, also focusing on the best span
obtained. We also illustrate the performance-accuracy trade-off with the span selection.

BullsEye: Approximation Framework for Cache Miss Calculation 17

3m
m ad

i

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

du
rb

in

fd
td

-2d

ge
mve

r lu

lud
cm

p
mvt

nu
ss

ino
v

tri
so

lv

ge
o.m

ea
n

0

1

2

3

4

5

6

7

8

9

1

Sp
ee

du
p

Span=50
Span=20
Span=10

(a)

1 20 50 80 100
−10

−5

0

5

10

Span

Perc.
Error
(%)

1 20 50 80 100
102

103

104

105

Span

Exec.
time
(msecs)

3mm

adi

cholesky

correlation

covariance

deriche

durbin

fdtd-2d
gemver

lu

ludcmp

mvt

nussinov

trisolv

(b) (c)
Fig. 7. Performance of SparseEnum (Sec. 4.2) on PolyBench-Non-Affine-XL with different span sizes: (a)
Speedups over HayStack, (b) Percentage Error with respect to HayStack, and (c) Execution time.

3

10

30
50

22.4
32.5HayStack Span=100 Bernstein Handelman-Interval Handelman-Octagon

0

1

Exec.
Time

(secs)

(a)

3

10

30
5070 61.464.4

3m
m ad

i

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

du
rb

in

fd
td

-2d

ge
mve

r lu

lud
cm

p
mvt

nu
ss

ino
v

tri
so

lv
0

2

Exec.
Time

(secs)

(b)

Fig. 8. Execution time on PolyBench-Non-Affine. For (a) PolyBench-L, and (b) PolyBench-XL. Note that for
Execution time, plots use partly linear (shown with thin line), and partly log (shown with thick line) scales.

• [Bernstein Linearization] (Sec. 6) We linearize𝑀 by applying Bernstein basis. We obtain
the affine approximation using Bernstein lower/upper bound operations.
• [Handelman and Interval/Octagon Linearizations] (Sec. 5.3) We linearize 𝑀 using
Handelman’s theorem by adapting the parametric LP to search for interval and octagonal
affine approximations.

The resultant𝑀 ′ set(s) are counted using the card function of Barvinok. The cumulative time
taken for counting is also added to the execution time.
7.1 Execution time results
For performance (speedup) improvements, we compare the total execution time of SparseEnum
technique on PolyBench-Non-Affine-XL with HayStack as baseline in Fig. 7(a). Using different
span sizes, we obtain a geomean speedup of (2.1×, 2.36×, 2.5×) for 𝑠𝑝𝑎𝑛 = (10, 20, 50) respectively.
It can be seen that, as the span size is increased, the number of card calls are reduced by a 𝑠𝑝𝑎𝑛.
In Fig. 8, we show the comparison of the execution time, and in Fig. 9(a) and (b), we show

the speedup of the various proposed methods on PolyBench-Non-Affine in comparison with
HayStack. For PolyBench-L, we obtain geomean speedups of 2.15×, 2.25×, and 2.27× for Bernstein,
Handelman-Interval, and Handelman-Octagon, respectively. For PolyBench-XL, the speedups

18 Nilesh Rajendra Shah et al.

0

100

101

102

Speedup

(a)

Span=100 Bernstein Handelman-Interval Handelman-Octagon

3m
m ad

i

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

du
rb

in

fd
td

-2d

ge
mve

r lu

lud
cm

p
mvt

nu
ss

ino
v

tri
so

lv

ge
o.

mea
n

0

100

101

102

Speedup

(b)

ha
rri

s

bil
Fil

te
r

ga
us

sB
lur

minv
er

lib
ud

re
gd

et
ec

t

dy
np

ro
g

0

100

101

(c)

Fig. 9. Speedups obtained by SparseEnum
(𝑠𝑝𝑎𝑛 = 100), Bernstein, Handelman-
Interval, and Handelman-Octagon over
HayStack exact enumeration. For (a) and
(b), the input is PolyBench-Non-Affine,
with (a) PolyBench-L, and (b) PolyBench-
XL. (c) Input is Additional-Benchmarks.

0

5

10

15

Error(%)
(a)

Span=100
Bernstein
Handelman-Interval
Handelman-Octagon

3m
m ad

i

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

du
rb

in

fd
td

-2d

ge
mve

r lu

lud
cm

p
mvt

nu
ss

ino
v

tri
so

lv

4

2

0

2

Error(%)

(b)

(1) L1 Cache

10

0

10

20

30

3m
m ad

i

ch
ole

sk
y

co
rre

lat
ion

co
va

ria
nc

e

de
ric

he

du
rb

in

fd
td

-2d

ge
mve

r lu

lud
cm

p
mvt

nu
ss

ino
v

tri
so

lv

10

5

0

5

10

(2) L2 Cache
Fig. 10. Accuracy on PolyBench-Non-Affine with HayStack as baseline. For (a) PolyBench-Non-Affine-L,
and (b) PolyBench-Non-Affine-XL with (1) L1 Cache and (2) L2 Cache.

obtained are 3×, 3.28×, and 3.31× respectively. In Fig. 9(c), we show the results on Additional-
Benchmarks. It can be seen that for all these kernels taken from different benchmark suites, our
methods show consistently better results.
7.2 Accuracy results
Comparison with HayStack. In Fig. 10, we show the accuracy results on PolyBench-Non-Affine
for PolyBench-L and PolyBench-XL on L1 and L2 caches. Here, we compare the capacity misses
approximated by our various proposed approximationmethods SparseEnum, Bernstein, Handelman-
Interval and Handelman-Octagon, with the exact enumeration of HayStack.

We have observed that the speedup gains after a certain span size (≈ 60) saturate; there is a 2–7%
reduction in the accuracy as well. In Figs. 7(b) and 7(c) we show that when 𝑠𝑝𝑎𝑛 = 20, the maximum
performance gains, along with minimal accuracy drop are obtained for all the benchmarks.

For PolyBench-L, we show the percentage errors for the L1 cache in Fig. 10.1.a, and for the L2
cache in Fig. 10.2.a. Similarly, for Extra-Large input size, we show the percentage errors for the
L1 cache in Fig. 10.1.b, and for the L2 cache in Fig. 10.2.b. Here, we obtain a geometric mean error
of ≈ 1% for the L1 cache, and ≈ 2% for the L2 cache for all of our proposed methods.

The max error for Bernstein (Handelman-Interval) is −12.6% (37.3%) on cholesky (covariance).
This large error for Handelman-Interval on covariance is only an outlier, due to a single polynomial
having a large domain; removal of this polynomial makes the error on covariance close to 7×10−2%.
On covariance, Handelman-Octagon however gives a negligible error of 10−4% error.

BullsEye: Approximation Framework for Cache Miss Calculation 19

0
1

10

100

Miss rate(%)

(a)
Error(%) 0.11

0
1

10

100

0.2

Handelman-Octagon Error Dinero(Misses)
2m

m
3m

m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rre

la
tio

n
co

va
r

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
ws

ll
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

m
sh

m
dt

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tri

so
lv

trm
m

0

1

10

100

Miss rate(%)

(b)

Error(%)

22.4

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rre
la

tio
n

co
va

r
de

ric
he

do
itg

en
du

rb
in

fd
td

-2
d

flo
yd

ws
ll

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
m

sh
m

dt
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

0

1

10

100

3.14

Handelman-Octagon Error CPC(Misses)

(1) L1 Cache (2) L2 Cache
Fig. 11. Accuracy on PolyBench-L comparing Handelman-Octagon vs. (a) Dinero (fully-associative setting),
and (b) Cache Performance Counters (CPC) for (1) L1 Cache, and (2) L2 Cache. Line plots show the miss rates.
Bar plot is the (%) error between the two line plots. The max error is highlighted with its exact numeric value.

Comparison with Dinero and PAPI. We obtain cache miss measurements from simulation by using
Dinero IV [40], and real hardware by using PAPI [59]. For simulation, we use Dinero IV uniprocessor
cache simulator with fully associative setting. For real hardware numbers, we obtain two Cache
(Hardware) Performance Counters (CPC), PAPI_L1_DCM and PAPI_L2_DCM for L1 and L2 caches
respectively; these sum all the data cache misses (including compulsory, conflict, and capacity). For
CPC miss rate, we disable the hardware prefetchers.

In Fig. 11.a, we compare Handelman-Octagon vs. Dinero, focusing on the miss rates for L1 and
L2 caches. Similarly, in Fig. 11.b, we compare Handelman-Octagon vs. CPC.
For Handelman-Octagon vs. Dinero for L1 and L2 caches, we obtain maximum errors of 0.11%

and 0.2%. Also, for Handelman-Octagon vs. CPC, the error is low for almost all the benchmarks;
with 1.09% and 0.16% geomean error for L1 and L2 caches respectively. The exceptions are doitgen
and gramschmidt with errors of 22.4% and 13.7% respectively. These errors can be attributed to the
following approximations: (i) cache replacement policy (LRU), (ii) differences in the associativity,
and (iii) imprecision of the approximate counting itself.
7.3 Discussion
Execution time. In Fig. 9, it is evident that BullsEye scales better than the exact enumeration of
HayStack. For cholesky, the speedup obtained by Handelman-Interval it is 34.2×, by Handelman-
Octagon it is 32.5×, and by Bernstein it is 21.6×. It can be observed that Handelman-Octagon is the
fastest, and most precise among all. These impressive speedups could be attributed to the large
non-affine domains in this benchmark, which need to be fully enumerated by HayStack. Moreover,
the execution time of our linearization frameworks (either Handelman or Bernstein based) are
independent of the size of the input problem; this can be attributed to the fact that the number of
polynomials obtained for a PolyBench kernel are independent of the input-size.
Fig. 12. Accuracy comparison (geomean)

Large Extra Large
Method 𝐿1 𝐿2 𝐿1 𝐿2

Span=100 0.41 0.78 0.27 0.57
Bernstein 0.30 2.48 0.15 1.02
Handelman-Interval 0.02 0.92 0.21 1.88
Handelman-Octagon 0.002 0.029 0.03 0.08

Accuracy. For PolyBench-XL on L2 cache, using Handelman-
Interval, we obtain good accuracy for all benchmarks, except
in the case of nussinov and cholesky, where we obtain 13%
and 4.25% errors respectively. However, Handelman-Octagon
results in much better approximations resulting in just 0.09%,
and 0.074% errors, respectively. These high accuracies could
be attributed to the fact that the polynomials are convex or

nearly convex. In Tab. 12, we show that BullsEye obtains good accuracy for the entire PolyBench-
Non-Affine benchmark.

20 Nilesh Rajendra Shah et al.

Comparison between sub-polyhedra. The octagon linearizations are superior to the (straightforward)
interval-based ones, justifying their utility with better accuracy. Also, both intervals and octagons
are comparable in their LP overhead—meaning, instantiation and solving time. This is because of
the low-dimensionality, and the nearly octagon nature of most of the domains.

We show in Fig. 7.[b,c] that it is possible to empirically set the span size using cache parameters
(element size and cache line size) to obtain a trade-off between performance and accuracy.

For SparseEnum,we obtain both positive and negative errors. However, for Handelman linearizations,
we obtain only over-approximations as the approximation always contains the non-affine set
𝑀 . As mentioned earlier, CMC does not need only over-approximations; both over and under
approximations, corresponding to positive and negative errors respectively, are acceptable.
Limitations. The largest errors by our SparseEnum approximation—in benchmarks such as choleksy—
are when (i) the validity domain of the reuse distance polynomial increases sharply in the non-affine
dimensions, and/or (ii) when the iteration domain involves division/mod operations.
Our Handelman-based linearizations work only when 𝐷 is non-parametric [70]; while the

Bernstein-based linearization can work on a parametric domain. For CMC, 𝐷 is always non-
parametric, as the parameters in the miss sets are substituted before linearization.
For higher degree polynomials (degree of 𝑔 is ≥ 3), our Handelman (Bernstein) linearizations

could lead to an explosion in the number of terms in the Handelman parameter 𝐾 (Bernstein
basis𝑚). In such cases, we think that our SparseEnum may be more scalable but less precise than
linearization-based methods.
8 RELATEDWORK
We discuss various related works based on algorithms, tools, and methodologies for CMC:
Cache Miss Calculation by Simulators: There are many tools [9] that perform (dynamic) cache
simulation and give accurate results. Dinero IV [40] is one such popular uniprocessor cache
simulator that handles hierarchical, fully, and set associative caches, along with various replacement
and write policies. Static analysis tools [2, 35] compare themselves against it. It is well known that
dynamic tools consume large amounts of time and memory.
Cache Miss Calculation as Static Analysis: It has been well recognized that the CMC problem reduces
to a counting problem on Presburger formulae. Several researchers have attempted [10, 31] to
estimate the number of Cache Misses using static analysis and Presburger arithmetic based tools.
For example, Chatterjee et al. [10] modeled it using the Omega library [52].

Beyls et al. [7], building from their previous work [6], proposed two methods—based on profiling
and analytical computation—to generate cache hints for runtime improvement. They proposed an
analytical formulation to count capacity cache misses of fully associative caches using stack (reuse)
distances to result in non-affine Ehrhart polynomials.
Bao et al. [2] proposed PolyCache, an analytical model for set-associative caches with LRU

replacement policy using symbolic counting, with detailed application to real-world hardware. They
also model multi-level caches and various write policies, though the complexity of their algorithm
increases with associativity. Their tool is based on the ISL library [63] and Barvinok [62, 65].
Gysi et al. [35] proposed HayStack, a technique for analytical modeling of Static Control

(polyhedral) Programs on fully-associative caches. It computes the exact cache miss count, using
an implementation of the model derived from the analytical computation of stack distance by Beyls
et al. [7]. They also propose various novel and efficient techniques to count non-affine sets, using
division and mod operations, by a thorough evaluation on PolyBench benchmarks [50].

BullsEye directly builds fromBarvinok library andHayStack infrastructure. On affine benchmarks,
HayStack as well as BullsEye quickly and precisely result in the exact cache miss calculations;
they both directly rely on Barvinok. HayStack solves the problem of counting non-affine miss sets

BullsEye: Approximation Framework for Cache Miss Calculation 21

using exact enumeration. BullsEye proposes various novel statistical and mathematical techniques
that approximate the cache misses, with scalability and accuracy as the twin goals. On PolyBench-
Non-Affine, the performance of BullsEye is better than HayStack. On the rest, the performance
of BullsEye is exactly the same as HayStack.
Chen et al. [11] proposed Static Parallel Sampling (SPS) to estimate the cache miss ratio by

modeling LRU fully associative caches. They analyze the program structure by LLVM framework [41],
while using sampling techniques to obtain reuse time. SPS can even handle irregular loop nests.

Our SparseEnum is based on the uniform sampling of iterations in non-affine dimensions. In
contrast to Chen et al. [11], our method approximates reuse distance for nearby iteration points,
focusing on polyhedral kernels, and using Barvinok cardinality for counting.
Ehrhart polynomials: For an integer polytope 𝑃 ∈ R𝑑 , the number of lattice points in 𝑃 with dilation
factor 𝑛 can be represented using a polynomial expression, referred to as Ehrhart polynomials [21–
24]. The French mathematician Eugène Ehrhart first proposed Ehrhart polynomials. Later they
were extended [13, 16] to represent the number of integer points of a parameterized polytope.
Algorithms for Ehrhart polynomial computation: Clauss [13, 16] first proposed different techniques
for counting integer solutions of a parametric polyhedron for program analysis. This involves
counting parametric polyhedra using a set of Ehrhart polynomials with different validity domains.
The worst-case computation of Ehrhart polynomials for fixed dimensions using their method is
exponential in the input. Moreover, an implementation computing Ehrhart polynomials could give
rise to degenerate domains and larger periods, resulting in high execution times.
Verdoolaege et al. [65] proposed a polynomial time approach for counting integer solutions

(Ehrhart polynomial) of parametric polyhedra using a Barvinok based decomposition of validity
domains. They apply parametric counting [19] along with decomposition of validity domains of
parameter space [44]. To count Presburger formulas, Pugh et al. [53] gave various techniques based
on rewriting summation formulae, based on the Omega library [52].
Ehrhart Polynomials and program analysis: Ehrhart polynomials have been used for representing
counts of integer sets in several applications. Clauss [13] was the first to use Ehrhart polynomials
for program analysis. Analytical counting of such polynomials in polynomial time [65] enables
scalable program analysis on integer polyhedra such as symbolically counting the reuse distance [7],
the number of operations performed by a loop [43], the number of cache lines touched by a loop
[29], allocating parallel processing elements in a FPGA to execute a loop [38].
Barvinok Algorithm: Barvinok [3] gave a polynomial time algorithm for counting integer points in
a polyhedron, when the number of dimensions is fixed. This algorithm with later improvements is
implemented in LattE integrale [1], and Barvinok library [62] with an isl [63] interface. Barvinok
symbolically counts parametric polytopes as Ehrhart (quasi-)polynomials [21, 24], that are parametric
in input dimensions. Problems like CMC for a LRU fully associative cache reduce to counting
parameterized polytopes [6, 7]. We use the Barvinok algorithm [65] implemented [62] in ISL library.
Parametric Solvers: Hang et al. [69] proposed to solve a parametric LP by applying parallelization
and using a parametric simplex, or a set of LP problems using instantiation. In Sec. 5.3, instead of a
parametric solver, we use LP instantiations to find the sub-polyhedral affine forms for scalability.
Linearizations using Handelman’s theorem: Maréchal et al. [45] proposed a linearization method
using Handelman’s theorem on positive polynomials along various heuristics to reduce the
complexity of selecting the products. For static analysis (abstract interpretation) applications
and SMT solving, they show that programs containing nonlinear expressions can be linearized.
They formulate a parametric LP problem and solve it using a decision tree method which results in
a general polyhedral over-approximation, and implement it in Verified Polyhedra Library [8].

22 Nilesh Rajendra Shah et al.

Our framework (Sec. 5.1) is similar to Maréchal et al.’s formulation [45], though we show in
Sec. 5.2, that it is particularly suited to CMC. In Sec. 5.3 we show improvements based on sub-
polyhedral approximations resulting in almost non-redundant systems. We also propose other
simplifications (Sec. 4.2), and use Bernstein based [14, 15, 17] linearization techniques (Sec. 6).
Handelman’s theorem and Polyhedral Compilation: Feautrier [28] was the first to propose going
beyond polyhedra by identifying Handelman’s theorem [37] as a strict extension of Farkas’
lemma [57], and proposed to apply it to various polyhedral compiler applications.

Recently, Yuki [70] proposed applying Handelman’s theorem for polynomial scheduling problems
of Affine Control Loops, more precisely by performing Index Set Splitting (ISS) [33]. This attempt
led to a negative result because: not all polynomials have a Handelman representation when the
domain is parametric, and for ISS problem, the global minimizers occur in the interior of the domain.

As far as we are aware of, our method is the first one to propose using Handelman’s theorem for
linearizations–and approximations based on the above theorem—for CMC.
Interval [18] and octagon sub-polyhedra [48] have been successfully used in various abstract

interpretation problems [47, 48], as well as in polyhedral compilation [60, 61]. It is well known [47–
49] that for a fixed dimension, the number of constraints is fixed for the intervals and octagonal
sub-polyhedra. In contrast, the number of constraints is unbounded for general (convex) polyhedra.
Sankaranarayanan et al. [54–56] proposed template polyhedra that generalize intervals and octagons,
and can be used to limit the forms of approximation.

In this paper, we use template sub-polyhedral approximations for better scalability.
9 CONCLUSIONS AND FUTUREWORK
We have proposed a new framework, BullsEye, for the approximation of non-affine (semi-algebraic)
stack distance polynomials to count capacity misses. We believe that ours is the first work that
proposes scalable, accurate, and problem-size independent approximations based on static-analysis
for CMC. We propose a variety of techniques: statistical sampling techniques, and from within
the polyhedral model either relying on Bernstein’s theorem or Handelman’s theorem based
mathematical linearizations, embellished with sub-polyhedral (interval/octagon) approximations.
We believe that ours is the first method to propose applying Handelman’s theorem (a strict

extension of Farkas Lemma) for CMC. We have implemented our methods, and the results show
good speedups (geomean 3.31×), as well as accuracy (geomean 0.08%) for octagons over the state-
of-the-art technique HayStack that uses exact enumeration for counting non-affine sets. Also,
our comparison with the Dinero simulator shows that our results are relevant for realistic cache
policies, beyond our current LRU fully associative model.
Our methods are already integrated with HayStack, and we plan to release the source code of

BullsEye. We also plan to implement BullsEye in the standard LLVM [41] (inside or outside the
Polly [34] polyhedral loop-optimization pass), or the latest MLIR [42] compiler infrastructures.

Our sampling and linearizationmethods can potentially be selectively applied in a complementary
fashion for different varieties of miss sets: based on the degree of the polynomial, or on the shape,
size, dimension, and type of the validity domain. Deciding which method to apply in a particular
scenario also depends on the application where CMC is used. These aspects are left for future work.
We also plan to extend our current formulation to set-associative caches by considering an

additional parameter that encodes associativity, followed by sub-polyhedral algorithms for scalable
approximate counting. Considering arbitrary template polyhedra provided as a set of linear forms is
also left for future work. Our source code and relevant material are available at https://compilers.cse.
iith.ac.in/projects/bullseye.

https://compilers.cse.iith.ac.in/projects/bullseye
https://compilers.cse.iith.ac.in/projects/bullseye

BullsEye: Approximation Framework for Cache Miss Calculation 23

ACKNOWLEDGEMENTS
We are thankful to Govindarajan Ramaswamy, Albert Cohen, Rajesh Kedia, Jyothi Vedurada, Utpal
Bora, and S. VenkataKeerthy for their valuable feedback on our work at various stages. We would
like to thank the anonymous reviewers of IMPACT-2021 workshop, and ACM TACO for their
insightful and detailed comments which helped in improving the article. This work has been partly
supported by the funding received from DST, Govt of India, through the Data Science cluster of
the ICPS program (DST/ICPS/CLUSTER/Data Science/2018/General), and an NSM research grant
(MeitY/R&D/HPC/2(1)/2014).
References
[1] V. Baldoni, N. Berline, J.A. De Loera, B. Dutra, M. Koppe, S. Moreinis, G. Pinto, M. Vergne, and J. Wu. 2013. A User’s

Guide for LattE integrale v1.7.2. http://www.math.ucdavis.edu/~latte/
[2] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noel Pouchet, and P. Sadayappan. 2017. Analytical Modeling of Cache

Behavior for Affine Programs. Proc. ACM Program. Lang. 2, POPL, Article 32 (Dec. 2017), 26 pages.
[3] Alexander I. Barvinok. 1994. A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the

Dimension Is Fixed. Mathematics of Operations Research 19, 4 (1994), 769–779. http://www.jstor.org/stable/3690312
[4] S. Bernstein. 1952. Collected Works, vol. 1. USSR Academy of Sciences (1952).
[5] S. Bernstein. 1954. Collected Works, vol. 2. USSR Academy of Sciences (1954).
[6] Kristof Beyls and Erik D’Hollander. 2001. Reuse Distance as a Metric for Cache Behavior. In Proc. of the IASTED Int.

Conference on Parallel and Distributed Computing and Systems, IASTED, Anaheim, California, USA, 2001. 617–622.
[7] Kristof Beyls and Erik H. D’Hollander. 2005. Generating Cache Hints for Improved Program Efficiency. J. Syst. Archit.

51, 4 (April 2005), 223–250. https://doi.org/10.1016/j.sysarc.2004.09.004
[8] S. Boulmé, A. Maréchaly, D. Monniaux, M. Périn, and H. Yu. 2018. The Verified Polyhedron Library: an Overview. In

2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 9–17.
[9] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. 2020. A Survey of Cache Simulators. ACM Comput. Surv.

53, 1, Article 19 (Feb. 2020), 32 pages. https://doi.org/10.1145/3372393
[10] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck. 2001. Exact Analysis of the Cache Behavior of

Nested Loops. In Proceedings of the ACMSIGPLAN 2001 Conference on Programming Language Design and Implementation
(Snowbird, Utah, USA) (PLDI ’01). ACM, New York, NY, USA, 286–297. https://doi.org/10.1145/378795.378859

[11] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality Analysis through Static Parallel Sampling.
SIGPLAN Not. 53, 4 (jun 2018), 557–570. https://doi.org/10.1145/3296979.3192402

[12] N.V Chernikova. 1965. An algorithm for finding a general formula for the non-negative solutions of linear inequalities.
U.S.S.R. Computational Mathematics and Mathematical Physics 5, 2 (1965), 228–233.

[13] Philippe Clauss. 1996. Counting Solutions to Linear and Nonlinear Constraints through Ehrhart Polynomials:
Applications to Analyze and Transform Scientific Programs. In ACM International Conference on Supercomputing 25th
Anniversary Volume (Munich, Germany). Association for Computing Machinery, New York, NY, USA, 237–244.

[14] P. Clauss, F J Fernández, D. Garbervetsky, and S. Verdoolaege. 2009. Symbolic Polynomial Maximization over Convex
Sets and Its Application to Memory Requirement Estimation. IEEE Trans. VLSI Syst. 17, 8 (Aug. 2009), 983–996.

[15] P. Clauss, D. Garbervetsky, V. Loechner, and S. Verdoolaege. 2011. Polyhedral Techniques for Parametric Memory
Requirement Estimation. In Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided
Design Approach. Taylor and Francis.

[16] Philippe Clauss and Vincent Loechner. 1998. Parametric analysis of polyhedral iteration spaces. Journal of VLSI signal
processing systems for signal, image and video technology 19, 2 (1998), 179–194.

[17] P. Clauss and I. Tchoupaeva. 2004. A Symbolic Approach to Bernstein Expansion for ProgramAnalysis andOptimization.
In Compiler Construction, 13th Int. Conference, CC 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, Mar 29 - Apr 2, 2004, Proceedings (LNCS, Vol. 2985). Springer, 120–133.

[18] P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM Press, New York, NY, Los Angeles, California, 238–252.

[19] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. 2004. Effective lattice point counting
in rational convex polytopes. Journal of Symbolic Computation 38, 4 (2004), 1273–1302. https://doi.org/10.1016/j.jsc.
2003.04.003 Symbolic Computation in Algebra and Geometry.

[20] Chen Ding and Yutao Zhong. 2003. Predicting Whole-Program Locality through Reuse Distance Analysis. SIGPLAN
Not. 38, 5 (May 2003), 245–257. https://doi.org/10.1145/780822.781159

[21] Eugéne Ehrhart. 1962. Sur les polyédres rationnels homothétiques à n dimensions. Comptes rendus de l’Académie des
Sciences 254 (1962), 616–618.

http://www.math.ucdavis.edu/~latte/
http://www.jstor.org/stable/3690312
https://doi.org/10.1016/j.sysarc.2004.09.004
https://doi.org/10.1145/3372393
https://doi.org/10.1145/378795.378859
https://doi.org/10.1145/3296979.3192402
https://doi.org/10.1016/j.jsc.2003.04.003
https://doi.org/10.1016/j.jsc.2003.04.003
https://doi.org/10.1145/780822.781159

24 Nilesh Rajendra Shah et al.

[22] Eugéne Ehrhart. 1967. Sur un probléme de géométrie diophantienne linéaire. I. Polyédres et réseaux, J. Reine Angew.
Math 226 (1967), 1–29.

[23] Eugéne Ehrhart. 1967. Sur un probléme de géométrie diophantienne linéaire. II. Systémes diophantiens linéaires, J.
Reine Angew. Math 227 (1967), 25–49.

[24] Eugéne Ehrhart. 1977. Polynômes arithmétiques et méthode des polyédres en combinatoire. International Series of
Numerical Mathematics 35 (1977), 165.

[25] David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU caches. In 2010 IEEE International
Symposium on Performance Analysis of Systems Software (ISPASS). 55–65. https://doi.org/10.1109/ISPASS.2010.5452069

[26] Rida Farouki. 2012. The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric Design 29
(08 2012), 379–419. https://doi.org/10.1016/j.cagd.2012.03.001

[27] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem: I. One-dimensional time. Int. J. Parallel
Program. 21 (October 1992), 313–348. Issue 5. https://doi.org/10.1007/BF01407835

[28] Paul Feautrier. 2015. The Power of Polynomials. In Fifth Int. Workshop on Polyhedral Compilation Techniques
(IMPACT’15), in conjunction with HiPEAC’15. Amsterdam, The Netherlands. https://acohen.gitlabpages.inria.fr/
impact/impact2015/

[29] Jeanne Ferrante, Vivek Sarkar, and W. Thrash. 1991. On Estimating and Enhancing Cache Effectiveness. In Proc. of the
4th Int. Workshop on Languages and Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg, 328–343.

[30] Michael J. Fischer and Michael O. Rabin. 1998. Super-Exponential Complexity of Presburger Arithmetic. In Quantifier
Elimination and Cylindrical Algebraic Decomposition. Springer, 122–135.

[31] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. 1998. Precise Miss Analysis for Program Transformations
with Caches of Arbitrary Associativity. In Proc. of the 8th Int. Conference on Architectural Support for Programming
Languages and Operating Systems (USA) (ASPLOS VIII). ACM, New York, NY, USA, 228–239.

[32] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. 1999. Cache Miss Equations: A Compiler Framework for
Analyzing and Tuning Memory Behavior. ACM Trans. Program. Lang. Syst. 21, 4 (July 1999), 703–746.

[33] M. Griebl, P. Feautrier, and C. Lengauer. 2000. Index Set Splitting. IJPP 28 (2000), 607–631.
[34] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly—performing polyhedral optimizations on a

low-level intermediate representation. Parallel Processing Letters 22, 04 (2012), 1250010.
[35] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A Fast Analytical Model of Fully Associative

Caches. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 816–829. https://doi.org/10.1145/3314221.3314606

[36] Christoph Haase. 2018. A Survival Guide to Presburger Arithmetic. ACM SIGLOG News 5, 3 (July 2018), 67–82.
https://doi.org/10.1145/3242953.3242964

[37] David Handelman. 1988. Representing polynomials by positive linear functions on compact convex polyhedra. Pacific
J. Math. 132, 1 (1988), 35–62. https://projecteuclid.org:443/euclid.pjm/1102689794

[38] Frank Hannig and Jürgen Teich. 2001. Design Space Exploration for Massively Parallel Processor Arrays. In Parallel
Computing Technologies, Victor Malyshkin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 51–65.

[39] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. 2013. Multi-Parametric Toolbox 3.0. In 2013 European Control
Conference (ECC). 502–510. https://doi.org/10.23919/ECC.2013.6669862

[40] Jan Edler, and Mark D. Hill. 1999. Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://pages.cs.wisc.edu/ markhill/DineroIV/.

[41] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In 2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.2004.1281665

[42] C Lattner, M Amini, U Bondhugula, A Cohen, A Davis, J. A. Pienaar, R Riddle, T Shpeisman, N Vasilache, and O
Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. In IEEE/ACM Int. Symp. on
Code Generation and Optimization, CGO 2021, Seoul, South Korea, Feb. 27 - Mar 3, 2021. IEEE, 2–14.

[43] B Lisper. 2003. Fully Automatic, Parametric Worst-Case Execution Time Analysis. In Proc. of the 3rd Int. Workshop on
Worst-Case Execution Time Analysis, WCET 2003, Vol. MDH-MRTC-116/2003-1-SE. 99–102.

[44] Vincent Loechner and Doran K. Wilde. 1997. Parameterized Polyhedra and Their Vertices. Int. J. Parallel Program. 25,
6 (Dec. 1997), 525–549. https://doi.org/10.1023/A:1025117523902

[45] Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michaël Périn. 2016. Polyhedral Approximation
of Multivariate Polynomials using Handelman’s Theorem. In International Conference on Verification, Model Checking,
and Abstract Interpretation 2016. Barbara Jobstmann and Rustan Leino, St. Petersburg, United States.

[46] R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. 1970. Evaluation Techniques for Storage Hierarchies. IBM Syst. J. 9
(1970), 78–117.

[47] A. Miné. 2004. Weakly Relational Numerical Abstract Domains. Ph. D. Dissertation. École Polytechnique, Palaiseau,
France. http://www.di.ens.fr/~mine/these/these-color.pdf.

https://doi.org/10.1109/ISPASS.2010.5452069
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1007/BF01407835
https://acohen.gitlabpages.inria.fr/impact/impact2015/
https://acohen.gitlabpages.inria.fr/impact/impact2015/
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3242953.3242964
https://projecteuclid.org:443/euclid.pjm/1102689794
https://doi.org/10.23919/ECC.2013.6669862
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1023/A:1025117523902
http://www.di.ens.fr/~mine/these/these-color.pdf

BullsEye: Approximation Framework for Cache Miss Calculation 25

[48] Antoine Miné. 2006. The Octagon Abstract Domain. Higher-Order and Symbolic Computation 19, 1 (2006), 31–100.
[49] Abhishek Patwardhan and Ramakrishna Upadrasta. 2019. Some Efficient Algorithms for the Tightest U-TVPI Polyhedral

Over-Approximation problem. In Ninth International Workshop on Polyhedral Compilation Techniques (IMPACT’19), in
conjunction with HiPEAC’19. Valencia, Spain. https://acohen.gitlabpages.inria.fr/impact/impact2019/

[50] Louis-Noël Pouchet, Tomofumi Yuki, et al. 2018. PolyBench 4.2 Benchmarks.
http://sourceforge.net/projects/polybench/.

[51] Mojżesz Presburger. 1929. Über die Vollstandigkeit eines gewissen systems der Arithmetik ganzer Zahlen, in Welchem
die Addition als einzige Operation hervortritt. Comptes Rendus du I congres de Mathematiciens des Pays Slaves,
92–101.

[52] William Pugh. 1991. The Omega test: a fast and practical integer programming algorithm for dependence analysis.
In Proceedings of the 1991 ACM/IEEE conference on Supercomputing (Albuquerque, New Mexico, United States)
(Supercomputing ’91). ACM, New York, NY, USA, 4–13. https://doi.org/10.1145/125826.125848

[53] William Pugh. 1994. Counting Solutions to Presburger Formulas: How and Why. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation (Orlando, Florida, USA) (PLDI ’94). ACM, New
York, NY, USA, 121–134. https://doi.org/10.1145/178243.178254

[54] Sriram Sankaranarayanan, Michael A. Colón, Henny Sipma, and Zohar Manna. 2006. Efficient Strongly Relational
Polyhedral Analysis. In Verification, Model Checking, and Abstract Interpretation, E. Allen Emerson and Kedar S.
Namjoshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 111–125.

[55] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In
SAS (Lecture Notes in Computer Science, Vol. 3148), Roberto Giacobazzi (Ed.). Springer, 53–68.

[56] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2005. Scalable Analysis of Linear Systems Using
Mathematical Programming. In Verification, Model Checking, and Abstract Interpretation, Radhia Cousot (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 25–41.

[57] Alexander Schrijver. 1986. Theory of linear and integer programming. John Wiley & Sons, Inc., New York, NY, USA.
[58] Markus Schweighofer. 2002. An algorithmic approach to Schmüdgen’s Positivstellensatz. Journal of Pure and Applied

Algebra 166, 3 (2002), 307 – 319. https://doi.org/10.1016/S0022-4049(01)00041-X
[59] D Terpstra, H Jagode, H You, and J Dongarra. 2010. Collecting Performance Data with PAPI-C. In Tools for High

Performance Computing 2009. Springer, 157–173.
[60] Ramakrishna Upadrasta. 2013. Sub-Polyhedral Compilation Using (Unit-)Two-Variable-Per-Inequality Polyhedra or

Scalability Challenges in the Polyhedral Model: An Algorithmic Approach using (Unit-)Two-variable Per Inequality Sub-
Polyhedra. Ph. D. Dissertation. Université Paris-Sud (11), Orsay, France. http://tel.archives-ouvertes.fr/tel-00818764.

[61] Ramakrishna Upadrasta and Albert Cohen. 2013. Sub-Polyhedral Scheduling Using (Unit-)Two-Variable-Per-Inequality
Polyhedra. In 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2013). Rome,
Italy.

[62] Sven Verdoolaege. 2007. Barvinok, a library for counting the integer points in parametric and non-parametric polytopes.
See https://repo.or.cz/barvinok.git.

[63] Sven Verdoolaege. 2010. Isl: An Integer Set Library for the Polyhedral Model. In Proc. of the 3rd Int. Congress Conference
on Mathematical Software (Kobe, Japan) (ICMS’10). Springer-Verlag, 299–302. https://repo.or.cz/isl.git.

[64] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral Extraction Tool. Second International Workshop on Polyhedral
Compilation Techniques (IMPACT’12), Paris, France.

[65] S Verdoolaege, R Seghir, K Beyls, V Loechner, andMBruynooghe. 2004. Analytical Computation of Ehrhart Polynomials:
Enabling More Compiler Analyses and Optimizations. In Proc. of the 2004 Int. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems (Washington DC, USA) (CASES ’04). ACM, USA, 248–258.

[66] H. Le Verge. 1992. A Note on Chernikova’s Algorithm. Technical Report 635. IRISA, Rennes, France.
[67] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm. In Proceedings of the ACM

SIGPLAN 1991 Conference on Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI ’91).
Association for Computing Machinery, New York, NY, USA, 30–44. https://doi.org/10.1145/113445.113449

[68] X Xiang, C Ding, H Luo, and B Bao. 2013. HOTL: A Higher Order Theory of Locality. In Proc. of the 18th Int. Conf. on
Architectural Support for Programming Languages and Operating Systems (USA) (ASPLOS ’13). ACM, USA, 343–356.

[69] Hang Yu. 2019. Towards an Efficient Parallel Parametric Linear Programming Solver. Ph. D. Dissertation. Université
Grenoble Alpes.

[70] Tomofumi Yuki. 2019. The Limit of Polynomials. In Ninth International Workshop on Polyhedral Compilation Techniques
(IMPACT’19), in conjunction with HiPEAC’19. Valencia, Spain. https://acohen.gitlabpages.inria.fr/impact/impact2019/

[71] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program Locality Analysis Using Reuse Distance. ACM Trans.
Program. Lang. Syst. 31, 6, Article 20 (aug 2009), 39 pages. https://doi.org/10.1145/1552309.1552310

[72] G.M. Ziegler. 2006. Lectures on polytopes. Springer Science.

https://acohen.gitlabpages.inria.fr/impact/impact2019/
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/178243.178254
https://doi.org/10.1016/S0022-4049(01)00041-X
http://tel.archives-ouvertes.fr/tel-00818764
https://repo.or.cz/barvinok.git
https://repo.or.cz/isl.git
https://doi.org/10.1145/113445.113449
https://acohen.gitlabpages.inria.fr/impact/impact2019/
https://doi.org/10.1145/1552309.1552310

	Abstract
	1 Introduction and Motivation
	2 Mathematical Background
	2.1 Integer sets, Integer maps, Cardinality and Barvinok
	2.2 Bernstein representation of polynomials
	2.3 Positive polynomials over a Polytope
	2.4 Sub-Polyhedra: Intervals and Octagons

	3 Overview of HayStack Exact Enumeration Algorithm & Infrastructure
	4 Overview of BullsEye framework and approximation using sampling
	4.1 Overview of our proposed system
	4.2 Sparse Domain Enumeration (SparseEnum)

	5 Linearizing using Handelman's theorem
	5.1 A framework for linearization using Handelman's theorem
	5.2 Linearization of a polynomial from nussinov
	5.3 Linearization using sub-polyhedral approximations
	5.4 Linearization and counting of a polynomial from correlation

	6 Linearization using Bernstein Approximation
	7 Experimental Evaluation
	7.1 Execution time results
	7.2 Accuracy results
	7.3 Discussion

	8 Related Work
	9 Conclusions and Future Work
	References

