
HAL Id: hal-03921090
https://hal.sorbonne-universite.fr/hal-03921090

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Virtual Machine Approach for High-level FPGA
Programming

Loïc Sylvestre, Jocelyn Sérot, Emmanuel Chailloux

To cite this version:
Loïc Sylvestre, Jocelyn Sérot, Emmanuel Chailloux. A Virtual Machine Approach for High-level
FPGA Programming. 2022 IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2022, New York City, United States. pp.1-1,
�10.1109/FCCM53951.2022.9786082�. �hal-03921090�

https://hal.sorbonne-universite.fr/hal-03921090
https://hal.archives-ouvertes.fr


A Virtual Machine Approach
for High-level FPGA Programming

Loı̈c Sylvestre
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France
Email: loic.sylvestre@lip6.fr

Jocelyn Sérot
Université Clermont Auvergne, CNRS, SIGMA

Institut Pascal F-63000 Clermont-Ferrand, France
Email: jocelyn.serot@uca.fr

Emmanuel Chailloux
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France
Email: emmanuel.chailloux@lip6.fr

Abstract—We introduce a virtual machine approach to pro-
gram FPGAs using a high-level programming language (with
automatic memory management) while hardware-accelerating a
subset of it. This offers an interesting trade-off between high-
level synthesis tools and pure software approaches. We describe
a preliminary implementation of this hybrid approach using the
OCaml language on Intel FPGAs. The associated toolset fully
automatizes the compilation process from the OCaml source
program to the SoPC hardware and software configuration. First
results are encouraging, both for programmability and efficiency.

I. OVERVIEW

FPGA design requires more and more high-level program-
ming features for meeting the needs of productivity and
customization from hardware designers and programmers.

To fulfill these needs, we introduce the following virtual
machine approach: given an existing compiler for a high-level
programming language producing bytecode interpretable by
a virtual machine (VM), a port of this VM to a softcore
processor suffices to fully support such language on FPGA.
Then, hardware acceleration of a subset of this language allows
to exploit parallelism and customization possibilities of the
FPGA. The resulting circuit can interoperate with the softcore
processor, especially to access data structures (such as arrays,
matrices and trees) dynamically allocated by the VM runtime.

We assess this approach with OCaml, a statically-typed
multi-paradigm (functional, imperative, modular and object-
oriented) programming language. Our contributions are:

• O2B (OCaml on board) [1], an implementation of the
OCaml VM based on OMicroB [2], targeting the Nios II
softcore and allowing to use custom hardware from them;

• Macle (ML accelerator) [3], a compiler for a subset of
OCaml producing VHDL descriptions of custom hard-
ware, scripts and glue code to automatically extend O2B.

II. PRELIMINARY EVALUATION

First results on FPGA programming in OCaml suggest that
using O2B and Macle achieves good performances. To illus-
trate this, we compare two formulations of the gcd algorithm.
One is written in C compiled by gcc -O2 targeting the Nios II
and the other in OCaml compiled by Macle. We observe a
speedup of almost 30 for the OCaml version against the C one.

Macle also exploits parallelism. For instance, the expression
gcd(a, b)+gcd(b, a) is compiled as a synchronization barrier in
which the circuit implementing the gcd function is duplicated,
hence providing an extra 2× speedup. Macle specializes as
well a map OCaml function to produce parallel code: let p
be a local static array (or ”packet”) of size 16, the expression
map(gcd, p) allows an additional speedup of almost 16. This
parallel skeleton is generalized to OCaml arrays (dynamically
allocated by the VM runtime in the on-chip memory). The
latter processes each array element in parallel by packet of a
fixed size (given by the programmer) while optimizing trans-
fers to compensate the overhead of accessing the memory bus.

III. CONCLUSION

Benefits of our VM approach includes:
• ease of implementation on a softcore processor commu-

nicating with custom circuits through shared memory;
• productivity gain, especially for dynamic allocation and

processing of complex data structures;
• hardware acceleration of a subset of the source language

facilitating both prototyping and simulation.
Future work will focus on implementing the VM heap in

external memory to dynamically allocate large data structures
while optimizing processing over them from the hardware-
accelerated code. This will allow to program realistic applica-
tions mixing numerical and symbolic computations.

IV. ACKNOWLEDGMENT

This work was partially supported by the Center for Re-
search and Innovation on Free Software (IRILL).

REFERENCES

[1] “O2B.” [Online]. Available: https://github.com/jserot/O2B
[2] S. Varoumas, B. Vaugon, and E. Chailloux, “A Generic Virtual Machine

Approach for Programming Microcontrollers: the OMicroB Project,” in
9th European Congress on Embedded Real Time Software and Systems
(ERTS 2018), Toulouse, France, Jan. 2018.

[3] “Macle.” [Online]. Available: https://github.com/lsylvestre/macle

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle

	Overview
	Preliminary Evaluation
	Conclusion
	Acknowledgment
	References

