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Accelerating OCaml programs on FPGA

Loïc Sylvestre · Emmanuel Chailloux ·
Jocelyn Sérot

Abstract This paper aims to exploit the massive parallelism of Field-Pro-
grammable Gate Arrays (FPGAs) by programming them in OCaml, a multi-
paradigm, statically-typed language. It presents O2B, an FPGA-based imple-
mentation of the OCaml virtual machine using a softcore processor, running
the entire OCaml language. It then introduces Macle, a language to express,
in ML-style, hardware-accelerated user-defined functions. Macle exposes fine-
grained parallelism available at the circuit level and enables to manipulate
data structures dynamically allocated by OCaml programs. This hybrid ap-
proach, mixing Macle and OCaml codes, allows to easily prototype FPGA
applications.

Keywords high-level programming, OCaml, virtual machine, FPGA, parallel
computing, hardware acceleration, compiling, finite state machines

1 Introduction

Reconfigurable circuits, like Field-Programmable Gate Arrays (FPGAs), are
suited to design custom architectures exploiting the concurrent nature of hard-
ware structures [5]. The configuration of an FPGA is commonly produced by a
synthesis toolchain supporting a hardware description language (HDL) such as
VHDL or Verilog. Other examples of more expressive HDLs include Chisel [3]
which is embedded in Scala, Clash [2] in Haskell, MyHDL [8] in Python and
HardCaml1 in OCaml. Nevertheless, the Register Transfer Level (RTL) pro-
gramming model, on which HDLs are based, is characterized by a very low
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level of abstraction. Hence, different approaches aim to hardware-accelerate
software applications using FPGAs.

– There have been some attempts to compile small applicative languages,
such as SHard [19], FLOH [22] and Basic SCI [11], directly to RTL [10].
A representative example is SAFL (Statically Allocated Parallel Functional
Language) [16], which is a first-order ML-like language limited to tail re-
cursion and static data structures.

– For more complex languages, custom processors or virtual machines can be
implemented in RTL to run high-level languages on FPGA. JAIP [23] is a
Java Virtual Machine (JVM) written in VHDL, calling a softcore proces-
sor2 to handle dynamic class-loading. JikesRVM [15] is a JVM implemented
on a CPU using an FPGA for accelerating automatic managing of dynamic
memory (garbage collection / GC).

– High-Level Synthesis (HLS) promotes the use of imperative languages to
design hardware [17]. Most of HLS tools, such as Catapult C or Handel-C,
support a subset of C annotated with pragmas to optimize the compilation
to RTL. LegUp [4] runs C programs on a softcore processor, or Pylog [12]
on a hardcore processor, while compiling functions to RTL, (that do not
use dynamic allocation and recursion).

– Other HLS tools3 use OpenCL to express parallel applications and target
heterogenous architectures involving Multicores, GPUs and FPGAs. Tor-
nadoVM [18], Aparapi [20] and GVM [9] implement the JVM in OpenCL.
TAPA [6] is framework for task parallelism targeting OpenCL. These imple-
mentations, however, do not sufficiently expose the fine-grained parallelism
available on the FPGA as well as their customization possibilities.

– FPGAs allows to implements parallel skeletons [7] and concurrency control
constructs [6]. For instance, Lime [1] is a task-based data-flow programming
language compiled to OpenCL or Verilog, and interacting with Java byte-
code running on a CPU. Kiwi [21] is a subset of C♯ compiled to RTL and
offering events, monitors and threads.

These approaches highlight several needs:

– runtime systems for high-level programming on FPGA using a softcore
processor (like JAIP);

– partitioning between hardware accelerated code and a runtime (like Pylog);
– hardware acceleration of user-defined functions (like SAFL);
– parallel programming constructs (like Kiwi);
– uniformity between a host language and an embedded language used for

acceleration (like Lime).

To fulfill these needs, we have ported on a softcore processor the OCaml VM
and its runtime (including GC), to support the entire OCaml language. This
VM approach is combined with hardware acceleration of functions expressed

2 A Softcore processor is processor implemented in the reconfigurable part of an FPGA.
3 Such as AMD Vivado HLS and Intel OpenCL SDK.



Accelerating OCaml programs on FPGA 3

in an ML-like language extended with parallelism skeletons able to process
data structures dynamically allocated by the OCaml runtime. This allows to
take full advantage of the fine-grained parallelism of the FPGA, while pro-
gramming it in a high-level way, in OCaml, allowing quick prototyping, static
type-checking, simulation and debugging.

Our contributions are:

– O2B4 (OCaml On Board), a port of the OMicroB [24] implementation of
the OCaml Virtual Machine targeting the Nios II softcore processor imple-
mented on an FPGA. O2B enables to call custom hardware accelerators
from OCaml programs.

– Macle5 (ML accelerator), a language to program, in ML-style, computation
kernels to be accelerated (through a Macle to VHDL compiler). Such com-
putation kernels, called Macle circuits thereafter, are used by the OCaml
programs executed by O2B on FPGA. The interoperability layer between
OCaml and the Macle functions is automatically generated. It includes C
and OCaml code, VHDL descriptions and scripts to control the synthesis
workflow. Macle offers language constructs to manipulate OCaml values,
especially data structures (such as lists, arrays and matrices) allocated in
the OCaml VM heap. In particular, Macle provides parallelism skeletons
over OCaml arrays to expose fine-grained parallelism and optimize memory
transfers.

The remainder of this paper is organized as follows. Section 2 introduces
the O2B infrastructure to run OCaml programs on FPGA. Section 3 proposes
a hybrid approach to accelerate OCaml programs augmented with Macle func-
tions. Section 4 presents the compilation of Macle, using an intermediate lan-
guage (HSML, Hierarchical State Machine Language) to abstract the VHDL
target. Section 5 evaluates our approach on different benchmarks to measure
the speedup resulting from using hardware-acceleration in Macle. Section 6 de-
scribes a mechanism using parallelism skeletons to optimize memory transfers
when accessing the OCaml heap. Section 7 discusses the acceleration elements
and programming style obtained and then identifies future work.

2 Customizable OCaml programs on FPGAs

O2B (OCaml On Board) is a tool to run OCaml programs on FPGAs. It is
based on OMicroB [24], an implementation of the OCaml VM dedicated to
high-level programming of microcontrollers with scarce resources.

4 https://github.com/jserot/O2B
5 https://github.com/lsylvestre/macle

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle
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2.1 Compilation flow for OCaml to FPGAs

Figure 1 describes the configuration process used to run OCaml programs on
an Intel FPGA6 via O2B. The OCaml bytecode (generated by the OCaml com-
piler) is transformed into a static C array, then embedded in the C program
implementing the bytecode interpreter and the O2B runtime library (includ-
ing a GC). The OCaml heap and stack are C static arrays. This program is
associated with the functions of the Board Support Package (BSP lib) giving
access to the hardware resources of the target board. The resulting application
is compiled to binary code executable by the Nios II softcore processor.

Source 
program

.ml

OMicroB
Bytecode 

+ interpreter
+ runtime

.c

gcc-
nios

Binary
executable

.elf

QSysTM
FPGA
config

BSP lib

QuartusTM
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Bitstream
.sof

.c

NiosII

IO

FPGA

BOARD

F1

C1

Avalon bus

Cn
...

NiosII
config.

Fn
...

IO...

Fig. 1 Compilation flow targeting Intel FPGAs

The complete FPGA configuration includes the exact architecture of the
processor used as well as a set of external RTL descriptions F1 · · · Fn to be
implemented as custom components C1 · · · Cn. Technically, this configuration
step is carried out by the QSys tool of the Intel Quartus chain. It generates a
set of VHDL files which constitutes the description of the hardware platform.
This description includes the components C1 · · · Cn and the Nios II processor
to be synthesized through the Quartus chain to reconfigure the FPGA.

The OCaml heap and stack can be stored either in the on-chip memory of
the target FPGA (for small programs) or in external DRAM. In both cases,
access is provided by means of an interconnection bus7. This bus also supports
data transfers between the custom components and the binary code executed
by the processor. Both the softcore and the custom components can access the
physical IOs of the FPGA.

6 This process is general and can be adapted to target other FPGA families.
7 Avalon bus for Intel platforms.
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2.2 Calling accelerators from OCaml programs

The OCaml language offers an OCaml/C foreign function interface (FFI) to
call C functions from OCaml programs. These C functions, running on the
softcore, can in turn invoke custom components implemented on the FPGA.
It is thus possible to use custom components from OCaml programs compiled
to bytecode executed by O2B. The communication layer between O2B and a
custom component is done via a set of dedicated registers associated to the
component and manually mapped into the memory of the softcore processor.

Figure 2 shows the source code of an OCaml program designed to run
with O2B. It defines three implementations of the gcd (the greatest common
divisor) algorithm. The difference of two calls to Timer.get_us (before and
after a computation) in the OCaml function chrono gives the execution time
of the argument function call in microsecond.

OCaml code C code

external gcd_c : int -> int -> int ;;
external gcd_rtl : int -> int -> int ;;

let rec gcd_caml a b =
if a > b then gcd_caml (a-b) b else
if a < b then gcd_caml a (b-a) else a ;;

let chrono f a b =
let t1 = Timer.get_us () in
let res = f a b in
let t2 = Timer.get_us () in
print_int (t2-t1) ;;

let main() =
Timer.init () ;
let a = 5000 and b = 7000 in
chrono gcd_caml a b ;
chrono gcd_c a b ;
chrono gcd_rtl a b ;;

main ();;

value gcd_c(value m, value n){
int a, b;
a = Int_val(m);
b = Int_val(n);
while ( a != b ) {

if ( a > b ) a = a-b;
else b = b-a;

}
return Val_int(b);

}

value gcd_rtl(value m, value n){
int res;
GCD_ARG(0,Int_val(m));
GCD_ARG(1,Int_val(n));
GCD_START();

while (! GCD_RDY())
;

res = GCD_RESULT();
return Val_int(res);

}

Fig. 2 An OCaml program executable by O2B

The C function printf, and by extension, the OCaml functions print_int
and print_string use the Board Support Package of the FPGA target to
write on a console8. The gcd_c and gcd_rtl functions are defined as external
functions in the OCaml code using the standard FFI mechanism. Calling a
custom component from the gcd_rtl function involves sending the arguments
(resp. retrieving the result) to (resp. from) the corresponding dedicated reg-
isters of the custom component. In figure 2, the corresponding operations are
abstracted by the macros GCD_ARG, GCD_START, GCD_RDY and GCD_RESULT).

8 The FPGA board is connected to a host PC via an UART connection for printing and
debugging.
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Moreover, describing the behavior of the component, in synthetizable VHDL,
is tedious. For the GCD example, describing this behavior and exchanging
the arguments and result respectively requires 50 and 100 lines of VHDL. Fi-
nally, this GCD component must be mapped into the global configuration of
the system implemented on the FPGA (called the System on Programmable
Chip, SoPC), either manually (using the QSys tool) or by scripting. With the
compilation flow introduced in the next section, RTL descriptions of custom
components as well as glue code between OCaml and these components (in-
cluding OCaml, C and VHDL files) will be automatically generated from a
high-level formulation in the Macle language.

3 A hybrid approach for high-level FPGA programming

The O2B experiment described in the previous section enables to run OCaml
programs on FPGA via a softcore processor and call hardware accelerators
from them. The difficulty is still to program these accelerators and synthesize
them on the same FPGA as the softcore. In this section, we propose to express
these accelerators in an ML-like language compiled to RTL. This language,
called Macle (ML Accelerator), can inter-operate with the OCaml runtime of
O2B and therefore can be used to accelerate OCaml host programs on FPGA.

3.1 Compilation Flow

Figure 3 shows our compilation flow of OCaml to FPGA. It automatically
generates the configuration of an FPGA from an OCaml program extended
with hardware-accelerated functions defined in Macle. OCaml code is compiled
to bytecode to be executed by O2B targeting a softcore processor implemented
on the FPGA.

program

softcore

FPGA configuration

OCaml

Macle FFI C/OCaml

VHDL

bytecode + O2B
standard compilation

hardware acceleration

glue code generation

Fig. 3 An hybrid approach to run OCaml programs on FPGA via O2B and Macle

Each Macle circuit is a function compiled to VHDL and then synthesized as
a custom hardware component usable from OCaml programs. The glue code is
generated from the inferred type of the Macle circuit. The FPGA configuration
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is automatic and easily programmable without prior knowledge of hardware
description languages.

3.2 The Macle language

Macle is a ML-like language which includes:
– a functional-parallel Core language (called Macle Core) compiled to RTL;
– additional language constructs (implemented in RTL) to interact with the

OCaml runtime.
Figure 4 defines the syntax of Macle.

The left side of the figure defines Macle Core. This language is indepen-
dent of OCaml and can be used to program synchronous circuits and compose
them in parallel. We denote by −→o (or o1 · · · on) a non-empty sequence of
objects oi. Macle Core includes variables (taken from a set of name X ), con-
stants, application of builtin operators and conditionals. It also offers local
mutually tail-recursive functions, function calls and let bindings. A simple let
binding let x = e in e′ first computes e, then e′. By extension, a multiple
let-binding let x1 = e1 and · · · xn = en in e′ first computes the expressions
e1 · · · en in parallel and synchronizes before computing “e′”. For instance, the
hardware implementation of (let x = factorial 10 and y = factorial 11 in x+ y)
instantiates twice the implementation of factorial function in order to enable
their parallel execution. Function call uses an implicit parallel let-binding to
compute the arguments passed to the function. Non-recursive functions can
take functions as arguments9.

Macle Core Interaction with OCaml
circuit ci ::= circuit f −→x = e

constant c ::= true | false | ⟨integer⟩ | ()
variable x, y, f ∈ X
operator1 ⊖ ::= − | not | ··
operator2 ⊕ ::= + | < | ··
expression e ::= x | c | ⊖ e | e1 ⊕ e2

| if e then e1 else e2
| let x1 = e1 and
· · · xn = en in e′

| let
−−−−−→
f−→x = e in e

| let rec
−−−−−→
f−→x = e in e′

| f −→e
| ··

exception exn ::= Failure ⟨string⟩
pattern p ::= C | C(x1, · · · xn)

expression e ::= ··
| raise exn
| match e with

−−−−→
p→ e′

| ! e
| e := e′

| e.(e′)
| e.(e′)← e′′

| array_length e
| e ; e′

| for x = e to e′ do e′′

done

Fig. 4 Syntax of the Macle language

The right side of Figure 4 presents the Macle constructs used to interact
with the OCaml runtime :

9 Each call of these functions are specialized and inlined at-compile time.
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– !e for accessing to the content of the reference e;
– e := e′ for setting the content of the reference e to the value of e′;
– e.(e′) for accessing to the index e′ of the array e;
– e.(e′)← e′′ for setting the value of e′′ at the index e′ of the array e.
– for raising a built-in exception parametrized by literal strings,
– for surface pattern matching on algebraic datatypes (ADT),

Note that Macle circuits cannot allocate data structures; they can only
manipulate values previously allocated in the OCaml heap by the VM.

Finally, the sequence e ; e′ is a syntactic sugar for let x = e in e′ where x
is a fresh name. For-loops are encoded with let-rec.

To preserve the semantics and the safety of the Macle code, multiple let-
bindings are sequentialized when they contain memory accesses or raise an
exception. General recursion is supported via a program transformation pro-
ducing code containing only tail-recursive calls and using an explicit stack.

Figure 5 shows three Macle circuits and an OCaml program calling a Macle
circuit. The circuit gcd_rtl expresses the Gcd algorithm in Macle Core. The
circuit rev reverses the order of the elements of an OCaml array. The circuit
collatz computes the stopping time of a Collatz [13] sequence (also called
Syracuse) starting from a given integer.

Computations in Macle
circuit gcd_rtl m n =

let rec gcd a b =
if a > b then gcd (a-b) b else
if a < b then gcd a (b-a) else a

in gcd m n ;;

circuit collatz n =
let rec next len u =

if u <= 1 then len else
if u mod 2 == 0
then next (len+1) (u/2)
else next (len+1) (3*u+1)

in next 0 n ;;

circuit rev a =
let n = array_length a in
for i = 0 to (n-1) / 2 do

let t = a.(i) in
a.(i) <- a.(n-1-i);
a.(n-1-i) <- t

done ;;

Mixing OCaml and Macle codes
type exp =
| Int of int
| Var of int
| Add of exp * exp ;;

circuit eval_exp env e =
let rec eval e =

match e with
| Int(n) -> n
| Var(k) -> env.(k)
| Add(e1,e2) ->

eval e1 + eval e2
in eval e ;;

let main() =
let env = [|100|] in
let e = Add(Int(1),Var(0)) in
try print_int (eval_exp env e)
with Failure s -> print_string s ;;

main();;

Fig. 5 Examples of Macle circuits and call from OCaml program

The circuit eval_exp evaluates an abstract syntax tree allocated in the
OCaml heap. It safely accesses the OCaml heap since the exception Failure is
(implicitly) raised in case of an out of bounds index or a non-exhaustive pattern
matching. This exception can then be caught in OCaml by the try · · · with
construct. This program evaluates the expression Add(Int(1),Var(0)) recur-
sively and prints the result. Evaluate Var(0) fetches the value at the index 0
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of the array env = [|100|]. Recursion in Macle uses an explicit call stack, as
described in section 5. Tail-recursion does not require a stack.

4 Compiling Macle

The global compilation flow from Macle to VHDL is depicted Figure 6. It
involves four passes. The first pass consists in normalizing the source code:

– renaming all bindings in the source code with unique names;
– rewriting the code in so-called Administrative Normal Form [14] (introduc-

ing let-bindings for each step of computation);
– inlining functions by recursively duplicating their body at each call site

(except recursive ones);
– transforming recursive functions which are not tail-recursive into tail-recur-

sive ones using an explicit stack.

The second pass compiles Macle into an intermediate language, called
HSML (Hierarchical State Machine Language), allowing to express parallel
composition of hierarchical finite state machines. The third pass flattens the
hierarchical structure of HSML. The fourth pass translates a flat HSML de-
scription into VHDL.

Macle HSML

OCaml VHDL

normalization
simulation

compilation
flattening

translation

Fig. 6 Compilation flow of Macle to VHDL

At each point of the compilation flow, an OCaml backend is provided for
simulation and debugging on a PC.

Due to space limitations, the rest of this section only describes the compi-
lation of Macle Core to HSML.

4.1 Targeting the register transfer level

Synchronous finite state machines (FSM) are commonly used to describe com-
putations at the register transfer level (RTL). A FSM is classically defined by
a set of states (names) and a set of transitions. Each transition connects a
source state to a destination state and can be associated to a set of guards
and a set of actions. Guards define when the transition is enabled. They can
depend on inputs and local variables. Actions are performed when the transi-
tion is enabled and can write outputs and local variables. Transitions are only
taken at the rising edge of a global clock. At each clock edge, if a transition
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starting from the current state has all its guards validated, it is enabled, the
associated actions are performed (instantaneously) and the destination state
becomes the current state.

FSMs are classically encoded in VHDL as synchronous processes with asyn-
chronous reset. Inputs, outputs and local variables are implemented as VHDL
signals with a dedicated signal representing the current state. At each ris-
ing edge of the input clock, depending on the value of the current state and
some conditions involving inputs and local variables, the next state value is
selected and the value of outputs and local variables is updated. The FSM is
re-initialized, asynchronously, whenever the reset input signal becomes true.

Figure 7 gives a graphical representation of a FSM describing the compu-
tation of a gcd function and its encoding in VHDL.

Idle

Gcd
a > b

a← a− b
a < b

b← b− a

a = b
result← a

start
rdy← false

a← m
b← n

¬start
rdy← true

entity gcd_rtl is
port( signal clk, reset : in std_logic;

signal start : in std_logic;
signal rdy : out std_logic;
signal m, n : in signed(30 downto 0);
signal result : out signed(30 downto 0));

end entity;

architecture rtl of gcd_rtl is
type t_state is (Idle, Gcd);
signal STATE : t_state;
signal a, b : signed(30 downto 0);

begin process(reset,clk) begin
if reset = ’1’ then
STATE <= Idle;

elsif rising_edge(clk) then
case STATE is

when Idle =>
if start then

rdy <= false;
a <= m;
b <= n;
STATE <= Gcd;

else
rdy <= true;
STATE <= Idle;

end if;
when Gcd =>

if a > b then
a <= a - b;
STATE <= Gcd;

elsif a < b then
b <= b - a;
STATE <= Gcd;

else
result <= a;
STATE <= Idle;

end if;
end case;

end if
end process;

end architecture ;

Fig. 7 FSM and VHDL implementation of the Gcd algorithm (given in Macle Figure 5)

The start input and rdy output are used respectively to start and signal
the end of the computation. In the VHDL code, modifications of the state vari-
able STATE as well as the outputs and local variables are denoted using signal
assignments (<signal_name> <= <expression>). Assignments performed at
the same clock edge are performed concurrently, i.e. the expressions denoted
by the right hand sides (RHSs) are all evaluated in parallel and then, and
only then, the signals designated by the left hand sides (LHSs) are updated
simultaneously. Note that in the code given Figure 7, arguments and result
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are encoded as 31-bit signed integers. This is to have the same representation
of OCaml value than in the O2B runtime, in order to call this circuit from
OCaml programs.

By declaring separate processes, each encoding a given FSM, within the
same entity/architecture, it is easy to implement synchronous parallel com-
position of FSMs. Each FSM is triggered by the same global clock and has
access to the signals declared in the architecture. However, these signals can
only be shared for reading as a signal written by a process cannot be written
by another process.

4.2 HSML : a FSM-based intermediate language

We do not compile Macle circuits directly to VHDL. Instead, we use an inter-
mediate language, HSML (Hierarchical State Machine Language) for describ-
ing the behavior of FSMs and expressing their composition, and which can be
easily translated to VHDL.

Figure 8 defines the syntax of HSML A circuit is a parallel composition
of FSMs (A1 ∥ · · · An) depending on inputs, modifying outputs and using
local variables. A FSM is a set of mutually recursive transitions in the scope
of a body used to initialize it. A transition is a thunk f() = A associating a
name f to a FSM A. HSML offers a notion of hierarchy. For instance, a FSM
let rec t1 and · · · tm in (let rec t′1 and · · · t′n in f()) is a hierarchical formu-
lation of the FSM let rec t1 and · · · tm and t′1 and · · · t′n in f().

circuit ϕ ::= circuit f −→xin returns −−→xout = var −→x in P

parallel composition P ::= A1 ∥ · · · An

FSM A ::= let rec ts in Ainit
| if e then A1 else A2

| do x1 ← e1 and · · · xn ← en then A
| f()
| P in A

transitions ts ::= ϵ | f1() = A1 and · · · fn() = An

expression e ::= x | c | ⊖ e | e1 ⊕ e2

operator1 ⊖ ::= ··
operator2 ⊕ ::= ·· | ∧ | ∨

Fig. 8 Syntax of HSML

A HSML expression e is a variable, a constant or the application of a built-
in operator. The construct (do x1 ← e1 and · · · xn ← en in A) evaluates the
expressions e1, · · · en, then assigns the results to the variables x1 · · · xn and
finally computes A.

Figure 9 shows an HSML circuit corresponding to the VHDL code given
Figure 7. This circuit was automatically generated from the Macle circuit
gcd_rtl defined Figure 5.
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circuit gcd_rtl (start,m,n) returns (rdy,result) = var a, b in
let rec idle() =

if start then
(do rdy ← false and a ← m and b ← n then gcd())

else
(do rdy ← true then idle())

and gcd() =
if a > b then
(do a ← (a-b) then gcd())

else if a < b then
(do b ← (b-a) then gcd())

else
(do result ← a then idle())

in (do rdy ← true then idle())

Fig. 9 HSML circuit implementing the Gcd algorithm

HSML exposes the semantics of the RT level (described informally on the
VHDL code of Figure 7) while offering a notion of hierarchy which makes it
close to an expression language. In particular, some HSML constructs (like
let rec and conditional) are common with Macle. Thus, HSML constitutes a
useful intermediate language for compiling Macle to VHDL.

4.3 Compiling Macle Core

The compilation CJcircuit f−→x = eK of a Macle Core circuit is defined as the
compilation of the body e of the circuit, from which the inputs, outputs and
local variables are inferred.

CciJcircuit f −→x = eK = circuit f −→xin returns −−→xout = var −−−→xlocal in

s︷ ︸︸ ︷
CJeKstart,rdy,result

where


−→xin,
−−→xout and −−−→xlocal are inputs, outputs and local

variables declarations inferred from s

start, rdy, result are fresh names

The compilation CJeKstart,rdy,result of a Macle Core expression e is a hierarchical
FSM initialized in a special state idle. It waits for the input start to be set to
the value true to start the computation. This computation assigns a value to
the output result. The output rdy notifies when the computation is done. The
auxiliary function CeJeKresult,idle

ρ is defined next. The compilation environment
ρ maps functions names to the list of their formal arguments.

CJeKstart,rdy,result = let rec idle() =
if start then (do rdy← false then CeJeKr,idle

∅ )

else (do rdy← true then idle())
in (do rdy← true then idle())
where idle is a fresh name

The compilation CeJeKresult,idle
ρ of a subexpression is inductively defined on the

syntax of the expressions. The compilation of a subexpression e which do not
contain control structures is defined as an affectation of e to a variable result
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continuing with a tail-call to a destination.

CeJeKr,idle
ρ = do r ← e then idle()

if e is a variable, a constant or an application of operator

The compilation of a Macle conditional is a HSML conditional, subexpres-
sions being inductively compiled.

CeJif x then e1 else e2Kr,idle
ρ = if x then CeJe1Kr,idle

ρ else CeJe2Kr,idle
ρ

Compiling a let rec globalizes function parameters. To achieve this, each
function name introduced by a let rec is bound to the list of its formal parame-
ters within the compilation environment ρ. The extension of ρ with a function
name f bound to its parameters x1 · · · xn is denoted by ρ[f/(x1, · · · xn)],
assuming that f is not in the domain of ρ. Alternatively, the compilation of
a function call (f x1 · · · xn) is an assignment of the values x1 · · · xn to the
formal parameters y1 · · · yn given by f(ρ), continuing with a call to f().

Ce
s

let rec f1
−→x1 = e1

and · · · fn −→xn = en in e

{r,idle

ρ

=
let rec f1 () = CeJe1Kr,idle

ρ′

and · · · fn () = CeJenKr,idle
ρ′ in CeJeKr,idle

ρ′

where ρ′ = ρ[f1/
−→x1] · · · [fn/−→xn]

CeJf x1 · · · xnKr,idle
ρ = do y1 ← x1 and · · · yn ← xn then f()

if ρ(f) = (y1, · · · yn)

The compilation CeJlet x = e in e′Kr,idle
ρ of a let with a single binding is

defined as the compilation of the subexpression e into the variable x continuing
with the compilation of the body e′.

CeJlet x = e in e′Kr,idle
ρ = let rec f() = CeJe′Kr,idle

ρ in CeJeKx,fρ

where f is a fresh name

The compilation of a let with more than one binding is defined as a paral-
lel composition of FSMs followed by a synchronization barrier activating the
execution of the compiled body of the let.

Ce
s

let x1 = e1
and · · · xn = en in e

{r,idle

ρ

(if n > 1)

=


let rec f() =

do start1 ← false and · · · startn ← false then
(CJe1Kstart1,rdy1,x1∥ · · · CJenKstartn,rdyn,xn) in
if rdy1 ∧ · · · rdyn then CeJeKr,idle

ρ else f()
in do start1 ← true and · · · startn ← true then f()


where

{
i ∈ {1, · · · n}
f, starti, rdyi are fresh names

Since they expose parallelism, let-bindings provide the main possibilities
of acceleration of OCaml programs on FPGA as shown in the next section.

5 Examples and benchmarks

We now evaluate the speedup that can be achieved by running OCaml pro-
grams on FPGA via O2B and Macle, following our hybrid approach. These
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programs are compared by taking as reference equivalent C code running on
the same softcore processor. We first consider programs written in Macle Core
(as described on the left side of figure 4), and then Macle circuits interacting
with the OCaml runtime (right side of figure 4).

5.1 Methodology

Experimental setup We use a Max10 Intel FPGA embedded on a Terasic
DE10-Lite board. This FPGA has limited resources: 50K logic elements
(LEs); 1,638 Kb of on-chip memory; a clock frequency of 50 MHz10. From a
given OCaml source program, O2B creates a C program containing the byte-
code generated by the OCaml compiler, the VM, its runtime library (including
a GC) and additional C code. The bytecode as well as the OCaml stack and
heap are both implemented with C static arrays, both stored in the on-chip
memory. The whole is compiled via the Nios II backend of gcc with optimiza-
tions enabled (-Os). All data structures manipulated by OCaml, C and Macle
code using the OCaml heap and the OCaml arrays bounds are dynamically
checked at each access.

Measuring elapsed time on a FPGA Macle circuits are called from a C block
running on the softcore. Indeed, as described in section 2.2, is necessary to
write arguments in the dedicated registers of the custom component imple-
menting the circuit, start the circuit and wait for the end of the computation
to read the result (again in the dedicated registers of the custom component).
We measure the execution time of each Macle circuit from the beginning to
the end of the corresponding C block.

5.2 Macle Core

We here assess the efficiency gains obtained both by rewriting a C function as
a Macle circuit and, possibly, replicating this circuit to parallelize the corre-
sponding computations.

Pure Computations Figure 10 shows the execution time of the gcd_rtl Macle
circuit (given Figure 5) and the gcd_c C function (given Figure 2) called by
an OCaml program. The observed Macle vs C speedup factor is 30.

A similar experiment with the Macle circuit collatz (given Figure 5) leads
to a ×60 speedup. The hardware implementation of gcd_rtl and collatz
both use approximately 360 logic elements (LEs), i.e. 0.75% of the total avail-
able on the target FPGA used here.

10 The DE10-Lite is also equiped with a 64 Mb external SDRAM but it is not used in
this series of experiments.
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(* test program *)
let main () =

let n = 40 in
let nb_it = n * (1000 * 1000) in

print_int (gcd_c nb_it 1);
print_int (gcd_rtl nb_it 1) ;;

main () ;;

Fig. 10 Execution time of a simple computation (gcd) in Macle and C

Parallel computations Figure 11 gives a circuit sum_gcd2 calling twice a func-
tion gcd_rtl and combining results. The let · · · and · · · in · · · constructs is
implemented by a synchronization barrier involving a parallel composition of
two instances of the FSMs given Figure 7.

circuit sum_gcd2 a1 · · · an y =
let rec gcd n m =

if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in
let x1 = gcd a1 y and · · ·
and xn = gcd an y in
(x1 + · · · xn)

sum_gcdn size (LEs)
sum_gcd2 753
sum_gcd4 1,413
sum_gcd8 2,828
sum_gcd16 5,135
sum_gcd32 9,823

Fig. 11 Parallelization of a computation and impact on the size of the generated hardware

The global execution time of the barrier is the max of the execution times
of the expressions (gcd ai y), to which is added the execution time of the
rest of the computation (here instantaneous). For instance, calling the circuit
sum_gcd2 with equal arguments a1 and a2 doubles the previous ×30 speedup
observed in Macle vs C (Figure 10). Generalizing this example to circuits
sum_gcdn (computing n times gcd_rtl and summing results) gives a speedup
of 30 × n in Macle vs C (e.g., sum_gcd32 is 960 times faster in Macle than
in C). This gain is only possible because the gcd local function is inlined n
times, the generated hardware using more LEs as shown on the right side of
Figure 11.

5.3 Interacting with the OCaml runtime

Macle enables hardware acceleration for the functional-imperative fragment of
OCaml, accessing directly the OCaml heap (a shared memory allocated in the
RAM) using a bus.

Left side of Figure 12 shows the execution time of a Macle circuit product
multiplying two integer matrices of size n×n, vs a C version. The Macle version
is 27 times faster than the C one. The generated hardware uses 1602 LEs.
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Right side of Figure 12 shows the execution time of the Macle circuit
eval_exp (given Figure 5) vs an OCaml version, recursively evaluating trees
of arithmetic expressions of various sizes (in number of constants and vari-
ables). Note that the realization of this Macle circuit uses 17,566 LEs because
it requires an explicit stack which is (here) implemented using LEs instead of
on-chip memory blocks. The resulting speedup is encouraging: the Macle cir-
cuit (using a recursive formulation) is 23 times faster than the C formulation.

From a programmer’s point of view, this speedup is simply obtained by
replacing a let keyword in the original OCaml formulation by “circuit”.
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Fig. 12 Execution time of Macle circuits using imperative features (a) and recursion (b)

This preliminary evaluation shows that reformulating side-effect-free C
functions as Macle circuits can bring substantial speedups (eg., up to 30 for
the gcd_rtl of Figure 5). Replicating the hardware corresponding to these cir-
cuits, intrinsically resulting in their parallel execution, allows to further boosts
these speedups (e.g., up to 960 for the sum_gcd32 example given Figure 10).

Macle also offers computations on data structures dynamically allocated
in the VM heap and accessed in an imperative manner. But for large data
structures, such as arrays, the cost of accessing the corresponding memory
can quickly create a bottleneck, as discussed in the next section.

6 Optimised tranfers and parallelism skeletons

Allowing Macle circuits to manipulate values stored in the OCaml heap has
a cost. Because this heap is implemented in shared memory11, each access re-
quires a bus transaction. When manipulating large data structures, like arrays,
the corresponding overhead can quickly become prohitive. To overcome this
problem, Macle provides some dedicated constructs, called parallelism skele-
tons aiming at minimizing this overhead and offering higher-level parallelism.
These skeletons are listed Figure 13.
11 On-chip memory in our experimental platform, but the problem would be worst if the

heap was allocated in external DRAM.
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array_map⟨n⟩ : (α→ β)→ α array→ β array→ unit
array_reduce⟨n⟩ : (α→ β → α)→ α→ β array→ α
array_scan⟨n⟩ : (α→ β → α)→ α→ β array→ α array→ unit

Fig. 13 Simple parallelism skeletons available in Macle

Each skeleton is parameterized by an integer n, which statically specifies
the size of a buffer used internally to transfer slices of the source and destina-
tion arrays between the OCaml heap and the Macle circuits.

For instance, the expression (array_map⟨64⟩ f src dst) copies the 64 first
elements of the OCaml array src into a VHDL array, computes the function f
in parallel on each element of this array and writes back the 64 resulting values
in the OCaml array dst. Processing the whole OCaml array is carried out by
iterating this transfer-execution-transfer sequence.

Figure 14 is a simple OCaml program mixing imperative features, com-
putations and a parallelism skeleton array_map⟨k⟩ within a Macle circuit
filter_mulk. It implements the Eratosthene sieve: determining all the prime
numbers less than a natural number n, by filtering an OCaml array of size
n containing integer from 1 to n. The circuit filter_mulk removes array el-
ements that are multiple of a given integer y using the gcd algorithm. This
computation is performed in parallel by group of k elements of the array, en-
coding the removed elements by the integer zero. The current prime number
used to filter the rest of the array is determined by a loop traversing the array,
element by element, skipping zeros (i.e., elements already removed).

Macle code OCaml code

circuit filter_mulk y a =
let rec gcd n m =

if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in
let remove x =

if x <= 1 then 0 else
if x == y then x else
if gcd x y == 1 then x else 0

in

if y <= 1 then () else

array_map⟨k⟩ remove a a ;;

let interval n =
Array.init n (fun x -> x + 1) ;;

let print_if_not_zero x =
if x != 0 then print_int x ;;

let eratostenek a =
for i = 1 to Array.length a - 1 do
filter_mulk src.(i) a

done ;;

let main() =
let n = (32*100) in
let a = interval n in
eratostenek a;
Array.iter print_if_not_zero a ;;

main();;

Fig. 14 A Macle circuit with a parallelism skeleton computing the Eratosthene sieve

Figure 15 shows, according to k, the size (in LEs) of the filter_mulk
circuit and the execution time of filter_mulk with argument y being 2 and a
being (interval n). Results are compared to a sequential C version. Doubling
the degree of parallelism k almost doubles both the size of the circuit and the
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speedup (taking into account the transfer time). For instance, filter_mul64
is 53 times faster than filter_mul1. Moreover, filter_mul1 is 28 times faster
than the C version, resulting in a cumulated speedup of 53× 28 = 1,484.
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1 1,240
2 1,655
4 2,487
8 4,182
16 7,521
32 15,107
64 29,739

Fig. 15 space/time trade-off of the Macle circuits filter_mulk and comparison with C

7 Conclusion

In this paper, we proposed an hybrid approach for programming FPGAs using
the OCaml language This approach consists in:

– running OCaml programs by embedding their bytecode and the OCaml
VM in a C program running on a softcore processor;

– calling hardware accelerated functions, user-defined in the Macle language,
from OCaml.

Macle is a functional-imperative subset of OCaml supporting:

– parallel and sequential compositions of computations;
– mixing computations with sequential accesses to the OCaml heap (within

the dynamic memory of the softcore processor);
– use of parallelism skeletons on dynamic data structures with optimization

of memory transfers.

Macle, as well as the intermediate language HSML used by the Macle com-
piler, are statically typed and this feature provides much stronger guarantees
on the safety of the generated circuits than using classical HDLs.

We described an implementation of this approach based on the O2B plat-
form and a complete compilation flow from Macle circuit descriptions to VHDL.
This compilation flow is fully automatized and easy to use. Moreover, it in-
cludes a simulation mode generating OCaml code from different points of the
compiler to test the applications on PC before loading them on FPGA.

Preliminary results, obtained on small benchmarks are very encouraging.
They show in particular that important speedups (up to the three orders
of magnitude, compared to C code running on the hosted softcore) can be
obtained by combining the ability to compile a function to hardware and
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the possibility to replicate the corresponding hardware in order to use data
parallelism. Parametrizable parallelism skeletons both offer a way to tackle
the bottleneck occurring when exchanging data between the OCaml program
and the accelerated functions and also a very practical way to explore the
time vs. space trade-off, a classical issue when programming FPGAs (reducing
computing time by increasing the number of used logic elements).

The work described here offers many interesting paths for future work.
First of all, scaling up for larger applications, both symbolic and numeri-

cal, is an important point to convince the OCaml community to use FPGAs,
but also the FPGA community to use high level languages. For this, a techni-
cal but critical issue is the ability to use larger, external memory chips, with
optimized transfers (using DMA facilities for example) to store large dynami-
cally allocated data structures. The ability to implement local stacks used by
circuits to realize non-tail recursion (such as evoked in section 5.3) in on-chip
memory (instead of LEs) is another key point to allow large and complex sym-
bolic computations to be implemented on moderately-sized FPGAs. From a
programmer’s point of view, the definition and implementation of new paral-
lelism skeletons, including, possibly, domain-specific skeletons, could also help.

Concerning the tool chain itself, we plan to switch to fully open source
design and synthesis tools, with the idea that using such tools would facilitate
the static analysis of the Macle circuits and the prediction of the space and
time characteristics of the generated hardware (LE usage and execution time).
These information could be used, for example, to decide which circuit should be
duplicated, and also to provide guarantees on applications interacting with the
outside world, including critical applications using synchronous programming
models (close to synchronous FSMs).

In a longer term, we could also explore other ways to accelerate both the
runtime (memory and exception management) and the VM interpreter by par-
tially implementing them as circuits, or even try to create applications using
different levels of parallelism by using multiple VMs sharing Macle circuits.
The latter could provide an interesting approach to exploit heterogeneous plat-
forms including multi-cores, GPUs and FPGAs for example.
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