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Abstract

The study of the thermodynamics, kinetics, and microscopic mechanisms of chem-

ical reactions in solution requires the use of advanced free-energy methods for predic-

tions to be quantitative. This task is however a formidable one for atomistic simulation

methods, as the cost of quantum-based ab initio approaches, to obtain statistically

meaningful samplings of the relevant chemical spaces and networks, becomes exceed-

ingly heavy. In this work, we critically assess the optimal structure and minimal size

of an ab initio training set able to lead to accurate free energy profiles sampled with

neural network potentials. The results allow to propose an ab initio protocol where the

ad hoc inclusion of a machine-learning (ML)-based task can significantly increase the

computational efficiency, while keeping the ab initio accuracy and, at the same time,

avoiding some of the notorious extrapolation risks in typical atomistic ML approaches.

We focus on two representative, and computationally challenging, reaction steps of the
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classic Strecker-cyanohydrin mechanism for glycine synthesis in water solution, where

the main precursors are formaldehyde and hydrogen cyanide. We demonstrate that

indistinguishable ab initio-quality results are obtained, thanks to the ML-subprotocol,

at about one order of magnitude less of computational load.
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Introduction

Prebiotic chemistry and ab initio molecular dynamics

The study of chemical reactions in solution by means of ab initio molecular dynamics (AIMD)

is a full branch of computational chemistry, which is of particular interest for prebiotic

chemistry, the chemistry of the origins of life.1 Many hypotheses on how bio molecules formed

from elementary bricks exist. One of them is that life building blocks were brought to earth

from the interstellar medium: they were either formed in comets2,3 or in interstellar ice via

UV radiation.4,5 Other works show that elementary biomolecules were formed on earth in a

primordial soup, hydrothermal submarine vents6 or mineral surfaces.7–9 All these possible

prebiotic synthesis environments imply very different conditions to investigate. This is where

AIMD comes into play: it allows one to calculate interatomic forces from the quantum-based

potential energy surface (PES) of a given systems, in order to simulate the motion of atoms

in organic molecules and biomolecules, while explicitly including the non-trivial presence

of the chemical environment, i.e. the solvent and/or the mineral surfaces. In order to

be predictive and quantitative, it needs to be used in conjunction with enhanced sampling

methods such as metadynamics,10,11 umbrella sampling (US)12 or transition path sampling.13

This is necessary to overcome the energy barriers of reactions and thus the time limitations

of computer simulations in order to explore the possible pathways in a given environment.

In our group, some successful results were obtained in the past few years using these

methods in different contexts. The famous Miller-Urey experiment14 was computationally

reproduced15 and the mechanism of formation of glycine explained through a novel pathway,

with formamide as a crucial intermediate. The decomposition pathways of amino acids

in the supposed hydrothermal conditions of meteoritic parent bodies was studied,16 also

to obtain clues about a possible origin of their chirality. Recently, we have thoroughly

studied the classic Strecker-cyanohydrin synthesis of glycine,17 generally considered the main

synthesis pathway of glycine, the simplest amino acid, in the primordial Earth and universe.
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Our goal was both to reproduce this relatively complex textbook reaction, consisting of

seven elementary chemical steps, and to complete the sparse existing experimental data on

thermodynamics by accurate ab initio results.

To this end, as in our previous studies, we calculated the free energy surfaces and barriers

for each intermediate chemical step using an AIMD-based enhanced-sampling protocol the

exploration of the chemical pathways, the identification of the transition states (TS), the

definition of precise RCs, and the accurate calculation of free-energy landscapes via umbrella

sampling (US), which in turn requires the calculation of a large number of ab initio forces.17,18

This latter part, although necessary to ensure the statistical convergence of the FES to

within 1-2 kcal/mol, is the computationally most expensive one, and thus the bottleneck

significantly limiting the extent of potential applications, and the possibility to upscale the

protocol to more realistic prebiotic environments, possibly including mineral surfaces.19 In

the past few years, some attempts to overcome this obstacle in computational prebiotic

chemistry were carried out exploiting density functional tight-binding approaches.20 More

recently, machine learning approaches to describe the local PES along chemical processes in

solution have emerged as a very appealing opportunity.21

Machine learning potentials with ab initio accuracy

In the past few years, a number of machine learning methods and frameworks have been

developed to tackle the problem of obtaining ab initio-level PES at a reasonable compu-

tational cost.22–28 Although these methods have significant differences, the basic principle

is common: using AIMD trajectories, a model is trained and then used to infer ab initio

quality PES, and thus perform ab initio quality molecular dynamics simulations for a much

lesser computational cost.

This approach can be used to access larger system sizes,29,30 and/or to perform simula-

tions longer than the time reachable using traditional AIMD simulations, in order to observe

interesting physical transformations and/or improve statistical sampling.31
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However, two important questions still need to be fully addressed in ML-based molecular

dynamics: how to build optimal training sets, and how to critically assess the quality of

machine-learning potentials in chemical reactions, a difficult setting where the system is led

to explore very energetic configurations far from the geometries of the metastable minima.

An interesting tool in this respect is the ”neural-network committee” method.32 It consists

in training several NNPs on the same training set but with different random seeds. In this

way, for the same configuration, the NNPs will give different results. The standard deviation

of the predictions of the different members of the committee on some observable is used to

assess the reliability of the average prediction. Indeed a good agreement between the different

NNP means the configuration is close-enough to the training set for the NNP to be accurate,

while a higher value means that the prediction cannot be trusted.

This technique can be used to build a training set using an iterative training33,34 proce-

dure. First, a small set of NNPs is trained with existing AIMD data; then, a MD simulation

is run using one of the NNP of this set. After this step, configurations that display a stan-

dard deviation over the set of NNP on the prediction of some observable above a certain

threshold, are recomputed using single point ab initio calculations and added to the training

set. This is repeated until no more configurations are evaluated as mis-predicted.

The iterative learning framework has led to thorough studies of systems with ab initio

quality at reduced computational cost.35,36 More recently, the committee method has been

also used to quantify the error on an observable computed using NNP-based molecular dy-

namics simulations,37 as well as a way to iteratively select configurations from an AIMD

trajectory to build optimal training sets.38 A recent in-depth study of committee methods39

has shown that in iterative schemes randomly selecting additional configurations to be evalu-

ated at DFT level to improve the training set (random sampling) is equivalent to a selection

based on committee disagreement beyond a threshold, but that the latter has to be carefully

calibrated.

In this work we adopt NNP-driven enhanced-sampling molecular dynamics simulations
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to study chemical reactions in solution. This is a challenging goal as it requires the NNP

to explore high-energy configurations far from equilibrium, with highly distorted chemical

bond geometries. In particular, for a given A → B reaction, we aim at extensively sampling

along the RC connecting the two basins, with the aim of reconstructing the accurate free

energy landscape through US simulations. To this end, it is crucial to train NNPs capa-

ble to yield locally-accurate and well-behaved PES throughout the relevant reaction space.

Although enhanced sampling has been combined with machine-learning potentials in a few

recent studies,21,37,40 including a combination of US with NNP,41 the critical assessment and

systematic use of NNP for chemical reactions in solution are still lacking. In the same spirit

as this work, but using a different angle of approach, the ∆ − ML idea has already been

used along with enhanced sampling in a previous study to obtain high accuracy free energy

for a more affordable computational cost.42

In the present study we present benchmarks and construction principles for training

sets. We carefully assess the total computational cost of the training and data production

trajectories, with the goal of limiting the total amount of ab initio calculations without losing

accuracy. We also introduce a simple approach to ensure long stable trajectories with high

NNP-committee agreement: at variance with a previous method where the error is evaluated

from deviations between DFT and NNP predictions,43 our simple scheme avoids the burden

of additional ab initio calculations.

We apply the new scheme to two reaction steps of the Strecker-cyanohydrin synthesis

of glycine in water, previously studied at the DFT level.17 Our results indicate that a sur-

prisingly reduced amount of suitably-chosen ab initio samples is sufficient to train a NNP

potential able to sample the full reaction coordinate space between minima, leading to ac-

curate free-energy profiles and barriers at a significantly reduced cost compared to purely

DFT simulations.
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Methods

Neural network potentials

In this paper, we use the Behler-Parrinello neural networks approach,24 in which the potential

energy of the system is decomposed as the sum of individual atomic contributions as in

equation 1, where Natoms is the number of atoms and Ei is the atomic contribution:

E =
Natoms∑
i=1

Ei (1)

Each atomic contribution is computed using a neural network, and to ensure permutation

invariance, the contributions corresponding to atoms of the same species are computed using

the same NN.

Here, we use the deepmd/deepPot-Se code26,27 based on this architecture. In this frame-

work, a first NN is used to compute symmetry-invariant descriptors for each atom, based on

the coordinates of its neighboring atoms within a cutoff sphere. Since this is not the scope

of this study, the hyperparameters of the models were not optimized and were taken from

other studies.21 Here, to compute the descriptors we chose a cutoff radius of 6.0 Å and a

smoothing cutoff of 1.5 Å. Then, these symmetry-preserving descriptors are given as input

to the energy neural networks. The optimization process of the neural networks weights is

performed using the Adam optimizer44 with a learning rate going from 10−3 to 5.10−8 during

106 iterations on a defined loss decreasing by 5% every 5000 iterations.

Our target system is quite heterogeneous, including 251 atoms in a 13.4 Å-side cubic box

under periodic boundary conditions, with the following composition: 2 C, 2 N, 6 H and 1 O

atom in the reactive molecules, solvated with 81 water explicit water molecules, whose H and

O atoms are indistinct from the ones in the reactive part of the system, and treated exactly

on the same footing by the NN. As a consequence, the water molecules would comparatively

acquire an overwhelming weight, with respect to the important reactive subsystem, during
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training. To overcome this potential difficulty, we defined a loss function (equation 2) capable

to take into account this heterogeneity:

L(w) =
1

|B|
∑
l∈B

[
pE|El − Ew

l |2 + pf
1

Nelem

Nelem∑
i=1

Natoms

ni

|Fl − Fw
l |2
]

(2)

,

where ni is the number of atoms of type i in the system, Nelem is the number of different

elements in the system, Natoms is the total number of atoms in the system, Ei and Fi denote

the DFT energies and forces of the training set, while Ew
l and Fw

l are the forces computed

by the NNP, and B is the batch size (i.e., the number of trajectory frames).

This choice of the loss function allows weighting equally each element type via the error

on forces. The weight pf progressively increase from 1 to 10 while the opposite happens for

pe during the training, according to the protocol implemented in the deepmd-kit package.26

The neural network used to compute the descriptors was made with 3 layers of 25, 50 and

100 nodes while the energies networks were made with three layers of 240 nodes each. All the

AIMD configurations come from a previous study of the group.17 We used LAMMPS45 for

all the NNP-based molecular dynamics simulations, employing hydrogen atoms instead of

deuterium in the original study to have a quicker, more realistic dynamics. All the enhanced

sampling simulations performed with neural networks were carried out using the open-source,

community-developed PLUMED library,46 version 2.5.047 .

Free energy calculations

Enhanced sampling approaches are necessary to overcome the timescale limitations of molec-

ular dynamics in the simulation of high-barrier rare events like chemical reactions.48 The

technique employed in this study, umbrella sampling, focuses the sampling in the desired re-

gions of configuration space exploiting an external bias potential as a function of a collective
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variable12,49 For the latter, we employ the path collective variables50 (path CVs) defined as


s(t) =

1

N − 1

(∑N
α=1 α exp(−λD[x(t), Xα])∑N
α=1 exp(−λD[x(t), Xα])

− 1

)
z(t) =

−1

λ
log
∑N

α=1 exp(−λD[x(t), Xα])

. (3)

We introduced a scaling factor17 so that s ∈ [0, 1]. The first variable s measures the progress

of a reaction on a path given by N configurations Xα. The second variable z measures the

deviation of the configuration at time t from the given path. The metric D used in this

study has been extensively used in previous works16,18,51 and is based on the comparison of

coordination patterns:

D[X1, X2] =
∑
i

∑
σ

(Ciσ(X1)− Ciσ(X2))
2 (4)

Ciσ is defined in equation 5 for atom i of atom type α with respect to atom type σ as

Ciσ =
∑
j∈σ

1−
[
rij
rασ0

]m
1−

[
rij
rασ0

]n (5)

where the term within the sum is a smooth function going from 1 to 0 when the inter-

atomic distance becomes larger than a typical distance rασ0 . This distance was set to 1.8 Å for

heavy atom-heavy atom pairs and to 1.4 Å for heavy atom-hydrogen pairs. We chose m = 8

and n = 14. The exact definition for the reference structures, explained in our previous

work,17 exploits committor-analysis trajectories performed after a preliminary metadynam-

ics simulation10 (using a pathCVs defined with only the reactants and the products). 10

regularly-spaced reference structures are selected along the latter trajectories using an in-

house algorithm17 based on the nudge elastic band approach.52 Finally, two more references

are added at the start and at the end of the path by linearly extrapolating the coordination

numbers of the last and first segments to avoid metastable states to appear as spikes in the
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free-energy landscape: the result are pathCVs s, z based on 12 reference structures that we

use throughout this work.

We adopt a set of one-dimensional, quadratic umbrella sampling potentials applied on

the s variable and centred at positions sj expressed as:

Vbias,j(s) =
k

2
(s− sj)

2 (6)

Windows are equally spaced by sj+1−sj = ∆s based on k = kBT/(∆s/2.5)2 in order to have

sufficient overlap between two windows (see Ref.17). The s path-CV measures the progress

along a given reaction pathway, the sampling is therefore performed on that coordinate. The

z path-CV measures the deviation from the pathway and helps to detect possible anomalies in

the sampling. Once a specific reaction pathway is determined and targeted, US is performed

on it, in order to determine the corresponding free-energy profile. Due to the intrinsically

high-energy, unstable character of configurations explored close to the barrier top, in US

simulations of chemical reactions it is occasionally observed that the system can deviate

from the targeted pathway to explore a different one. To focus the sampling on the reaction

mechanism under study, a restraining potential is sometimes applied along z, as in the case

of the step (1) → (2′) of reference.17 We compute the free energy surface, according to:

F (s) = −kBT ln ⟨ρ(s)⟩ (7)

where ⟨ρ(s)⟩ is the unbiased distribution function of s, globally estimated over the whole

set of windows using the weighted histogram analysis method53 implemented in Grossfield’s

code.54 We use a convergence criterion of 10−7 kcal/mol and 150 bins in s space. We estimate

the statistical uncertainty as the deviation between the free energy profiles computed using

the third and fourth quarters of each trajectory.

The obtained free energy profile is then used to compute the activation barrier by taking

the free energy difference between the highest point in the profile and the reactants free
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energy; the free energy difference between reactants and products can also be computed.

The value of the activation barriers can then be compared to experimental results as it was

done in reference 17. A correction term can also be added to this free energy difference as

it was done in reference.55 However, since the scope of the present work is to compare NNP

results to the AIMD ones of the original study,17 this additional term was not in this work.

From a ML point of view, the splitting of the RC space into independent US windows

simplifies the selection of different data sets to form the training set, and the evaluation of

the performance of the NNP.

Results and discussion

We first consider the initial step of the Strecker-cyanohydrin synthesis of glycine, particularly

emblematic in prebiotic chemistry studies:14,15

HCN+ COH2 +NH3 → CH2OH(NH3)
+ + CN−

as illustrated in Fig. 1. The CVs regarding this reaction will be noted with a subscript

(1) → (2′).17 The aim is to assess the behavior of a NNP-system, trained on a minimal

amount of AIMD US trajectories, carefully selected along an optimized reaction pathway.

In the last section we will cross-validate the protocol on another, more complex, chemical

reaction step of the Strecker mechanism.

Detecting the frontiers of accurate predictions in a neural network

potential

The performance of a NNP is customarily measured via the error with respect to DFT on

a training set and a testing set. However, this is not sufficient with respect to our goal,

i.e., accurately computing the full free energy landscape. In this respect, it is important
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Figure 1: Free energy diagram of the first step of the Strecker-cyanohydrin synthesis of
glycine obtained in our previous work.17 The error is of the order of the kcal/mol and was
estimated using block averages. The reactants, products, and transition state configurations
are also reported on the graph.

to assess the capacity to generate long, stable and accurate MD trajectories. We base our

assessment on the committee approach,32 including a time-dependent metric similarly to a

recent study.43

As shown in figure 2, when, during a simulation, the NNP-generated trajectory exits the

“safe” region of configuration space, where forces are accurately predicted, the value of the

z pathCV significantly increases, indicating a large deviation from the reference transition

pathway (see Methods section) and suggesting the likelihood of unphysical configurations.

This is confirmed by the analysis of the corresponding structural properties of the system.

An inspection of the C-O pair correlation functions g(r) (figure 2 c)), before and after this

jump, reveals that an unphysical short-distance peak has appeared, not present in the ab

initio data. This confirms that the NNP sampled an unphysical region and is trapped in

it, as the predicted energy decreases (figure 2 b), a spurious stable configuration. On the

other hand, this transition corresponds to a sudden jump in the standard deviation in energy

predictions among committee members as well as in the maximum standard deviation on
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the predicted atomic forces, defined in the following way:

σmax = max
j∈[1,Natoms]

√√√√[ 4∑
i=1

∥Fj
i − Fj

avg∥2
]

(8)

Figure 2: Panel a): left (red line): time evolution of z path CV; right: time evolution of
the maximum standard deviation on the prediction of forces(σmax, blue line) and standard
deviation on the prediction of energies(σenergy, green line). Panel b): time evolution of the
potential energy predicted by the four neural networks. Panel c): Carbon-Oxygen radial
distribution function for the AIMD simulation (black line) and for the NNP simulation,
before (green line) and after (red line) the unphysical jump in the predictions of energy and
forces.

where Fj
i is the force on atom j computed by NNP i, and Fj

avg is the average over all the

neural networks.21,35,36 We remark that σmax is a more general and accurate indicator of the

loss of predictive power than the g(r) or the pathCV z.

This approach allows detecting the frontiers of the configuration space region where the

NNP gives accurate prediction. We can thus define a simulation lifetime τ as the time at

which σmax surpasses a reliability threshold, simply corresponding to the full simulation time

if no pathological behaviors occur. All the trajectory before τ is physically sound, and can

be employed to collect statistics. The next logical step is to devise a procedure to maximise

τ all along the RC space as a function of the training set composition and extension, in order

to carry out reliable US simulations.
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Figure 3: Panel a): maximum lifetime τmax (red dots) in each US window throughout
the path CV for a NNP trained only on the AIMD equilibrations of the reactants and
the products; the AIMD training points are represented in blue in the (s,z) plane. Panel
b): corresponding instantaneous location of the NNP configurations in the (s,z) path CV
coordinate plane; panel c) maximum lifetime τmax (red dots) in each US window throughout
the path CV for a NNP trained only on the AIMD equilibrations of the reactants, the
products, and a transition state US window; the AIMD training points are represented
in blue in the (s,z) plane. Panel d): corresponding instantaneous location of the NNP
configurations in the (s,z) path CV coordinate plane

Generating training sets suited for free energy calculations

In this section, we critically assess the effect of the composition and size of the training

set on the error of the free energy profile recontruced with the NNP potential. The aim is

to retain ab initio accuracy while minimizing the amount of DFT calculations necessary to

train the potential. Following the approach employed in our previous full-ab initio work17

on the reaction considered here, we identify the following algorithm:
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• Perform a preliminary DFT-based metadynamics simulation10 employing pathCVs

built upon the reactants and products as the only references:18 this allows a prejudice-

free exploration of a reactive pathway (quick, without the need to converge a free-energy

estimate), to be refined through committor analysis and leading to the definition of

improved pathCVs based on multiple reference structures (see Methods and Ref.17 for

details).

• Generate one AIMD US trajectory (of about 15 ps) in the transition state window along

the optimized pathCV (defined at the previous step), and include it in the training set

along with AIMD equilibration trajectories (of about 15 ps) of the reactants and the

products. These three trajectories represent ab initio “milestones” of the RC to train

and test the NNPs.

• Train four models on the same training set, with different random seeds. Define a

range of US windows densely spanning the full RC range, and for each window perform

50 short (about 5 ps) NNP-based US simulations, with the same starting point but

different random initial velocities taken from the Boltzmann distribution.

• Plot the maximum lifetime τmax over each US window (see figure 3): if in some RC

region τmax is smaller than the autocorrelation time of the pathCV, i.e., if it is impos-

sible to generate uncorrelated samples, it is necessary to generate an additional AIMD

US trajectory in that region (since the NNP is locally unreliable) to be added to the

training set.

• Repeat the two last steps until a satisfactory NNP is obtained, i.e. with an acceptable

lifetime τ across the full RC space, hence capable of producing a dense sampling and

a converged US free energy landscape.

The procedure is illustrated in figure 3, showing the training configurations for each

iteration (about 600 structures saved every 20 fs) and the resulting NNP samples in the
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(s, z) plane and lifetime for every US window. Clearly, adding training points according to

our scheme allows to progressively increase the simulation lifetime and the overlap between

NNP US simulations. In the next two sections, we discuss the error of the NNP on a testing

set, and the accuracy of the NNP free energy landscape with respect to the ab initio one.

Error estimate on the benchmark reaction

Figure 4: Panel a): Root mean squared error (RMSE) of the NNP-estimated energy along
the chemical path for a NNP trained only on the AIMD equilibrations of the reactants
and the products (blue line) and for a NNP trained on those configurations and on the US
transition state window (orange line). The test set is built only with configurations that are
not present in any training set. Panel b): same as panel a) but the RMSE was computed
on forces instead of energies

Before proceeding on the actual calculation of the free energies, it is important to verify

that the NNP displays a rather uniform error over the s-coordinate. To this aim, we compute

the root mean square error (RMSE) of the NNP-predicted energies and forces on a test

set built with configurations from ab initio simulations. Those configurations were never

included in any of the training sets. The results for the case of a training set including

only reactants and products (2-AIMD points) are compared with the case including also

one transition-state-like US window in the trainng set (3-AIMD points) in figure 4. Clearly,

adding the third trajectory to the training set improves the error in the central region of RC

space and leads to a uniform RMSE.
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Although this error-evaluation step gives us an idea on the quality of the NNP produced

using our new procedure, it cannot be applied on a system that has not been extensively

studied with AIMD.

Calculation of the NNP free energy surface for the benchmark re-

action

We now assess the accuracy of the free energy landscape reconstructed from the NNP. Figure

5 shows that it is possible to obtain a first-principle quality free energy surface using, in the

training set, only one US AIMD simulations and the two end-point AIMD equilibration

simulations of the reactants and the products, and to recover the full FES mostly via NNP-

US windows. This is a major gain of computational time, which could allow to study, at the

same level of ab initio accuracy, larger and more complex systems.

The full original ab initio FES in Ref.17 was obtained using 55 US AIMD windows; our

procedure significantly reduces, by more than an order of magnitude, the number of ab initio

MD simulations to be carried out. From the computational point of view, the training of 1

neural network takes approximately 24 GPUh; while one 5-ps simulation takes about 0.05

GPUh. Hence, for the full study of this test reaction, we needed a total of 161 GPUh, to

which one needs to add the 40k CPUh used to build the ab initio training set. The fact that

all the calculations were run on GPU makes non-trivial the comparison with respect to the

CPU simulations. However, the whole ab initio study of this reaction in Ref.17 took around

700k CPUh.

In figure 5, the free energy was computed using short simulations of 5 ps per window. In

the next section, we propose a method to generate longer, but still stable, NNP trajectories.
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Figure 5: Panel a): US-obtained free energy profiles using full AIMD (black line), and using a
NNP trained on AIMD equilibration of reactants and products (green line). The shaded zones
correspond to the estimated statistical errors. Panel b): US-obtained free energy profiles
using full AIMD (black line), and using a NNP trained on AIMD equilibration of reactants,
products, and the transition state US windows (green line). The red line represents the free
energy which would be obtained using the three AIMD US windows (reactants, products,
transition state). The reactants and products endpoint-configurations are also reported on
the graphs.

Generating stable NNP trajectories

After properly training our NNP, our aim is to be able to generate long and stable MD

simulations. However, it is known that, at some point, the NNP-system will eventually

Figure 6: Panel a): Time evolution of the maximum standard deviation on the prediction
of forces (σmax) during a NNP umbrella sampling simulation. We report with black crosses
its instantaneous values before the the unphysical behavior sets in, and with red crosses its
behavior after that. Panel b): NNP-autocorrelation function of the s reaction coordinate
computed in the same NNP-umbrella sampling window.
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explore untrained regions of the configuration space, where energies and forces will necessarily

be extrapolated, likely failing to describe the correct system anymore. To overcome this

common drawback, one possibility to restrain the sampling to low σmax regions is to add

a quadratic potential on σmax, as it was proposed in reference.32 In this work, instead, we

find it more effective to completely avoid high-σmax values, which would correspond to an

infinite spring constant with respect to the above-mentioned reference. Therefore, we can

define such a “mirror reflection operation” as follows:

We identify two regions in the configuration space sampled by each US window: the

region where he NNP behaves properly, i.e. where the maximum standard deviation on the

prediction of forces σmax is low, and the region where significant deviations, hence unphysical

behavior, are observed.

Whenever σmax exceeds a given threshold, we define for each atom α the following vector

Gα, the value of this vector in the k direction is:

Gαk =
1

ncomm

ncomm∑
i=1

(F i
αk − F avg

αk )2 (9)

With ncom the number of neural networks in the committee (ncomm = 4 in this study). This

quantity provides the normal vector of a frontier between the reliable, “interpolation region”

of the NNP, and a NNP-unknown “extrapolation region”. We can therefore mirror-reflect

the trajectory of the atoms on this hypersurface when σmax displays a pathological jump to

high values.

In order to do so, and force the NNP-system to remain in the interpolation region, the

simulation is stopped a tstep number of timesteps before the instability, and is restarted after

imposing the following transformation on the velocities:

vnew
α = vold

α − 2vold
α .Gα

∥Gα∥2
Gα (10)

where vold
α is the velocity of atom α at the moment in which we mirror-reflect the trajectory,
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while G is evaluated at the moment in which where σmax passes the instability threshold.

Figure 7: Panel a): US-obtained free energy profiles using full AIMD (black line), and using
NNP trained on AIMD equilibration of reactants, products and transition state US windows
when the velocity transformation is applied (green line). The red line represents the free
energy which would be obtained using only the three AIMD US windows (reactants, products,
transition state). The reactants and products endpoint-configurations are also reported on
the graph. Panel b): corresponding instantaneous location of the NNP configurations in the
(s,z) path CV coordinate plane. As in the original study17 z path CV was confined to within
0.12 via a semiparabolic wall.

This operation preserves the kinetic energy of the system, without pathological effects on

the US procedure. We consider that it is a useful and legitimate complement to our NNP-

based free-energy calculation protocol whenever the typical lifetime τ is significantly longer

than the auto-correlation time of the CV, so that uncorrelated samples can be collected

between successive reflections. In the opposite case, it is advisable to improve the NNP via

a larger training set before employing it to perform statistical sampling.

To illustrate the choice of the parameters of the protocol, the time evolution of σmax

during a US simulation is reported in figure 6 along with the NNP-autocorrelation function

of the CV. The threshold of σmax is chosen as 0.6eV/A, while choosing the number of

timesteps at which the reflection is performed before the instability between 200-500 gives

similar results. Clearly, the typical time lapse between two reflections (ranging here from

0.3 to 5 ps) is much larger than the autocorrelation time (∼ 0.1 ps). Reflections therefore

appear not harmful from a statistical viewpoint, and allow to carry out long, stable US

simulations localized in the region of configuration space where the NNP is reliable, leading
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to free-energy estimations retaining ab initio accuracy (Figure 7 and table 3). The profile

obtained in figure 7 lies within the typical 2 kcal/mol uncertainty of the PBE functional for

this kind of studies, as well as the predicted free energies, shown in table 3.

Table 1: Activation barrier (∆F †) and free energy difference between reactants and
products(∆F(1)→(2′)) obtained in the ab initio study along with the ones obtained in this
work

Ab initio study machine learning study

∆F †
(1)→(2′) (kcal/mol) 10 8

∆F(1)→(2′) (kcal/mol) −14 −14.5± 1

Application of the protocol to a more complex reaction

Figure 8: Free energy diagram of the reaction (3) → (4) of the Strecker-cyanohydrin mech-
anism.17 The error is of the order of the kcal/mol and was estimated using block average.17

The relevant configurations are also reported on the graph.

The aim of this part of our work is to challenge the method previously devised to re-

produce a complex FES. To this end, we chose another intermediate step of the Strecker-

cyanohydrin synthesis, presenting a more complex free energy landscape, consisting of a

two-step process, as shown in figure 8: a hydrogen bond breaking between the imine ni-

trogen, a hydrogen atom and the cyanide, followed by the addition of the cyanide to the

imine.
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This process displays a small barrier of 5 kcal/mol, a small drop of 3 kcal/mol towards a

metastable state, another small barrier of 3 kcal/mol with respect to the latter step, followed

by a large 23 kcal/mol drop to the products, as obtained from our original AIMD FES in

Ref.17 by using 44 US windows. Such small free-energy barriers are likely more difficult

to be quantitatively and qualitatively described by a NNP, than in the previous reaction.

We underline that, although the stoichiometry of the chemical species is the same as in the

previous case, the reactants and the products are different, and thus the NNPs are generated

from scratch, independently from the previous case.

Results of US simulations employing a series of three NNPs with different training sets are

presented in figure 9. We progressively enlarged the training set as previously described, by

using at first 1, then 3 and finally 6 AIMD US windows, besides the reactants and products

ones (respectively 3, 5 and 8 training points) .

The NNP FES obtained starting from the different training sets are shown in figure 10.

Judging from the accuracy of the FES, NNP training is optimal when 6 AIMD US windows

are used, which is reasonable considering the fact that this reaction consists of two successive

steps. Instead, unsurprisingly, the FES obtained with only 3 training points compares very

poorly with the ab initio one.

Adding AIMD US windows to the training set leads to a progressive increase of the

accuracy of the NNP FES, until a satisfactory agreement with the benchmark AIMD one

is achieved. As in the case of the previous reaction, the cumulative duration of the AIMD

trajectories necessary for training the NNP is one order of magnitude shorter than the total

duration required for computing an accurate AIMD FES, despite the fact that the present

reaction is clearly more challenging to be reproduced in its fine details. The free energy

profile obtained using the velocity transformation technique is shown in figure 11. We report

in Table 2 the CPU time comparison between a full ab initio FES calculation and a NNP-

based one. As we have no guarantee that our NNPs are transferable to another reaction, we

chose to add the CPU time needed to perform the training simulations in the comparison
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Figure 9: Illustration of the iterative procedure followed to build a converged NNP for reac-
tion (3) → (4). Panel a): maximum lifetime τmax (red dots) in each US window throughout
the path CV for a NNP trained only on the AIMD equilibrations of the reactants, the prod-
ucts, and the transition state; the AIMD training points are represented with blue crosses in
the (s,z) plane. Panel b): same as a) but adding two additional AIMD US windows in the
NNP training set. Panel c): same as b) but adding three additional AIMD US windows in
the NNP training set.
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with the ab initio study

Table 2: Summary and comparison of the computational times for the (3) → (4) reaction
between the pure AIMD protocol and the combined AIMD-ML one.

Ab initio study machine learning study
training time 0 24h(GPU)× 4× 3 iterations

US ab initio time 15× 44 = 660ps 15× 6 = 90ps
CPU/GPU simulation time 540k CPU.h 100k CPU.h + 200 GPU.h

Total CPU/GPU time 540kCPU.h 488 GPU.h + 100k CPU.h

Table 3: Activation barrier (∆F †
(3)→(4)) and free energy difference between reactants and

products(∆F(3)→(4) obtained in the ab initio study along with the ones obtained in this work

Ab initio study machine learning study

∆F †
(3)→(4) (kcal/mol) 3 3.5 ± 1

∆F(3)→(4) (kcal/mol) −20 −20

Conclusions

In this work, we perform a critical assessment of different procedures to build a NNP train-

ing set starting from AIMD US trajectories of chemical reactions in solution, exploiting

two reactions along the Strecker pathway17 as test cases. The systematic comparison of

AIMD training sets increasingly more dense along the reaction coordinate clearly indicates

a threshold for achieving NNP free energy profiles of ab initio accuracy.

We also provide an approach to exploit the disagreement between predictions of equally-

trained NNPs not only as diagnostics but also to render robust and stable the long-time

dynamics, hence to achieve satisfactory statistical sampling, a crucial advantage for free-

energy reconstruction.

Our investigation suggests a new protocol for the accurate, ab initio quality, NNP cal-

culation of FES of chemical reactions in solution: the computational load of pure and

costly AIMD simulations would be limited to preliminary metadynamics exploration with

mechanism-agnostic general-purpose CVs,18 followed by committor analysis to define mechanism-
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Figure 10: Panel a): US-obtained free energy profiles using full AIMD (black line), and NNP
trained on AIMD equilibration of reactants, products and transition state windows (green
line). The red line represents the free energy which would be obtained using only the three
AIMD US windows (reactants, products, transition state). The shaded zones correspond to
the estimated statistical errors. Panel b): same as a) but using the five training points in
panel b) of figure 9. Panel c): same as b) but using the eight training points in panel c)
of figure 9. The reactants and products endpoint-configurations are also reported on the
graphs.
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Figure 11: Panel a) free energy profile obtained as in panel c) of figure 10 but applying our
velocity transformation (equation (10)). Panel b) corresponding instantaneous location of
the NNP configurations in the (s,z) path CV coordinate plane.

specific CVs,17 and finishing with a limited number of AIMD US trajectories along the

reaction path, used for training a NNP.

As tested on two important chemical steps (with very different FES) of the classic

Strecker-cyanohydrin reaction for the synthesis of amino-acids in solution, the proposed pro-

tocol for optimal training set construction and NNP trajectory stabilization allows reproduc-

ing with excellent agreement the benchmark ab initio FES for a fraction of the computational

effort.

We expect our approach to be easily generalizable to a range chemical reactions in solu-

tion, allowing a limited and incremental use of costly AIMD calculations only if and when

needed. In perspective, this controlled and efficient scheme will help to exploit NNPs to

overcome a significant computational bottleneck in the accurate calculation of free-energy

profiles in solution chemistry.
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