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Discrete moments models for Vlasov equations

with non constant strong magnetic limit

F. Charles, B. Després, R. Dai, S. A. Hirstoaga

December 15, 2022

Abstract

We describe the structure of an original application of the method of
moments to the Vlasov-Poisson system with non constant strong magnetic
field in three dimensions of space. Using basis functions which are aligned
with the magnetic field, one obtains a Friedrichs system where the kernel
of the singular part is made explicit. A projection of the original model
on this kernel yields what we call the reduced model. Basic numerical
tests of the field illustrate the accuracy of our implementation. A new
generating formula for Laguerre polynomials is obtained in the appendix
as a byproduct of the analysis. This study has been supported by ANR
MUFFIN ANR-19-CE46-0004.

Abstract

The second author dedicates this work to our late colleague Roland
Glowinski.

1 Introduction

We consider a plasma confined by a strong external magnetic field in which elec-
trostatic forces between ions and electrons tend to restore charge equilibrium.
As usual in fusion plasma [30], we consider that the time scale of collisions is
so large that a collisionless Vlasov equation is enough to describe the dynam-
ics of the particles. For the simplicity of the presentation, we consider that a
population of ions moves above a bath of static ions. The population of ions is
described with the density function f(x,v, t) ≥ 0 where x ∈ Ω ⊂ R3 and v ∈ R3.
The model problem for the description of our results is a Vlasov equation with
non constant magnetic field

∂tf + v · ∇xf +

(
E(x, t) +

1

ε
v ×B0(x)

)
· ∇vf = 0. (1)

In this equation x ∈ R3 is the space variable, v ∈ R3 is the velocity variable,
t > 0 is the time variable and f = f(x,v, t) is the unknown. The self-consistent
electric field is E(x, t) and usually is the solution of a Poisson equation which
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expresses the electrical balance of the plasma ions+electrons. For the simplicity,
the exterior magnetic field B0(x) 6= 0 is constant in time. It is written as

B0(x) = ω(x)b0(x) (2)

where |b0(x)| = 1 and the magnitude of the magnetic field is ω(x) > 0 (also
called the cyclotron frequency). The regime of strong magnetic field in (1)
corresponds to the limit ε→ 0+.

A direct numerical discretization of kinetic equations such as (1) in dimen-
sion 3+3 generates a huge computational burden, that is why it is necessary to
investigate reduced discrete models. Large magnetic fields usually lead to the
so-called drift-kinetic limit [1, 4, 22]. After the seminal development [19] of a
specific drift-kinetic model, various justifications have been obtained [7, 21] es-
sentially by considering simplified geometrical configurations. With this respect,
the recent reference [14] is a landmark since it considers a general 3-dimensional
magnetic field with non constant direction: the limit model is a gyrokinetic
model in dimension 3+2 in the general case. In the case where ∇ · b0 = 0,
it can be written as a series of separate gyrokinetic models in dimension 3+1.
The gyrokinetic velocity variables of the 3+2 model are the scalar parallel ve-
locity v = v · b0 and the square of the modulus of the perpendicular velocity

w = |v−vb0|2
2 = |v⊥|2

2 . There is only one gyrokinetic variable v for the 3+1
model. In the physical community, gyrokinetic models are usually considered as
the main avenue for numerical simulations of such complex flows [4, 24, 3, 26, 20].
Mathematically justified gyrokinetics models can be found in [15, 16, 19, 32].

The aim of this work is to describe a new method which can be used to
construct reduced numerical models in the limit of non constant strong magnetic
fields. It is based on the methods of moments [26, 23, 8, 9, 27, 35] which is
currently investigated with original results in [11, 12, 13]. Usually the method of
moments is used in a fixed frame because it is amenable to the exact calculation
of the numerical coefficients of the method. A natural question is to extend
the method of moments to non constant frames which are characteristics of the
geometry of fusion devices such as Tokamaks [30, 36, 20, 26, 22, 3, 4]. To the
best of our knowledge, it is the first time that the method of moments is studied
in dimension 3+3 with non constant magnetic field.

The mathematical form of our moment model which approximates (1) writes
as

∂tU +

3∑
i=1

∂xi
(Ai(x)U)−B(x)U +

3∑
i=1

Ei(x, t)Di(x)U =
1

ε
C(x)U (3)

where U(x, t) is a finite vector of moments
∫
f(x,v, t)ϕi(v)dv with respect to a

certain orthonormal family of basis functions in the velocity variable ϕi(v,x),
the transport matrices Ai(x)1≤i≤3 and B(x) represent the action of the operator

v · ∇x, the matrix
∑3
i=1Ei(x, t)Di(x) represents the action of the operator

E(x, t) · ∇v. The last matrix C(x) is the numerical realization of the operator
−v×B0 · ∇v. Note that this term is written for convenience on the right hand
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side in order to make visible that it acts as a stiff term in the regime ε → 0+.
In our case we use moments with respect to the Hermite basis which is adapted
to Maxwellian profiles [35]. All matrices are explicitly computable and sparse.
The numerical cost of a model (3) is proportional to the number of moments.
If one desires to use all polynomials in v = (v1, v2, v3) up to a certain total
degree N , then the number of moments is size(U) = Card {ϕi}. An elementary
counting argument shows that

size(U) = Card{(n1, n2, n3) ∈ N3, n1+n2+n3 ≤ N} =
(N + 1)(N + 2)(N + 3)

6
.

Our original results are based on the fact that one can adapt the basis functions
locally with respect to the magnetic direction b0. This is the reason why the
basis functions ϕi(x,v) are anisotropic. The main property is that the kernel
of the matrix C is explicit and independent of x, because the basis functions
are in some sense aligned with the magnetic field. Then one can pass, at least
formally, to the limit ε→ 0+. One obtains a simplified Friedrichs system

∂tŨ +

3∑
i=1

∂xi

(
Ãi(x)Ũ

)
− B̃(x)Ũ +

3∑
i=1

Ei(x)D̃i(x)Ũ = 0. (4)

The results are formalized in Proposition 4.3. The gains with respect to (3) are
twofold. Firstly, the singular term O(ε−1) is no more present. Secondly, the
size of the unknown vector is reduced since

size(Ũ) = Card{(m0, s) ∈ N2,m0 + 2s ≤ N} =

{
(N+1)(N+3)

4 , N odd,
(N+1)(N+3)+1

4 , N even.

(5)

So obviously size(Ũ)� size(U) for large value of N , which results in a reduction
of the number of unknowns in the limit of strong magnetic field.

The organization of the work is as follows. Section 2 deals with the presen-
tation of the method of moments adapted to anisotropic non constant magnetic
field. For the simplicity of the presentation this is explained with a electric field
E ≡ 0 but it is not a restriction. In Section 3 we analyze the kernel of the
matrix C and show the fundamental property which is that is independent of
the space variable. It allows to write the reduced moment model (4) which is
the main contribution of this work. Then, we show how to reintroduce a self
consistent electric field E 6≡ 0 in Section 4. The final Section 5 is dedicated to
numerical illustrations with basic test problems of the field.

2 Construction of the method of moments

We present the main idea of the method of moments applied to the simplified
Vlasov equation ∂tf + v · ∇xf + 1

εv×B0(x) · ∇vf = 0, where the electric field
is discarded for the simplicity of the presentation. We start from basic material
about Hermite functions, then present the variational form of the model and
finally realize the moment model as a Friedrichs system.
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2.1 Hermite functions

The Hermite functions are denoted as ϕn(v) = (2nn!
√
π)−

1
2 e
−v2

2 Hn(v) for n ∈ N
where (Hn)n∈N is the family of Hermite polynomials [31]. A generating formula
is

ϕn(v) = (−1)n(2nn!
√
π)−

1
2 e

v2

2
dn

dvn
e−v

2

. (6)

The first terms in the series are

ϕ0(v) = π−
1
4 e−

v2

2 , ϕ1(v) =
√

2π−
1
4 ve−

v2

2 , ϕ2(v) =
(√

2π
1
4

)−1

(2v2 − 1)e−
v2

2 .

(7)
The Hermite functions form an orthonormal family

∫
R ϕm(v)ϕn(v)dv = δmn

which is complete in the space of quadratically integrable functions L2(R). For
all g such that

∫
R g

2(v)dv <∞, one has the identity in L2(R)

g(v) =
∑
n∈N

gnϕn(v)dv where gn =

∫
R
ϕn(v)g(v)dv.

Two important formulas are

vϕn(v) =

√
n+ 1

2
ϕn+1(v) +

√
n

2
ϕn−1(v), n ∈ N, (8)

and

ϕ′n(v) = −
√
n+ 1

2
ϕn+1(v) +

√
n

2
ϕn−1(v), n ∈ N, (9)

As in [8, 23], it is convenient to define the asymmetric functions

ψn(v) = e−
v2

2 ϕn(v) = (2nn!
√
π)−

1
2 e−v

2

Hn(v),

ψn(v) = e
v2

2 ϕn(v) = (2nn!
√
π)−

1
2Hn(v).

Lemma 2.1. One has the identities (ψn)′(v) = −
√

2(n+ 1) ψn+1(v) and

(ψn)′(v) =
√

2n ψn−1(v) for n ≥ 0.

Proof. The property is a rephrasing of the fact that Hermite polynomials form
an Appel’s sequence. From (8-9) one obtains

d

dv

(
e
−v2

2 ϕn(v)
)

= e
−v2

2 (ϕ′n(v)− vϕn(v)) = e
−v2

2

(
−
√

2(n+ 1) ϕn+1(v)
)

which is the first part of the claim. The second part comes from d
dv

(
e

v2

2 ϕn(v)
)

=

e
v2

2 (ϕ′n(v) + vϕn(v)) = e
v2

2

(√
2n ϕn−1(v)

)
.
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2.2 Anisotropic basis functions

Multidimensional basis functions are obtained with anisotropic tensorization of
the Hermite functions. A generic notation for a multi-index with three compo-
nents is

n = (n0, n1, n2) ∈ N3 with |n| = n0 + n1 + n2.

We complete b0(x) as a local direct orthonormal basis (b0(x),b1(x),b2(x))
that is bi(x) · bj(x) = δij . To be compatible with physical sound Maxwellian
profiles [8], we rescale the directions

di(x) =
bi(x)√
T
, i = 1, 2, (10)

where b0 is defined in (2) and T > 0 is a given reference temperature, assumed
to be constant in space and time in this simple modeling. We define

ϕn(x,v) = ϕn0 (v · d0(x))ϕn1 (v · d1(x))ϕn2 (v · d2(x)) , (11)

which is an orthogonal and complete family with respect to the velocity vari-
able v, with continuous dependance with respect to the space variable x. The
corresponding asymmetric functions are defined as

ψn(x,v) = ψn0
(v · d0(x))ψn1

(v · d1(x))ψn2
(v · d2(x)) (12)

and
ψn (x,v) = ψn0 (v · d0(x))ψn1 (v · d1(x))ψn2 (v · d2(x)) (13)

By construction

ψn (x,v) = e−
|v|2
2T ϕn (x,v) and ψn (x,v) = e

|v|2
2T ϕn (x,v) . (14)

For further technical convenience we define the matrix

M(x) = (mij(x))1≤i,j≤3 = (b0(x) | b1(x) | b2(x))

which is orthonormal M tM = I. We will consider the local change of variable
v 7→ w = (v · d0(x),v · d1(x),v · d2(x))t = 1√

T
M t(x)v. One note that

v = T
1
2M(x)w and dv = T

3
2 dw. (15)

2.3 Weak form of the moment model

With the previous notations, the variational form of the method of moments is
based on a finite expansion formula which is then plugged in the weak form. It
writes as

fN (x,v, t) =
∑
|m|≤N um(x, t)ψm(x,v),∫

gN (x,v, t)ψn(x,v)dv = 0 for |n| ≤ N, (16)

where

gN (x,v, t) = ∂tf
N (x,v, t) + v · ∇xfN (x,v, t) +

1

ε
v ×B0(x) · ∇vfN (x,v, t).

The moments are the functions um(x, t). Their number is (N+1)(N+2)(N+3)
6 .

5



2.4 Matrix form of the moment model

The transport matrices allow to rewrite the equations (16) for the unknown
vector U(x, t) = (um(x, t))|m|≤N The transport matrices in space are Ai(x) =(
ainm(x)

)
|m|,|n|≤N with

ainm(x) =

∫
v

ψm(x,v)ψn(x,v)vidv, i = 1, 2, 3.

A related matrix is B(x) = (bnm(x))|m|,|n|≤N with

bnm(x) =

∫
v

ψm(x,v)v · ∇xψn(x,v)dv.

Note that if the bulk magnetic field B0 is constant in space, then the anisotropic
basis functions can naturally be taken independent of the space variable. Then
B = 0 as well. The transport matrice in velocity is C(x) = (cnm(x))|m|,|n|≤N
with

cmn(x) =

∫
v

ψm(x,v)v ×B0(x) · ∇vψn(x,v)dv.

Lemma 2.2. The equations (16) are equivalent to the system

T
3
2 ∂tU(x, t) +

3∑
i=1

∂xi (Ai(x)U(x, t))−B(x)U(x, t) =
1

ε
C(x)U(x, t). (17)

Proof. Consider the equations (16). Integrals below are written with respect
to the velocity variable v while sums are written with respect to m such that
|m| ≤ N . One has for all |n| ≤ N∫

v
∂tf

Nψn = T
3
2

∑
m

∫
ψmψ

ndw ∂tum = T
3
2 ∂tun. (18)

One also has∫ (
v · ∇xfN

)
ψn = ∇x ·

∫
vfNψn −

∫
fNv · ∇xψn

=
∑3
i=1 ∂xi

∑
m

∫
viψmψ

n um −
∑

m

∫
ψmv · ∇xψn um.

(19)
One finally has that∫ (

v ×B0(x) · ∇vfN
)
ψn =

∫
v ×B0(x) · ∇v(fNψn)

−
∫
fNv ×B0(x) · ∇vψn

= −
∫
fNv ×B0(x) · ∇vψn

= −
∑

m

∫
ψmv ×B0(x) · ∇vψn um

(20)

The summation of (18-20) yields the line that corresponds to the index n in
(17), with the difference that the terms with a minus sign (19-20) correspond to
the matrices B and C with a plus sign in the right hand side of the claim.

The transport matrices A1, A2 and A3 and the source matrices B and C
satisfy some properties which are explicitly given below.
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Lemma 2.3. The transport matrices A1, A2 and A3 are symmetric.

Proof. By definition of the asymmetric basis ψm and ψn , one has

ain,m =

∫
v

ϕm(x,v)ϕn(x,v)vidv =

∫
v

ϕn(x,v)ϕm(x,v)vidv = aim,n

which establishes the symmetry property of Ai.

Lemma 2.4. One has
∑3
i=1 ∂xi

Ai(x) = B(x) +Bt(x).

Proof. On the one hand
∑3
i=1 ∂xi

ain,m =
∫
v · ∇xψmψ

n +
∫
ψmv · ∇xψn. On

the other hand one obtains

bn,m + bm,n =
∫
ψmv · ∇xψn +

∫
ψnv · ∇xψ

m

=
∫
ψmv · ∇xψn +

∫
ψnv · ∇x

(
e
|v|2
T ψm

)
=
∫
ψmv · ∇xψn +

∫
ψnv · ∇xψm

=
∑3

=1 ∂xi
ain,m

which is the claim.

Lemma 2.5. The matrix C is antisymmetric.

Proof. Indeed one has

cn,m + cm,n =
∫
ψmv ×B0 · ∇vψn +

∫
ψnv ×B0 · ∇vψm

=
∫
ψmv ×B0 · ∇vψn +

∫
ψnv ×B0 · ∇v

(
e
|v|2
T ψm

)
=
∫
ψmv ×B0 · ∇vψn +

∫
ψnv ×B0 · ∇vψm

because v ×B0 · ∇ve
|v|2
T = 0. Therefore

cn,m + cm,n =
∫
ψmv ×B0 · ∇vψn +

∫
ψnv ×B0 · ∇vψm

=
∫
ψmv ×B0 · ∇vψn +

∫
v ×B0 · ∇vψm

∫
ψn

=
∫
∇v · (v ×B0ψmψ

n) = 0

which is the claim.

These properties already guarantee the quadratic stability of the moment
model which has the form of a Friedrichs system.

Lemma 2.6. One has T
3
2 ∂t|U |2(x, t) +

∑3
i=1 ∂xi

(AiU · U) (x, t) = 0.

Proof. This is classical Friedrichs systems but we give the proof because it is an
important property of the model. Taking the scalar product of (17) against 2U

and using the antisymmetry of C, one gets T
3
2 ∂t|U |2 + 2

∑3
i=1 (∂xiAiU) · U =

2BU · U = (B +Bt)U · U. That is

T
3
2 ∂t|U |2 + 2

3∑
i=1

(∂xiAi)U · U + 2

3∑
i=1

Ai (∂xiU) · U =

3∑
i=1

(∂xiAi)U · U.
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Simplification and the symmetry of the Ai yields

T
3
2 ∂t|U |2 +

3∑
i=1

(∂xiAi)U · U +

3∑
i=1

Ai (∂xiU) · U +

3∑
i=1

AiU · (∂xiU) = 0.

Recombination yields the claim.

Lemma 2.7. Assume N ≥ 2. Solutions to (17) preserve mass and energy.

Proof. We use the formulation (16) which is equivalent to (17). Considering (7)
and (14), (16) yields∫ (

∂tf
N + v · ∇xfN + v ×B0 · ∇vfN

)
ψdv = 0 (21)

for all ψ which can be obtained by linear combination of the ψn for |n| ≤ N .

For ψ = π
3
4ψ0 = 1, one gets the equation of conservation of mass ∂t

∫
fNdv +

∇x ·
∫
fNvdv = 0. Now let us take another test function

ψ(0,0,0) = π
3
4T

(
1√
2
ψ(2,0,0) +

1√
2
ψ(0,2,0) +

1√
2
ψ(0,0,2) +

3

2
ψ0

)
,

which, by using (7), is exactly the square of the velocity ψ(0,0,0) = |v|2. One
obtains ∂t

∫
fN |v|2dv+∇x ·

∫
fNv|v|2dv+

∫
v×B0 ·∇vfN |v|2 = 0. The third

integral vanishes identically since∫
v ×B0 · ∇vfN |v|2 =

∫
∇v ·

(
v ×B0f

N
)
|v|2 = −

∫ (
v ×B0f

N
)
· v = 0.

It yields the claim.

Lemma 2.8. The transport matrices A1, A2 and A3 and the matrices B and
C can be calculated explicitly and are sparse.

Proof. We explain in detail the formulas firstly for the transport matrix A1.
We consider a1

nm(x) =
∫
ψm(x,v)ψn(x,v)v1dv =

∫
ϕm(x,v)ϕn(x,v)v1dv and

make a local change of variable.
With the notation (15), one has v1 = T

1
2 (m11(x)w1 +m12(x)w2 +m13(x)w3),

and therefore

a1
mn(x) = T 2

∫
ψm0

(w1)ψm1
(w2)ψm2

(w3)
× ψn0(w1)ψn1(w2)ψn2(w3)
× (m11(x)w1 +m12(x)w2 +m13(x)w3) dw.

With separation of variables and the formula (8), one obtains

a1
nm(x) = T 2

√
2
m11(x)

(√
m0 + 1δm0+1,n0 +

√
m0δm0−1,n0

)
δm1,n1δm2,n2

+ T 2
√

2
m12(x)δm0,n0

(√
m1 + 1δm1+1,n1

+
√
m1δm1−1,n1

)
δm2,n2

+ T 2
√

2
m13(x)δm0,n0

δm1,n1

(√
m2 + 1δm2+1,n2

+
√
m2δm2−1,n2

)
.

(22)
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These formulas show that most of the coefficients vanish. This matrix is sparse.
The same method yields

a2
nm(x) = T 2

√
2
m21(x)

(√
m0 + 1δm0+1,n0

+
√
m0δm0−1,n0

)
δm1,n1

δm2,n2

+ T 2
√

2
m22(x)δm0,n0

(√
m1 + 1δm1+1,n1

+
√
m1δm1−1,n1

)
δm2,n2

+ T 2
√

2
m23(x)δm0,n0

δm1,n1

(√
m2 + 1δm2+1,n2

+
√
m2δm2−1,n2

)
(23)

and

a3
nm(x) = T 2

√
2
m31(x)

(√
m0 + 1δm0+1,n0

+
√
m0δm0−1,n0

)
δm1,n1

δm2,n2

+ T 2
√

2
m32(x)δm0,n0

(√
m1 + 1δm1+1,n1

+
√
m1δm1−1,n1

)
δm2,n2

+ T 2
√

2
m33(x)δm0,n0

δm1,n1

(√
m2 + 1δm2+1,n2

+
√
m2δm2−1,n2

)
.

(24)
Now consider the coefficients of the matrix B(x) which are written as

bmn(x) =

∫
ϕm(x,v)v · ∇xϕn(x,v)dv.

One has

bnm(x) =
∫
ϕm(x,v) (∇d0(x) : v ⊗ v)ϕ′n0

(w1)ϕn1(w2)ϕn2(w3)dv
+

∫
ϕm(x,v) (∇d1(x) : v ⊗ v)ϕn0

(w1)ϕ′n1
(w2)ϕn2

(w3)dv
+

∫
ϕm(x,v) (∇d2(x) : v ⊗ v)ϕn0

(w1)ϕn1
(w2)ϕ′n2

(w3)dv.

Defining Mi(x) = M(x)t∇bi(x)M(x) for i = 0, 1, 2, one can write

bnm(x) = T 2M0(x) :
∫
ϕm(x,v)w ⊗wϕ′n0

(w1)ϕn1(w2)ϕn2(w3)dw
+ T 2M1(x) :

∫
ϕm(x,v)w ⊗wϕn0(w1)ϕ′n1

(w2)ϕn2(w3)dw
+ T 2M2(x) :

∫
ϕm(x,v)w ⊗wϕn0

(w1)ϕn1
(w2)ϕ′n2

(w3)dw.
(25)

Exact calculation of the integrals is now possible with the formulas (8-9) and
the orthonormality of the Hermite functions. Consider finally the coefficients of
the matrix C written as

cnm(x) =

∫
v

ϕm(x,v)v ×B0(x) · ∇vϕn(x,v)dv. (26)

One has

cnm(x) =
∫
ϕm(x,v) (v ×B0(x) · d0(x))ϕ′n0

(w1)ϕn1
(w2)ϕn2

(w3)dv
+

∫
ϕm(x,v) (v ×B0(x) · d1(x))ϕn0

(w1)ϕ′n1
(w2)ϕn2

(w3)dv
+

∫
ϕm(x,v) (v ×B0(x) · d2(x))ϕn0

(w1)ϕn1
(w2)ϕ′n2

(w3)dv.
(27)

Since d0 is aligned with the magnetic field, one has

v ×B0(x) · d0(x) = 0,
v ×B0(x) · d1(x) = ω(x)w3,
v ×B0(x) · d2(x) = −ω(x)w2.

9



One gets

cnm(x) = T
3
2ω(x)

∫
ϕm(x,v)w3ϕn0(w1)ϕ′n1

(w2)ϕn2(w3)dw

− T
3
2ω(x)

∫
ϕm(x,v)w2ϕn0

(w1)ϕn1
(w2)ϕ′n2

(w3)dw.
(28)

Once again, exact calculation of the integrals is possible with the formulas (8-
9) and the orthonormality of the Hermite functions. An additional interesting
simplification shows up because one has from (8-9)

w3ϕ
′
n1

(w2)ϕn2(w3)− w2ϕn1(w2)ϕ′n2
(w3)

= −
√

(n1 + 1)n2ϕn1+1(w2)ϕn2−1(w3) +
√
n1(n2 + 1ϕn1−1(w2)ϕn2+1(w3).

One gets

cnm(x) = T
3
2ω(x)δm0,n0

(
−
√

(n1 + 1)n2δm1,n1+1δm2,n2−1

+
√
n1(n2 + 1)δm1,n1−1δm2,n2+1 ) .

(29)

It is worthwhile to notice that C is the product of a constant matrix times
the coefficient T

3
2ω(x). The sparsity of all matrices is a consequence of the

formulas.

3 Reduced moment models

The reduced moment model naturally captures the formal limit of strong mag-
netic field ε→ 0+ of (3). To construct the reduced model (4), we firstly analyze
the kernel of the matrix C. This kernel is called the cyclotron kernel in the
following. Then we use this information to reduce (in a sense that will be made
explicit) the Friedrichs system (17).

3.1 The cyclotron kernel

The cyclotron kernel is defined as

K = {U | C(x)U = 0.}

With the physical assumption that we made B0(x) 6= 0, then ω(x) 6= 0 in (28).
Therefore the kernel K is independent of the space variable x. The sparsity
of the matrix C which is consequence of the formula (29) is particularly useful
to obtain simple characterizations. One has that C(x)U = 0 is equivalent to
|m| ≤ N with:
if m1,m2 ≥ 1 then

−
√
m1(m2 + 1)um0,m1−1,m2+1 +

√
(m1 + 1)m2um0,m1+1,m2−1 = 0, (30)

if m1 ≥ 1 and m2 = 0 then

− um0,m1−1,1 = 0, (31)

10



if if m1 = 0 and m2 ≥ 1 then

um0,1,m2−1 = 0. (32)

Therefore one has the characterization of the kernel

K =
{
U = (um)|m|≤N | |m| ≤ N with either (30), (31) or (32).} .

The structure of the recurrence relations defining the kernel is illustrated in
Figure 1. Due to (31-32), all coefficients vanish along the column m = 1 and
along the line m2 = 1. Then by (30), the nullity of the coefficients along the
column m = 1 and along the line m2 = 1 is propagated along diagonals, one
coefficient among two neighboring ones. Therefore if a diagonal has an even
number of terms then all the terms vanish. The other case is when the diagonal
has an odd number of coefficients, call it p = m1 + m2 + 1 = 2s + 1. Then
s coefficients vanish along the diagonal, while the other s + 1 coefficients are
linearly dependent through the linear relations (30).

4

m1

m2

(0,0) 21 3 4 5

1

2

3

Figure 1: Plot of the coefficients (m1,m2), m0 being given. The squares are
vanishing coefficients um0,m1,m2 = 0. The bullets are coefficients which might
be non zero um0,m1,m2

6= 0. The ellipses at 45 degrees indicate that m1 +m2 is
constant along the diagonals.

To make explicit the linear dependence between the remaining non trivial
coefficients (the bullets in Figure 1), we concentrate on one non trivial diagonal
and set

vm0
m1,m2

=
2

m1
2

(
m1

2

)
!

√
m1!

2
m2
2

(
m2

2

)
!

√
m2!

um0,m1,m2 where m1,m2 are even.

Lemma 3.1. One has vm0
m1−1,m2+1 = vm0

m1+1,m2−1.

Proof. Indeed the kernel relation writes√
m1(m2 + 1)

√
(m1 − 1)!

2
m1−1

2

(
m1−1

2

)
!

√
(m2 + 1)!

2
m2+1

2

(
m2+1

2

)
!
vm0
m1−1,m2+1
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=
√

(m1 + 1)m2

√
(m1 + 1)!

2
m1+1

2

(
m1+1

2

)
!

√
(m2 − 1)!

2
m2−1

2

(
m2−1

2

)
!
vm0
m1+1,m2−1

which is equivalent to√
(m1)!(
m1−1

2

)
!

(m2 + 1)
√
m2!(

m2+1
2

)
!

vm0
m1−1,m2+1 =

(m1 + 1)
√
m1!(

m1+1
2

)
!

√
m2!(

m2−1
2

)
!
vm0
m1+1,m2−1.

Since the coefficients are the same, it ends the proof.

3.2 Reduction

The previous formulas have important applications to obtain reduced Friedrichs
systems. Let us consider U in the kernel of the matrix C, which is necessarily
satisfied by the formal limit ε → 0+ of the model (3). Discarding the time
variable, we begin explaining the structure of the truncated series

fN (x,v) =
∑
|n|≤N

unψn where U = (un)|n|≤N ∈ K.

One has

fN (x,v) = e−
|v|2
2T

N∑
m0=0

ψm0(w1)

(
m0∑
q=0

∑
m1+m2=q

um0,m1,m2ψm1(w2)ψm2(w3)

)
.

If q is odd, then um0,m1,m2
= 0. If q is even, then um0,m1,m2

= 0 for m1 and/or
m2 odd. If q = 2s is even, then one can write

um0,2r,2s−2r =

√
(2r)!(2s− 2r)!

2sr!(s− r)!
vm0
q (33)

where vm0
q depends only on the index of the diagonal q = 2s = m1 + m2. For

q = 2s, on considers
∑
m1+m2=q um0,m1,m2

ψm1
(w2)ψm2

(w3) = Fs(w2, w3)vm0
2s

where

Fs(w2, w3) =

s∑
r=0

√
(2r)!(2s− 2r)!

2sr!(s− r)!
ψ2r(w2)ψ2s−2r(w3) and vm0

2s ∈ R.

One obtains

fN (x,v) = e−
|v|2
2T

N∑
m0=0

ψm0
(w1)

bN−m0
2 c∑
s=0

Fs(w2, w3)vm0
2s .

Lemma 3.2 (Proof in the appendix). Let (Ls)s∈N be the family of Laguerre
polynomials. One has

Fs(w2, w3) = (−1)s4ss!e−
w2

2+w2
3

2 Ls(w
2
2 + w2

3), s ∈ N. (34)
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Plugging this formula in the representation of fN , one obtains finally

fN (x,v) = e−|w|
2

N∑
m0=0

Hm0
(w0)

bN−m0
2 c∑
s=0

Ls(w
2
2 + w2

3)αm0,s

where the degrees of freedom are some coefficients αm0,s ∈ R. One recovers an
approximation method based on Hermite-Laguerre polynomials, already known
in plasma physics for gyrokinetic model [25, 20, 26, 28].

Next we define the rectangular matrix that corresponds to the transforma-
tion (33). We need a generic notation for multi-index with two components

ñ = (ñ0, ñ1) ∈ N2 with |ñ| = ñ0 + 2ñ1.

One an check that the number of moments such that ñ0 + 2ñ1 ≤ N is given by
formula (5). One defines the rectangular matrix P =

(
pm,ñ

)
|m|,|ñ|≤N with

pm,ñ = δm0,ñ0
δmod(m1,2),0δmod(m2,2),0δm1+m2,2ñ1

√
(m1)!(m2)!

2
m1+m2

2
m1

2 !m2

2 !
. (35)

Lemma 3.3. |m| 6= |ñ| =⇒ pm,ñ = 0.

Proof. Indeed if |m| 6= |ñ|, then either δm0,ñ0
= 0 or δm1+m2,2ñ1

= 0.

By definition of the matrix P , one has that

U = (um)|m|≤N ∈ K ⇐⇒ U = PŨ for some U = (ũñ)|ñ|≤N .

One has CP = PC = 0 and P tP = Ĩ.

Proposition 3.4. The formal limit ε → 0 of the singular Friedrichs system
(17) is the non singular Friedrichs system

∂tŨ +

3∑
i=1

∂xi

(
Ãi(x, t)Ũ(x, t)

)
= B̃(x)Ũ(x, t) (36)

where Ãi(x) = P tAi(x)P for 1 ≤ i ≤ 3 and B̃(x) = P tB(x)P .

Proof. The solution of the full system (17) is written as a Hilbert expansion

Uε = U0 + εU1 +O(ε2). Necessarily U0 ∈ K son one can writes U0 = PŨ . Then
multiplication all terms of the Friedrichs system by P t on the left yields the
claim.

The matrix P acts as a projection operator on the kernel K, so the reduction
model is also a projected model.
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4 Models with electric field

We now reintroduce the electric field in the model (1). The electric field is
self-consistent, that is it derives from the electric potential E = −∇ϕ. Since
one also has the Gauss law ∇ · E = ρi(x, t) − ρe where ρe > 0 is the reference
constant electronic density (which is once again taken as constant in space for
simplicity), one gets the Poisson equation

−∆ϕ =

∫
fdv − ρe. (37)

The initial data is taken globally neutral that is

ρi − ρe =

∫
x

(∫
v

f(x,v, 0)dv − ρe
)
dx = 0.

Then global neutrality is propagated by the transport equation, so one can write∫
x

(∫
v
f(x,v, t)dv − ρe

)
dx = 0 for all t ≥ 0. To take into account the electric

field in the moments models, one needs firstly to write the Poisson equation
in function of the moments, and secondly to introduce the electric field in the
Friedrichs systems. The next Lemma is dedicated to the first task.

Lemma 4.1. The ion density is ρi =
∫
v
fN (x,v, t)dv = π

3
4T

3
2u0,0,0.

Proof. With (7) and (14), one obtains

ψ(0,0,0)(x,v) = e
|v|2
T π−

1
4 e−|v·d0|2π−

1
4 e−|v·d1|2π−

1
4 e−|v·d2|2 = π−

3
4 .

The change of variable (15) yields
∫
fdv = π

3
4T

3
2

∫
fψ(0,0,0)dw = π

3
4T

3
2u0,0,0.

The weak form of the moment model with an electric field writes as∫
v

(
∂tf

N + v · ∇xfN + (E +
1

ε
v ×B0) · ∇vfN

)
ψndv = 0.

To discretize the terms proportional to E, one defines three matrices Di(x) =(
dinm(x)

)
|m|,|n|≤N with

dinm(x) =

∫
v

∂viψm(x,v)ψn(x,v)dv, i = 1, 2, 3. (38)

Lemma 4.2. The coefficients of the matrices Di(x) are given by

dinm(x) = −Tb0(x)i
√

2n0δm0,n0−1δm1,n1δm2,n2

−Tb1(x)i
√

2n1δm0,n0δm1,n1−1δm2,n2

−Tb2(x)i
√

2n2δm0,n0
δm1,n1

δm2,n2−1.
(39)
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Proof. One starts the analysis of (38) with an integration by parts dinm(x) =
−
∫
v
ψm(x,v)∂viψ

n(x,v)dv, that is

dinm(x) = −
∫
v

ψm(x,v)∂vi (ψn0(v · d0(x))ψn1(v · d1(x))ψn2(v · d2(x))) dv.

One gets

dinm(x) = −
∫
v
ψm(x,v)d0(x)i(ψ

n0)′(v · d0(x))ψn1(v · d1(x))ψn2(v · d2(x)dv
−
∫
v
ψm(x,v)d1(x)iψ

n0(v · d0(x))(ψn1)′(v · d1(x))ψn2(v · d2(x)dv
−
∫
v
ψm(x,v)d2(x)iψ

n0(v · d0(x))ψn1(v · d1(x))(ψn2)′(v · d2(x))dv.

With Lemma 2.1, one obtains

dinm(x) = −T
∫
v
ψm(x,v)b0(x)i

√
2n0ψ

n0−1(w0)ψn1(w1)ψn2(w2)dw
−T

∫
v
ψm(x,v)b1(x)i

√
2n1ψ

n0(w0)ψn1−1(w1)ψn2(w2)dw
−T

∫
v
ψm(x,v)b2(x)i

√
2n2ψ

n0(w0)ψn1(w1)ψn2−1(w2)dw.

The orthogonality of the Hermite functions yields the claim.

Let us decompose E = (E1, E2, E3).

Proposition 4.3. The moment model (17) with electric field writes

T
3
2 ∂tU(x, t) +

3∑
i=1

∂xi
(Ai(x)U(x, t))−B(x)U(x, t) (40)

+

3∑
i=1

Ei(x, t)Di(x)U =
1

ε
C(x)U(x, t).

The reduced version of the system writes

T
3
2 ∂tŨ+

3∑
i=1

∂xi

(
Ãi(x, t)Ũ(x, t)

)
−B̃(x)Ũ(x, t)+

3∑
i=1

Ei(x, t)D̃i(x, t)Ũ(x, t) = 0.

(41)

where the matrices are D̃i(x) = Ãi(x) = P tDi(x)P . Both models must be
coupled with the Poisson equation and E = −∇ϕ.

Proof. This is evident for (41) since the electric contribution is additive. The
projection method explained in the proof of Proposition 3.4 yields the reduced
system (41).

5 Numerical method

The numerical method that we use to solve either (40) or (41) consists in a
splitting strategy which follows the structure of this article. That is in a first
step we solve (40) or (41), and in a second step we solve the Poisson equation
and reintroduce the electric contribution. We explain the methods with the full
system of moments (40). Mutatis mutandi, the same method is used for the
reduced system (41).
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5.1 Resolution with a splitting algorithm

5.1.1 First step

The first step corresponds to solving the system

T
3
2 ∂tU(x, t) +

3∑
i=1

∂xi (Ai(x)U(x, t))−B(x)U(x, t)− 1

ε
C(x)U(x, t) = 0

during one time step [tn, tn+1]. For all n ≥ 0, we note U(x)n the numerical

evaluation of the unknown vector at time step tn = n∆t and Û(x)n+1 denotes
the prediction at the end of this phase. For the time discretization we consider
a Cranck-Nicolson scheme

T
3
2
Û(x)n+1 − U(x)n

∆t
+

3∑
i=1

∂xi

(
Ai(x)U(x)n+ 1

2

)
−B(x)U(x)n+ 1

2

−1

ε
C(x)U(x)n+ 1

2 = 0

where U(x)n+ 1
2 = Û(x)n+1+U(x)n

2 . For the space discretization we consider a
Finite Element method [18] with a Finite Element space Vh ⊂ H1(Ω) which
is very common in the discretization of incompressible flow [18]. For the full
system of moments (40) we take

U(x)n ∈ Xh := V
(N+1)(N+2)(N+3)

6

h for all n ≥ 0. (42)

One obtains the variational formulation for all test vectorial functions V ∈ Xh

T
3
2

∫ Û(x)n+1−U(x)n

∆t · V (x)dx =
∑3
i=1

∫
Ai(x)U(x, t) · ∂xi

V (x)dx

+
∫
B(x)U(x)n+ 1

2 · V (x)dx

+ 1
ε

∫
C(x)U(x)n+ 1

2 · V (x)dx.

(43)

To take into account the variation in space of the different matrices and vectors,
the bilinear forms are assembled with numerical integration.

5.1.2 Second step

We solve the remaining part during the same time step [tn, tn+1]

T
3
2 ∂tU(x, t) +

3∑
i=1

Ei(x, t)Di(x)U = 0. (44)

Firstly we solve the Poisson equation, with a Finite Element Poisson solver.
Then we calculate the electric field with E = −∇ϕ. Finally we solve (44) with
a Cranck-Nicolson method

T
3
2
U(x)n+1 − Û(x)n+1

∆t
+

3∑
i=1

Eni (x, t)Di(x)
U(x)n+1 + Û(x)n+1

2
= 0. (45)
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Since the extra cost is marginal, we solve (45) in the variational sense, that is
we assemble bilinear formulation with numerical quadratures

T
3
2

∫
U(xj)

n+1 − Û(xj)
n+1

∆t
· V (x)dx

+

3∑
i=1

∫
Eni (xj , t)Di(xj)

U(xj)
n+1 + Û(xj)

n+1

2
· V (x)dx = 0. (46)

5.2 Numerical implementation

To test the algorithmic structure of the anisotropic method of moments, we
have developed a dedicated research code1 written in C. We employ the finite
element (FE) method for discretization in space, and finite differences for time
discretization with an implicit procedure to reach unconditional numerical sta-
bility. At each time step the set of linear equations are solved with the Krylov
method (e.g. GMRES method [34]), with initial guess given by the solution at
the previous time step. In the following, we discuss the details of the numerical
implementation.

5.2.1 Time discretization

We apply a finite difference (FD) method in time. First we need a mesh in time,
here taken as uniform with mesh points

tn = n∆t, n = 0, 1, . . . , Nend.

5.2.2 Space discretization

We are particularly interested in an effective numerical solution, so we as-
sume a regular simplicial triangulation Th(Ω) of the domain Ω, and we assume
Ω = ∪τ∈Th(Ω)τ . We use standard notations and definitions for the Finite Ele-
ment Method (FEM). We shall denote Vh(Ω) ⊂ H1(Ω) the space generated by
conforming Pk-Lagrange functions (k ≥ 1) constructed on Th(Ω),

Vh(Ω) := {vh ∈ C 0(Ω) : vh|τ ∈ Pk(τ),∀τ ∈ Th(Ω)}.

A Galerkin method is naturally formulated where all functions and test functions
in (43) nd (46) are taken in Xh (42).

5.3 Numerical results

In this section, we test the discrete moment method by discussing standard
test problems of the literature. The first three tests are designed to validate the
pure transport equation, and the reduced gyro-kinetic model. Next, we consider

1Repository: https://gitlab.lpma.math.upmc.fr/muffin/muf.
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cases with the Landau damping test and the Bernstein-Landau paradox. The
simulations presented in this work are carried on a Dell XPS with processor
i7-6700HQ. The open source Gmsh [17] has been used for mesh generation and
post-processing.

5.3.1 The transport equation

Consider the Vlasov equation (1). If we suppose that the magnetic field vanishes
(e.g. ε→ +∞) at any time and any position, we obtain the x-transport equation

∂tf + v · ∇xf = 0. (47)

The domain is an unit cube Ω = Lx × Ly × Lz = [0, 1]3 with spatial periodic
boundary conditions. We take ε = 1015 so the magnetic field is eliminated. An
initial condition is given as follows:{

um(t = 0,x) = 1 + cos(2π(x1 + x2 + x3)), m = (0, 0, 0),

um(t = 0,x) = 0, m 6= (0, 0, 0).

An analytical solution of (47) is f(t, x, v) = π
3
4 exp−|v|

2/2(1 +
∑3
i=1 cos(2π(xi−

vit))). One deduces a reference/analytical solution for the first moment

uana
0,0,0(t,x) = 1 + cos(2π(x1 + x2 + x3)) exp−3π2t2 .

The numerical solution is computed using a standard first-order nodal FE
method on a mesh made of hexahedra and generated with Gmsh [17]. The fol-
lowing numerical setting has been considered: P1 finite elements with 7 points
of discretization in each spatial direction and mesh made of 343 nodes, 216 P1
hexahedra. The linear system resulting from the FE discretization is solved us-
ing GMRES [34]. For the velocity space, we take N = 10 that is 286 moments.

First test case

It is the transport equation (47) with a constant basis b0(x) = {1, 0, 0}>. The
results are given on Figure 3. We compare the numerical solution of the x-
transport equation and the exact solution. We observe that the numerical so-
lution is a good approximation to the exact solution when t ≤ 0.5s. For later
time there is a divergence which is classical for the discretization of such kinetic
equations. As explained in [29], the numerical scheme exhibits an artificial re-
currence effect because the model converges the energy over a finite number
of modes. The continuous model also preserves a similar energy but over an
infinite number of modes. It is visible on Figure 3 where the first moment starts
to build up again for t ≥ 0.5s.
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Figure 2: x−transport equation. (left) initial condition of u0,0,0(0,x). (right)
mesh.

Figure 3: x−transport equation. (left) numerical solution of u0,0,0(t,x) for the
case with a constant basis. (right) numerical solution of u0,0,0(t,x) for the case
with a non-constant basis. x = (0, 0, 0).

Second test case

It is the transport equation (47) with a non-constant basis

b0(x) = {0, cos(2πx3), sin(2πx3)}>.

Figure 3 shows the analytical solution and numerical solution. It shows that the
numerical solution is a good approximation to the exact solution when t < 0.4s,
still before the time of the artificial recurrence phenomenon.
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Figure 4: Gyro model. Numerical solution of u0,0,0(t,x).

Third test case with reduced gyro-kinetic model

Now the magnetic field is non zero B0(x) = b0(x){1, 0, 0}> in the simplified
equation

∂tfε + v · ∇xfε +
1

ε
v ×B0(x) · ∇vfε = 0. (48)

One can find an equivalence principle where f(t,x,v) = g(t,x, v1, µ) for all t,
x, v1 and µ where µ =

√
v2

2 + v3
3 . Provided that g is the solution to

∂tg + v1∂x1g = 0, (49)

with initial condition g(0,x, v1, µ) = exp−|v
2|/2(1 + cos 2πx1), then it can be

shown that f is the exact solution of the magnetized transport. It means that
f is equal to its gyroaverage g. Since

g(t,x, v1, µ) = exp−|v
2|/2(1 + cos 2πx1 exp−π

2t2)

one easily calculates the moment u(0,0,0)(x, t).

For numerical simulation we use the reduce method where Ñ = 36 is the
reduced number of moments. The other physical and numerical configurations
are the same as in the previous cases. Figure 4 compares the analytical solu-
tion and the numerical solution. Once again the numerical solution is a good
approximation to the exact solution before the time of the artificial numerical
recurrence t ≈ 0.8.

5.3.2 Linear Landau damping

We perform a convergence study on the Landau damping problem. Landau
damping is a standard test for collisionless plasmas, which is the effect of damp-
ing of longitudinal space charge waves. It occurs because of the energy exchange
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between a wave initially excited in the plasma and particles in the plasma that
are resonant with it. We consider the non-linear Vlasov-Poisson system:

∂tf + v · ∇xf +

(
E +

1

ε
v ×B0(x)

)
· ∇vf = 0,

∇ ·E =

∫
fdv − ρe.

We keep periodic solutions in x1-direction, and consider the initial density func-
tion

f(0,x,v) =

(
1√
2π

)3

(1 + α cos(kx1)) exp−|v|
2/2 .

We seek a solution of the form,

f(t,x,v) = f1(t, x1, v1)

(
1√
2π

exp−v
2
2/2

)(
1√
2π

exp−v
2
3/2

)
,

where f(t,x,v) satisfies the non-linear Vlasov equation and the initial condition
if and only if f1(t, x1, v1) is a solution of the follwing Vlasov-Poisson in one
dimension in space x1 and velocity v1,

∂tf + v1∂x1f + E1∂v1f = 0,

∂x1E1 =

∫
fdv − ρe.

initialized with

f(0,x,v) =
1√
2π

(1 + α cos(kx1)) exp−v
2
1/2 .

The approximate solution to the system above is given in page 58 of [36]. More-
over, we can compute an approximate E1(t, x1) using the moment method based
on the splitting strategy in this work and compare to the approximate solution

E1(x1, t) ≈ 4α× 0.424666 exp−0.0661t sin(0.4x1) cos(1.2850t− 0.1157725).

We choose the values α = 0.001 and k = 0.4 in the second line of the table in
page 58 of [36]. This is a good approximate solution of the exact solution for
large times, which is also used as a test case in [5, 33].

We take the charge of the ions equal to one, and only consider um with
respect to the velocity variable v1 and v2. The domain is a rectangular cuboid
Ω = Lx × Ly × Lz = [0, 2π/k]× [0, 1]2. We take ε = 1015 so that the magnetic
field vanishes. The numerical setting is considered as follows: P1 finite elements
with 127 points of discretization in x1-direction, and 3 points of discretization in
x2-direction and x3-direction. The mesh of this setting is made of 1143 nodes,
504 P1 hexahedra. For velocity space, N = 100 that is 5151 moments. In
Figure 5, we plot the electric energy, and we can see that the numerical solution
is reasonably accurate.
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Figure 5: Landau damping. Damped electric field with k = 0.4, and ε = 1015.

5.3.3 The Bernstein-Landau paradox

The next test case that we study is the Bernstein-Landau paradox in an electro-
static plasma, whereby electric field and charge density fluctuations have time
oscillatory behavior in the presence of a magnetic field. Magnetized plasmas
can prevent Landau damping, which was demonstrated by Bernstein [2] that in
the presence of a constant magnetic field, the electric field does not decay for a
long time, and in fact has a time-varying oscillatory behavior.

The physical and numerical configuration is the same with the Landau damp-
ing test, despite that ε = 10. It shows that the damping is replaced by a re-
currence phenomenon of period Tc = 2πε when there is a magnetic field. This
recurrence is a consequence of the series based on the eigenvectors expansion in
the regime of non zero magnetic field [33, 5]. In Figure 6, we plot the electric en-

Figure 6: Bernstein-Landau paradox. Undamped electric field with k = 0.4,
and ε = 10.

ergy for Bernstein-Landau paradox test case, and we can observe that recurrence
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is visible with the period 2πε. In other words, the Bernstein-Landau paradox
is an entirely ”physical” phenomenon arising from the non-zero magnetic field
[33, 5].

5.3.4 Diocotron

The chosen initial data is inspired by [10, 6]. It is a Maxwellian in velocity and
a ring-shape distribution in space with a perturbation in angle

f0(x,v) =


n0

(
√

2π)3
(1 + η cos(kθ)) exp−4(r−6.5)2 exp−|v|

2/2, r− ≤ r ≤ r+,

0, otherwise,
(50)

where x = (x1, x2, x3), v = (v1, v2, v3), r =
√
x2

2 + x2
3. Correspondingly, the

initial moment is given as follows:

u0,0,0 =

{
(2−3/2π−3/4)n0(1 + η cos(kθ)) exp−4(r−6.5)2 , r− ≤ r ≤ r+.

0, otherwise,
(51)

The non-homogenous magnetic field is taken as

B0(x) = ωc(x)
1√

1 + α2x2
3 + α2x2

2

(1, αx2,−αx3)>.

The spatial domain is a cartesian geometry x = (x1, x2, x3) ∈ Ω = [0, 1] ×
[−13,+13] × [−13,+13]. We choose n0 = 1, η = 0.01, k = 4 r− = 5, r+ =
8 and discretize the spatial domain Ω with Nx1

= 2 and Nx2
= Nx3

= 64
points. As a diagnostic, we consider the density

∫
R3 u0,0,0(t,x)ψ0,0,0(x,v)dv =

23/2 π3/4 u0,0,0(t,x). The results are displayed in Figure 7.
One observes that the ring is transformed at a later in a square, as in [6].

The calculation for later time is possible with our numerical tool, but so far the
results are delicate to interpret so far to postpone the presentation of such more
physical results.

5.4 Comments on the numerical cost of the simulations

Even with this important numerical cost, we foresee two situations where our
discretization strategy with anistropic moments is worth the game. The first is
to use the reduced model as a way to drastically diminish the number of mo-
ments. The second one is to use our methodology to discretize kinetic equations
for electrons, where the small mass of the electron is known to hamper the time
step for explicit Euler discrete methods. Our implicit solver is indeed a natural
option to bypass the cost of explicit computations in such situations.

The dedicated research code2 (written in C) uses state of the art compressing
techniques for manipulations of sparse matrices. However the numerical solver

2Repository: https://gitlab.lpma.math.upmc.fr/muffin/muf.

23

https://gitlab.lpma.math.upmc.fr/muffin/muf


(a) t = 0.1 (b) t = 1.0

(c) t = 2.4 (d) t = 6.8

Figure 7: The full 3D Vlasov-Poisson system. Numerical solution of u0,0,0(t,x) with
initial condition (51) with α = 0. The |N | for the moment method is equal to 70.

used to solve the implicit Euler system has its own cost, which is multiplied
by the number of time steps required to reach the final time. We are currently
working on the optimization of this numerical tool in order to minimize the time
of simulation. It will require to develop acceleration techniques and to use the
ressources of HPC (High Performing Computing).
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A Proof of formula (34)

The proof comes from (6). One has

Fs(w2, w3) = 1
22ss!

√
π
e

w2
2+w2

3
2

∑s
r=0

s!
r!(s−r)!

d2r

dw2r
2
e−w

2
2 d2(s−r)

dw
2(s−r)
2

e−w
2
3

= 1
22ss!

√
π
e

w2
2+w2

3
2

(
∂2
w2

+ ∂2
w3

)s
e−(w2

2+w2
3).

(52)

This formula shows by recurrence that Fs(w2, w3) = ps(w
2
2 +w2

3)e−
w2

2+w2
3

2 where
ps is some real polynomial of degree less or equal to s. Integrations by parts show
that

∫ ∫
Fs(w2, w3)Fs′(w2, w3)dw2dw3 = 0, where s 6= s′. It can be written in

radial coordinates (w =
√
w2

2 + w2
3) as

∫∞
0
ps(w)ps′(w)e−wdw = 0 s 6= s′. We

note the Rodrigues type formula

ps(w
2) = ew

2

(
d2

dw2
+

1

w

d

dw

)s
e−w

2

. (53)

This compact formula seems original with respect to the classical literature [31].
It is easy to reduce it to the classical formula for Laguerre polynomials.

Let us make a change of variable x = w2 ∈ R+. One checks the iden-

tity d2

dw2 + 1
w

d
dw = 4

(
x d2

dx2 + d
dx

)
. So ps+1(x) = 4ex

(
x d2

dx2 + d
dx

)s+1

e−x =

4ex
(
x d2

dx2 + d
dx

)
(ps(x)e−x). One obtains the iteration{

p0(x) = 1,
ps+1(x) = 4 (xp′′s (x) + (1− 2x)p′s(x) + (x− 1)ps(x)) .

(54)

Similar iteration formulas are known for Laguerre polynomials (Ln(x))n∈N, see
[31]. In particular it is known that xL′′n(x) + (1− x)L′n(x) + nLn(x) = 0,

(n+ 1)Ln+1(x)− (2n+ 1− x)Ln(x) + nLn−1(x) = 0,
xL′n(x)− nLn(x) + nLn−1(x) = 0.

Elimination of Ln−1(x) by subtraction of the last identity to the second one
yields (n + 1)Ln+1(x) − xL′n(x) + (x − n − 1)Ln(x) = 0/ Addition of the first
identity yields (n + 1)Ln+1(x) + xL′′n(x) + (1 − 2x)L′n(x) + (x − 1)Ln(x) = 0.
Comparison with the iteration formula in (54) yields pn(x) = (−1)n4nn!Ln(x).
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[36] E. Sonnendrücker. Modèles cinétiques pour la fusion. Master notes, 2:11,
2008.

28

https://doi.org/10.1063/1.5018354
https://doi.org/10.1063/1.5018354

	Introduction
	Construction of the method of moments
	Hermite functions
	Anisotropic basis functions
	Weak form of the moment model
	Matrix form of the moment model

	Reduced moment models
	The cyclotron kernel
	Reduction

	Models with electric field
	Numerical method
	Resolution with a splitting algorithm
	First step
	Second step

	Numerical implementation
	Time discretization
	Space discretization

	Numerical results
	The transport equation
	Linear Landau damping
	The Bernstein-Landau paradox
	Diocotron

	Comments on the numerical cost of the simulations

	Proof of formula (34)

