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Abstract:

Satellite remote sensing is a key technique to understand Ocean dynamics. Due to measurement difficulties,

various ill-posed image inverse problems occur, and among them, gridding satellite Ocean altimetry maps
is a challenging interpolation of sparse along-tracks data. In this work, we show that it is possible to take
advantage of better-resolved physical data to enhance Sea Surface Height (SSH) gridding using only partial
data acquired via satellites. For instance, the Sea Surface Temperature (SST) is easier to measure through
satellite and has an underlying physical link with altimetry. We train a deep neural network to estimate a time
series of SSH using a time series of SST in an unsupervised way. We compare to state-of-the-art methods and
report a 13% RMSE decrease compared to the operational altimetry algorithm.

1 INTRODUCTION

Due to their massive heat storage capacity, the oceans
play a crucial role in climate regulation. Under-
standing their dynamics is essential in many appli-
cations such as oceanography, meteorology, naviga-
tion, and others. This has motivated the establish-
ment of numerous satellite-based ocean-monitoring
missions. Among them, satellite altimetry is used
to retrieve the Sea Surface Height (SSH), a vari-
able conditioning ocean circulation. The recovery of
the global SSH from satellite imaging constitutes a
challenging Spatio-Temporal interpolation image in-
verse problem. SSH is currently measured by various
nadir-pointing altimeters, meaning that they can only
take measurements vertically, along their very sparse
ground tracks. The gridded SSH image is recon-
structed through the Data Unification and Altimeter
Combination System (DUACS) (Taburet et al., 2019).
This algorithm performs a linear optimal interpolation
with a covariance matrix estimated on 25 years of ob-
servations. However, it has been shown that this prod-
uct misses mesoscales dynamics and eddies (Amores
et al., 2018 [Stegner et al., 2021). To enhance SSH re-
covery, a new altimeter called SWOT (Surface Water
and Ocean Topography) will be launched in the close
future. It will provide two 60-km-wide swaths sepa-

rated 20-km gap instead of nadir observations. Even
with this additional coverage, the dynamics of small-
scale structures will still not be observable due to
the low measurement time frequency (Gaultier et al.,
2016)).

In the past years, various mapping methods have
been proposed to improve DUACS optimal interpo-
lation including model-based approaches (Le Guil-
lou et al., 2020; (Ballarotta et al., 2020; |Ardhuin
et al., 2020) and data-driven approaches (Fablet et al.,
2021)).

Deep neural networks, and especially convolu-
tional neural networks, have proven their ability to
solve ill-posed image inverse problems (Jam et al.,
2021; McCann et al., 2017; Ongie et al., 2020;
Qin et al., 2021; |Wang et al., 2021; [Fablet et al.,
2021). Among them, (Fablet et al., 2021) introduced a
deep learning network that outperforms model-driven
methods demonstrating the interest in using train-
able models. Furthermore, the flexibility of deep
learning-based methods allows us to use information
from other sources than only the SSH, by learning the
underlying physical link between multimodal obser-
vations. For instance, the Sea Surface Temperature
(SST) can be retrieved at a much better resolution
(1.1 to 4.4km) than the SSH from the AVHRR in-
struments (Emery et al., 1989). These two variables



Figure 1: NATL60 output data in a 10-day time window (the time step is 2-day). The first row is the ground truth SSH, and
the second is the twin experiment on SSH along tracks. The wide satellite tracks simulate SWOT satellites whereas the fine
tracks simulate nadir observations. The last row is the modeled SST.

are physically linked (Leuliette and Wahr, 1999;|Ciani|
and this link can be learned in a machine
learning framework. In several studies, using SST
leads to major improvements in SSH inverse prob-
lems (Archambault et al., 2022} [Fablet et al., 2022).

However, learning physical dynamics in a su-
pervised framework requires high-resolution datasets
that are not available in a real-world scenario. There-
fore a solution is to use an Observing System Sim-
ulation Experiment (OSSE), a twin experiment that
simulates the satellite interpolation inverse prob-
lem (Gaultier et al., 2016). The dataset produced with
this method enables us to train a deep neural network
in a supervised way, and then perform a transfer learn-
ing to real-world data. Nevertheless, we have no guar-
antee that the simulation is truly realistic.

To overcome the issue raised by the lack of ground
truth data, we present in this work a method denoted
Multimodal Unsupervised Spatio-Temporal Interpo-
lation (MUSTI) able to train a deep neural network in
an operational scenario, i.e. with only the SST im-
ages and the SSH along-track measurements. The
main idea of this method is to estimate SSH images
from SST fully gridded images while supervising the
multimodal information transfer only at the location
where we have access to measurements. From the
cross-modal learning point of view, it can be seen
as a Weakly-Supervised task, but from the inpaint-
ing point of view, it is an unsupervised problem as
we have access to no fully gridded image. We test
our method with two different neural architectures
and on three datasets (two of them are simulated and
one remote-sensed). We show promising results to
include information from multimodal sources in im-

age inverse problems and compare MUSTI to the op-
erational product (DUACS), to fully supervised neural
networks, and to data assimilation methods.

2 PROBLEM STATEMENT

2.1 Satellite tracks interpolation

Satellite remote sensing involves numerous inverse
problems, such as denoising, super-resolution, or in-
terpolation. Among them, gridding altimetry maps is
a challenging ocean application combining an inter-
polation and a denoising image inverse problem. Let
us consider a time window of T days with multimodal
observations of SSH and SST. We denote hereafter
Y}, and Y[, respectively the SST and SSH observa-
tions at time 7 and X!, the true SSH state i.e. the
gridded image that we aim to recover. Due to the
high resolution of the SST observations, we can con-
sider them as gridded images, even in a real-world
framework. The SSH observations, on the other hand,
can not be considered gridded images as the measure-
ments are sparse.

Formally we consider that SSH tracks are ob-
tained from the true SSH state image X!, using an
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observation operator }42! such as in Eq. (1):

Yl = Ho (Xiy)+& (D

where €, is the support of the SSH observations at
time ¢ and € is the observation noise well-detailed
by (Gaultier et al., 2016). These two parameters can
be simulated using a twin experiment software, but




in the real-world only €; is known where & must be
estimated.

To simplify the notations, in the following we re-
fer to the observations on the entire time window as
Y, = {¥},....YL} and same with Y ,. Eq. (I is
now expressed in a compact way by Eq.([2):

YSS/’! = "H;Z (Xx.\'h) +&€ (2)
withe = {g;,...,er} and Q = U, Q..

2.2 Overview of methods
2.2.1 Data assimilation

In geosciences applications, the issue of fitting and
validating methods is a challenging task as the ground
truth is never accessible. The community thus uses
data assimilation schemes combining physical infor-
mation together with observations to regularize the
inversion. A wide range of model-driven methods
has been proposed to inverse Eq. (2). For instance,
the operational product DUACS (Taburet et al., 2019)
relies on a Best Linear Unbiased Estimator (BLUE)
method (Bretherton et al., 1976). This linear inter-
polation requires estimating the covariance matrices
of the system state and noise. This statistical infor-
mation is hard to estimate in a geosciences context;
in the case of DUACS method, it involves 25 years of
data acquisition and a strong preprocessing physical
expertise. DUACS is challenged by other data assimi-
lation methods (Ardhuin et al., 2020; |Ballarotta et al.,
2020; |[Le Guillou et al., 2020), combining a physi-
cal model of the Ocean with observations. These ap-
proaches use Surface Quasi-Geostrophic (SQG) the-
ory (Klein et al., 2009) to constrain the image inverse
problem, but also require the knowledge of the covari-
ance matrices.

2.2.2 Supervised machine learning

Machine learning methods, for their part, use statisti-
cal information to learn the inversion. Deep learning
networks can model complex relationships between
multimodal data (Ngiam et al., 2011} and their flex-
ibility makes them suitable to include SST informa-
tion in the interpolation (Nardelli et al., 2022; |Ar-
chambault et al., 2022} |[Fablet et al., 2022). Recently,
(Fablet et al., 2021} introduced 4DVarNet, a super-
vised deep learning network with state-of-the-art per-
formances on simulated data. This method is fitted on
a twin experiment and then applied to the real world.

2.2.3 Unsupervised machine learning

Despite supervised schemes, neural network architec-
tures can be used to introduce an inductive bias suited

to image inverse problems as in the paper Deep Image
Prior (DIP) (Ulyanov et al., 2017). Replacing DUACS
BLUE covariance statistics with a Spatio-Temporal
deep image prior is already proven efficient to per-
form the OI of satellite tracks (Filoche et al., 2022).
As they do not need to be trained on full fields, these
methods can be applied directly to real data.

2.3 Data

In the following, we present two datasets used to
test interpolation methods, the NATL60 Observing
System Simulation Experiment (OSSEﬂ and a real-
world scenario with satellite altimetry along tracks

SSHZ and SSTE

2.3.1 Observing System Simulation Experiment
(OSSE)

To test the reconstruction quality of the different
methods we use an Observing System Simulation
Experiment. To do so, a high-resolution simulation
NATL60 (Ajayi et al., 2019) is considered as ground
truth, upon which we simulate satellite orbits and
measurements with realistic instrumental noise. It in-
cludes SWOT wide swaths, and nadir pointing obser-
vations as shown in Figure|l| Both tracks and mea-
surement errors are performed by the swot-simulator
software (Gaultier et al., 2016). As shown in Figure@
the daily data coverage of the observations is about
10% on average with strong periodic variations due to
the SWOT satellite’s path. Even when the data cov-
erage reaches 20%, important Spatio-Temporal gaps
remain (see the second row of Figure , hence the
difficulty of the interpolation task.

To complete the operational framework we use the
SST from NATL60 simulation without noise. This
data is thus not a realistic image as clouds and other
noise sources should be added to be closer to real tem-
perature observations. However, as we will test our
method on real-world data as well, in this first experi-
ence we choose not to add any noise to the SST image.
Since this high-resolution simulation is very compu-
tationally intensive, we only have access to one year
of simulation, from the 1 of October 2012 to the 30"
of September 2013. The first 21 days are used to spin

'More information about the OSSE data is pro-
vided at https://github.com/ocean-data-challenges/2020a_
SSH_mapping NATL60

“Real-world altimetry data are provided at
https://github.com/ocean-data-challenges/2021a_SSH_
mapping_OSE

SMUR SST data are freely available at https://podaac.
jpl.nasa.gov/dataset/ MUR-JPL-L4-GLOB-v4.1
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Figure 2: Data coverage on October 2012 with the swot-
simulator software on the study area. The SWOT satellite
provides more points than the multiple nadir satellites but
has a high return time (11 days). Combined, the SWOT and
nadir altimeters cover each day 10.5% of the studied area
on average.

up the methods that need it, then 42 days of simu-
lation are used as a test set. To avoid data leakage
between the test and the training data, we set aside 31
intermediary days of simulation and take the rest as a
training set.

We focus on a part of the North Atlantic Ocean:
the Gulf Stream area, from latitude 33° to 43° and
from longitude -65° to -55°. This area is very ener-
getic, with strong currents, so we expect a significant
synergy between SSH and SST. Also for computa-
tional purposes, we re-grid all images at a resolution
of 0.05° in latitude and longitude (where the NATL60
simulation has a resolution of 0.01°).

2.3.2 Real-World data

The OSSE data provide an idealistic scenario, with
an optimal combination of altimeters and a noiseless
sea surface temperature. Thus the surface temperature
and height are overly correlated compared to a real-
istic scenario and the multimodal link between data
should be easy to learn by a neural network. This mo-
tivates us to test the same method on real-world data.
We use measures from different nadir altimeters ac-
quired between the 1% of December 2017 to the 31
of January 2018. Once again to evaluate the method
we leave aside the altimeter data from Cryosat-2 as a
test set and some observations of another satellite (Ja-
son 2) as a validation set. We underline the fact that as
the SWOT mission is not launched yet, no data with
wide swaths is available today.

We use temperature data from the Multi-scale
Ultra-high Resolution (MUR) SST (Chin et al., 2017).
These SST satellite images are an operational delayed
time product available with only a 4-day latency.

3 PROPOSED METHOD

3.1 From supervised to unsupervised
inversion

Data assimilation and machine learning methods
leverage different ways to constrain the inversion with
different drawbacks. For instance, the models needed
by data assimilation methods can be computationally
intensive and suffer from various sources of error due
to discretization or unresolved physics among oth-
ers (Janji¢ et al., 2018)). Also, some of the assim-
ilation methods require the adjoint model which is
not always available. On the other hand, the super-
vised machine learning frameworks need ground truth
and thus use output data of complex physical mod-
els. If 4DvarNet has proven its capacity to interpolate
the simulated data, transposing this training to real-
world scenarios is still challenging and leads to do-
main adaptation issues. The performance of this ap-
proach does not only rely on the ability of a neural
network to learn the physics embedded in the model
but also on the trust that we have in the NATL60 sim-
ulation itself.

Taking into account these elements, we propose a
method, named MUSTI, to train a deep learning net-
work in an operational scenario without using simu-
lations. To that end, we rely on two main features; the
prior induced by the neural network and the statisti-
cal link between the multimodal observations. Our
method differs from 4DVvarNet for it is not supervised
on ground truth and from Deep Image Prior as it can
include multimodal observations and is fitted on a
dataset.

3.2 Multimodal Unsupervised
Spatio-Temporal Interpolation

As suggested by the manifold hypothesis (Fefferman
et al., 2016), physical data can be seen as high-
dimension observations taken from the same under-
lying representation. This means that the ocean sys-
tem can be parsimoniously described using a low-
dimension representation vector denoted Z able to en-
code its core dynamics.

Considering the above arguments, using an
encoder-decoder framework seems appropriate. One
can use a deep neural network to encode Y, in the
latent space by modeling p(Z|Y,;). A decoder can
then recover the output distribution p (th|Z) and
transfer information from the SST gridded image to a
SSH image. Hereafter the encoder will be denoted fg,
in Eq. (3), the decoder gg, in Eq. @) and the encoder-
decoder network hg = gg, o fg,. Other architectures
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Figure 3: Computation graph of the proposed method. The neural network /g holds all the control parameters 8 and aims to
generate a time series of SSH images from a time series of SST images. This method can use any kind of neural network
architecture for hg, as long as it takes an image time series as input and output. The masking operator Hg, is applied before
the cost function in order to train the network in an unsupervised manner.

can be used as well through a direct multimodal in-
formation transfer from Y, to X , as long as they
bring an inductive bias, helping the reconstruction.

Encoding: Z=fo (Yy) 3)
Decoding: Xssh = 86, (Z) )
Masking: ?Ssh = Hy (Xssh) &)

The MUSTI method consists in encoding the SST
observations as in Eq. (3) as a latent vector Z. Then
following Eq. @) the SSH gridded state X, is esti-
mated from the latent space. Finally, as we want the
neural network to be trained in an unsupervised way,
we apply the masking operator #H, to the estimate
SSH state th to retrieve along-tracks observations
Y, as Eq. @) suggests.

By doing so, we can supervise the network only
on the pixels where we have access to observations.
This means that, similarly to Deep Image Prior in-
painting scheme (Ulyanov et al., 2017)), we compute
a supervised loss L between Y, and Y ;, Eq. (6).

T
L (Yssh’Yssh) = Z H?stsh - stth
1‘;0 (6)
= ZOH"H;Z, (Xstsh) _YstshHZ
=

The MUSTI method aims in learning a multi-
modal physical link between the gridded SST and the
along-track SSH. The implicit hypothesis behind our
method is that fitting a neural architecture to model
p (YY) will provide a good estimation of the
true state X_, even on the pixels where it is not super-
vised to do so. We believe that due to the symmetry
by translation of the convolution operation, the fea-

tures learned on along tracks measurements will ap-
ply the same physical transformation to every pixel of
the SST image to generate the gridded SSH map. We
present a visual overview of this method in Figure[3]

4 RESULTS

4.1 Experiment

The MUSTI training procedure can be used with
a wide range of convolutional neural architectures
as long they bring an inductive bias toward out of
tracks generalization. We test two deep neural net-
work architectures following the MUSTI method: a
U-net architecture (Ronneberger et al., 2015) and a
Spatio-Temporal auto-encoder (STAE). It relies on
the Spatio-Temporal convolution (conv2DP1) intro-
duced by (Tran et al., 2018)). More details about
the STAE architecture are provided in Appendix [B]
Previous work has shown that this kind of convolu-
tion introduces a Spatio-Temporal prior well suited
for satellite track interpolation in an unlearned frame-
work (Filoche et al., 2022). Using a network architec-
ture relying on the same principles, we use conv2DP1
and 3D maxpooling to reduce the time series spatial
dimension while preserving time encoding.

Thus we can compare the performance of a net-
work compressing information in a latent space and
the performance of a direct network. Hereafter we
will discuss 3 different scenarios: the OSSE data with
SWOT and nadir measures, with only nadir measures,
and the real-world data.



Table 1: Results of the different methods on the three data scenarios. We present hereafter the score of the different interpola-
tion methods to which we compare ourselves. We give the score of the MUSTI method for an ensemble of 10 neural networks
with different weights initialization and the mean performance of each member of the ensemble. The details about the tuned

hyper-parameters are given in Appendix

swot + nadir nadir only real-world data

Methods v | o | A | N g | o | A | N v | o
DUACS 0.922 | 0.017 | 1.22 | 11.29 | 0.916 | 0.008 | 1.42 | 12.08 | 0.877 | 0.065
DYMOST 0.926 | 0.018 | 1.19 | 10.26 | 0911 | 0.013 | 1.35 | 11.87 | 0.889 | 0.064
MIOST 0.938 | 0.012 | 1.18 | 10.33 | 0.927 | 0.007 | 1.34 | 10.34 | 0.887 | 0.085
BFN 0.926 | 0.018 | 1.02 | 10.37 | 0.919 | 0.017 | 1.23 | 10.64 | 0.879 | 0.065
4DpvarNet* 0.959 | 0.009 | 0.62 | 431 | 0.944 | 0.006 | 0.84 | 7.95 | 0.889 | 0.089
MUSTI U-net mean 0.951 | 0.01 1.09 6.0 | 0.939 | 0.009 | 135 | 573 | 0.881 | 0.103
MUSTI U-net ensemble | 0.954 | 0.009 | 0.62 | 3.44 | 0.946 | 0.008 | 1.23 | 4.14 | 0.886 | 0.099
MUSTI STAE mean 0945 0.011 | 1.02 | 6.32 | 0.931 | 0.012 | 1.13 | 8.78 | 0.885 | 0.086
MUSTI STAE ensemble | 0.952 | 0.011 | 0.68 | 5.41 | 0.938 | 0.012 | 0.96 | 7.59 | 0.893 | 0.083

* supervised

4.1.1 Training procedure

For each scenario and neural architecture we tune the
window size T, and the stopping epoch on the val-
idation dataset, as described in Appendix [C] FLAG
In the real-world scenario, there is no ground truth to
serve as a validation dataset, therefore we leave aside
the observations from a satellite (Jason-2g) to tune
the model’s hyper-parameters on. Once these hyper-
parameters are found on validation observations, we
train another network with this set of parameters on
the training and validation set. This way we can fully
compare to other methods in terms of used altimetry
observations.

As the optimization path varies with weight ini-
tialization, we train a set of 10 models for each experi-
ence and average generated images from each model.
This ensemble of neural networks helps to stabilize
performances regarding to initialization and is proven
to enhance the reconstruction (Filoche et al., 2022;
Hinton and Dean, 2015).

4.1.2 Method evaluation

To compare the reconstruction methods we use the
metrics defined by (Le Guillou et al., 2020) includ-
ing the normalized root mean squared (NRMSE) as in

Eq. (@):
- RMSE (yt,yt)
NRMSE (t =1-— =

with Root Mean Squared Error as RMSE and with
Root Mean Squared of the target y during the entire
evaluation time domain as RMS (y). We call in Ta-
ble [T] 4 the mean of the NRMSE on the time domain
and o, its time standard deviation. These metrics have
no units and for a perfect reconstruction u equals 1.

)

We also use two spectral metrics, A, (in degrees)
and A; (in days) that can be assimilated respectively
to the minimum spatial and temporal wavelength re-
solved. We do not compute these spectral metrics
for the real-world scenario, because we do not have
a gridded ground truth. For more details about the
implementation of these metrics, we refer the reader
to (Le Guillou et al., 2020). All metrics given in Ta-
ble [1| are computed on the image at the center of the
time series.

4.2 Comparison of the methods on
OSSE and real-world data

We compare the results of different methods: the op-
erational linear interpolation using a covariance ma-
trix tuned with 25 years of observations (DUACS),
three model-based data assimilation schemes: DY-
MOST (Ubelmann et al., 2016;|Ballarotta et al., 2020)),
MIOST (Ardhuin et al., 2020) and BFN (Le Guillou
et al., 2020). Finally, we compare with the supervised
neural network 4DvarNet (Fablet et al., 2021)).

* In the swot + nadir scenario 4DVarNet outper-
forms other methods in terms of RMSE, espe-
cially DUACS and the model-driven approaches.
The MUSTI method can not compare with the su-
pervised scheme RMSE-wise but has similar re-
sults in terms of minimum spatial and tempo-
ral wavelength resolved. The U-net architecture
gives better results than STAE. In Figure |4 we
present a visual comparison of the DUACS method
and a MUSTI U-net. We see that the DUACS
method misses some of the small-scale variations
that the MUSTI method is able to resolve.

¢ In the nadir only scenario, no wide swath altime-
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Figure 4: Visual overview of the visual results in the swot+nadir scenario. We compare DUACS and an U-net trained
following the MUSTI method. We present the generated SSH image and the norm of the gradient.

try data are available, thus the performances of
all unsupervised methods drop by approximately
0.01 in terms of normalized RMSE. But the su-
pervised neural network has a higher performance
drop, so in the end, the U-net trained in a MUSTI
way has a slightly better RMSE and temporal res-
olution. However, we notice a significant drop in
the reconstruction of the short spatial wavelength.
This can be explained by the fact that lacking large
satellite swath, the small eddies are missed.

* On the real-world data, every method has a
very significant RMSE performance drop. The
DYMOST, MIOST, and 4DVarNet methods are in
a nutshell, while DUACS and BFN are outper-
formed. Surprisingly, the two networks trained
with MUSTI method do not have the same order
of performance as on the OSSE data. The STAE
ensemble outperforms other methods, while the
U-net does not reach DYMOST, MIOST and
4DvarNet. It seems that the encoding-decoding
process is useful to denoise the SST images while
a skip connection is not able to do so.

These results demonstrate the potential of unsu-
pervised neural networks to deal with partially ob-
served fields. The MUSTI method that was designed
for an operational framework achieves better results
in the real-world scenario, directly learning from real-
world fields than a method supervised on an indepen-
dent dataset. Furthermore, we show that it is possible
to transfer multimodal information from the SST to
the SSH fields without providing any covariance ma-
trix, physical model information, or supervision with
a full-field dataset.

S PERSPECTIVES

In the following, we discuss different ways to con-
tinue this work.

Using MUSTI method in a transfer learning scheme
Our method allows us to train a neural network
with incomplete data as an operational framework re-
quires. However, this method could also be used in a
transfer learning scheme. We are interested in training
a deep learning architecture on OSSE data in a tradi-
tional supervised way, and then using MUSTI method
to fine-tune the model on real-world data.

Multimodal fusion There are different ways to per-
form multimodal data fusion (Ngiam et al., 2011) and
we are interested in testing other fusion approaches.
For instance, if this training procedure is capable to fit
a trajectory of SST to a trajectory of SSH it does not
generalize well to new examples. Being able to give
SSH ground tracks as inputs of the network without
overfitting them should help solve this problem.

6 CONCLUSION

We presented a method to include multimodal infor-
mation in Spatio-Temporal image inverse problems in
an unsupervised way. Relying on the hidden physi-
cal link between Sea Surface Height and Sea Surface
Temperature, we train a neural network to fit the SSH
along tracks observations starting from a fully grid-
ded SST image. We show that the multimodal trans-



fer performed by the network on the along-tracks data
generalizes well where it has not been supervised. We
tested two different neural architectures, a U-net and
a Spatio-Temporal auto-encoder, on 3 datasets (2 sim-
ulations and a real-world scenario).

On real-world data, we report a relative improve-
ment of 13% compared to the operational product
(DUACS) in terms of RMSE. We also show that
our method is able to outperform supervised state-
of-the-art interpolation architectures as they suffer
from overfitting of the simulation upon which they are
trained.
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A Implementation details

All networks are trained through an ADAM optimizer
with the following parameters: B; = 0.9, B, = 0.999.
We use an exponential learning rate scheduler with
a starting learning rate of 103 for the U-net and of
5 x 10~ for the STAE and o = 0.96.

We determine the optimal hyper-parameters (win-
dow temporal size T and stopping epoch) on the vali-
dation dataset, other hyper-parameters are untuned.

Table 2: Optimal hyper-parameters on the validation dataset
for each architecture and dataset.

Dataset STAE U-net
T epoch T epoch
s+n 7 94 3 113
n 5 57 5 60
™w 5 50 5 55

B Network architectures H

Spatio-Temporal Auto-Encoder

The architecture of the Spatio-Temporal Auto-
Encoder (STAE) is given in our code and relies on the
Conv2PD1 introduced by (Tran et al., 2018)). First,
a 2D convolution is performed in the spatial dimen-
sions, then a 3D Batch-Normalization followed by a
ReLU activation function and finally a 1D convolu-
tion in the time dimension. The spatial dimensions of
the image are then divided by 2 (the time dimension
is not reduced) with a 3D max pooling.

The decoder is similar to the encoder except
that we use a 3D upsampling (trilinear) and then
a Conv2DPI. The last block has no Batch-
Normalization nor ReLU activation function.

U-net

The U-net (Ronneberger et al., 2015) architecture is
a classic image architecture. We use four downward
blocks composed of two 2D convolutions, each one
with a ReLU activation function and BatchNormal-
ization. A Maxpooling is then performed to divide
the size of the image by two.

C Train, validation, test split

Table 3: Train, validation, and test datasets for each sce-
nario

| Dataset | OSSE |  Real-world |
Train Tracks from all every nadir
year satellite except
j2g and c2
Validation GT between nadir tracks
2013-01-02 and from j2g
2013-09-30 satellite
Test GT between nadir tracks
2012-10-22 and | from c2 satellite
2012-12-02
4

our code is available at |https://gitlab.lip6.fr/
archambault/visapp2023
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