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Paris, France,® Sorbonne Université, CNRS, Université de Paris, Laboratei Jacques-Louis Lions (LJLL), Paris, France,

5 Stochastics and Biology Group, Probability and Statistic§LPSM, CNRS 8001), Sorbonne University, Paris, France

A sentinel network, Obépine, has been designed to monitor SARS-CoV-2 viral load in
wastewaters arriving at wastewater treatment plants (WWTP$) France as an indirect
macro-epidemiological parameter. The sources of uncertaty in such a monitoring
system are numerous, and the concentration measurements firovides are left-censored
and contain outliers, which biases the results of usual smabing methods. Hence, the
need for an adapted pre-processing in order to evaluate thegal daily amount of viruses
arriving at each WWTP. We propose a method based on an auto-regssive model
adapted to censored data with outliers. Inference and predtion are produced via a
discretized smoother which makes it a very exible tool. Tlsi method is both validated
on simulations and real data fromObépine. The resulting smoothed signal shows a good
correlation with other epidemiological indicators and is wrrently used by Obépine to
provide an estimate of virus circulation over the watershexicorresponding to about 200
WWTPs.

Keywords: measurement error, smoothing algorithm, outliers, ¢ ensored data, SARS-CoV-2, autoregressive model

1. INTRODUCTION

A sentinel networkQbépine (Observatoire épidémiologique dans les eaut Usgebpen designed
to monitor SARS-CoV-2 viral load in wastewaters arriving boat 206 wastewater treatment
plants (WWTPs) in France as an indirect macro-epidemiologjzarameter. This survey was
initiated in March 2020 in WWTPs of the Greater Paris, durithg rst epidemic wave in France
[1]. In this system, samples are currently typically taken twcera week, resulting in missing data
on most days.

The sources of uncertainty in such monitoring system are pumns P, 3]. These include,
for example:

https://www.reseau-obepine.fr/
2In November 2021, representing more that one third of the French pomnati
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sampling variance (although sampling at the WWTPs ighat would treat them as regular measurementss] [review
integrated over 24 h), adaptations of Kalman smoothing robust to such outliers (and
variance from the Reverse Transcriptase (RT) and quantéativalso to abrupt changes of the underlying state and to switghin
or digital Polymerase Chain Reaction (QPCR or dPCR)inear regressions). This is mainly done by modifying theslo
processes used to measure the concentration of SARS-CoMthction to be minimized. However, those adaptations do not
RNA genes in the samples, apply to the censoring scheme.

uncertainties on other analytical steps in the labs such as In this study, we here focus on the one-dimensional setting
virus concentration, genome extraction, and the presencand propose a Smoother adapted to Censored data with OULtliers
of inhibitors. (SCOU) that answers both the censoring and the outliers
detection problems through discretization of the state spafce
the monitored quantities and more generally permits a veghhi
degree of modeling exibility.

Using the raw viral load measurements right away to monita t
pandemic can, therefore, be misleading, as a large variititie

measured concentration can either be due to a real varidtion o . . .
. . S The proposed model and its implementation are described in
virus concentration or to a quanti cation error. Therefqrihese . . ) . . T
section 2. Section 3 provides an illustration and validatain

data need pre-processing in order to provide an accurate etima . . . . . .

. : - our approach using numerical simulations. Section 4 gives an
of the real daily amount of virus arriving at each WWTP and e L

. . . . example of utilization of data from th@bépinenetwork.
to evaluate the uncertainty on this estimate as also unueulli
by [3], who tested, for this purpose, 13 concurrent smoothing
methods on data from 4 Austrian WWTPs. 2. THE PROPOSED METHOD
A solution to estimate the underlying true concentrations .

(from which the noisy measurements are derived) is to exploig-1. An AL_JtO'Regr955|Ve MOde|
the time dependence of the successive measurements. TRIgr method is based on the following state-space model:
temporal dependence is indeed due to this (never observed)
underlying process, while the measurement noises from one

) _ Xt D X 1C C "x¢
time step to another are assumed to be independent. A natural

way of exploiting this time dependence to denoise the signal is . O B(p) .
Kalman lItering [4, 5]. It is one of the methods thatf] used (Ytj0tD0) D Xt C "vt
for concentration monitoring, as well as one of the methods (Y;jO: D 1) U([a,b]) 1)

experimented byd].

Concentration measurements provided by thebépine
network are left-censored because of detection and queation
limits in (RT-)gPCR [a problem pointed out by, for instance].
This drawback, which is not taken into account in the study3)f
results in a non-linear dependence between the measuremeéere:
and the underlying process which cannot be handled by the
classic Kalman Iter. Such censoring obstacle to Kalmarrittg

Yt D maX(YI!‘)

xt iid
n ’ N Oil ’
Vi ()]

tis the time index (ranging from 1 ta).

can also happen in many other elds (such as visual tracking,
due to camera frame censoring, refer t],[for instance).
The Ensemble Kalman (EKF) permits handling this problem
by local linearization, but this linearization is sometisnaot
accurate enough which can lead to large errcélis Unscented
Kalman Filter [UKF,1(] o ers a solution to this problem with

an enhanced statistical linearization around the statemeges.
The Particle Filter [PFL1] also permits handling censored data
but with a high computational cost. Finally, the Tobit Kalman

Iter [ 17] is designed to handle censoring and has a reduced

computational cost compared to PEJ. In this approach, the
censored data are replaced within an Expectation-Maxinozati
algorithm by their conditional expectation with the current
parameters. However, we wish not only to predict in real time

the value of the underlying process being measured but also

to reconstruct its past values and to estimate the error of

the measurement system. To do so, a backward lter has to
be computed and superimposed on the previously described

Xt 2 Risthe real quantity attimeandX D (Xt)t2f1,..ngiS the
vector of real quantities (to be recovered).
Yt 2 R is the measurement at timé Y; is generally
only partially observed. We not€ f 1,...ngthe set of
t at which Y; is observedY D (Yi)wr D Y71 is the
vector of measurement¥, is an accessory latent variable
corresponding to a non-censored versionYofl is the identity
matrix.

2R, 2R, 2RC p2]J0,1]and 2 RC are parameters
(to be estimated).
* is the threshold below which censorship applies
O 2 f0, lgis, foranyt 2 T, the indicator variable of the event
“Y, is an outlier”.O D (Oy)t27 . B(p) stands for the Bernouilli
distribution of parameterp and U([a,b]) for the Uniform
distribution on the interval & b]. a and b have to be chosen,
they can for example correspond to quantiles (respectively,
very close to 0 and very close to 1) of the empirical marginal
distribution of Y.

(forward) lters, resulting in smoothersi[4].
Data from theObépinenetwork moreover contains numerous

3In practice,” can vary from one day to another, for instance if one works on
guantities that correspond to the multiplication of concentratignsth a detection

outliers (which may be caused by the vagaries of sampling @it) by a uctuating volume. This can be taken into account wiittour method
by a handling error, for example) that can bias a smoothingyith no additional cost.
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Markov chains withD states, theD hidden states being thB
possible values for eaéh
The transition matrix, , is calculated as follows:

fin (A xC , 9
wox IN (X0 xC , 2’

,0
X,y 2 X (%X) D P(Xc1 D X% D x) D P

6 =(,6,0,1,p) wherefy (I , 2) is the Gaussian distribution function with
? ] ) ¥ ) B
il mean and variance 2.
Leta(x) D P(Y: D yjX; D x). Forallx 2 X,ea(x) D 1if
(a,bt) tZ2T.1ft2T:
known values 2 R 5
a(X) D (1 p) liy> ofn (eI % ) Cliy ~Pn (11X, )
1 R
p Y C lfy>g—— C lfy, "g—— ,
t P it g & w o5
FIGURE 1 | Diagram of the proposed auto-regressive model. 1. ng iS the whereltapag is the indicator variable for the evefi D agand
underlying auto-regressive process (to be recovered)Y(r is the measured Fn (I, 2 is the Gaussian cumulative distribution function
?uetrrw]tity prott:ﬁ?s,_Y‘ a notr;_—ce"rlw‘sored \;_ersi_on on(t,_ O is tf:jel indicatt(r)]r variable with mean and variance 2'
or fne event Y 1S &N oullierx, are finy innovations ant'y. are the The F and B quantities, de ned in Equations (2) and (3), can

measurement errors. .
then be calculated recursively fromande

F1(x) D # and, fort 22, ...ng

Figure 1 depicts this model. In this gure, the arrows represent X
the direct dependency relations between the variables. We ca Ft(xo) D F 1(x) (x,x‘)a(x%.
see the auto-regressive nature of the latent prokessile theY X2X

is independent conditionally t&X being known. .
Bh(x) D 1 (by convention) and, fot 2 fn, ..., 2

2.2. Inference and Prediction—Smoothing X

and Discretization B 19D (6 X9a (B (x).

We are interested in the distribution oX(jYt D yr) for every x2X

t2fl,:::,ng Numerical tricks like logarithmic re-scaling are moreovesed

to calculatee, and the F and B quantities in order to avoid

2.2.1. The Smoother
under ow and over ow problems.

This distribution can be computed from the forwardF)( and

backward B) quantities, which are de ned as follows: 2.2.3. Learning
Fis a (Kalman) Filter. Fot D 1,:::,n, The paramsters, , , andp maximize the likelihood, which
is givenby ,,yx Fn(X), could be obtained with the Expectation-
F(X) D P(X;t D X, Yi1,.19\T D Yf1,..1g\T )- (2) Maximization algorithm. However, it is made challenging by
the discretization and renormalization. This is why numatic
Bn(X) D 1 (by convention). FotD n  1,:::,1, optimization is preferred. The parameters are more precisely

obtained by the numerical optimization of Nelder and Mead (as
Bi(X) D P(Ytic1,.n0\T D Vitc1,..ng\Ti% D X).  (3) implemented in the R functiomptim ).

Fort 2 f1,..ng R)B(X) / PX D XYr D yr). 2.2.4. Prediction

In the strictly Gaussian case, the F and B quantities cap®f @t the marginal distribution (mean, SD) ak{jYr D yr),
be computed recursively in closed formulas. Censorship and 91Ven bYR(X)Bi(x) D P(X; D x,Yr D yr) / P(X D

outliers, unfortunately, prevent the use of these closeahfdas. XYt D yr) (.p.roof“ left to the r.eader.) that is, for any 2
X, the probability thatX; (once discretized) takes the valye

2.2.2. Discretization conditionally toYt D yy.
We have, hence, developed a discrete version of those . .
computations, which makes it easy to adapt to many pOSSib%‘Z'S,' slmulatlons
extensions of the model (censorship but also outliers andips /€ Similarly show that:
heteroscedasticity for instance). The set of values thathea
taken byX, approximated by4, b], is discretized intd values
and becomeX , with, for exampleX D fa,aC1,aC21,...bg “Hint: decomposeXr D yr) D (Yio.iqr D Yi.iq7 Yicrogr D

b a i
andl D 7. We then return to the framework of hidden Yitc1, ng\T ), condition onX; D x and use the conditional independence.

PXt 1D XX Dx%Yr Dyr)D R 1(x) (xx3a(xdB(x9.
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Thus, to simulate fromP(Xt1,.ngYT D yr), One can process a 2-parameter Kalman Smoother implemented in the DLM R

sequentially, simulatingg with P(X1 D xjYr D yr) / package 16| In the latter method, censoring and outliers are
F1(X)B1(x), then, fort 2 f2, ... n[: not taken into accountandand are not estimated (is setto
Oand issetto1). Those hypotheses correspond to the settings
POX D x4%; 1D % Yr oy ) D (x,x9a(x)B(x9 of the experiments (1), (2), and (3), which aims at checking
’ a B 1(X) ' that the two methods give identical resultd ifis small enough.
the moving average smoother.
2.2.6. Outliers Detection the Locally Estimated Scatterplot Smoothing (LOESS) [

The probability for each observatiofy to be an outlier (knowing which consists of locally weighted polynomial regressions.
Yt D yr and for thea priori probability ofp) can be computed

as follows: As in the study by §], the parameters of the two last methods

(the number of days of the moving average smoother and
the span parameter of the LOESS) are chosen by leave-
pP(YT DyrjO; D 1) @ one-out cross-validation so as to minimize the Root Mean
P(YT Dyr) Squared Error (RMSE) for the prediction of the left out
P . observations. When (left-)censoring occurs, considering th
P x of a9 O X9B) w0575 C liw o5 observed censored values would result in poor performance of
« xoF 100 (x,x9B(x%ea(x) ' those smoothers in recovering the underlying auto-regvess
signal. We compensate for this by taking the estimated mean

An outlier is detected iP(O; D 1jYr D yr) > h, whereh for the corresponding right-truncated normal distributiom i

has to be chosen according to the targeted false positivessel f  (€Stimated by assuming that the observations follow a left-
negative rates. censored normal distribution in’) as the observed value

for those smoothers, which results in improved performances
in all cases.

P(O: D 1jYr Dyr)D

D

3. NUMERICAL ILLUSTRATIONS ON
ARTIFICIAL DATA

o . Root Mean Square Errors
The proposed estimation is rst evaluated on articial q
data. The simulations are designed to study the ability
of the algorithm to produce a good estimation of the - O proposed smoother o
parameters, to identify correctly the outliers, and to <~ —| B 2-parameters smoother ©
adequately predict the conditional distribution of the
underlying process. 8
3.1. Data Generation and Protocol o _
Arti cial data are simulated according to Model (1) with | @ o
n D 150 time steps, 50% of which are observed. Wg 8
set a and b, respectively, to the quantiles 0.02% and o
99.98% of the marginal distribution o¥® For the sake
of consistency with the study presented in section 4, g —
parameters are set so as to be realistic with regard to the o o o o
Obépinedata: D 0.3, D 0.6, close to 1 and close 8 E
t00. B El : ;
We realize ve experiments: < ! ! !
with no censoring, no outlier, D 0, D 1, e - E [ | .
(1)with1 D 0.02, E E s o
(2)with1 D 0.1, - -
(3)with1 D 0.7, T T T 1
(4)with1 D 0.1," set for each simulated data such that 169 dimKS A=0.02  A=0.1 A=0.7
of Y?are censored (medium censoring level), an outlier rate of
p D7% DO0.99and D 0.001 FIGURE 2 | Root Mean Squared Error (RMSE) obtained for the predictionfo
' . O . . the true underlying signal by the two-parameter exact smodter and by our
(5) same Settmg 'as the pre'V|ous experlment but with 31% Ofmethod on data sets simulated with no outliers, no censoring DOand D 1
censored data (hlgh censoring level)' and with varying values of the discretization stepl . As expected, in this ideal
Each experiment is replicated 100 times. For each simulatien setting, the 2-parameters Kalman smoother implemented inite DLM R
compare our approach SCOU . to: : ' | package and our method give identical results fo. D 0.02.
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Example on simulated data

© —
=== true underlying process
—— reconstitution mean
"""" 95%Cl
< 2-params KS
—— 23 days moving average @
—— LOESS span=0.24
o -
>_
o -
o
)
®  observations
® censored obs.
. - & true outliers
¥ ©  detected outliers
T T T 1
0 50 100 150

time

FIGURE 3 | Simulated data with 18% of censored data andp D 7% of outliers and results from the proposed (smoothing, outir detection, and prediction) method,
the equivalent 2-parameter Kalman Smoother, the 23-days mang average smoother, and the LOESS with 0.24 as span paranter.

parameters estimates

+ true parameters
O medium censoring level estimates
—| B high censoring level estimates

2.0
o

O 00

1.5

B ----- o
k
.

1.0
|
--4@D
-4
-
(T3
o Ot
OG-
o

s 2 E 5 E: . H_i
= . A o
S = - 88 1 o
£ - E - 5 + o B8 T
L
g 38
0 (@)
.
! T T | T T T T
] o—dim T 1—dim n 4 Pout

FIGURE 4 | Parameters estimates with our method (, , , ) and with a 2-parameter Kalman Smoother (-dim and -dim) for 100 replicates of the simulation
experiment (150 time steps, outlier rate op D 7%, observation rate of 50%), for 16% and 31% of censored data (respectively, white and cyan boxes).
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3.2. Results on Atrti cial Data
3.2.1. Impact of Discretization

2-parameters Kalman smoother implemented in the DLM R
package and our method give identical results forD 0.02.

The rst, second, and third experiments (no outliers, no The two methods show close performancesTorD 0.1 and a
censoringg D O and D 1) show, as expected, that the substantial degradation wheh D 0.7, as shown ifrigure 2

Root Mean Square Errors

©
~ 7| O medium censoring level 9
B high censoring level ©
< o
o
N
- o
o 8
o | ° o ° 8 o 8
- °© o © & o ©
o T ® T 6 -
) 8 : Q 0 '
S 7] SO T °
Q ; ; : ' ' :
© O : i :
ST N e L
< | E . B ) i ' ; 0
o . ! 3 e & G
! ' optimal optimal
SCou dim KS MA LOESS

FIGURE 5 | Root Mean Squared Errors for the prediction oK for 4
competitive smoothing methods [the proposed smoother (SC@), the
2-parameter Kalman Smoother, the LOESS, and the moving avage (MA)],
with 16% and 31% of censored data (respectively white and cyan boxes).

95% CI coverage rates

Q - = = ==
o= . ' o
B==RN I — Ry
' :
: |
O ] = i |
o g e - c
i
3 o :
(@) 1
i
© _| 8 i
o ¢} o
(¢} o
o © o
(¢}
< | o
(=}
(¢}
[V < °
o |~ expected coverage o
O medium censoring level coverages
m high censoring level coverages

T T
SCOU dim KS

FIGURE 6 | Coverage rates of the prediction intervals for the prediain of X,
with 16% and 31% of censored data (respectively white and cyan boxes).

where the RMSE (Root Mean Square Error) for the prediction
of X is computed for each of the 100 repetitions of each of the
three experiments.

In the following, we focus on the two other experiments
(medium and high censoring levefsp 7%, D 0.99, D 0.001,
andl D 0.1).

3.2.2. lllustration on One Simulation Example

Figure 3 illustrates, on an example, the results of our method
on simulated data within the fourth experiment setting (met
censoring level). On this illustration, we can see that therleng
process and the use of the smoother permit to nely predict
the trajectory of the underlying procesx, (in red), from the
observationsyt D yr (represented by dots) while adequately
taking into account the time interval during which the cenisg
applies. On this gure, the more pink-colored the points are,
the higher the estimated probability of them being an outlier
For a detection threshold set lower thdn D 0.95, two out
of the four simulated outliers (pink crosses and circles, tfo o
them being censored) are identi ed. The 23 days moving ayera
and the LOESS (for sp@n 0.24) smoothers, whose parameters
are selected by leave-one-out cross-validation, giveeragbod
reconstitutions but fail in reconstructing the trajectoryhen
censoring or outliers happen.

3.2.3. Parameter Estimation

Figure 4 shows that the parameters are correctly estimated with
the proposed method. However, one can notice a little negative
biasin estimates which might be due to the asymmetric impact
of the estimation bias, with a strong degradation if thestimate
exceeds one. The parameters learned by our method are indeed
close on average to the parameters used for the simulation of
the data. The parameters learned with the 2-parameter Kalman
smoother ( -dim and -dim) present an estimation bias which
illustrates the necessity to take into account the censasfrthe
data and the outliers when they exist.

3.2.4. Outlier Identi cation

The a posterioriprobability that an observatioly; is an outlier,
P(O; D 1jYt D yy), is computed as speci ed Equation (4)
with, for each simulation, the estimated parameters. The ROC
(Receiver Operating Characteristic) curves for the detaatib
the simulated outliers (around 525 out of abot}%° D 7500
observations o¥), across all simulations taken altogether, show
correct outlier detection performances despite the cengprin
of some outliers and the possibility for the outliers to take
values very close tXs (the outliers being simulated from a
Uniform distribution). Indeed, the AUC (Area Under the Curve)
is 0.74 0.01 for both censoring levels. When the true outker
priori probability,p D 0.07, is provided, they are, respectively,
of 0.817 0.014 and 0.767 0.016 for the medium and
high censoring settings. Here, the standard deviationstlier
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FIGURE 7 | (A) and (B): Application of the LOESS (for a span parameters chosen by ée-one-out) and of the proposed smoother for two WWTPs of tb Obépine
network: examples of successive predictions for the (nevesbserved) underlying signalX, with the nal parameters, 3 simulations ofX according to the proposed
model, 95% prediction intervals forX, and outlier detection results.
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computed AUCs are obtained by sampling with discount the The direct application of SCOU on the ow-adjusted

7,500 available observations. measurements shows heteroscedasticity of the residuals
[estimated byyr  E(X7jYT D yr)]: their variance increases

3.2.5. Prediction of the Underlying Process with y (even after removal of numerous measurements identi ed

Distribution as outliers and of censored measurements). Besides, the

Finally, we evaluate the ability of our method to predict theunderlying processX, follows the dynamic of an epidemic.

distribution of X conditionally on the set of observed, i.e., During the exponential growth, it is, thus, supposed to multiply

the distribution of XjYT D yr). As illustrated inFigure 5, in ~ from one day to another. For both those reasons, a logarithmi

both the medium and high censoring level experimental sgijn transformation of theObépinedata was performed prior to

the RMSEs obtained by our method are signi cantly lower thar@pplying the proposed method.

the ones obtained with the 2-parameter Kalman Smoother, with Hence, for this data seY, is the logarithm of the ow-adjusted

the LOESS method, and with the moving average even whéneasured concentration; is the logarithm of the actual virus

their parameters (respectively, the span and the number of)daygoncentrations (to be estimated)/is the logarithm of the limit

are chosen so as to minimize the RMSE obtained by leave-onelow which censoring occurs (typically log(1Q32) for the

out cross-validation. guanti cation of the SARS-CoV-2 E gene, where U stands for
As for the variance prediction, the coverage rates of the 95¢8NA Units, but it can uctuate from one day to another due to

Prediction Intervals of our method, derived from the predidt 0w adjustments).

distributions of X;jYr D yr), are (on average) close to the The application of SCOU to real data from tH@bepine

target of 95%, with a median coverage rate of 93% (comparétetwork is illustrated for two WWTPs inFigure 7. As

to 91% with the 2-parameter Kalman Smoother) in the mediurrshown by the successive predictions, once the parameters

censoring level setting (respectively, 93% and 85% in thie higire  xed, the predictions are rather stable from one

censoring level setting) as illustratedrigure 6. day to another.
The estimates of the smoothing parameters for the 190

ObépineWWTPs with enough available observations (at least
4. APPLICATION TO THE DATA FROM 10 measurements) are illustrated in pag&) of Figure 8 The
OBEPINE estimated parameters are above 0 whilgparameters are very

close to 1. Hence, when no new information is provided (no new
The developed smoothing method aims to provide an estimate of is observed), the smoother predicts, on average, an inciiease
the actual amount of viral genome arriving at each WWTP andX values.
to assess the uncertainty of this estimation. The uncertainty of the monitoring system is evaluated by the

The concentration measurements provided ®pépineare  parameter , whose estimates distribution for the 1@hépine

adjusted beforehand for rainfalls and wastewater sourtiesro  WWTPs is illustrated in pane(B) of Figure 8 The average
than from households, which can, otherwise, distort thevalue for is 0.54log=L). This corresponds to an SD of about
conclusions when it is abundant by diluting the water amiyi  0.6%, wherex is the real E-gene RNA concentration (h=L)
atthe WWTPs 9. to which the SD of the measurement error is supposed to be

FIGURE 8 | (A) Parameters estimates for 1900bépine WWTPs and(B) detailed distribution of the corresponding estimates which give an estimation of the error of
the whole measurement system.
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FIGURE 9 | Correlation of rawObépine data and ow-adjusted and smoothed Obépine data with the logarithm of incidence rates of the corresponihg cities for 15
cities with enough data available on both sides, for a lag timranging from 1 to 3 days in both directions and for a period raging from the beginning of the second
wave to the May 21, 2021.

proportional in our model. The allocation of this uncertainty the maximum amount of virus measured during the epidemic

between the sampling error, the RT-gPCR or RT-dPCR error, andiave that occurred in Autumn 2020 in France, the range of

other possible sources of error throughout the systemisgwary  volume treated by the WWTP, and the speci cs of the laboratory

not known. that analyzed the sample by RT-gPCR or RT-dPCR. The nal
Importantly, the resulting smoothed signal is well corretht computed indicator (called WWI for WasteWater Indicator)

with the logarithm of the local COVID-19 incidence rates,dan shows good behavior with regard to the corresponding inctden

this correlation is most of the time greatly enhanced by theates [Lg.

proposed smoothing step as depictedrigure 9for the 15 cities

with enough data available on both sides. On this gure, the

correlations are only computed for dates at which raw data wag, D|SCUSSION

available and correspond to the best correlation for a tinge la

ranging from 1 to 3 days in one direction or the other. They arewe developed a method to smooth one dimensional time-

computed for a period ranging from the beginning of the secondseries consisting of successive censored measuremertts wit

wave to the May 21, 2021. Those correlations are not expectedtliers when the associated measurement uncertainty ts no

to be higher since, contrary to incidence rates, the indicatso  known and the measured quantities have an auto-regressive

points to asymptomatic people infected by SARS-CoV-2 and isature. By discretizing the state space of the monitored

neither biased by people getting tested outside their cityifdu quantities, the proposed method has the advantage of beitily eas

holidays for instance) nor by varying testing policies. adaptable to the speci cities of the data (such as measurement
In order to produce comparable values from one WWTPcensoring and the occurrence of outliers). An experiment on

to another, Obépinemoreover performs scaling of the data arti cial data validates the proposed inference and predittio

after smoothing [§. This scaling takes into account, e.g.,method. Our method has then been successfully applied to
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data generated during th®©bépinemonitoring of SARS-CoV- THE OBEPINE CONSORTIUM

2 genome concentration in WWTPSL{]. Importantly, the

proposed smoothing procedure enhances the correlation of thehe Obépineconsortium's Scienti ¢ Coordination and Steering
data with other epidemiological indicators such as the ircice Committee (CCOS) is composed of Isabelle Bertrand, Mitka
rate of COVID-19. The time lag between the two signaldBoni, Christophe Gantzer, Soizick F. Le Guyader, Yvon
is moreover just a few daysL§], making WWI a credible Maday, Vincent Maréchal, Jean-Marie Mouchel, Laurent Moulin,
alternative to the evaluation of the incidence rate throughRémy Teyssou and Sébastien Wurtzer. The Scienti ¢ Interest
massive individual testing. This approach may be especialfgrouping (GIS) Obépineis directed by Vincent Maréchal
relevant if massive testing campaigns become less relevasisociated with two co-directors: Christophe Gantzer and
notably with the advancement of the vaccination campaigri-aurent Moulin. This group includes the CNRS, Eau de Paris,
and the availability of self-tests to the general public.rBot EPHE, Ifremer, Inserm, IRBA, Sorbonne University, Clermont
these factors may indeed induce a progressive but signi carhuvergne University, Lorraine University, and Université
decline in participation in testing in a few months and ade Paris.

signi cant dwindling of the population surveyed to monitor

the pandemic, potentially making it even more partial than itAUTHOR CONTRIBUTIONS

is now.

The proposed method could be further developed. First, th&M, J-MM, VM, LM, and SW brought on the scienti ¢ problem.
underlyingX process could have a longer time dependency thaiiC contributed to the design of the algorithm, performed
an AR(1) process. We could, thus, develop an AR(p) version @ixperiments on arti cial and real data, and wrote the manisicr
this method to handle this (witlp > 1). Besides, the behavior of GN contributed to the design of the algorithm and coordingte
the marginalX process, and thus its parameters, are expected the experiments and the writing of the manuscript. NC and
change as we move from the propagation of the epidemic stag&/V prepared the data provided Iybépine contributed to the
to a decreasing stag&q. Joint treatment of the WWTPs time- design of the algorithm, performed experiments on arti cialda
series could overcome the lack of individual data to face thireal data, and discussed the results. NC, SW, J-MM, YM, and
problem. One could, for example, automatically detect commoivM proofread and discussed the content of the manuscript.
breakpoints corresponding to a change in the parametess .  YM coordinated the exchanges about the article within the
Another possibility would be either to use extrinsic knonwged Obépineconsortium. All authors contributed to the article and
of the reproduction factor of the epidemic as input data or toapproved the submitted version.
add it as a latent variable that slowly evolves from one day
to another. FUNDING

Another way to proceed would be to deduce from other
available epidemiological data the shape of the signal tor&lfo This study was carried out within theObépine project
in wastewater (and thus an adequate smoothing) based on nfunded by the French Minister of Higher Education, Research
modeling of the whole pathway of SARS-CoV-2 from the humarand Innovation (Ministre de I'Enseignement Supérieur, de
population to wastewater such as the one proposed 4i§. [ la Recherche et de I'lnnovation). Financial support was also
However, such a mechanistic representation includes a largitained from the French National Center for Scienti c Rasba
number of unknowns (actual number of infected individuals inand Sorbonne Université.
the population, rate of RNA degradation in wastewater, etc.)
which makes it di cult to exploit for the reconstruction purpess  ACKNOWLEDGMENTS
aimed here.
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