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A sentinel network, Obépine, has been designed to monitor SARS-CoV-2 viral load in

wastewaters arriving at wastewater treatment plants (WWTPs) in France as an indirect

macro-epidemiological parameter. The sources of uncertainty in such a monitoring

system are numerous, and the concentration measurements it provides are left-censored

and contain outliers, which biases the results of usual smoothing methods. Hence, the

need for an adapted pre-processing in order to evaluate the real daily amount of viruses

arriving at each WWTP. We propose a method based on an auto-regressive model

adapted to censored data with outliers. Inference and prediction are produced via a

discretized smoother which makes it a very flexible tool. This method is both validated

on simulations and real data from Obépine. The resulting smoothed signal shows a good

correlation with other epidemiological indicators and is currently used by Obépine to

provide an estimate of virus circulation over the watersheds corresponding to about 200

WWTPs.

Keywords: measurement error, smoothing algorithm, outliers, censored data, SARS-CoV-2, autoregressive model

1. INTRODUCTION

A sentinel network,Obépine (Observatoire épidémiologique dans les eaux usées)1, has been designed
to monitor SARS-CoV-2 viral load in wastewaters arriving at about 2002 wastewater treatment
plants (WWTPs) in France as an indirect macro-epidemiological parameter. This survey was
initiated in March 2020 in WWTPs of the Greater Paris, during the first epidemic wave in France
[1]. In this system, samples are currently typically taken two times a week, resulting in missing data
on most days.

The sources of uncertainty in such monitoring system are numerous [2, 3]. These include,
for example:

1https://www.reseau-obepine.fr/
2In November 2021, representing more that one third of the French population.
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• sampling variance (although sampling at the WWTPs is
integrated over 24 h),

• variance from the Reverse Transcriptase (RT) and quantitative
or digital Polymerase Chain Reaction (qPCR or dPCR)
processes used to measure the concentration of SARS-CoV-2
RNA genes in the samples,

• uncertainties on other analytical steps in the labs such as
virus concentration, genome extraction, and the presence
of inhibitors.

Using the raw viral load measurements right away to monitor the
pandemic can, therefore, be misleading, as a large variation in the
measured concentration can either be due to a real variation in
virus concentration or to a quantification error. Therefore, these
data need pre-processing in order to provide an accurate estimate
of the real daily amount of virus arriving at each WWTP and
to evaluate the uncertainty on this estimate as also underlined
by [3], who tested, for this purpose, 13 concurrent smoothing
methods on data from 4 Austrian WWTPs.

A solution to estimate the underlying true concentrations
(from which the noisy measurements are derived) is to exploit
the time dependence of the successive measurements. This
temporal dependence is indeed due to this (never observed)
underlying process, while the measurement noises from one
time step to another are assumed to be independent. A natural
way of exploiting this time dependence to denoise the signal is
Kalman filtering [4, 5]. It is one of the methods that [6] used
for concentration monitoring, as well as one of the methods
experimented by [3].

Concentration measurements provided by the Obépine
network are left-censored because of detection and quantification
limits in (RT-)qPCR [a problem pointed out by 7, for instance].
This drawback, which is not taken into account in the study of [3],
results in a non-linear dependence between the measurements
and the underlying process which cannot be handled by the
classic Kalman filter. Such censoring obstacle to Kalman filtering
can also happen in many other fields (such as visual tracking,
due to camera frame censoring, refer to [8], for instance).
The Ensemble Kalman (EKF) permits handling this problem
by local linearization, but this linearization is sometimes not
accurate enough which can lead to large errors [9]. Unscented
Kalman Filter [UKF, 10] offers a solution to this problem with
an enhanced statistical linearization around the state estimates.
The Particle Filter [PF, 11] also permits handling censored data
but with a high computational cost. Finally, the Tobit Kalman
filter [12] is designed to handle censoring and has a reduced
computational cost compared to PF [13]. In this approach, the
censored data are replaced within an Expectation-Maximization
algorithm by their conditional expectation with the current
parameters. However, we wish not only to predict in real time
the value of the underlying process being measured but also
to reconstruct its past values and to estimate the error of
the measurement system. To do so, a backward filter has to
be computed and superimposed on the previously described
(forward) filters, resulting in smoothers [14].

Data from theObépine network moreover contains numerous
outliers (which may be caused by the vagaries of sampling or
by a handling error, for example) that can bias a smoothing

that would treat them as regular measurements. [15] review
adaptations of Kalman smoothing robust to such outliers (and
also to abrupt changes of the underlying state and to switching
linear regressions). This is mainly done by modifying the loss
function to be minimized. However, those adaptations do not
apply to the censoring scheme.

In this study, we here focus on the one-dimensional setting
and propose a Smoother adapted to Censored data with OUtliers
(SCOU) that answers both the censoring and the outliers
detection problems through discretization of the state space of
the monitored quantities and more generally permits a very high
degree of modeling flexibility.

The proposed model and its implementation are described in
section 2. Section 3 provides an illustration and validation of
our approach using numerical simulations. Section 4 gives an
example of utilization of data from the Obépine network.

2. THE PROPOSED METHOD

2.1. An Auto-Regressive Model
Our method is based on the following state-space model:

Xt = ηXt−1 + δ + σεX,t

Ot ∼ B(p)

(Y∗
t |Ot = 0) = Xt + τεY ,t

(Y∗
t |Ot = 1) ∼ U([a, b]) (1)

Yt = max(Y∗
t , ℓ)

(

εX,t
εY ,t

)

i.i.d
∼ N (0, I),

where:

• t is the time index (ranging from 1 to n).
• Xt ∈ R is the real quantity at time t and X = (Xt)t∈{1,...,n} is the

vector of real quantities (to be recovered).
• Yt ∈ R is the measurement at time t. Yt is generally

only partially observed. We note T ⊂ {1, ..., n} the set of
t at which Yt is observed. Y = (Yt)t∈T = YT is the
vector of measurements. Y∗ is an accessory latent variable
corresponding to a non-censored version of Y . I is the identity
matrix.

• η ∈ R, δ ∈ R, σ ∈ R
+, p ∈ [0, 1] and τ ∈ R

+ are parameters
(to be estimated).

• ℓ is the threshold below which censorship applies3.
• Ot ∈ {0, 1} is, for any t ∈ T , the indicator variable of the event

“Y∗
t is an outlier”. O = (Ot)t∈T . B(p) stands for the Bernouilli

distribution of parameter p and U([a, b]) for the Uniform
distribution on the interval [a, b]. a and b have to be chosen,
they can for example correspond to quantiles (respectively,
very close to 0 and very close to 1) of the empirical marginal
distribution of Y .

3In practice, ℓ can vary from one day to another, for instance if one works on

quantities that correspond to themultiplication of concentrations (with a detection

limit) by a fluctuating volume. This can be taken into account within our method

with no additional cost.
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FIGURE 1 | Diagram of the proposed auto-regressive model. (Xt )t∈{1,...,n} is the

underlying auto-regressive process (to be recovered), (Yt )t∈T is the measured

quantity process, Y∗
t a non-censored version of Yt, Ot is the indicator variable

for the event “Y∗
t is an outlier,” εX,t are tiny innovations and εY ,t are the

measurement errors.

Figure 1 depicts this model. In this figure, the arrows represent
the direct dependency relations between the variables. We can
see the auto-regressive nature of the latent process X, while the Y
is independent conditionally to X being known.

2.2. Inference and Prediction—Smoothing
and Discretization
We are interested in the distribution of (Xt|YT = yT ) for every
t ∈ {1, . . . , n}.

2.2.1. The Smoother
This distribution can be computed from the forward (F) and
backward (B) quantities, which are defined as follows:

• F is a (Kalman) Filter. For t = 1, . . . , n,

Ft(x) = P(Xt = x,Y{1,...,t}∩T = y{1,...,t}∩T ). (2)

• Bn(x) = 1 (by convention). For t = n− 1, . . . , 1,

Bt(x) = P(Y{t+1,...,n}∩T = y{t+1,...,n}∩T |Xt = x). (3)

For t ∈ {1, ..., n}, Ft(x)Bt(x) ∝ P(Xt = x|YT = yT ).
In the strictly Gaussian case, the F and B quantities can
be computed recursively in closed formulas. Censorship and
outliers, unfortunately, prevent the use of these closed formulas.

2.2.2. Discretization
We have, hence, developed a discrete version of those
computations, which makes it easy to adapt to many possible
extensions of the model (censorship but also outliers and possibly
heteroscedasticity for instance). The set of values that can be
taken by X, approximated by [a, b], is discretized into D values
and becomes X , with, for example, X = {a, a+ 1, a+ 21, ..., b}
and 1 = b−a

D−1 . We then return to the framework of hidden

Markov chains with D states, the D hidden states being the D
possible values for each X.

The transition matrix, π , is calculated as follows:

π(x, x′) = P(Xt+1 = x′|Xt = x) =
fN (x′; ηx+ δ, σ 2)

∑

x′′∈X fN (x′′; ηx+ δ, σ 2)
,

where fN (.;µ, σ 2) is the Gaussian distribution function with
mean µ and variance σ 2.

Let et(x) = P(Yt = yt|Xt = x). For all x ∈ X , et(x) = 1 if
t /∈ T . If t ∈ T :

et(x) = (1− p)
[

I{yt>ℓ}fN (yt; x, τ
2)+ I{yt≤ℓ}FN (ℓ; x, τ 2)

]

+ p

(

I{yt>ℓ}

1

b− a
+ I{yt≤ℓ}

ℓ − a

b− a

)

,

where I{A=a} is the indicator variable for the event {A = a} and
FN (.;µ, σ 2) is the Gaussian cumulative distribution function
with mean µ and variance σ 2.

The F and B quantities, defined in Equations (2) and (3), can
then be calculated recursively from π and e:

• F1(x) =
e1(x)
D and, for t ∈ {2, ..., n},

Ft(x
′) =

∑

x∈X

Ft−1(x)π(x, x
′)et(x

′).

• Bn(x) = 1 (by convention) and, for t ∈ {n, ..., 2},

Bt−1(x) =
∑

x′∈X

π(x, x′)et(x
′)Bt(x

′).

Numerical tricks like logarithmic re-scaling are moreover used
to calculate e, π and the F and B quantities in order to avoid
underflow and overflow problems.

2.2.3. Learning
The parameters η, δ, σ , τ , and p maximize the likelihood, which
is given by

∑

x∈X Fn(x), could be obtained with the Expectation-
Maximization algorithm. However, it is made challenging by
the discretization and renormalization. This is why numerical
optimization is preferred. The parameters are more precisely
obtained by the numerical optimization of Nelder and Mead (as
implemented in the R function optim).

2.2.4. Prediction
For any t, the marginal distribution (mean, SD) of (Xt|YT = yT ),
is given by Ft(x)Bt(x) = P(Xt = x,YT = yT ) ∝ P(Xt =

x|YT = yT ) (proof4 left to the reader) that is, for any x ∈

X , the probability that Xt (once discretized) takes the value x
conditionally to YT = yT .

2.2.5. Simulations
We similarly show that:

P(Xt−1 = x,Xt = x′,YT = yT ) = Ft−1(x)π(x, x
′)et(x

′)Bt(x
′).

4Hint: decompose (YT = yT ) = (Y{1,...,t}∩T = y{1,...,t}∩T ,Y{t+1,...,n}∩T =

y{t+1,...,n}∩T ), condition on Xt = x and use the conditional independence.
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Thus, to simulate from P(X{1,...,n}|YT = yT ), one can process
sequentially, simulating x1 with P(X1 = x|YT = yT ) ∝

F1(x)B1(x), then, for t ∈ {2, ..., n]:

P(Xt = x′|Xt−1 = x,YT =yT ) =
π(x, x′)et(x

′)Bt(x
′)

Bt−1(x)
.

2.2.6. Outliers Detection
The probability for each observation Yt to be an outlier (knowing
YT = yT and for the a priori probability of p) can be computed
as follows:

P(Ot = 1|YT = yT ) =
pP(YT = yT |Ot = 1)

P(YT = yT )
(4)

=
p
∑

x

∑

x′ Ft−1(x)π(x, x
′)Bt(x

′)
(

I{yt>ℓ}
1

b−a
+ I{yt≤ℓ}

ℓ−a
b−a

)

∑

x

∑

x′ Ft−1(x)π(x, x′)Bt(x′)et(x′)
.

An outlier is detected if P(Ot = 1|YT = yT ) > h, where h
has to be chosen according to the targeted false positive and false
negative rates.

3. NUMERICAL ILLUSTRATIONS ON
ARTIFICIAL DATA

The proposed estimation is first evaluated on artificial
data. The simulations are designed to study the ability
of the algorithm to produce a good estimation of the
parameters, to identify correctly the outliers, and to
adequately predict the conditional distribution of the
underlying process.

3.1. Data Generation and Protocol
Artificial data are simulated according to Model (1) with
n = 150 time steps, 50% of which are observed. We
set a and b, respectively, to the quantiles 0.02% and
99.98% of the marginal distribution of Y ′. For the sake
of consistency with the study presented in section 4,
parameters are set so as to be realistic with regard to the
Obépine data: σ = 0.3, τ = 0.6, η close to 1 and δ close
to 0.

We realize five experiments:

• with no censoring, no outlier, δ = 0, η = 1,

· (1) with 1 = 0.02,
· (2) with 1 = 0.1,
· (3) with 1 = 0.7,

• (4) with 1 = 0.1, ℓ set for each simulated data such that 16%
of Y ′ are censored (medium censoring level), an outlier rate of
p = 7%, η = 0.99 and δ = 0.001,

• (5) same setting as the previous experiment but with 31% of
censored data (high censoring level).

Each experiment is replicated 100 times. For each simulation, we
compare our approach, SCOU, to:

• a 2-parameter Kalman Smoother implemented in the DLM R
package [16]. In the latter method, censoring and outliers are
not taken into account and δ and η are not estimated (δ is set to
0 and η is set to 1). Those hypotheses correspond to the settings
of the experiments (1), (2), and (3), which aims at checking
that the twomethods give identical results if1 is small enough.

• the moving average smoother.
• the Locally Estimated Scatterplot Smoothing (LOESS) [17]

which consists of locally weighted polynomial regressions.

As in the study by [3], the parameters of the two last methods
(the number of days of the moving average smoother and
the span parameter of the LOESS) are chosen by leave-
one-out cross-validation so as to minimize the Root Mean
Squared Error (RMSE) for the prediction of the left out
observations. When (left-)censoring occurs, considering the
observed censored values would result in poor performance of
those smoothers in recovering the underlying auto-regressive
signal. We compensate for this by taking the estimated mean
for the corresponding right-truncated normal distribution in
ℓ (estimated by assuming that the observations follow a left-
censored normal distribution in ℓ) as the observed value
for those smoothers, which results in improved performances
in all cases.

FIGURE 2 | Root Mean Squared Error (RMSE) obtained for the prediction of

the true underlying signal by the two-parameter exact smoother and by our

method on data sets simulated with no outliers, no censoring, δ = 0 and η = 1

and with varying values of the discretization step, 1. As expected, in this ideal

setting, the 2-parameters Kalman smoother implemented in the DLM R

package and our method give identical results for 1 = 0.02.
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FIGURE 3 | Simulated data with 16% of censored data and p = 7% of outliers and results from the proposed (smoothing, outlier detection, and prediction) method,

the equivalent 2-parameter Kalman Smoother, the 23-days moving average smoother, and the LOESS with 0.24 as span parameter.

FIGURE 4 | Parameters estimates with our method (σ , τ , η, δ) and with a 2-parameter Kalman Smoother (σ -dlm and τ -dlm) for 100 replicates of the simulation

experiment (150 time steps, outlier rate of p = 7%, observation rate of 50%), for 16% and 31% of censored data (respectively, white and cyan boxes).
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3.2. Results on Artificial Data
3.2.1. Impact of Discretization
The first, second, and third experiments (no outliers, no
censoring, δ = 0 and η = 1) show, as expected, that the

FIGURE 5 | Root Mean Squared Errors for the prediction of X for 4

competitive smoothing methods [the proposed smoother (SCOU), the

2-parameter Kalman Smoother, the LOESS, and the moving average (MA)],

with 16% and 31% of censored data (respectively white and cyan boxes).

FIGURE 6 | Coverage rates of the prediction intervals for the prediction of X,

with 16% and 31% of censored data (respectively white and cyan boxes).

2-parameters Kalman smoother implemented in the DLM R
package and our method give identical results for 1 = 0.02.
The two methods show close performances for 1 = 0.1 and a
substantial degradation when 1 = 0.7, as shown in Figure 2,
where the RMSE (Root Mean Square Error) for the prediction
of X is computed for each of the 100 repetitions of each of the
three experiments.

In the following, we focus on the two other experiments
(medium and high censoring levels, p = 7%, η = 0.99, δ = 0.001,
and 1 = 0.1).

3.2.2. Illustration on One Simulation Example
Figure 3 illustrates, on an example, the results of our method
on simulated data within the fourth experiment setting (medium
censoring level). On this illustration, we can see that the learning
process and the use of the smoother permit to finely predict
the trajectory of the underlying process, X (in red), from the
observations YT = yT (represented by dots) while adequately
taking into account the time interval during which the censoring
applies. On this figure, the more pink-colored the points are,
the higher the estimated probability of them being an outlier.
For a detection threshold set lower than h = 0.95, two out
of the four simulated outliers (pink crosses and circles, two of
them being censored) are identified. The 23 days moving average
and the LOESS (for span= 0.24) smoothers, whose parameters
are selected by leave-one-out cross-validation, give rather good
reconstitutions but fail in reconstructing the trajectory when
censoring or outliers happen.

3.2.3. Parameter Estimation
Figure 4 shows that the parameters are correctly estimated with
the proposed method. However, one can notice a little negative
bias in η estimates which might be due to the asymmetric impact
of the estimation bias, with a strong degradation if the η estimate
exceeds one. The parameters learned by our method are indeed
close on average to the parameters used for the simulation of
the data. The parameters learned with the 2-parameter Kalman
smoother (σ -dlm and τ -dlm) present an estimation bias which
illustrates the necessity to take into account the censoring of the
data and the outliers when they exist.

3.2.4. Outlier Identification
The a posteriori probability that an observation Yt is an outlier,
P(Ot = 1|YT = yT ), is computed as specified Equation (4)
with, for each simulation, the estimated parameters. The ROC
(Receiver Operating Characteristic) curves for the detection of
the simulated outliers (around 525 out of about n×100

2 = 7500
observations of Y), across all simulations taken altogether, show
correct outlier detection performances despite the censoring
of some outliers and the possibility for the outliers to take
values very close to Xs (the outliers being simulated from a
Uniform distribution). Indeed, the AUC (Area Under the Curve)
is 0.74 ± 0.01 for both censoring levels. When the true outlier a
priori probability, p = 0.07, is provided, they are, respectively,
of 0.817 ± 0.014 and 0.767 ± 0.016 for the medium and
high censoring settings. Here, the standard deviations for the
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FIGURE 7 | (A) and (B): Application of the LOESS (for a span parameters chosen by leave-one-out) and of the proposed smoother for two WWTPs of the Obépine

network: examples of successive predictions for the (never observed) underlying signal, X, with the final parameters, 3 simulations of X according to the proposed

model, 95% prediction intervals for X, and outlier detection results.
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computed AUCs are obtained by sampling with discount the
7,500 available observations.

3.2.5. Prediction of the Underlying Process

Distribution
Finally, we evaluate the ability of our method to predict the
distribution of X conditionally on the set of observed Y , i.e.,
the distribution of (X|YT = yT ). As illustrated in Figure 5, in
both the medium and high censoring level experimental settings,
the RMSEs obtained by our method are significantly lower than
the ones obtained with the 2-parameter Kalman Smoother, with
the LOESS method, and with the moving average even when
their parameters (respectively, the span and the number of days)
are chosen so as to minimize the RMSE obtained by leave-one-
out cross-validation.

As for the variance prediction, the coverage rates of the 95%
Prediction Intervals of our method, derived from the predicted
distributions of (Xt|YT = yT ), are (on average) close to the
target of 95%, with a median coverage rate of 93% (compared
to 91% with the 2-parameter Kalman Smoother) in the medium
censoring level setting (respectively, 93% and 85% in the high
censoring level setting) as illustrated in Figure 6.

4. APPLICATION TO THE DATA FROM
OBÉPINE

The developed smoothing method aims to provide an estimate of
the actual amount of viral genome arriving at each WWTP and
to assess the uncertainty of this estimation.

The concentration measurements provided by Obépine are
adjusted beforehand for rainfalls and wastewater sources other
than from households, which can, otherwise, distort the
conclusions when it is abundant by diluting the water arriving
at the WWTPs [18].

The direct application of SCOU on the flow-adjusted
measurements shows heteroscedasticity of the residuals
[estimated by yT − E(XT |YT = yT )]: their variance increases
with y (even after removal of numerous measurements identified
as outliers and of censored measurements). Besides, the
underlying process, X, follows the dynamic of an epidemic.
During the exponential growth, it is, thus, supposed to multiply
from one day to another. For both those reasons, a logarithmic
transformation of the Obépine data was performed prior to
applying the proposed method.

Hence, for this data set, Y is the logarithm of the flow-adjusted
measured concentrations, X is the logarithm of the actual virus
concentrations (to be estimated), ℓ is the logarithm of the limit
below which censoring occurs (typically log(1000U/L) for the
quantification of the SARS-CoV-2 E gene, where U stands for
RNA Units, but it can fluctuate from one day to another due to
flow adjustments).

The application of SCOU to real data from the Obépine
network is illustrated for two WWTPs in Figure 7. As
shown by the successive predictions, once the parameters
are fixed, the predictions are rather stable from one
day to another.

The estimates of the smoothing parameters for the 190
Obépine WWTPs with enough available observations (at least
10 measurements) are illustrated in panel (A) of Figure 8. The
estimated δ parameters are above 0 while η parameters are very
close to 1. Hence, when no new information is provided (no new
Y is observed), the smoother predicts, on average, an increase in
X values.

The uncertainty of the monitoring system is evaluated by the
parameter τ , whose estimates distribution for the 190 Obépine
WWTPs is illustrated in panel (B) of Figure 8. The average
value for τ is 0.54 log(U/L). This corresponds to an SD of about
0.65x, where x is the real E-gene RNA concentration (in U/L)
to which the SD of the measurement error is supposed to be

FIGURE 8 | (A) Parameters estimates for 190 Obépine WWTPs and (B) detailed distribution of the corresponding τ estimates which give an estimation of the error of

the whole measurement system.
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FIGURE 9 | Correlation of raw Obépine data and flow-adjusted and smoothed Obépine data with the logarithm of incidence rates of the corresponding cities for 15

cities with enough data available on both sides, for a lag time ranging from 1 to 3 days in both directions and for a period ranging from the beginning of the second

wave to the May 21, 2021.

proportional in our model. The allocation of this uncertainty
between the sampling error, the RT-qPCR or RT-dPCR error, and
other possible sources of error throughout the system is, however,
not known.

Importantly, the resulting smoothed signal is well correlated
with the logarithm of the local COVID-19 incidence rates, and
this correlation is most of the time greatly enhanced by the
proposed smoothing step as depicted in Figure 9 for the 15 cities
with enough data available on both sides. On this figure, the
correlations are only computed for dates at which raw data was
available and correspond to the best correlation for a time lag
ranging from 1 to 3 days in one direction or the other. They are
computed for a period ranging from the beginning of the second
wave to the May 21, 2021. Those correlations are not expected
to be higher since, contrary to incidence rates, the indicator also
points to asymptomatic people infected by SARS-CoV-2 and is
neither biased by people getting tested outside their city (during
holidays for instance) nor by varying testing policies.

In order to produce comparable values from one WWTP
to another, Obépine moreover performs scaling of the data
after smoothing [18]. This scaling takes into account, e.g.,

the maximum amount of virus measured during the epidemic
wave that occurred in Autumn 2020 in France, the range of
volume treated by the WWTP, and the specifics of the laboratory
that analyzed the sample by RT-qPCR or RT-dPCR. The final
computed indicator (called WWI for WasteWater Indicator)
shows good behavior with regard to the corresponding incidence
rates [18].

5. DISCUSSION

We developed a method to smooth one dimensional time-
series consisting of successive censored measurements with
outliers when the associated measurement uncertainty is not
known and the measured quantities have an auto-regressive
nature. By discretizing the state space of the monitored
quantities, the proposedmethod has the advantage of being easily
adaptable to the specificities of the data (such as measurement
censoring and the occurrence of outliers). An experiment on
artificial data validates the proposed inference and prediction
method. Our method has then been successfully applied to
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data generated during the Obépine monitoring of SARS-CoV-
2 genome concentration in WWTPs [18]. Importantly, the
proposed smoothing procedure enhances the correlation of the
data with other epidemiological indicators such as the incidence
rate of COVID-19. The time lag between the two signals
is moreover just a few days [18], making WWI a credible
alternative to the evaluation of the incidence rate through
massive individual testing. This approach may be especially
relevant if massive testing campaigns become less relevant
notably with the advancement of the vaccination campaign
and the availability of self-tests to the general public. Both of
these factors may indeed induce a progressive but significant
decline in participation in testing in a few months and a
significant dwindling of the population surveyed to monitor
the pandemic, potentially making it even more partial than it
is now.

The proposed method could be further developed. First, the
underlying X process could have a longer time dependency than
an AR(1) process. We could, thus, develop an AR(p) version of
this method to handle this (with p > 1). Besides, the behavior of
the marginal X process, and thus its parameters, are expected to
change as we move from the propagation of the epidemic stage
to a decreasing stage [19]. Joint treatment of the WWTPs time-
series could overcome the lack of individual data to face this
problem. One could, for example, automatically detect common
breakpoints corresponding to a change in the parameters η or δ.
Another possibility would be either to use extrinsic knowledge
of the reproduction factor of the epidemic as input data or to
add it as a latent variable that slowly evolves from one day
to another.

Another way to proceed would be to deduce from other
available epidemiological data the shape of the signal to be found
in wastewater (and thus an adequate smoothing) based on fine
modeling of the whole pathway of SARS-CoV-2 from the human
population to wastewater such as the one proposed by [20].
However, such a mechanistic representation includes a large
number of unknowns (actual number of infected individuals in
the population, rate of RNA degradation in wastewater, etc.)
whichmakes it difficult to exploit for the reconstruction purposes
aimed here.
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