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Abstract

This paper presents a new control approach for mitigating Friction-Induced Vibration (FIV) issued from
the mode-coupling mechanism. The key idea is to put the friction system onto a cascade of independent
subsystems by using a first stage control. Then, a second stage control is defined and proven to be much
more efficient for controlling both the transient and stationary regimes of the FIV. Asymptotic stabilization
is formally demonstrated for the whole control scheme. Moreover, by numerical simulations, it is shown that
the performances of the closed loop systems present an interesting robustness with respect to parameter
uncertainty and to the saturation phenomenon which opens up promising practical perspectives for the
proposed control technique.

1 Introduction
Because of their negative impact, friction-induced vibrations (FIV) have received a lot of attention in
the last decades as evidenced by the significant amount of experimental and numerical works related to
engineering and industry applications [19, 50, 2]. Indeed, these vibrations, which appear in structures with
friction interfaces, can be the cause of numerous undesirable phenomena such as noise in braking, clutch
or wiping systems [22, 17, 1, 10], and loss of performances in positioning systems, which manifests itself in
larger steady- state positioning error and settling time [7, 48, 13, 59]. They can also induce phenomena of
fatigue and wear that can lead to the system breakdown. Hence, it is very important to be able to predict
and analyze them in order to anticipate and implement solutions that will reduce or even eliminate them
[54, 33, 9].

Nowadays, it is common to classify the mechanisms generating FIV from tribological and structural
viewpoints [24, 25, 40]. If the tribological mechanism relates the generation of vibrations to the continuous
or discontinuous variation of the friction coefficient against the relative sliding speed [24, 25, 55], the
structural mechanism rather indicates the geometrical aspects inducing the coupling of the normal degrees
of freedom with the tangential degrees of freedom of contact as being at the origin of the vibrations
[49, 24, 25, 52]. The coupling in question is characterized by the so-called ‘modes coalescence’ which
consists of the bringing together of two natural frequencies (imaginary parts of some couple of the system
eigenvalues) according to the friction coefficient up to the coalescence point where the frequencies become
equal while the corresponding real parts separate. One real part becoming positive will induce a self-
sustaining vibration when the static equilibrium of the system is disturbed.
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Numerous strategies including passive and active approaches have been proposed for mitigating FIV.
Passive approaches are in a way empirical since they are based on the adjustment of the system parameters
or the parameter of an added subsystem (as a absorber or a Nonlinear Energy Sink (NES)) without any
external power supply so as to obtain suitable dynamic properties [46, 31, 15, 6, 30, 47]. The active one
proceeds by introducing external support in order to act on the damping properties and/or to compensate
friction effects [5, 39, 58]. In this framework, numerous controllers have been proposed. The Proportional-
Integral-Derivative (PID) regulator can be mentioned as the most classical one, proposed for controlling FIV
for example in [4, 51]. More efficiency was shown for the PID when associated with the active force control
(AFC) in [53]. Linear delayed and non-delayed state feedbacks were also proposed in [32, 3, 26, 16, 38] while
nonlinear techniques exploiting the full and partially linearizing state feedbacks were exploited in [42, 43]
and combined with the receptance method in [11] for the active controlling of FIV. In [21], a control scheme
which consists of a combination of a parallel feed-forward compensator (PFC) with an adaptive λ-tracking
feedback control is proposed for controlling friction-induced self-excited oscillations in a two-mass electro-
mechanical system with an elastic shaft and a friction load with a Stribeck effect. Otherwise, mitigating
FIV by ensuring robustness levels with respect to uncertainty was also addressed in [57] and in [44, 37].

Most of the recorded studies about FIVs mitigating have focused on reducing or suppressing the ampli-
tude of the steady vibration regardless of the properties of the corresponding transient regime such as the
amplitude and the settling time. A more damped and fast transient is often paid by high amplitude for the
control inputs which, not to mention the energy cost, leads to saturation phenomena [14, 12]. This paper
deals with this issue and proposes a new approach for mitigating both the mode-coupling based steady and
transient friction-induced vibrations by considering minimal models representing mode-coupling instabilities
occurring in friction systems as drum brake systems [22].

Behind the use of minimal models, there is the aim to overcome the numerical difficulties occasioned by
large dimension patterns that prevent a suitable objective analysis of the feasibility and efficiency of the
new proposed approach. These minimal models give the key advantage to faithfully represent the mech-
anism generating friction-induced vibrations through considering mechanical systems with small numbers
of degree-of-freedom. Numerous studies have developed such models within different frameworks espe-
cially the brake squeal framework, by considering different objectives namely the analysis and prediction
[23, 28, 29, 41, 56], the uncertainty propagation [20, 60, 35], and passive and active control [46, 8, 53, 42, 43].

This study investigates the potential of a new nonlinear control scheme for mitigating mode-coupling
based friction-induced vibrations. More precisely, the objective is to obtain both global asymptotic stability
of the closed-loop system and good transient characteristics. The proposed approach is developed by
considering minimal models of mode-coupling phenomenon, such as the Hultèn model [23] and the Hoffman-
like model [11]. The main idea is to transform the control system into a cascade structure, via a preliminary
feedback control action. The cascade structure can then be exploited for transient characteristics’ tuning. A
particular advantage of this approach is related to the system’s natural frequencies that are kept unchanged
by the state feedback. A comparison with the linearizing state feedback approach by numerical simulations
shows a great advantage of this new approach for controlling the transient behavior with an interesting
compromise between the damping ratio and the control amplitude. Otherwise, the control performances of
the proposed cascade architecture based control prove to be robust with respect to severe control saturation.

2 Problem statement
We are interested by mechanical systems submitted to friction-induced vibrations and described by second
order differential equations given by

MẌ + CẊ + KX + FNL(X) = Bu(t) (1)

where X, Ẋ, and Ẍ denote respectively the displacement vector and the associated velocity and acceleration
vectors, all belonging to RN with N the system’s number of degrees of freedom. The control input is u ∈ Rp
and B is the associated control matrix. M,C, and K respectively denote the mass matrix, damping matrix,
and stiffness matrix. FNL is a smooth nonlinear function (representing in the study framework nonlinear
contact and friction forces).
Let x = (X′, Ẋ

′
)′ denote the state vector associated with System (1). Assuming, without loss of generality,

that FNL(0) = 0, then x = (0, 0)′ is an equilibrium of System (1) for the control u ≡ 0. The control
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objective is to determine a nonlinear state feedback control u(t) = γ(x(t)) in order to make this equilibrium
asymptotically stable while ensuring suitable transient properties (in terms of vibration amplitude).

As previously mentioned, a new nonlinear control scheme is proposed in this study. It exploits the
possibility to put the system into a cascade form by a preliminary decoupling control action. Then, the
decoupled structure gives a more suitable framework to stabilize and suppress the FIV with the possibility
to better monitor the transient regime. In order to present the proposed method, two minimal models are
exploited in the following sections. Firstly the control of the Hultèn model [23] is considered. Secondly,
extension of the approach to a higher order model (the Hoffman-like system [11]) is proposed.

3 Control of the Hultèn model
The Hultèn model [23], represented on Figure (1), was shown to faithfully represent the mode-coupling
phenomenon occurring in drum brake systems. It was considered in numerous studies, as in [27] for
the understanding of the role of damping in mode-coupling, in [36, 18] for uncertainty propagation and
quantification, in [6, 42] for mitigating mode-coupling instabilities, and recently in [43] for the control of
mode-coupling based vibrations by using nonlinear state observers. It is considered in this section in order
to assess the performances of the proposed control scheme for mitigating FIV issued from the mode-coupling
mechanism.

The mechanical system consists of a mass assumed to be in a permanent contact with a moving band.
The contacts are modelled by two stiffnesses with linear and nonlinear (cubic) parts. The friction coefficient
µ at the contact is assumed to be constant as well as the velocity of the band. The relative velocity between
the band and the velocities Ẋ1 and Ẋ2 is assumed positive which makes constant the direction of the friction
force. According to the Coulomb’s law, the tangential force FT is assumed to be proportional to the normal
force FN, i.e., FT = µFN. The system is governed by second-order differential equations as given by (1)
with the following standardized matrices:

M =

[
m 0
0 m

]
, C =

[
c1 0
0 c2

]
, K =

[
k1 −µk2
µk1 k2

]
, B =

[
0
1

]
,

and

FNL(X) =

[
kNL1 X3

1 − µkNL2 X3
2

µkNL1 X3
1 + kNL2 X3

2

]
The system can be reformulated by introducing the relative damping coefficients ηi = ci/

√
mki and the

natural pulsations wi =
√
ki/m as follows:{

Ẍ1 = −w2
1X1 − η1w1Ẋ1 + µw2

2X2 − ψNL
1 X3

1 + µψNL
2 X3

2

Ẍ2 = −µw2
1X1 − w2

2X2 − η2w2Ẋ2 − µψNL
1 X3

1 − ψNL
2 X3

2 + u
m

(2)

where u ∈ R is the system’s control input and ψNL
i =

kNL
i
m

, for i = 1, 2.

For numerical simulations, model parameters are given in SI by: w1 = 2π × 100 rad/s, w2 = 2π × 75
rad/s, η1 = η2 = 0.02, ψNL

1 = w2
1, ψNL

2 = 0, µ = 0.4 the nominal value of the friction coefficient, and m = 1
Kg.

3.1 Review of previous results
The Hultèn system was widely used and studied in the literature and is known to exhibit friction-induced
vibrations due to the mode-coupling phenomenon shown in Figure (2). The frequencies approach each other
as the friction coefficient µ increases until the coalescence point µc ≈ 0.2893 where the frequencies become
equal while the real parts of the corresponding eigenvalues separate. One real part becoming positive makes
the equilibrium unstable. Hence, a small perturbation on the system will make the system’s state move far
away from its equilibrium with a divergence rate defined by the eigenvalues’ real parts, until an oscillating
regime is reached. These oscillations must be suppressed or at least mitigated. Controlling these vibrations
by using the nonlinear scheme based on state feedback linearization was considered in [42]. The principle
was to apply a nonlinear state feedback that algebraically transforms the system into a linear one the
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Figure 1: Mechanical system

dynamics of which is fixed by applying the classical pole placement approach. More precisely, the control
law proposed in [42] is the nonlinear state feedback control :

u =
m

µw2
2

 −(x2(η1w1(w2
1 + 3ψNL

1 x21)− 6ψNL
1 x1x2)+

(−η21w2
1 + w2

1 + 3ψNL
1 x21)(w2

1x1 + η1x2w1 − µx3w2
2 + ψNL

1 x31)
−µw2

2(µw2
1x1 + x3w

2
2 + η2x4w2 + µψ1x

3
1)− η1µw1w

2
2x4) + v

 (3)

with
v = −k0z1 − k1z2 − k2z3 − k3z4 (4)

where the zi are the new coordinates defined by the diffeomorphism such that:
z1 = x1
z2 = x2

z3 = −w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x31

z4 = η1w
3
1x1 +

(
η21w

2
1 − w2

1

)
x2 − η1w1w

2
2µx3 + µw2

2x4 + η1w1ψ
NL
1 x31 . . .

−3ψNL
1 x2x

2
1

(5)

The dynamical behaviour of the system (2) is made asymptotically stable with transient properties depend-
ing on the location of the eigenvalues in the left half complex plane, given by the roots of the characteristic
polynomial corresponding to (4). At this point, it is important to remark that the closed-loop dynamics of
z is linear but, due to the fact that the diffeomorphism between z and the original state variable x is highly
nonlinear, the closed-loop dynamics of x remains highly nonlinear. This is illustrated by the simulation
results reported in Figure (3), which shows the open-loop response (black) and closed-loop (red) response
for two different choices of control gains k0, · · · , k3. The first choice of control gains (Figure (3)-(a,c))
shows weak damping of X1’s time response compared to the second choice (Figure (3)-(b,d)) for which the
closed-loop eigenvalues have been placed further to the left. However, this is achieved at the price of large
control amplitude (and thus control energy). Indeed, the control laws plotted in (3)-(e) and (3)-(f) well
illustrate the well known relation between transient damping properties and the related control energy. A
more damped transient requires a higher control energy. In practice however, high levels of control energy
may lead to control saturation, which in turn can negatively impact the closed-loop performance. This
dilemma between a damped transient and a reasonable level of the control energy needs to be addressed.
This also motivates the development of the approach proposed in this paper.

3.2 Proposed approach
Compared to the feedback linearization recalled above, the present approach does not try to transform the
system’s dynamics into a linear system in new coordinates. Indeed, it is known that feedback linearization
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Figure 2: Evolution of the eigenvalues of the Hultèn system linearized around the origin xe = (0, 0),
versus the friction coefficient µ

sometimes leads to compensating in the control law dynamic effects that do not jeopardize stability, which
can be both inefficient from a control energy point of view and dangerous in term of control robustness.
In contrast, the present approach only tries to compensate dynamic effects responsible for the open-loop
system’s instability. More precisely, the main idea is to cancel the mode-coupling by a first control stage,
so as to obtain a cascade of subsystems the transient of which is then easier to control. The considered
Hultèn system defined by (2) can be viewed as two coupled dynamical subsystems (Σ1 and Σ2) where the
dynamics of X2 is affected by the dynamics of X1 and vice-versa. This interpretation is represented in the
upper diagram of Figure (4). The first step is to cancel the coupling effect (represented by the blue return
loop in the upper diagram of Figure (4)) by using a control action. This is formalized by the following
proposition.

Proposition 1 Let
u = m

[
µ
(
w2

1X1 + ψNL
1 X3

1

)
+ ū(x)

]
(6)

Then, when ū(x) ≡ 0, u applied to System (2) ensures the following properties:

1. The dynamics of X2 is independent of the dynamics of X1.
2. The origin x = 0 is globally asymptotically stable (GAS).

The first property of this proposition is easy to verify. Indeed, it follows from (2) and (6) with ū(x) ≡ 0
that:

Ẍ2 = −w2
2X2 − η2w2Ẋ2 − ψNL

2 X3
2 (7)

This shows that X2’s dynamics is now independent of the dynamics of X1, i.e., the interaction between the
subsystems Σ1 and Σ2 in Figure (4) is cancelled. The proof of the second property is provided in Appendix
1.

The previous control is very simple but it is not sufficient to ensure good transient characteristics. This
control law can be easily modified to tune X2’s transient behavior. Indeed, by setting

ū = (η2 − 2ξ2)w2Ẋ2 (8)

instead of ū = 0 one obtains in closed-loop:

Ẍ2 = −w2
2X2 − 2ξ2w2Ẋ2 − ψNL

2 X3
2 (9)

Choosing a suitable damping coefficient ξ2 (e.g., ξ2 = 1√
2
) ensures good damping of X2’s dynamics. With

such a control law, however, X1’s dynamics will remain poorly damped. Hence, the next idea is to exploit
the cascade structure depicted in Figure (4) (lower diagram), in which X2 can be viewed as a virtual control
input of the subsystem Σ1 defining the dynamics of X1. Then, this virtual control input can be exploited
to tune the transient properties of X1. This idea is formalized in the following proposition.
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Proposition 2 Let
X̃2 = X2 + τẊ1 , τ =

w1

µw2
2

(2ξ1 − η1) (10)

where X̃2 can be viewed as a tracking error and let

u = m
[
µ
(
w2

1X1 + ψNL
1 X3

1

)
+ ψNL

2 X3
2 + ū(x)

]
(11)

with
ū(x) = −τ

...
X1 − τw2

2Ẋ1 + (η2 − 2ξ2)w2Ẋ2 − 2τξ2w2Ẍ1 (12)

and ξ2 > 0. Then, if 2ξ1 > η1, u applied to System (2) ensures the following properties:

1. The origin x = 0 is GAS.

2. The characteristic polynomial of the linearized closed-loop system is given by:

Q(p) = (p2 + 2ξ1w1p+ w2
1)(p2 + 2ξ2w2p+ w2

2) (13)

The proof of Proposition (2) is given in Appendix 2.
The above proposition provides guarantees about the global asymptotic stability of the closed loop

system and the poles of the linearized closed-loop systems. Note that the open-loop natural frequencies of
the linearized system are conserved in closed-loop, i.e., the control law only modifies the damping coefficients.
Note also that the control expression (11) is similar to the control expression (6) modulo the term ψNL

2 X3
2 .

As a matter of fact, one can verify that the conclusions of Proposition 1 also hold with the control law (11)
when setting ū(x) ≡ 0. Choosing ū(x) as in (12), however, is instrumental in order to improve X1’s transient
dynamics. In this respect, the control law of Proposition 2 is designed so that X̃2 converges asymptotically
to zero. Hence X2 approaches asymptotically −τẊ1, which explains the role of X2 in providing additional
damping for X1’s dynamics.

Figure (5) reports simulation results obtained with the control laws (3) and (11). It can be observed
from Figure (5)-(a,b) that the transient of the displacement X1 obtained with the control law (11) is rapidly
and strongly damped compared to the one obtained by using (3), thus leading to a much smaller settling
time. The control amplitudes are still important but by comparing Figure(5)-(c,d). and Figure (3)-(f), one
can observe that the control amplitude with the control law (11) is much lower than the control amplitude
observed with the control law (3)-(4) obtained by feedback linearization, despite the fact that the settling
time and transient dynamics of the former is much better than those of the latter. This illustrates the
significant improvement achieved with this new controller.

Another interesting comparison aspect concerns the control sensitivity to control saturation. In practice,
high amplitude controls may lead to actuators saturation phenomena, which potentially deteriorate the
closed-loop system’s performance. This issue is illustrated in the following via simulation results obtained
with the control (11). To this goal, the control input (11) is saturated at a maximum amplitude of ±100
Vlt. Note that this is a drastic saturation value compared to the maximum value reached by the non-
saturated control. The control saturation effect is clearly visible on Figure (6)-(a). The corresponding
controlled displacement X1 is displayed on Figures (6)-(b,c) together with the one obtained from the non-
saturated version of the control law (11). The results clearly show that the performances of the closed-loop
system are impacted by the saturation, as shown by the induced vibrations with relatively high amplitudes.
However, convergence to zero of X1 is still achieved with a decent settling time despite the drastic saturation
level. This robustness with respect to the control saturation was not observed with the feedback linearizing
control (3)-(4): in simulation results not reported in this paper for sake of brevity, it was observed with
that controller that with the same level of control saturation X1 did not converge to zero asymptotically
anymore. Robustness to control saturation is another asset of the control solution proposed in this paper.

Finally and in order to complete the robustness analysis of the proposed controller, parameter un-
certainty is considered. In fact, FIV are known to be submitted to parameter uncertainty. The friction
coefficient is one of the most influential parameters on FIV ([20, 10, 18, 57, 44, 37]. Furthermore, this
parameter is submitted to dispersion. Hence, in practice, the controller of FIV is required to be robust
with respect to parameter uncertainty and more particularly to that of the friction coefficient. Hence,
the controlled Hultèn system is simulated for different values of the friction coefficient within the interval
[0.38, 0.42]. Results are shown in Figure (7). The linearizing state feedback given by (3) and (4) and
the new proposed controller defined by (11) and (12) are considered. Deviations of the friction coefficient
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around its nominal value destabilize the closed-loop system based on the linearizing state feedback. The
latter is clearly not robust with respect to the considered uncertainty. Unlike the linearizing state feedback,
the controller (11) and (12) exhibits a suitable robustness since the asymptotic stability is kept and the
transient regime is only weakly impacted.

4 Control of a Hoffman-like friction system
In this subsection, another mechanical system (8) submitted to mode-coupling instabilities but with a higher
number of degrees of freedom is considered. The main aim is to analyse the proposed transient control
method when used for mitigating mode-coupling based FIV in more complex systems. The system, which
is a Hoffman-like friction system used for modelling and controlling mode-coupling instabilities [45, 11], is
a slider-belt consisting of three masses mi∈{1,2,3}. Only the mass m2 possesses degrees of freedom in the
horizontal and vertical directions while m1 and m3 have a d.o.f in the horizontal and vertical directions
respectively. The belt is supposed to move with a constant velocity while a pre-compression normal force
is also considered at the slider-belt interface. The Coulomb law with a constant friction coefficient µ is
considered as that governing the friction at the slider-belt interface. The dynamical behaviour of the system
is then governed by a System (1)-like differential equation with:

M =


m1 0 0 0
0 m3 0 0
0 0 m2 0
0 0 0 m2

 , K =


k1 + k2 0 −k2 0

0 k4 + k5 0 −k4
−k2 0 k2 + 0.5k3 −0.5k3 + µkc

0 −k4 −0.5k3 k4 + 0.5k3 + kc

 (14)

C =


c1 0 −c1 0
0 0 0 0
−c1 0 c1 0

0 0 0 c0

 , FNL(X) =


0
0

knlx
3
2

0

 , and X =


x1
y3
x2
y2

 (15)

For numerical application, all values are given in SI, with m1 = 1, m2 = 0.5, m3 = 1, c0 = 0.2, c1 = 0.1,
k1 = 5, k2 = 25,k3 = 25, k4 = 0.05, k5 = 0.05, kc = 10k1 and kcnl = 1000k1.

By performing the stability analysis against the friction coefficient µ, based on the indirect Lyapunov
method, the mode-coupling phenomenon can be observed with a mode-coalescence occurring at µc = 0.2538.
The system presents unstable behaviour with limit cycle oscillations as shown in Figure (10)-(a,b) where
the displacements x1 and y3 are plotted. These vibrations are required to be suppressed while ensuring
suitable transient properties.

Applying the method proposed for the Hultèn system to the present system, so as to obtain the cascade
configuration given in Figure (9)-(c) from structures in Figure (9)-(a) and (b) respectively, requires two
control inputs. We assume that the system is endowed with two control inputs, which correspond to a
control force on the mass m2 in both the horizontal and vertical direction. The matrix B in (1) is thus
given by

B =


0 0
0 0
1 0
0 1

 (16)

Mimicking Proposition 1, we first define a change of control input variables that removes the coupling loop
between Σ2 and Σ3 (See Figure (9)-(a)):{

u1 = (µkc − 0.5k3)y2 + ū1

u2 = −0.5k3x2 + ū2
(17)

Then, one obtains two virtual independent subsystems namely (Σ1,Σ2) and (Σ3,Σ4), the structure of which
is similar to the Hultèn system given in Figure (4). These two subsystems are represented on Figure (9)-(b).
One can then apply to each of these subsystems the approach of Section 3, i.e. decoupling (Proposition 1)
as shown on Figure (9)-(c), and transient tuning (Proposition 2), with x2 and y2 viewed as virtual control
inputs for the subsystems Σ1 and Σ4 respectively. Finally, we obtain the following result, the proof of which
is given in the Appendix.
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Proposition 3 Consider damping coefficients ξ1, · · · , ξ4 > 0 and assume that:

ξ1 ≥
c1

2
√
m1(k1 + k2)

(18)

Let
ū1 = −m2(τ1$

2
2ẋ1 + τ1

...
x 1)−

(
c1(ẋ1 − ẋ2) + k2x1 − knlx32

)
− 2m2ξ2$2

˙̃x2 (19)

with

τ1 =
c1(2ξ21$

2
1m1 − k2) +

√
c21(k2 − 2ξ21$

2
1m1)2 + k22(4ξ21m1(k1 + k2)− c21)

k22
(20)

$2 =

√
k2 + 0.5k3

m2

and x̃2 = x2 + τ1ẋ1, and let

ū2 = −
[
c0τ2ÿ3 +m2$

2
3τ2ẏ3 + k4y3

]
+ (c0 − 2m2ξ3$3) ˙̃y2 (21)

with

τ2 =
2m3ξ4$4

k4
, $3 =

√
k4 + 0.5k3 + kc

m2
, $4 =

√
k4 + k5
m3

and ỹ2 = y2 + τ2ẏ3.
Then, the origin of the closed-loop system is globally asymptotically stable.

This proposition calls for several remarks:

1. Another control solution with a slightly simpler control expression can be proposed. More precisely,
in the change of control variable (17) the second change of control variable is not necessary. Indeed,
if we simply let u2 = ū2, the subsystems (Σ1,Σ2) and (Σ3,Σ4) will no longer be independent but
they will be in cascade form, i.e., (Σ1,Σ2) will affect (Σ3,Σ4) but the converse will not be true. This
breaking of the coupling loop is sufficient to ensure GAS and good transient properties, with ū1 and
ū2 still defined as in Proposition 3.

2. The new variables x̃2 and ỹ2 used in the definition of ū1 and ū2 respectively play the same role as the
new variable X̃2 in (10). They allow one to provide additional damping for the variables x1 and y3
respectively.

3. The control parameters ξ1, · · · , ξ4 > 0 are user-defined damping coefficients used to tune the damping
for the variables x1, x2, y2, and y3 respectively (see the proof of the proposition in the appendix for
details). Thus, typical values of these coefficients should be around 1/

√
2.

Then, by applying both control laws u1 and u2 given by (17) with (19) and (21), the system is asymp-
totically stabilized as predicted and stated in Proposition 3. Indeed, the observed oscillations on Figure
(10) are suppressed. The properties of the corresponding transients depend on the damping rates ξ1, ξ2, ξ3
and ξ4. Since the subsystems (Σ1,Σ2) and (Σ1,Σ2) are independent, then, the corresponding transients
properties can be controlled separately by tuning the couples of damping rates (ξ1, ξ2) and (ξ3, ξ4) respec-
tively. The systems displacements x1 and y3 corresponding to the damping rates equal to 0.3, 0.5 and 0.7
are plotted in Figure (11). The corresponding control laws u1 and u2 are also plotted in Figure (12). The
well known effect of the damping is observed. Indeed, the amplitude of the mitigated vibrations and thus
the settling times decrease when augmenting the damping rates. Otherwise, the counterpart of these effects
is essentially related to the control amplitudes. The higher the damping rate, the greater the amplitudes
of the control signal. A compromise is necessary in practice, all the more so since high amplitudes for
the control can, as mentioned previously in the first example, lead to saturation phenomena, the effects of
which can be very detrimental to performances. In this framework and as in the previous subsection, we
propose here to evaluate the robustness of the cascade structure based control with respect to the control
saturation. The main idea is to evaluate the sensibility of the control strategy toward the occurrence of
the saturation phenomenon. The control signals u1 and u2 are saturated to maximal values equal to ±0.01
Volt. The corresponding displacements x1 and y3 are shown in Figure (14) while the non-saturated and
saturated controls u1 and u2 are plotted in Figure (13). These results are obtained with the damping rates
fixed to 0.7.
The performances of the closed loop system have been slightly impacted. In particular the introduced

8



Nonlinear Dynamics, December 2022 5 CONCLUSION

non-linearities (saturations) have induced greater amplitudes in the transients of the two considered dis-
placements x1 and y3 but without consequences on the asymptotic stability of the closed loop system
equilibrium. The results show that given the severe level of saturation brought to the controls, the sensi-
tivity of the performances is quite low, which confirms the results of the previous section for the Hultèn
system.

As for the Hultèn system and in the same way, the robustness to parameter uncertainty of the controller
defined by (17), (19), and (21) is analyzed. Friction coefficient variations are also considered, within the
interval [0.45, 0.55], which corresponds to a high uncertainty compared to the one often considered in
practice (in general it does not exceed 5% around the nominal value).
The controlled displacements x1 and y3 are plotted in Figure (15)-(a,b,c,d) for µ = 0.45 and µ = 0.55.
The asymptotic stability of the controlled system is not perturbed by the considered uncertainty. The
corresponding transients are also not impacted which, as previously observed with the Hultèn system,
indicates the robustness of the controller with respect to the considered uncertainty.

5 Conclusion
This study has shown the great benefits to use a new control technique for mitigating Friction-induced
Vibration occasioned by the mode-coupling mechanism. The presented technique considers a preliminary
control stage in order to put the friction system into a cascade of sub-systems. Each subsystem can
then be controlled more efficiently. In particular, properties of the transient regime prove to be easier to
efficiently control. Moreover, interesting robustness properties with respect to the saturation phenomenon
and parameter uncertainty have been numerically shown for the proposed control scheme.

The efficiency of the proposed cascade architecture based control was assessed by considering minimal
models submitted to mode-coupling instabilities. The obtained results are convincing, which gives promis-
ing perspectives in terms of the capacities of the proposed control scheme to be considered and extended
for real world applications.

Appendix 1: Proof of Proposition 1: As mentioned after the statement of Proposition 1, Property
1 is easily verified. Therefore, we focus on Property 2. Consider the candidate Lyapunov function for
System (7):

V2(X2, Ẋ2) :=
1

4

(
2w2

2X
2
2 + 2Ẋ2

2 + 4α2X2Ẋ2 + ψNL
2 X4

2

)
(22)

with
α2 := min

(
w2

2
,

2η2w2

4 + η22

)
(23)

Since 0 < α2 < w2, 2w2
2X

2
2 + 2Ẋ2

2 + 4α2X2Ẋ2 defines a positive-definite quadratic form of X2, Ẋ2 and thus
V2(X2, Ẋ2) > 0 for (X2, Ẋ2) 6= (0, 0) . The time-derivative of V2 along the solutions of System (7) is given
by

V̇2(X2, Ẋ2) = −α2w
2
2X

2
2 − α2η2ω2X2Ẋ2 − (η2w2 − α2)Ẋ2

2 − α2ψ
NL
2 X4

2

Eq. (23) implies that 0 < α2 <
4η2w2

4+η22
, so that α2w

2
2X

2
2 +α2η2ω2X2Ẋ2 + (η2w2 −α2)Ẋ2

2 defines a positive-

definite quadratic form of X2, Ẋ2. This implies that V̇ (X2, Ẋ2) < 0 for (X2, Ẋ2) 6= (0, 0). More precisely,
there exists a constant scalar c > 0 such that

V̇2(X2, Ẋ2) ≤ −c
(
X2

2 + Ẋ2
2 +X4

2

)
(24)

Let us now consider the candidate Lyapunov function for the complete controlled system, i.e., (2)-(6):

V (x) = V1(X1, Ẋ1) + β
(
V2(X2, Ẋ2) + V 2

2 (X2, Ẋ2)
)

with
V1(X1, Ẋ1) :=

1

4

(
2w2

1X
2
1 + 2Ẋ2

1 + ψNL
1 X4

1

)
(25)

9
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V2 defined by (22), and β > 0 a constant scalar parameter. From (2), the time-derivative of V1 along the
solutions of the controlled system is given by

V̇1(X1, Ẋ1) = −η1w1Ẋ
2
1 + µẊ1

(
w2

2X2 + ψNL
2 X3

2

)
Thus, the time-derivative of V along the solutions of the controlled system is given by

V̇ (x) = V̇1(X1, Ẋ1) + β
(

1 + 2V2(X2, Ẋ2)
)
V̇2(X2, Ẋ2)

≤ −η1w1Ẋ
2
1 + µẊ1

(
w2

2X2 + ψNL
2 X3

2

)
. . .

− cβ
(

1 + 2V2(X2, Ẋ2)
)(

X2
2 + Ẋ2

2 +X4
2

)
≤ −η1w1Ẋ

2
1 + µẊ1

(
w2

2X2 + ψNL
2 X3

2

)
− cβ

(
X2

2 + Ẋ2
2 +

w2
2

2
X6

2

)
(26)

where the last equation comes from the fact that V2(X2, Ẋ2) ≥ w2
2
4
X2

2 because, in view of (23),

w2
2X

2
2 + 2Ẋ2

2 + 4α2X2Ẋ2

is a positive quadratic form of X2, Ẋ2. Then, by using the triangular inequality, one verifies from (26) that
V̇ (x) is upper-bounded by a negative-definite quadratic function of Ẋ1, X2, X

3
2 , and Ẋ2 provided that β is

chosen large enough. This shows that V is a non-strict Lyapunov function for the controlled system. By
application of the LaSalle invariance principe (see, e.g., [34, Pg. 128], all trajectories converge towards the
largest invariant set contained in E = {x : V̇ (x) = 0} = {x : Ẋ1 = X2 = Ẋ2 = 0}. Any solution x(t)
of the controlled system contained in E for all times satisfies Ẋ1(t) = X2(t) = Ẋ2(t) = 0 , ∀t and thus,
Ẍ1(t) = Ẋ1(t) = X2(t) = Ẋ2(t) = 0 , ∀t. This implies, from the first equation in (2), that X1(t) = 0 for
all t, and thus x(t) = 0 , ∀t. Thus, the largest invariant set for the system contained in E is reduced to the
origin and all solutions converge to the origin. Since V is a Lyapunov function, stability is also granted,
which concludes the proof.

Appendix 2: Proof of Proposition 2: From the definition of X̃2,

¨̃X2 = Ẍ2 + τ
...
X1

= −w2
2X2 − η2w2Ẋ2 + ū(x) + τ

...
X1

= −w2
2X̃2 − 2ξ2w2

˙̃X2

(27)

The dynamics of X1 can be rewritten as follows:

Ẍ1 = −w2
1X1 − η1w1Ẋ1 + µw2

2X2 − ψNL
1 X3

1 + µψNL
2 X3

2

= −w2
1X1 − η1w1Ẋ1 + µw2

2(X̃2 − τẊ1)− ψNL
1 X3

1 + µψNL
2 (X̃2 − τẊ1)3

= −w2
1X1 − (η1w1 + µτw2

2)Ẋ1 − ψNL
1 X3

1 − µψNL
2 τ3Ẋ3

1

+µw2
2X̃2 + µψNL

2 X̃2

(
X̃2

2 − 3τX̃2Ẋ1 + 3τ2Ẋ2
1

)
= −w2

1X1 − (η1w1 + µτw2
2)Ẋ1 − ψNL

1 X3
1 − µψNL

2 τ3Ẋ3
1 + µX̃2h(X̃2, Ẋ1)

= −w2
1X1 − 2ξ1w1Ẋ1 − ψNL

1 X3
1 − µψNL

2 τ3Ẋ3
1 + µX̃2h(X̃2, Ẋ1)

(28)

with
h(X̃2, Ẋ1) := w2

2 + ψNL
2

(
X̃2

2 − 3τX̃2Ẋ1 + 3τ2Ẋ2
1

)
(29)

Let us first establish Property 1 of Proposition 2. To this purpose, we will build a Lyapunov function.
Since ω2 and ξ2 are strictly positive, Eq. (27) defines an asymptotically stable second-order linear system.
Thus, by Lyapounov’s theorem (see, e.g., [34, Th. 4.6], for any symmetric positive-definite matrix Q, there
exists a symmetric positive-definite matrix P satisfying the Lyapunov equation, i.e.,

PA+ATP +Q = 0

with

A =

(
0 1
−w2

2 −2ξ2w2

)

10
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the state-space matrix associated with System (27). Let us for example set Q = I2 with I2 the 2×2 identity
matrix. Then, the time-derivative, along the solutions to this system, of the Lyapounov candidate function

V2(X̃2,
˙̃X2) := (X̃2,

˙̃X2)P (X̃2,
˙̃X2)T (30)

satisfies the equation
V̇2(X2,

˙̃X2) = −
(
X̃2

2 + ˙̃X2
2

)
(31)

Let us now define a function V1 by the relation

V1(X1, Ẋ1) = w2
1
X2

1

2
+ ψNL

1
X4

1

4
+
Ẋ2

1

2

From (28), the time-derivative of V1 along the solutions of the system is given by

V̇1(X1, Ẋ1) = w2
1X1Ẋ1 + ψNL

1 X3
1 Ẋ1 + ...

Ẋ1

(
−w2

1X1 − 2ξ1w1Ẋ1 − ψNL
1 X3

1 − µψNL
2 τ3Ẋ3

1 + µX̃2h(X̃2, Ẋ1)
)

= −2ξ1ω1Ẋ
2
1 − µτ3ψNL

2 Ẋ4
1 + µX̃2Ẋ1h(X̃2, Ẋ1)

(32)

Note that τ > 0, due to (10) and the Proposition’s assumption that 2ξ1 > η1. Thus, both terms −2ξ1ω1Ẋ
2
1

and −µτ3ψNL
2 Ẋ4

1 in the expression of V̇1 are negative. We claim that the function

V (x) := V1(X1, Ẋ1) + λV2(X̃2,
˙̃X2)(1 + V2(X̃2,

˙̃X2))

is a (non-strict) Lyapunov function for the system provided that λ > 0 is chosen large enough. From (31)
and (32), we have

V̇ (x) = V̇1(X1, Ẋ1) + λV̇2(X̃2,
˙̃X2)(1 + 2V2(X̃2,

˙̃X2))

= −2ξ1ω1Ẋ
2
1 − µτ3ψNL

2 Ẋ4
1 − λ

(
X̃2

2 + ˙̃X2
2

)
(1 + 2V2(X̃2,

˙̃X2))

+µX̃2Ẋ1h(X̃2, Ẋ1)

(33)

Let us consider the term µX̃2Ẋ1h(X̃2, Ẋ1) in the last line of the above equation. From (29),

µX̃2Ẋ1h(X̃2, Ẋ1) = µw2
2X̃2Ẋ1 + µψNL

2 X̃3
2 Ẋ1 − 3µτψNL

2 X̃2
2 Ẋ

2
1 + 3µτ2ψNL

2 X̃2Ẋ
3
1 (34)

We recall the Holder inequality:

ab ≤ 1

p
ap +

1

q
bq

with a, b ≥ 0, p, q > 0, and 1
p

+ 1
q

= 1. We first apply this inequality with p = q = 2 (i.e., the usual
triangular inequality) to the first term in (34):

µw2
2X̃2Ẋ1 ≤ |µw2

2X̃2Ẋ1| ≤ 2ξ1w1
µw2

2

2ξ1w1
|X̃2||Ẋ1| ≤ ξ1w1

[(
µw2

2

2ξ1w1

)2

X̃2
2 + Ẋ2

1

]
(35)

We now apply the Holder inequality with p = 4 and q = 4
3
to the second and last terms in (34):

µψNL
2 X̃3

2 Ẋ1 ≤ |µψNL
2 X̃3

2 Ẋ1| ≤ µτ3ψNL
2

1

τ3
|X̃3

2 ||Ẋ1| ≤
µτ3ψNL

2

4

[
3

τ4
X̃4

2 + Ẋ4
1

]
(36)

3µτ2ψNL
2 X̃2Ẋ

3
1 ≤ |3µτ2ψNL

2 X̃2Ẋ
3
1 | ≤

µτ3ψNL
2

3

9

τ
|X̃2||Ẋ3

1 | . . .

≤ µτ3ψNL
2

4

[
94

3τ4
X̃4

2 + Ẋ4
1

] (37)

11
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Noting that the third term in the right-hand side of (34) is negative, we deduce from (34)–(37) that

µX̃2Ẋ1h(X̃2, Ẋ1) ≤ X̃2
2

(
ξ1w1

(
µw2

2
2ξ1w1

)2)
+X̃4

2

(
µτ3ψNL

2
4

(
3
τ4

+ 94

3τ4

))
+Ẋ2

1 (ξ1w1)

+Ẋ4
1

(
µτ3ψNL

2
2

) (38)

We deduce from (33) and (38) that

V̇ (x) ≤ −ξ1w1Ẋ
2
1 −

µτ3ψNL
2

2
Ẋ4

1

−X̃2
2

[
λ(1 + 2V2(X̃2,

˙̃X2))− ξ1w1

(
µw2

2
2ξ1w1

)2]
+X̃4

2

(
µτ3ψNL

2
4

(
3
τ4

+ 94

3τ4

))
−λ ˙̃X2

2

(
1 + 2V2(X̃2,

˙̃X2))
) (39)

Since V2 is a positive definite quadratic form of X̃2 and ˙̃X2, there exists a constant scalar c > 0 such that
V2(X̃2,

˙̃X2) ≥ cX̃2
2 . Thus, we deduce from the above inequality that

V̇ (x) ≤ −ξ1w1Ẋ
2
1 −

µτ3ψNL
2

2
Ẋ4

1

−X̃2
2

[
λ− ξ1w1

(
µw2

2
2ξ1w1

)2]
−X̃4

2

(
2λc− µτ3ψNL

2
4

(
3
τ4

+ 94

3τ4

))
−λ ˙̃X2

2

(
1 + 2V2(X̃2,

˙̃X2))
) (40)

It follows from the above inequality that V̇ (x) ≤ 0 for all x provided that λ is chosen large enough. V is
not a strict Lyapounov function, however, since the set where V̇ (x) = 0 is not reduced to {0}. To conclude
to the GAS property, we make use of the LaSalle theorem and its application proceeds exactly like in the
proof of Proposition 1 to show that all trajectories converge to the origin x = 0.

We now establish the second property of Proposition 2. To this purpose, for any time-function z, we
denote by [z](p) the Laplace transform of z. Let us recall that for a mono-input linear system ẋ = Ax+ bu,
the polynomial characteristic of A corresponds to the common denominator of the transfer functions between
u and the xi’s. Assume that the control u + mδu is applied to System (2) with u given by (11). Then,
Equation (27) becomes

¨̃X2 = −w2
2X̃2 − 2ξ2w2

˙̃X2 + δu (41)

Applying the Laplace transform to this equation (with null initial conditions) gives:

(p2 + 2ξ2w2p+ w2
2)[X̃2](p) = [δu](p)

Since X̃2 = X2 + τẊ1, this equation yields:

(p2 + 2ξ2w2p+ w2
2)([X2](p) + τp[X1](p)) = [δu](p) (42)

Then, it follows from the first equality in (28), after neglecting nonlinear terms, that the linearized
dynamics of X1 satisfies the following equation:

Ẍ1 = −w2
1X1 − η1w1Ẋ1 + µw2

2X2 (43)

Applying the Laplace transform to this equation gives:

(p2 + η1w1p+ w2
1)[X1](p) = µw2

2[X2](p)

Replacing the expression of [X2](p) given by this equation in (42) yields:

(p2 + 2ξ2w2p+ w2
2)

(
p2 + η1w1p+ w2

1

µw2
2

[X1](p) + τp[X1](p)

)
= [δu](p)

12
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By using the expression of τ given by (10), we obtain:

(p2 + 2ξ2w2p+ w2
2)

(
p2 + 2ξ1w1p+ w2

1

µw2
2

)
[X1](p) = [δu](p)

so that:

[X1](p) =
µw2

2

(p2 + 2ξ2w2p+ w2
2)(p2 + 2ξ1w1p+ w2

1)
[δu](p)

Thus, Q(p) as defined by (13) is the denominator of the transfer function from δu to X1. Since this is a
fourth-order polynomial, it corresponds to the characteristic polynomial of the linearized closed-loop sys-
tem.

Appendix 3: Proof of Proposition 3: By applying the change of control input (17), one verifies
from (14), (15), and (16) that the following two independent subsystems are obtained:{

m1ẍ1 = −c1ẋ1 + c1ẋ2 − (k1 + k2)x1 + k2x2
m2ẍ2 = c1ẋ1 − c1ẋ2 + k2x1 − (k2 + 0.5k3)x2 − knlx32 + ū1

(44)

and {
m2ÿ2 = −c0ẏ2 − (k4 + 0.5k3 + kc)y2 + k4y3 + ū2

m3ÿ3 = −(k4 + k5)y3 + k4y2
(45)

We first consider Subsystem (45). This is a controllable linear system and thus any linear control method
(pole placement, LQR, etc) could be used to make this system asymptotically stable. The proposed control
expression ū2 in (21) follows the cascade approach used for the Hultèn system, where y2 is used to provide
damping to the dynamics of y3, via the new variable ỹ2 = y2 + τ2ẏ3. The advantage of this approach is
that the natural frequency of the system is conserved in closed loop (i.e., only damping is modified). More
precisely, one verifies from (21) and (45) that the closed-loop system can be rewritten, using ỹ2 in place of
y2, as follows: {

¨̃y2 = −2ξ3$3
˙̃y2 −$2

3 ỹ2
ÿ3 = −2ξ4$4ẏ3 −$2

4y3 + k4
m3
ỹ2

Since ξ3, $3 > 0, ỹ2(t) converges exponentially to zero as t −→ +∞, and on the zero-dynamics ỹ2 ≡ 0.
The dynamics of y3, defined by its natural frequency $4 > 0 and damping coefficient ξ4 > 0, is also
asymptotically stable. Asymptotic stability of Subsystem (45) is then straightforward.

We now consider Subsystem (44). Due to the term knlx
3
2 in the expression of ẍ2, this system is nonlinear.

However, this nonlinearity can be easily cancelled with the control action ū1. Then, the system becomes
linear and it can be controlled with classical linear techniques. We also exploit the cascade approach for
the gain tuning but its application is more tricky here because both x2 and ẋ2 affect the dynamics of x1
in (44). Let x̃2 = x2 + τ1ẋ1. One verifies from (19) and (44) that the closed-loop system can be rewritten,
using x̃2 in place of x2, as follows:{

ẍ1 = − c1
m1
ẋ1 + c1

m1
( ˙̃x2 − τ1ẍ1)−$2

1x1 + k2
m1

(x̃2 − τ1ẋ1)
¨̃x2 = −2ξ2$2

˙̃x2 −$2
2x̃2

with

$1 =

√
k1 + k2
m1

Since ξ2, $2 > 0, x̃2(t) converges exponentially to zero as t −→ +∞, and on the zero-dynamics x̃2 ≡ 0
while the dynamics of x1 is defined by the following equation:

ẍ1 = − c1
m1

ẋ1 −
c1
m1

τ1ẍ1 −$2
1x1 −

k2
m1

τ1ẋ1

This equation can be rewritten as follows:

ẍ1 = − c1 + k2τ1
m1 + c1τ1

ẋ1 −
m1$

2
1

m1 + c1τ1
x1

13
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and since all constant parameters in this second-order linear differential equation are strictly positive,
this defines an asymptotically stable linear system. Thus, x1(t), ẋ1(t) converge exponentially to zero as
t −→ +∞, and it follows that Subsystem (44) is asymptotically stable. The transient behavior of x1 can
be analyzed via the damping coefficient of the above differential equation. The natural frequency of this
second-order linear system is

$̄1 =

√
m1$2

1

m1 + c1τ1

and its damping coefficient ξ∗1 is defined by the relation

2ξ∗1

√
m1$2

1

m1 + c1τ1
=

c1 + k2τ1
m1 + c1τ1

Thus,

2ξ∗1$1
√
m1 =

c1 + k2τ1√
m1 + c1τ1

which implies that
(c1 + k2τ1)2 − 4(ξ∗1)2$2

1m1(m1 + c1τ1) = 0

Since τ1 defined by (20) is the positive solution of the second-order polynomial equation

(c1 + k2τ1)2 − 4(ξ1)2$2
1m1(m1 + c1τ1) = 0

it follows that ξ∗1 = ξ1.
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Figure 3: Time evolution of the displacement x1: (a,b) Non-controlled solution (dark line) and controlled
solution by feedback linearization, i.e., eq. (3) (red line), (c,d) Zoom on the transient of x1(t), (e) Control
input corresponding to poles placed in the left half-plane at a moderate distance from the imaginary axis, (f)
Control input corresponding to poles placed very left in the left half-plane.
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Figure 4: Block diagram representation of the control system (upper), and of the closed-loop system of Propo-
sition (1) (lower)
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Figure 5: (a)- Controlled displacement X1(t), (b)-Zoom on the transient of X1, (c)-Control input, (d)-Zoom
on the transient of the control input. Solid line: proposed control solution (11), dashed line: solution based on
feedback linearization (3)
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Figure 6: (a)-Zoom on the control input, (b)-Controlled displacement X1, (c)-Zoom on the transient of X1.
Dashed line: without saturation, solid line: with saturation
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Figure 7: (a)- Displacement X1 with the proposed control solution, i.e., (11) and (12), (b)- Zoom on the
transient of X1 with this solution, (c)-Solution based on feedback linearization, i.e., (3) and (4). Solid line:
nominal value (µ = 0.4), dashed line: minimum value (µ = 0.38), dashed-dot line: maximum value (µ = 0.42)
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Figure 8: Mechanical system submitted to mode-coupling instabilities
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(a) (b)

(c)

Figure 9: (a)-Original system, (b)- Intermediary configuration, (c)-Cascade configuration
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Figure 10: Mode-coupling based vibrations in System (8)
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Figure 11: Controlled system displacements x1 and y3 corresponding to different damping rates. Dashed line:
ξi = 0.3, Dashed-dot line: ξi = 0.5, Solid line: ξi = 0.7
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Figure 12: Control signals corresponding to different damping rates. Dashed line: ξi = 0.3, Dashed-dot line:
ξi = 0.5, Solid line: ξi = 0.7
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Figure 13: Control signal corresponding to ξi = 0.7. Dashed line: Non-saturated control, Solid line: saturated
control
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Figure 14: Controlled displacements x1 and y3 corresponding to ξi = 0.7. Dashed line: obtained with a
non-saturated control, Solid line: obtained with a saturated control
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Figure 15: (a,c): Displacements x1 and y3 obtained with the proposed solution (17)-(19)-(21), (b,d): Zoom
on the transients of x1 and y3. Solid line: nominal value (µ = 0.5), dashed line: minimal value (µ = 0.45),
dashed-dot line: maximal value (µ = 0.55)
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