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Symptomatic cytomegalovirus (CMV) disease has been the standard endpoint for clinical trials in organ transplant recipients. Viral 
load may be a more relevant endpoint due to low frequency of disease. We performed a meta-analysis and systematic review of the 
literature. We found several lines of evidence to support the validity of viral load as an appropriate surrogate end-point, including 
the following: (1) viral loads in CMV disease are significantly greater than in asymptomatic viremia (odds ratio, 9.3 95% confidence 
interval, 4.6–19.3); (2) kinetics of viral replication are strongly associated with progression to disease; (3) pooled incidence of CMV 
viremia and disease is significantly lower during prophylaxis compared with the full patient follow-up period (viremia incidence: 
3.2% vs 34.3%; P < .001) (disease incidence: 1.1% vs 13.0%; P < .001); (4) treatment of viremia prevented disease; and (5) viral load 
decline correlated with symptom resolution. Based on the analysis, we conclude that CMV load is an appropriate surrogate endpoint 
for CMV trials in organ transplant recipients.

Keywords.  cytomegalovirus (CMV) viremia; CMV disease; clinical trials; preemptive therapy; prophylaxis. 

 Cytomegalovirus (CMV) is one of the most common opportunis-
tic infections after solid organ transplantation (SOT) and can pro-
duce a spectrum of illness categorized as either viral syndrome or 
tissue-invasive disease [1]. Viral syndrome typically presents with 
fever, fatigue, and cytopenias; published guidelines exist for appro-
priate definitions of CMV disease within particular organ groups 
for use in clinical trials [2]. The natural history of CMV infection 
after SOT is complex. A recipient lacking CMV immunoglobu-
lin G antibodies (seronegative) before transplant may be infected 
from a seropositive donor to cause primary infection (D+/R−). 
The highest risk of CMV disease occurs after primary infection 
(D+/R−), followed by either reinfection or reactivation, which are 
less likely to cause disease [3]. There may be a trend toward more 
viremia in the D+/R+ group versus the D−/R+ group [1].

There are several laboratory methods to detect CMV, but 
most centers currently use quantitative viral load testing of 
whole blood or plasma, which most commonly detects CMV 
DNA using either a commercially available or in-house assay. 

Cytomegalovirus prevention strategies include either univer-
sal antiviral prophylaxis typically with (val)ganciclovir, or a 
preemptive strategy that involves regular monitoring of viral 
load with initiation of antiviral therapy after detection above a 
certain threshold in order to prevent CMV disease [4–8]. The 
choice of prevention strategy depends on patient risk factors, 
including serostatus and type of transplant [1].

In the past, large randomized trials, designed primarily to 
demonstrate efficacy of antiviral strategies and to obtain regu-
latory approval for prophylaxis and/or treatment indications, 
have used symptomatic CMV disease as the primary endpoint. 
However, more recently this primary endpoint has been ques-
tioned for a number of reasons. In current clinical practice, rates 
of CMV disease are often low, in part due to prolonged proph-
ylaxis, but also due to early detection of viremia and initiation 
of antiviral therapy before definitive symptoms attributable to 
CMV are evident [9]. In addition, currently, the most common 
form of CMV disease after SOT is viral syndrome. Although 
definitions for viral syndrome exist, it is clear that it represents 
a spectrum of illness that shares many overlapping features with 
other infectious and noninfectious etiologies. At a recent forum 
of content experts, industry, and regulatory advisors, including 
the US Food and Drug Administration and European Medicines 
Agency (CMV Forum, a project of the Forum for Collaborative 
Research University of California, Berkeley), the issue about the 
potential use of viral load as a surrogate marker in trials of CMV 
prevention or treatment arose as a major question pertaining to 
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development of new clinical trials. The CMV Forum delineated a 
process by which the utility of CMV load as a potential accepted 
surrogate endpoint in clinical trials could be more systematically 
evaluated. The results of that process and systematic review are 
compiled and presented here as they relate to SOT.

METHODS

Search Methods

A comprehensive search strategy was developed to identify pub-
lished English-language literature on “cytomegalovirus,” “solid 
organ transplantation,” and “viral load.” The search strategy 
was developed by a medical librarian using a combination of 
database-specific subject headings and text words. Additional 
keywords were mined from sample articles and generated 
through input from subject specialists on the team. The search 
strategy was then customized for each database. No limits for 
date were applied. Animal-only studies were excluded where 
applicable, and no study-type filters were applied. Books and 
conference materials were excluded from Embase results. To 
ensure sensitivity, the initial strategy in MEDLINE was tested 
against 7 seminal articles and modified accordingly. The follow-
ing databases were searched from inception to the date of the 
search (15 December 2016): Ovid MEDLINE, Ovid MEDLINE 
In-Process & Other Non-Indexed Citations, Ovid Embase, 
Cochrane Database of Systematic Reviews, and Cochrane 
Central Register of Controlled Clinical Trials. A supplementary 
search was conducted in PubMed for non-MEDLINE records. 
See the Supplementary Appendix for all search strategies. Two 
authors (Y. N. and A. A.) independently assessed all studies for 
risk of bias.

Inclusion and Exclusion Criteria

We included cohort studies or randomized controlled trials of 
cytomegalovirus, solid organ transplantation, and viral load 
where the total cohort was >20 cases. We excluded animal stud-
ies, those of primarily other pathogens, studies with no use of 
quantitative polymerase chain reaction (PCR; eg, antigenemia, 
mRNA, qualitative PCR), review articles /letters without any 
new data, those not dealing with a solid organ transplant popu-
lation, and those that did not document blood viral load. From 
included studies, we collected the following variables: number 
of subjects, organ transplant types, CMV load, incidence of 
CMV viremia and disease, CMV prevention strategy (prophy-
laxis or preemptive), and follow-up period.

Data Analysis

Where relevant, meta-analysis was performed by calculating 
the mean from the median and quartiles [10] and then stand-
ardizing the mean differences (SMD) between 2 groups. The log 
odds ratios were estimated from SMD [11] and then meta-anal-
ysis [12] done using SAS version 9.4 (SAS Institute, Cary, NC) 
using DerSimonian and Laird’s model. Heterogeneity among 

studies was assessed with I2 values, which show the variation 
among studies that is not due to chance. The sensitivity analysis 
was repeated with fixed and random models with extracted out-
liers. Publication bias was examined by Egger test and graphed 
using a funnel plot [13]. Forest plots were based on the log odds 
ratios and confidence intervals with a value of 1 as the refer-
ence. Where relevant, pooled incidence rates were calculated 
based on the relative risk ratios (event/total) and their confi-
dence interval [14]. We used the exact method of Clopper and 
Pearson in confidence interval estimation. The pooled values 
are based on a fixed-effect model for study on CMV disease 
during prophylaxis and a random-effects model for the other 
studies. The fixed or random model, for each combined study, 
was based on assessment of between-study heterogeneity.

RESULTS

Description of Studies

Our strategy resulted in 2506 potential studies. Of these, 1948 
were excluded based on review of titles and abstracts because 
they did not meet eligibility criteria. These included studies 
that were not in human subjects or not in solid organ transplant 
recipients. A  total of 558 studies underwent full text review, 
of which 469 were excluded for reasons outlined in Figure  1. 
This left a total of 89 studies for inclusion in the systematic 
review, of which a subset of studies were included in each of the 
meta-analyses performed.

Figure  1.  Study selection flow. *The majority of these records were excluded 
because studies were qualitative, study cohort was <20 subjects, or the stud-
ies were primarily of viruses other than cytomegalovirus. Abbreviation: CDSR, 
Cochrane Database for Systematic Reviews. 
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Cytomegalovirus Load and Disease Prediction

We first assessed whether viral load was predictive of sympto-
matic CMV disease. Specifically we ascertained whether differ-
ences in viral load were present in patients with asymptomatic 
viremia versus symptomatic CMV disease (including both viral 
syndrome and tissue-invasive disease). We used any detectable 
viral load as the cutoff for positivity when assessing a study. A 
total of 30 studies that had addressed this question were identi-
fied [4, 15–43]. Of these 30 studies, 9 studies were natural history 
studies [17–19, 32, 34, 38–41]. Ten studies were conducted with 
COBAS Amplicor viral load assay, whereas the remaining stud-
ies used alternative PCR-based assays [4, 26, 29–35, 39, 41]. In 
a meta-analysis, we included all studies that directly compared 
these 2 groups (asymptomatic viremia vs CMV disease) (Figure 
2A). As a second evaluation, we also conducted a meta-analysis 

with only studies that used the COBAS Amplicor assay because 
this was the most common assay used (Figure 2B). Finally, we 
conducted a third meta-analysis that included only natural 
history studies (defined as studies in which no prophylaxis or 
preemptive therapy for asymptomatic CMV viremia is given) 
(Figure 2C). In all 3 analyses, symptomatic (vs asymptomatic) 
patients had a substantially and significantly greater viral load 
(Table 1). In the combined analysis, the mean fold difference in 
viral load for symptomatic versus asymptomatic patients was 
14.9 (95% confidence interval [CI], 6.7–32.5; random-effects 
model). Based on a sensitivity analysis, there was publication bias 
for all included studies (P < .001). After we removed 3 outliers, 
we again conducted a meta-analysis, which revealed that mean 
viral load in CMV disease remained significantly higher than in 
asymptomatic viremia (odds ratio [OR], 9.3; 95% CI, 4.6–19.3; 

Figure 2.  Relationship between cytomegalovirus (CMV) viral load and CMV disease in organ transplant recipients by study. Odds ratio and 95% confidence intervals 
are shown. A, All studies excluding outliers are shown (n = 27). Diamond symbol indicates the result of the DerSimonian-Laird random-effects model. Viral load assay 
type used in the study is also indicated.
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random-effects model) without publication bias (P = .10) (Figure 
3). For studies using only the COBAS Amplicor PCR assay, the 
fold difference was 7.0 (95% CI, 3.3 to 14.9; random-effects 
model). Finally for natural history studies only, the fold differ-
ence was 14.1 (95% CI, 4.5 to 43.9; random-effects model).

Viral Load Kinetics and the Risk of Cytomegalovirus Disease

We evaluated studies that assessed how viral load kinetics 
(change in viral load over time) influenced the likelihood of 
CMV disease. The hypothesis was that if viral load is an appro-
priate surrogate, viral kinetics will influence the likelihood of 

Figure 2.  B, Relationship between CMV load and disease in studies using the COBAS Amplicor Viral Load Assay (n = 10).

Figure 2.  C, Relationship between CMV viral load and disease in natural history studies (n = 9). Abbreviations: CI, confidence interval; LCI, lower confidence interval;  
OR, odds ratio; UCI, upper confidence interval; WR, weight (random).
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disease development. Five studies were identified that specifi-
cally examined the change in viral load versus the risk of devel-
oping CMV disease. The first of the 5 studies showed that the 
rate of increase in CMV load between the last PCR-negative and 
first PCR-positive sample was significantly faster in patients 
with CMV disease (log10 0.33 versus log10 0.19 genomes/mL 
daily; P < .001) [44]. In multivariate-regression analyses, both 
initial CMV load and rate of viral load increase were independ-
ent risk factors for CMV disease [44].

A second study showed that the rate of increase in viral repli-
cation was strongly associated with progression to CMV disease 
[45]. A third study in lung transplant recipients,demonstrated 
that 1 − log10 increases in CMV DNA levels at any time point 
during the first 6 months after transplant predicted CMV pneu-
monitis (sensitivity, 67%; specificity, 93%; P < .01) [37]. Another 
study demonstrated a 5- to 10-fold increase in the CMV DNA 
titers just prior to disease development [46]. Finally, in a study 
of kidney transplant recipients, an increase in viral load of log10 
0.7 copies per week also distinguished between CMV disease 
and asymptomatic seropositive recipients with high sensitivity 
(100%) and specificity (95%) [47]. In summary, all 5 studies 
suggested that a more rapid viral load increase correlated with 
the development of CMV disease.

Viral Load During and After Antiviral Prophylaxis

We hypothesized that, if viral load was an appropriate surrogate 
marker, then rates of viremia and disease may be low while a 
patient was on appropriate prophylaxis and significantly higher 
after discontinuation of prophylaxis. We identified 44 proph-
ylaxis studies [20, 25–27, 35–37, 48–84]. Of these, 27 studies 
were identified as prophylaxis studies, whereas 17 studies were 
identified as prophylaxis versus preemptive therapy studies. The 
pooled incidence of CMV viremia during prophylaxis was deter-
mined for 24 studies for which sufficient data were available. The 
incidence of CMV viremia during prophylaxis varied from 0% 
to 18.6%. In the random-effect model, the pooled incidence of 
CMV viremia while on prophylaxis was 3.2% (95% CI, 2.0%–
4.4%) (Figure 4). This contrasted with the incidence of viremia 
during the entire follow-up period (this includes during and 
after discontinuation of prophylaxis), which was 5.8% to 73% of 
patients. After excluding 1 outlier [65], we determined a pooled 
incidence for viremia of 34.3% (95% CI, 30.0%–38.6%; P < .001 
vs. pooled incidence during prophylaxis) (Figure 5) (Table 2).

We next analyzed the incidence of CMV disease during 
prophylaxis based on data from 22 studies. The incidence of 
CMV disease during prophylaxis varied from 0% to 22.0%. 
Studies showed good homogeneity (P = .10), so a fixed-effect 
model was used. The pooled incidence was 0.8% (95% CI, 
0.4%–1.3%) (Figure 6). In contrast, during the entire follow-up 
period, CMV disease incidence ranged 0%–36.8% in 41 studies. 
After excluding 1 outlier [65], we showed that the pooled inci-
dence of disease was 13.0% (95% CI, 10.5%–15.5%; random-ef-
fects model; P < .001 vs pooled incidence during prophylaxis) 
(Figure 7). Therefore the incidence of viremia and disease dur-
ing prophylaxis was overall low, with the majority of viremia 
and disease occurring after discontinuation of prophylaxis 
(Table 2).

Therapy of Asymptomatic Viremia and Disease Prevention

We hypothesized that if viral load were an appropriate sur-
rogate marker, then therapy of asymptomatic viremia should 
prevent progression to CMV disease. This is in fact the basis 
of preemptive strategies for CMV disease prevention. We 
identified 32 studies [23, 54–59, 62, 68, 70, 72, 76, 77, 80–83, 
85–100] addressing this, of which 17 studies were prophy-
laxis versus preemptive therapy studies. The incidence of 

Figure 3.  Funnel plot of studies for relationship between cytomegalovirus load 
and disease (all studies excluding outliers, n = 27). Each dot represents a log odds 
ratio of each study. Black line represents calculated mean log odds ratio with all 
studies after excluding 3 outliers. Abbreviation: OR, odds ratio.

Table 1.  Summary of Odds Ratios of Asymptomatic Versus Symptomatic Cytomegalovirus Disease in Organ Transplant Recipients

Study type Number of studies Model
Pooled OR (95% CI), 

P value
Heterogeneity

(I2) Studies excluded (references)

All included studies 27 REM  9.3 (4.6–19.3), P < .001 85.8 Elfadawy et al (2013),21 Lisboa et al 
(2012),15 Gala-Lopez et al (2011)24

Studies using COBAS Amplicor 
Viral Load Assay

10 REM  7.1 (3.3–14.9), P < .001 65.0 Helantera et al (2010)26

Natural history studies 9 REM  14.1 (4.5–43.9), P < .001 77.4 None

Abbreviations: CI, confidence interval; OR, odds ratio; REM, random-effects model.
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CMV viremia with a preemptive strategy varied from 5.3% 
(CMV-seropositive liver transplant recipient) to 91.7% 
(CMV D+/R− kidney, liver, and heart transplant recipients) 
with a pooled incidence of CMV viremia of 48.9% (95% CI, 
39.6%–58.1%) (Figure 8). The incidence of CMV disease 
varied from 0% to 26.3% with a pooled incidence of 6.9% 
(95% CI, 5.2%–8.5%) (Figure 9). The pooled disease inci-
dence was significantly lower than the pooled viremia inci-
dence (P < .001) (Table 2).

Viral Load Response Versus Symptom Resolution

We hypothesized that, if viral load is a valid surrogate marker, 
then clinical response in patients with CMV disease should 
mirror virologic response. Three studies were identified that 
provided relevant data [6, 101, 102]. Two studies were from 
the VICTOR cohort, a large randomized trial comparing intra-
venous ganciclovir versus oral valganciclovir for the treat-
ment of CMV disease [101, 102]. Both studies demonstrated 

a correlation between viral load decline and symptom resolu-
tion for both CMV tissue-invasive disease and viral syndrome 
using either the COBAS Amplicor [101] assay or the Roche 
Taqman international unit–based assay [102]. For example, 
of 267 patients, 251 had CMV disease resolution by day 49 of 
treatment. Patients with pretreatment CMV DNA of <18 200 
IU/mL had a faster time to disease resolution (P = .001), and 
patients with CMV load suppression at days 7, 14, and 21 had 
faster times to clinical disease resolution (P = .005, <.001, and 
<.001, respectively) [102]. One additional study assessed 26 
patients with biopsy-proven gastrointestinal CMV disease [6]. 
The median time to negative viral load (22.5 days) was similar 
to the median reported time to negative follow-up endoscopy 
(27.0 days).

Therefore, despite a small number of studies, viral load 
decline during the treatment phase seems to correlate well with 
symptom resolution, and specifically, achieving viral load nega-
tivity correlates strongly with symptom response.

Figure 4.  Pooled incidence of cytomegalovirus viremia during antiviral prophylaxis showing the absolute risk and 95% confidence intervals for each study (n = 24). 
Abbreviations: AR, absolute risk; CI, confidence interval; CMV, cytomegalovirus; LCI, lower confidence interval; N, total number of patients in the study; n, patients with the 
outcome of interest (cytomegalovirus viremia); UCI, upper confidence interval; WR, weight (random). *Different cohort from same reference.
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Figure 5.  Pooled incidence of cytomegalovirus viremia for the entire follow-up period in studies using antiviral prophylaxis. Abbreviations: AR, absolute risk; CI, confidence 
interval; CMV, cytomegalovirus; LCI, lower confidence interval; N, total number of patients in the study; n, patients with the outcome of interest (cytomegalovirus viremia); 
UCI, upper confidence interval; WR, weight (random). *Different cohorts from same reference.

Table 2.  Summary of Pooled Incidences of Cytomegalovirus Infection Depending on Prevention Method and Followup Period

Prevention method Follow-up perioda Outcome No. of studies Model Pooled incidence (%) (95% CI) Heterogeneity (I2), P value

Prophylaxis During prophylaxis CMV viremia 24 REM 3.2 (2.0–4.4) 75.5, P < .001

During prophylaxis CMV disease 24 FEM 0.8 (0.4–1.3) 28.1, P = .10

Entire study period CMV viremia 46 REM 34.3 (30.0–38.6) 88.5, P < .001

Entire study period CMV disease 48 REM 13.0 (10.5–15.5) 90.1, P < .001

Preemptive Entire study period CMV viremia 33 REM 48.9 (39.6–58.1) 98.2, P < .001

Entire study period CMV disease 27 REM 6.9 (5.2–8.5) 78.6, P < .001

Abbreviations: CI, confidence interval; CMV, cytomegalovirus; FEM, fixed-effects model; REM, random-effects model.
aEntire study period includes complete study follow-up, including during and after prophylaxis.
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DISCUSSION

We conducted a systematic review and meta-analysis of data 
related to quantitative viral load testing for CMV and its poten-
tial utility as a surrogate marker in clinical trials of CMV after 
SOT. Viremia is considered a marker of viral lytic cycle activ-
ity, which is important for CMV disease development. To bet-
ter define this, we assessed specific aspects related to different 
trial designs and indications of antivirals (prophylaxis, preemp-
tive, and treatment). Five predefined and separate areas were 
examined to arrive at an overall understanding of the potential 
of viral load testing as a surrogate marker. First, we assessed 
whether viral load was higher in patients with asymptomatic 

viremia versus symptomatic CMV disease. We found the fold 
difference in viral load was much greater in disease versus 
asymptomatic viremia, (9.3, 7.0, 14.1 with all included studies, 
trials, studies using only the COBAS Amplicor PCR assay, and 
natural history studies, respectively). We then assessed whether 
the rate in change of viral load was predictive of CMV disease. 
The number of studies was smaller, but each demonstrated a 
consistent effect relating viral load kinetics to likelihood of dis-
ease development. In the third section, we reviewed viremia 
and disease during prophylaxis versus the entire period of fol-
low-up. The pooled analysis demonstrated low rates of viremia 
and disease during periods of antiviral prophylaxis compared 

Figure 6.  Pooled incidence of cytomegalovirus disease during antiviral prophylaxis. Abbreviations: AR, absolute risk; LCI, lower confidence interval; N, total number of 
patients in the study; n, patients with the outcome of interest (cytomegalovirus disease); UCI, upper confidence interval; WR, weight (random). *Different cohorts from same 
reference.
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with a significantly higher pooled incidence of viremia and dis-
ease in the total follow-up period of the trial. We next reviewed 
the pooled data on treatment of asymptomatic viremia and 
the development of CMV disease (preemptive strategy). We 
observed that the pooled incidence of asymptomatic viremia 
was 48.9% and the pooled incidence of disease was 6.9%, sug-
gesting that treatment of asymptomatic viremia results in a low 
incidence of subsequent disease. Finally, we assessed treatment 
studies, which linked symptom resolution to virologic response. 
The number of studies was small but strongly indicated that 
clearance of viremia correlated with symptom resolution.

Although these data in isolation do not provide defini-
tive proof for the utility of viral load as a surrogate endpoint, 
when taken together, they provide compelling rationale that 
this may be a reasonable primary outcome in clinical trials. 
Given the low incidence of CMV disease in most modern 
clinical settings, coupled with difficulties in the definitive 
clinical diagnosis of CMV disease after SOT (especially viral 
syndrome), CMV load may in fact be a preferable and more 
robust endpoint.

This systematic review and meta-analysis has several limita-
tions for each of the areas analyzed. In all cases, we combined 
data across studies to estimate effect sizes or associations. 
However, studies by their nature often include different trans-
plant types, different immunosuppression drugs (eg, different 
induction agents or rejection episodes), and other factors that 
may result in heterogeneity of populations. For example, the 
studies by Lin et  al and Guiver et  al were less supportive of 
the link between CMV load and disease likely due to relatively 
small sample sizes. Analysis-specific limitations were also pres-
ent. For example, in the analysis of viral load in asymptom-
atic versus symptomatic patients, viral load assays (including 
in-house assays), disease definitions, and different prophylac-
tic regimens all likely influence the outcome. To better con-
trol for this, we also assessed just studies that used the COBAS 
Amplicor assay (as the most common viral load assay) and 
natural history studies. We also did not differentiate viral loads 
between CMV syndrome and end-organ disease because a very 
small number of studies addressed these differences. This ana-
lysis is also difficult to interpret because some patients labeled 

Figure 7.  Pooled incidence of cytomegalovirus disease for the entire follow-up period in studies using antiviral prophylaxis. Abbreviations: AR, absolute risk; LCI, lower 
confidence interval; N, total number of patients in the study; n, patients with the outcome of interest (cytomegalovirus disease); UCI, upper confidence interval; WR, weight 
(random). *Different cohorts from same reference.
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as syndrome may have had end-organ disease but did not have 
a biopsy to prove it. Finally, there are limited pediatric data, 
and the results presented here may not be generalizable to this 
population.

Although CMV viremia can be associated with end-organ 
disease, there are exceptions, including occasional patients 
who develop CMV disease (especially gastrointestinal dis-
ease) with an undetectable viral load [6]. The pathogenesis 
of end-organ disease in the absence of viremia is uncertain 
but may reflect local organ-restricted CMV reactivation, 
something that may behave differently in primary infection 
versus reactivation or reinfection. Similarly, assessment of 
viral load in specific organs or tissues such as bronchoal-
veolar lavage fluid is not included in this analysis. Future 
clinical trials of candidate CMV drugs or vaccines should 
therefore attempt to differentiate among primary infection, 

reinfection, and reactivation and consider that the validity 
of CMV viremia as a surrogate marker may differ in these 
different types of infection.

This study was not designed to address the question of opti-
mal viral thresholds, and as noted in the CMV Consensus 
Guidelines, there are insufficient data for this [1]. The major-
ity of studies analyzed in this review used viral load in copies 
per milliliter rather than the international standard; however, 
the use of the international standard is to assist in comparison 
across laboratories [103], whereas the purpose of this analysis 
was to assess the potential for surrogacy of viral load regardless 
of how it is measured.

The findings in this study are consistent with published 
data in other areas. For example, in human immunodefi-
ciency virus patients, CMV viremia has been shown to be an 
independent predictor of mortality [104, 105]. In addition, 

Figure 8.  Pooled incidence of cytomegalovirus viremia in studies using preemptive method. Abbreviations: AR, absolute risk; LCI, lower confidence interval; N, total number 
of patients in the study; n, patients with the outcome of interest (cytomegalovirus disease); UCI, upper confidence interval; WR, weight (random). *Different cohorts from 
same reference.
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for other viruses, including hepatitis C virus, hepatitis B 
virus, and human immunodeficiency virus, viral load is 
routinely used as a surrogate endpoint in clinical trials. For 
example, recent trials of direct-acting antivirals for HCV 
routinely use virologic clearance as their primary endpoint 
[106, 107].

In conclusion, we performed a systematic review of viral load 
testing in different types of CMV-related trials in solid organ 
transplant recipients (prophylaxis, preemptive, and treatment). 
Based on this systematic review, we conclude that viral load 
likely predicts clinical endpoints in CMV trials in solid organ 
transplant recipients and may have some logistic and practical 
benefits over clinical endpoints. Overall, use of viral load as a 
surrogate endpoint in clinical trials may help speed up devel-
opment of new antiviral agents and new diagnostics such as 
cell-mediated immunity assays.
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