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Abstract

We carry on our exploration of the connections between the Complex Fractal Dimensions of
an iterated fractal drum (IFD) and the intrinsic properties of the fractal involved – in our present
case, the Weierstrass Curve.
In order to gain a better understanding of the differential operators associated to this everywhere
singular object, we identify the trace of the classical Sobolev spaces on this curve, by means of
trace theorems which extend the results of Alf Jonsson and Hans Wallin obtained in the case of
a d-set. For this purpose, we construct a specific polyhedral measure, which is done by means of
a polygonal neighborhood of the Curve. We then obtain the order of the fractal Laplacian on the
IFD.
We then lay out some of the foundations of an extension of Morse theory dedicated to fractals, where
the Complex Fractal Dimensions appear to play a major role, by means of level sets connected to
the successive prefractal approximations.
In the end, we envision the Weierstrass Curve as the projection of a 3-dimensional vertical comb,

where each horizontal row is associated to the k
th

cohomogical infinitesimal, the fractal signature

of the k
th

prefractal approximation, according to our previous results on fractal cohomology.
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1 Introduction

In [DL22a], [DL22c], we introduced the concept of Weierstrass Iterated Fractal Drums (in short,
Weierstrass IFDs), by analogy with the relative fractal drums (RFDs) involved, for instance, in the
case of the Cantor Staircase, in [LRŽ17a], Section 5.5.4, as well as in [LRŽ17b] and in [LRŽ18]. Those
iterated fractal drums simply consist in a sequence of appropriate tubular neighborhoods of prefractal
polygonal approximations of the Curve.

By exploring the connections between the Complex Dimensions of those IFDs and the cohomo-
logical properties of a fractal object, we showed, in [DL22c], that the functions belonging to the
cohomology groups associated to the Curve are obtained, by induction, as (finite or infinite) sums
indexed by the underlying Complex Dimensions. In particular, to each prefractal approximation of
the given iterated fractal drum, we associate a maximal Complex Dimension. Contrary to fractal
tube formulas, which are obtained for small values of a positive parameter ε, the aforementioned
expansions are only valid for the value of the (multi-scales) cohomology infinitesimal ε associated to
the scaling relationship obeyed by the Weierstrass Curve (or else, for a smaller positive infinitesimal).
(See also [DL22a] for an exposition of these results, as well as of the computation of the Complex
Dimensions via a fractal tube formula obtained in [DL22b].)

Our differentials δ and δ̄ (see [DL22c]) enable us to define the associated Laplacian δ δ̄ + δ̄ δ. This
naturally raises questions as to the possible connections with the usual Laplacian (i.e., the one of
classical analysis). Based on the seminal works of Alf Jonsson and Hans Wallin in [Wal89], [JW84],
a hint was that it could involve the Complex Dimensions, insofar as, in the case of a d-set F ⊂ Rn,
for n ∈ N⋆ and d > 0, characterizations of the restrictions of classical Sobolev spaces to F can be
obtained by means of trace theorems. More precisely, the restrictions to F of those Sobolev spaces
are obtained as Besov spaces B

p,q
β (F) on F , where the index β depends explicitly on d.

We hereafter extend the results of Alf Jonsson and Hans Wallin in the case of our Weierstrass IFDs.
This requires, in particular, the construction of a specific measure (called the polyhedral measure) on
the Weierstrass IFD, which is done by means of a sequence of polygons – a polygonal neighborhood
of the Curve. This enables us to define the Besov spaces on the Weierstrass Curve; more precisely, we
characterize those spaces by means of an atomic decomposition, as is done in [Kab12] in the case of
nested fractals. We are then able to connect explicitly the order of the restriction of the usual Lapla-
cian on the Curve – or, rather, on the IFD – and the maximal real part of the Complex Dimensions,
namely, the Minkowski Dimension of the Curve.
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In [DL22c], we showed that, in the case of junction vertices, i.e., points belonging to consecutive
prefractal graphs, the aforementioned maximal Complex Dimension, associated to the cohomology
group involved, changes. Hence, a change of shape – when one switches from a prefractal approxima-
tion, to the consecutive polygonal approximation, also corresponds to the occurence of new polygons
– is closely connected to a change of fractal dimensions. In this light, it was natural to explore fur-
ther connections between the Complex Dimensions of a fractal object – the Weierstrass Curve, or the
Weierstrass IFDs – and a suitable analog of Morse theory: given the Complex Dimensions and the
fractal Morse indexes, can we, in some sense, reconstruct the fractal? Towards the end of the paper,
we begin to lay the foundations for addressing this challenging and very interesting inverse topological
and geometric problem.

Our main results in the present setting can be found in the following places:

i. In Section 3, Definition 3.6, on page 25, where we introduce the polyhedral measure on the
Weierstrass IFD. In particular, we prove that this polyhedral measure is well defined, as well as
nontrivial, and is a bounded and singular Borel measure on the Weierstrass Curve (see Theo-
rem 3.7, on page 25.

i. In Section 4, where our polyhedral measure enables us to extend the aforementioned results
of Alf Jonsson and Hans Wallin to the case of the Weierstrass IFD. More precisely, we define
the atomic decomposition of a function defined on the IFD; see Definition 4.4, on page 33. We
can then define and characterize the Besov spaces on the IFD; see Definition 4.6, along with
Property 4.5, on page 38. In the end, we establish a trace theorem in this context (Theorem 4.8,
on page 42), and (in Corollary 4.9, on page 43) deduce from it the order of the fractal Laplacian
on the IFD, which is in agreement with previous results of Robert S. Strichartz in the case of
the Sierpiński Gasket SG in [Str03].

iii. In Section 5, on page 45, where we use the Complex Dimensions, along with the fractal coho-
mology, of the Weierstrass IFD, obtained and developed by the authors in [DL22b], [DL22c]
(see also [DL22a]), in order to propose an extension of Morse theory devoted to fractals. In
particular, a maximal Complex Dimension is associated to each prefractal approximation (in
Definition 5.4), along with cohomological vertex integers, associated, this time, to each vertex
of the prefractal approximation; see Definition 5.5, on page 49. We also define new Morse in-
dexes – applicable to fractal curves such as the Weierstrass Curve; see Definition 5.10, on page 53.

iv. In Section 6, on page 56, we explain how the Weierstrass Curve can be viewed as the projection of
a 3-dimensional vertical comb, the teeth of which are directly connected with the cohomological
vertex integers. This provides us with new research directions for future work, in connection
with our fractal Morse theory.

For a thorough discussion of the theory of Complex Dimensions, we refer the interested reader
to [LvF13] and to [LRŽ17a], in the case of fractal strings and of (relative) higher-dimensional fractal
drums, respectively; see also the survey article on the subject, [Lap19].

In closing this introduction, we mention that, for clarity and by necessity of concision, we work
throughout this paper with the important example of the Weierstrass Curve and the associated Weier-
strass IFD. We stress, however, that we expect that our main results will extend to a large class of
fractal curves and their associated IFDs – as well as, eventually, to a large class of higher-dimensional
fractal manifolds obtained by means of polyhedral prefractal approximations.

3



2 Geometry of the Weierstrass Curve

We begin by reviewing the main geometric properties of the Weierstrass Curve (and of the associ-
ated IFD), which will be key to our work in the rest of this paper.

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be
respectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, ⋯} the set of all natural
numbers, and set N⋆ = N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example,
]a, b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol).

Given two positive numbers a and b, we will use the notation a ≲ b when there exists a strictly
positive constant C such that a ⩽ C b.

Notation 3 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 ⋅ (♣)
Note that this implies that Nb > 1; i.e., Nb ⩾ 2, if Nb ∈ N⋆, as will be the case in this paper.

As explained in [Dav19], we deliberately made the choice to introduce the notation Nb which
replaces the initial number b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’
original article [Wei75]), b is any positive real number satisfying λ b > 1, whereas we deal here with
the specific case of a natural integer, which accounts for the natural notation Nb.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W (also called, in short, the W-function) defined, for any
real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅

We call the associated graph the Weierstrass Curve, and denote it by ΓW .

Due to the one-periodicity of the W-function (since Nb ∈ N⋆), from now on, and without loss of
generality, we restrict our study to the interval [0, 1[= [0, 1). Note that W is continuous, and hence,
bounded on all of R. In particular, ΓW is a (nonempty) compact subset of R2

.
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Property 2.1 (Scaling Properties of the Weierstrass Function, and Consequences [DL22b]).

Since, for any real number x, W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), one also has

W(Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W(x) − cos (2π x)) ,

which yields, for any strictly positive integer m and any j in {0,⋯,#Vm},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos ( 2π j

(Nb − 1)Nm
b

) ⋅

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) ⋅

Definition 2.2 (Weierstrass Complexified Function).

We introduce the Weierstrass Complexified function Wcomp, defined, for any real number x, by

Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x ⋅ (1)

Clearly, Wcomp is also a continuous and 1–periodic function on R.

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 0, a ≠ 1, lna y =
ln y

ln a
denotes

the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5 (Minkowski Dimension and Hölder Exponent).

For the parameters λ and Nb satisfying condition (♣) (see Notation 3, on page 4), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[ (2)

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens
to be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. We point out that the
results in our previous paper [DL22b] also provide a direct geometric proof of the fact that DW , the
Minkowski dimension (or box-counting dimension) of ΓW , exists and takes the above values, as well
as of the fact that W is Hölder continuous with optimal Hölder exponent

2 −DW = −
lnλ

lnNb
= lnNb

1

λ
⋅
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Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the
fact that the Weierstrass function W is 1-periodic, since Nb is an integer.

Remark 2.1. The above convention makes sense, because, in addition to the periodicity property of
the W-function, the points (0,W(0)) and (1,W(1)) have the same vertical coordinate.

Property 2.2 (Symmetry with Respect to the Vertical Line x =
1

2
).

Since, for any x ∈ [0, 1],

W(1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) =W(x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

Proposition 2.3 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of graphs, built via an iterative process. For this purpose, we use
the nonlinear iterated function system (IFS) consisting of a finite family of C

∞
maps from R2

to R2

and denoted by
TW = {T0,⋯, TNb−1} ,

where, for any integer i belonging to {0,⋯, Nb − 1} and any point (x, y) of R2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) ⋅

Note that unlike in the classical situation, these maps are not contractions. Nevertheless, ΓW can
be recovered from this IFS in the usual way, as we next explain.

Property 2.4 (Attractor of the IFS [Dav18], [Dav19]).

The Weierstrass Curve ΓW is the attractor of the IFS TW , and hence, is the unique nonempty

compact subset K of R2
satisfying K =

Nb−1

⋃
i=0

Ti(K); in particular, we have that ΓW =

Nb−1

⋃
i=0

Ti(ΓW).

Notation 6 (Fixed Points).

For any integer i belonging to {0,⋯, Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].
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Definition 2.3 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae) of the points

{P0,⋯, PNb−1} ⋅
The set of points V0 – where, for any integer i in {0,⋯, Nb − 2}, the point Pi is linked to the

point Pi+1 – constitutes an oriented finite graph, ordered according to increasing abscissae, which we
will denote by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any nonnegative integer m, i.e., for m ∈ N, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissae, called the m

th
–order W–prefractal. Then, Vm is called the set

of vertices of the prefractal ΓWm
; see Figure 2, on page 10.

Property 2.5 (Density of the Set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve [DL22b]).

The set V
⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW .

Definition 2.4 (Adjacent Vertices, Edge Relation).

For any m ∈ N, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as follows: two

vertices X and Y of ΓWm
(i.e., two points belonging to Vm) will be said to be adjacent (i.e., neighboring

or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm
; we then write X ∼

m
Y .

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1.

We refer to part iv. of Property 2.6, along with Figure 1, for the definition of the polygons Pm,k
and Qm,k associated with the Weierstrass Curve.

Property 2.6. [Dav18] For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 ⋅

ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.
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iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons Pm,k and Pm,k+1 is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ⋅

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 1, on page 9.

We call extreme vertices of the polygon Pm,k the junction points

Vinitial (Pm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Pm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 2 ⋅

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of the
maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Notation 6 and Definition 2.3, on page 7, i.e., {P0,⋯, PNb−1};
see, again, Figure 1, on page 9.

In the same way, the consecutive vertices of the prefractal graph ΓWm
, distinct from the fixed

points P0 and PNb−1 (see Notation 6, on page 6), are also the vertices of N
m
b − 1 simple

nonregular polygons Qm,j, for 1 ⩽ j ⩽ N
m
b − 1, again with Nb sides. For any integer j such

that 1 ⩽ j ⩽ N
m
b − 2, one obtains each polygon Qm,j by connecting the point number j to the

point number j + 1 if j ≡ imod Nb, for 1 ⩽ i ⩽ Nb − 1, and the point number j to the point num-
ber j −Nb + 1 if j ≡ 0 mod Nb.

As previously, we call extreme vertices of the polygon Qm,k the junction points

Vinitial (Qm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Qm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 2 ⋅

Definition 2.5 (Polygonal Sets).

For any m ∈ N, we introduce the following polygonal sets

Pm = {Pm,k , 0 ⩽ k ⩽ N
m
b − 1} and Qm = {Qm,k , 0 ⩽ k ⩽ N

m
b − 2} ⋅
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P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y

Figure 1: The initial polygon P0, and the respective polygons P0,1, P1,1, P1,2, Q1,1, Q1,2,

in the case where λ =
1

2
and Nb = 3. (See also Figure 2, on page 10.)

Notation 7. For any m ∈ N, we denote by:

ii. X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k, with 0 ⩽ k ⩽ N
m
b − 1 (resp., a vertex of

a polygon Qm,k, with 1 ⩽ k ⩽ N
m
b − 2).

ii. Pm⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of the polygons Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, along with the vertices of the polygons Qm,k,

with 1 ⩽ k ⩽ N
m
b − 2. In particular, X ∈ Pm⋃Qm simply denotes a vertex in Pm or Qm.

iii. Pm⋂Qm the intersection of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of both a polygon Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, and a polygon Qm,k′ , with 1 ⩽

′
k ⩽ N

m
b − 2.
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1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case where λ =
1

2
and Nb = 3. For example, ΓW1

is on the right side of the top row, while ΓW4
is on the

left side of the bottom row.

Definition 2.6 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0,⋯, (Nb − 1)Nm

b }:

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅
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We also introduce, for any integer j in {0,⋯, (Nb − 1)Nm
b − 1}:

i. the elementary horizontal lengths:

Lm =
j

(Nb − 1)Nm
b

;

ii. the elementary lengths:

`j,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (3)

along with the the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m , (4)

v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges,
namely, [Mj−1,mMj,m,Mj,mMj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
⋅

Property 2.7. For the geometric angle θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, we have the following

relation:

tanθj−1,j,m =
hj−1,j,m

Lm
⋅

Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
).

For any strictly positive integer m and any j in {0,⋯,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) =W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,
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which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 12.

Definition 2.7 (Left-Side and Right-Side Vertices).

Given natural integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left-side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right-side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 4, on

page 13.

M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 3: Symmetric points with respect to the vertical line x =
1

2
.
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 4: The Left and Right-Side Vertices.

Property 2.9 ([DL22b]).

For any integer j in {0,⋯, Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) ⋅

Property 2.10 ([DL22b]).

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) ⋅

Notation 8 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 ⋅

Property 2.11 ([DL22b]).

Given any strictly positive integer m, we have the following properties:

i. For any j in {0,⋯,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

13



is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, where i ∈ {0,⋯, Nb − 1} is arbitrary.

Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

)) ,

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠

;

under the map Ti, where i ∈ {0,⋯, Nb − 1} is again arbitrary. It is also the j
th

vertex of the
polygon Pm−1,k−i (Nb−1)Nm−1

b
. Therefore, there is an exact correspondance between vertices of

the polygons at consecutive steps m − 1, m.

ii. Given j in {0,⋯, Nb − 2} and k in {0,⋯, N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ⋅

Proof.

i. Given m ∈ N⋆, let us consider i ∈ {0,⋯, Nb − 1}. The image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i))

under the map Ti is obtained by applying the analytic expression given in Property 2.3, on page 6,
to the coordinates of this point, which, thanks to Property 2.1, on page 5 above, yields the expected
result, namely

14



⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

j

(Nb − 1)Nm
b

, λ W ( j

(Nb − 1)Nm−1
b

− i)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W ( j

(Nb − 1)Nm−1
b

)

(by 1-periodicity)

+ cos
2π j

(Nb − 1)Nm
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ⋅

ii. See [DL22b].

Property 2.12 (Lower Bound and Upper Bound for the Elementary Heights [DL22b]).

For any strictly positive integer m and any j in {0,⋯, (Nb − 1)Nm
b }, we have the following esti-

mates, where Lm is the elementary horizontal length introduced in part i. of Definition 2.6, on page 10:

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm

b , (✠)

(5)
where the finite and positive constants Cinf and Csup are given by

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ⋅

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0.

As a consequence, we also have that

Cinf L
2−DW
m ⩽ h

inf
m ⩽ Csup L

2−DW
m and Cinf L

2−DW
m ⩽ hm ⩽ Csup L

2−DW
m ,

where h
inf
m and hm respectively denote the minimal and maximal heights introduced in part iv. of Def-

inition 2.6, on page 10.
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Theorem 2.13 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22b]).

For any natural integer m (i.e., for any m ∈ N), let us consider a pair of real numbers (x, x′)
such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ Nb − 1
m − 1, we then have the following (discrete, local) reverse–Hölder inequality, with

sharp Hölder exponent −
lnλ

lnNb
= 2 −DW :

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ,

where (x,W(x)) and (x′,W(x′)) are adjacent vertices of the same m
th

prefractal approximation, ΓWm
,

with m ∈ N arbitrary. Here, Cinf is given as in Property 2.12 just above.

Corollary 2.14 (Optimal Hölder Exponent for the Weierstrass Function (see [DL22b]) ).

The local reverse Hölder property of Theorem 2.13 just above – in conjunction with the Hölder con-
dition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9, on page 47) –

shows that the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder exponent for

the Weierstrass function (as was originally shown, by a completely different method, by G. H. Hardy
in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, it follows that
the Weierstrass function W is nowhere differentiable.

Corollary 2.15 (Coming from Property 2.11, on page 13).

Thanks to Property 2.12, on page 15, one may now write, for any strictly positive integer m and
any integer j in {0,⋯, (Nb − 1)Nm

b − 1}:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (6)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (7)

and where

0 < Cinf ⩽ O (1) ⩽ Csup ⋅
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Corollary 2.16 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.11;
see [DL22b])).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, introduced in part v. of Defini-

tion 2.6, on page 10, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m ⋅

Corollary 2.17 (Local Extrema (Coming from Property 2.11; see [DL22b]) ).

i. The set of local maxima of the Weierstrass function on the interval [0, 1] is given by

{((Nb − 1) k
Nm
b

,W ((Nb − 1) k
Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the extreme vertices of the polygons Pm,k and Qm,k (see Property 2.6, on
page 7) at a given step m (i.e., they are the vertices connecting consecutive polygons; see part iv.
of Property 2.6, on page 7).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval [0, 1]
is given by

{(
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the bottom vertices of the polygons Pm,k and Qm,k at a given step m; see also
part iv. of Property 2.6, on page 7.

Property 2.18 (Existence of Reentrant Angles [DL22b]).

i. The initial polygon P0, admits reentrant interior angles, at a vertex Pj, with 0 < j ⩽ Nb − 1,
in the sense that, with the right-hand rule, according to which angles are measured in a counter-

clockwise direction ̂((PjPj+1) , (PjPj−1)) > π, in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1

(see Figure 5, on page 18), which does not occur for values of Nb < 7.

The number of reentrant angles is then equal to 2 [Nb − 3

4
].
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ii. At a given step m ∈ N⋆, with the above convention, a polygon Pm,k admits reentrant interior
angles in the sole cases when Nb ⩾ 7, at vertices Mk+j, 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, as well as

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ⋅

The number of reentrant angles is then equal to 2N
m
b [Nb − 3

4
].

Remark 2.2. Note that due to the respective definitions of the polygons Pm,k and Qm,k, the existence
of reentrant interior angles for Pm,k at a vertex Mk+j , 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, also results in

the existence of reentrant interior angles for Qm,k at the vertices Mk+j−1, 1 ⩽ k ⩽ N
m
b , 1 < j ⩽ Nb − 1

and Mk+j+1, 1 ⩽ k ⩽ N
m
b , 0 < j ⩽ Nb − 2.

P j-1

P j

P j+1

interior

reentrant

angle

1
x

-1

1

y

Figure 5: An interior reentrant angle. Here, Nb = 7 and λ =
1

2
.
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3 Polyhedral Measure on the Weierstrass IFD

Our results on fractal cohomology obtained in [DL22c] (see also [DL22b], [DL22c]) have highlighted
the role played by specific threshold values for the number ε > 0 at any step m ∈ N of the prefrac-
tal graph approximation; namely, the m

th
cohomology infinitesimal introduced in Definition 3.1, on

page 19 just below.

Definition 3.1 (m
th

Cohomology Infinitesimal [DL22b], [DL22c]).

From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0

which also corresponds to the elementary horizontal length introduced in part i. in Definition 2.6, on

page 10; i.e., ε
m
m = (εm)m =

1

Nb − 1

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,

which, naturally, results in the fact that the larger m, the smaller ε
m
m. It is for this reason that we

call ε
m
m – or rather, the infinitesimal sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞,

with ε
m
m = (εm)m, for each m ∈ N – an infinitesimal. Note that this m

th
cohomology infinitesimal is

the one naturally associated to the scaling relation of Property 2.1, on page 5.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.

Remark 3.1 (Addressing Numerical Estimates).

From a practical point of view, an important question is the value of the ratio

Cohomology infinitesimal

Maximal height
=
ε
m
m

hm
;

see relation (R4), on page 11.

Thanks to the estimates given in relation (R7), on page 16, we have that

ε
m
m

hm
= L

1−DW
m O (1) = εm (1−DW)

m O (1) ,

with
0 < Cinf ⩽ O (1) ⩽ Csup ⋅
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Given q ∈ N⋆, we then have

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup

when

Cinf
10q

⩽ e
(1−DW) lnLm

⩽
Csup
10q

,

or, equivalently, when

−
1

lnNb
ln((Nb − 1) (

Csup
10q

)
1

1−DW ) ⩽ m ⩽ −
1

lnNb
ln((Nb − 1) (

Cinf
10q

)
1

1−DW ) ⋅

Numerical values for Nb = 3 and λ =
1

2
yield:

i. For q = 1: 2 ⩽ m ⩽ 3.

ii. For q = 2: 7 ⩽ m ⩽ 9.

iii. For q = 3: 13 ⩽ m ⩽ 15.

Hence, when m increases, the ratio decreases, and tends to 0. This numerical – but very practical
and explicit argument – also accounts for our forthcoming neighborhoods, of width equal to the
cohomology infinitesimal.

We refer to part iv. of Property 2.6, on page 7 above, along with Figure 1, on page 9, for the defi-
nition of the polygons Pm,j (resp., Qm,j) associated with the Weierstrass Curve in the next definition,
as well as throughout the rest of this section. See also Definition 2.5, on page 8 where the polygonal
families are introduced.

Definition 3.2 (Power of a Vertex of the Prefractal Graph ΓWm
, m ∈ N⋆, with Respect to

the Polygonal Families Pm and Qm).

Given a strictly positive integer m, a vertex X of the prefractal graph ΓWm
will be said:

i. of power one relative to the polygonal family Pm if X belongs to (to be understood in the sense
that X is a vertex of) one and only one Nb-gon Pm,j , 0 ⩽ j ⩽ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex to two consecutive Nb-

gons Pm,j and Pm,j+1, 0 ⩽ j ⩽ N
m
b − 2;

iii. of power zero relative to the polygonal family Pm if X does not belong to (to be understood in
the sense that X is not a vertex of) any Nb-gon Pm,j ,
0 ⩽ j ⩽ N

m
b − 1.

Similarly, given m ∈ N, a vertex X of the prefractal graph ΓWm
is said:

i. of power one relative to the polygonal family Qm if X belongs to (as above, to be understood in
the sense that X is a vertex of) one and only one Nb-gon Qm,j , 0 ⩽ j ⩽ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Qm if X is a common vertex to two consecutive Nb-

gons Qm,j and Qm,j+1, 0 ⩽ j ⩽ N
m
b − 3;
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iii. of power zero relative to the polygonal family Qm if X does not belong to (as previously, to be
understood in the sense that X is not a vertex of) any Nb-gon Qm,j ,
0 ⩽ j ⩽ N

m
b − 2.

Notation 9. In the sequel, given a strictly positive integer m, the power of a vertex X of the prefractal
graph ΓWm

relative to the polygonal families Pm and Qm will be respectively denoted by:

p(X,Pm) and p(X,Qm) ⋅

Notation 10 (Lebesgue Measure (on R2
)).

In the sequel, we denote by µL the Lebesgue measure on R2
.

Notation 11. For any m ∈ N, and any vertex X of Vm, we set:

µ
L (X,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) , if X ∉ Qm ,

1

Nb
p (X,Qm) ∑

1⩽j⩽Nm
b −2,X vertex of Pm,j

µL (Qm,j) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) + p (X,Qm) ∑
1⩽j⩽Nm

b −2,X vertex of Qm,j

µL (Qm,j)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

if X ∈ Pm ∩Qm ⋅

Notation 12 (Euclidean Distance).

We hereafter denote by dEucl the Euclidean distance.

Property 3.1. For any m ∈ N, and any pair (X,Y ) of adjacent vertices of Vm belonging to the
same polygon Pm,j, with 0 ⩽ j ⩽ N

m
b − 1 (resp., Qm,j, with 0 ⩽ j ⩽ N

m
b − 2), we have that

dEucl(X,Y ) =
√
h2
jm + L

2
m > ∣hjm∣ ,

which, due to the inequality given in Property 2.12, on page 15, ensures that

1

dEucl(X,Y ) <
1

∣hjm∣ ≲ L
DW−2
m ≲ N

(2−DW)m
b ⋅

At the same time, we also have that

dEucl(X,Y ) ≲ hm ≲ L
2−DW
m ≲ N

(DW−2)m
b ⋅

Proof. This follows at once from Property 2.12, on page 15.
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Corollary 3.2. For any m ∈ N, any natural integer j of {0,⋯, N
m
b − 1}, and any pair of points (X,Y )

of Pm,j or of Qm,j, we have that

1

dEucl(X,Y ) ≲ L
DW−2
m ≲ N

(2−DW)m
b ,

and

dEucl(X,Y ) ≲ hm ≲ L
2−DW
m ≲ N

(DW−2)m
b ⋅

Property 3.3. For any m ∈ N, and any vertex X of Vm:

µ
L (X,Pm,Qm) ≲ hm Lm ≲ L

3−DW
m ≲ N

(DW−3)m
b ,

and

µ
L (X,Pm,Qm) ≲ hm Lm ≲ L

3−DW
m ≲ N

(DW−3)m
b ⋅

Proof. This also directly comes from Property 2.12, on page 15.

Definition 3.3 (Trace of a Polygon on the Weierstrass Curve).

Givenm ∈ N, and 0 ⩽ j ⩽ N
m
b − 1 (resp., 0 ⩽ j ⩽ N

m
b − 2), of extreme vertices Vinitial (Pm,j) ∈ Vm

and Vend (Pm,j) ∈ Vm (resp., Vinitial (Qm,j) ∈ Vm and Vend (Qm,j) ∈ Vm; see Definition 2.6, on page 7),
we define the trace of the polygon Pm,j (resp., Qm,j) on the Weierstrass Curve as the set trγW (Pm,j)
(resp., trγW (Qm,j)) of points {Vinitial (Pm,j) ,M⋆,Vend (Pm,j)} (resp., {Vinitial (Qm,j) ,M⋆,Vend (Qm,j)}),
where we denote by M⋆ any point of the Weierstrass Curve strictly located between Vinitial (Pm,j)
and Vend (Pm,j) (resp., Vinitial (Qm,j) and Vend (Qm,j)).

Definition 3.4 (Sequence of Domains Delimited by the Weierstrass IFD).

We introduce the sequence of domains delimited by the Weierstrass IFD as the sequence
(D (ΓWm

))m∈N of open, connected polygonal sets (Pm ∪Qm)m∈N, where, for each m ∈ N, Pm
and Qm respectively denote the polygonal sets introduced in Definition 2.5.

Property 3.4 (Domain Delimited by the Weierstrass IFD).

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the following limit,

D (ΓW) = lim
m→∞

D (ΓWm
) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
; see Remark 3.2, on

page 23 below. In fact, we have that

D (ΓW) = ΓW ⋅
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Proof. Note, first, that the sequence (D (ΓWm
))m∈N can be replaced by its closure (D (ΓWm

))
m∈N

,

with closed polygons Pm,j and Qm,j , instead of open polygons Pm,j and Qm,j , used in the counterpart

of Definition 3.4, on page 22 just above. We can then easily prove that the sequence (D (ΓWm
))
m∈N

converges to the Weierstrass Curve ΓW . This simply comes from the fact that, given any (positive)
infinitesimal ε = (εmm)m∈N (in the sense of Definition 3.1, on page 19), there exists an integer m0 such
that

∀m ⩾ m0 ∶ D (ΓWm
) ⊂ D (ΓWm

, ε
m
m) ,

where D (ΓWm
, ε
m
m) denotes the (tubular) (m, εmm)-neighborhood of the Weierstrass IFD introduced

in [DL22b]; namely,

D (ΓWm
, ε
m
m) = {M ∈ R2

, d (M,ΓWm
) ⩽ εmm} ⋅

This also ensures that

lim
m→∞

µL (D (ΓWm
)) = 0 ⋅

Remark 3.2. In our proof, we have considered the limit of the sequence (D (ΓWm
))
m∈N

, in the set-
theoretic sense. In fact, we could have considered, instead, the Hausdorff limit of this sequence; i.e.,
by using the Hausdorff metric dH on R2

. This would not have changed our result, since

dH (D (ΓWm
) ,ΓW) = dH (D (ΓWm

) ,ΓW) ⋅
As we explained in our proof just above, there exists an integer m0 such that,

∀m ⩾ m0 ∶ D (ΓWm
) ⊂ D (ΓWm

, ε
m
m) ⋅

This ensures, for all m ⩾ m0, any j in {0,⋯, N
m
b − 1}, any point P ∈ Pm,j ⊂ D (ΓWm

)
(resp., Q ∈ Qm,j ⊂ D (ΓWm

)), and any point M ∈ trγW (Pm,j) (resp., M ∈ trγW (Qm,j)), that the
Hausdorff distance dH(P,M) (resp., dH(Q,M)) between P (resp., Q) and M is such that

dH(P,M) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
M ′

∈ trγW (Pm,j)
dEucl(P,M ′)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
≲ ε

m
m

, sup
P ′ ∈Pm,j

dEucl(P ′,M)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

≲ ε
m
m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≲ ε
m
m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

resp., dH(Q,M) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
M ′

∈ trγW (Qm,j)
dEucl(Q,M ′)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
≲ ε

m
m

, sup
Q′ ∈Qm,j

dEucl(Q′,M)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

≲ ε
m
m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≲ ε
m
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

as desired. It follows that

dH (D (ΓWm
) ,ΓW) ≲ εmm →

m→∞
0 ⋅

Hence, D (ΓW) is the Hausdorff limit of (D (ΓWm
))m∈N, and so, by the uniqueness of such a limit,

we deduce that D (ΓW) = ΓW .
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Notation 13 (Minimal and Maximal Values of the Weierstrass Funnction W on [0, 1]).

We set

mW = min
t∈ [0,1]

W(t) = − 1

1 − λ
, MW = max

t∈ [0,1]
W(t) = 1

1 − λ
⋅

Notation 14. Henceforth, for a given m ∈ N, the notation ∑
X ∈Pm⋃Qm

means that the associated

finite sum runs through all of the vertices of the polygons belonging to the sets Pm and Qm introduced
in Definition 2.5, on page 8; see also Notation 7, on page 9 following that definition.

Property 3.5. Given a continuous function u on [0, 1] × [mW ,MW], we have that, for any
m ∈ N, and any vertex X of Vm:

»»»»»µ
L (X,Pm,Qm) u (X)»»»»» ⩽ µ

L (X,Pm,Qm) ( max
[0,1]×[mW ,MW]

∣u∣) ≲ N−(3−DW)m
b ⋅

Consequently, with the notation of Definition 3.1, on page 19, we have that

ε
m (DW−2)
m

»»»»»µ
L (X,Pm,Qm) u (X)»»»»» ≲ ε

−m
m ⋅

Since the sequence
⎛
⎜
⎝

∑
X ∈Pm⋃Qm

ε
−m
m

⎞
⎟
⎠
m∈N

is a positive and increasing sequence (the number of

vertices involved increases as m increases), this ensures the existence of the finite limit

lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) ,

where we have used Notation 14, on page 24.

Proof. Thanks to Property 3.3, on page 22, for any m ∈ N, and any vertex X of Vm, we have that

µ
L (X,Pm,Qm) ≲ N (DW−3)m

b and µ
L (X,Pm,Qm) ≲ N (DW−3)m

b ⋅

We then recall from Section 2 that, for any m ∈ N, the total number of polygons Pm is N
m
b , while

the total number of polygons Qm is equal to N
m
b − 1; see Property 2.6, on page 7. We then have that

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ≲ Nm

b N
(DW−3)m
b ;

i.e.,

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ≲ N (DW−2)m

b ,

or, equivalently, due to the relation between the m
th

cohomology infinitesimal ε
m
m introduced in Defi-

nition 3.1, on page 19, and the Weierstrass parameter Nb ,

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ≲ ε

m (2−DW)
m ,
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which, as desired, ensures the existence of the finite limit

( max
[0,1]×[mW ,MW]

∣u∣) lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⋅

Property 3.6 (Polyhedral Measure on the Weierstrass IFD).

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such that for any con-
tinuous function u on the Weierstrass Curve, with the use of Notation 11, on page 21, and Notation 14,
on page 24,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) , (⋆) (8)

which, thanks to Property 3.4, on page 22, can also be understood in the following way,

∫
ΓW

u dµ = ∫
D(ΓW)

u dµ ⋅

Remark 3.3. In a sense, our polyhedral measure can be seen as a measure which is an extension of
the Riemann integral, where the step functions are replaced by upper and lower affine functions which
approximate the Weierstrass Curve.

Theorem 3.7.

The polyhedral measure µ is well defined, positive, as well as a bounded, nonzero, Borel measure
on D (ΓW). The associated total mass is given by

µ (D (ΓW)) = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) , (⋆⋆) (9)

and satisfies the following estimate:

µ (D (ΓW)) ⩽ 2

Nb
(Nb − 1)2

Csup ⋅ (⋆ ⋆ ⋆) (10)

Furthermore, the support of µ coincides with the entire curve:

suppµ = D (ΓW) = ΓW ⋅

In addition, µ is the weak limit as m→∞ of the following discrete measures (or Dirac Combs),
given, for each m ∈ N, by

µm = ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) δX ,

where ε
m
m denotes the m

th
cohomology infinitesimal introduced in Definition 3.1, on page 19, δX is the

Dirac measure concentrated at X, and we have used Notation 11, on page 21, for µ
L (X,Pm,Qm),

along with Notation 14, on page 24.
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Proof.

For the sake of simplicity, we restrict ourselves to the case when Nb < 7.

i. µ is a well defined measure.

Indeed, according to Proposition 3.5, on page 24, the map ϕ

u↦ ϕ(u) = ∫
ΓW

u dµ

is a well defined linear functional on the space C (ΓW) of real-valued, continuous functions on ΓW .
Hence, by a well-known argument, it is a continuous linear functional on C (ΓW), equipped with
the sup norm. Since ΓW is compact, and in light of relation (8) in Property 3.6, on page 25, µ is
a bounded, Radon measure, with total mass ϕ(1) = µ (D (ΓW)), also given by inequality (9), and
where 1 denotes the constant function equal to 1 on ΓW .

Then, according to the Riesz representation theorem, the associated positive Borel measure (still
denoted by µ) is a bounded and positive Borel measure with the same total mass µ (D (ΓW)) = µ (ΓW).

ii. The nonzero measure – Estimates for the total mass of µ.

For 0 ⩽ j ⩽ N
m
b − 1, each polygon Pm,j is contained in a rectangle of height at most equal to

(Nb − 1)hm (where hm is the maximal height introduced in part iv. of Definition 2.6, on page 10), and
of width at most equal to (Nb − 1)Lm. This ensures that the Lebesgue measure of each polygon Pm,j
is at most equal to (Nb − 1)2

hm Lm. We now recall that, thanks to Property 2.12, on page 15, for
any m ∈ N, we have the following estimate

hm ⩽ Csup L
2−DW
m ,

where

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) ⋅

Consequently, the Lebesgue measure µL (Pm,j) of each polygon Pm,j is such that

µL (Pm,j) ⩽ (Nb − 1)2
Csup L

3−DW
m ⋅ (11)

In the same way, for 0 ⩽ j ⩽ N
m
b − 2, the Lebesgue measure µL (Pm,j) of each polygon Qm,j is

such that

µL (Qm,j) ⩽ (Nb − 1)2
Csup L

3−DW
m ⋅ (12)

We then deduce that, for any vertex X of Vm,

µ (X,Pm,Qm) ⩽ 1

Nb
(Nb − 1)2

Csup L
3−DW
m ⋅

Hence, since the total number of polygons involved is at most equal to 2N
m
b − 1 ⩽ 2N

m
b , we can

deduce that

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩽ 2N

m
b

Nb
(Nb − 1)2

Csup L
3−DW
m ,
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or, equivalently,

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩽ 2

ε
−m

Nb
(Nb − 1)2

Csup ε
m (3−DW)
m ⋅

We then have that

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩽ 2

Nb
(Nb − 1)2

Csup <∞ ,

from which we can deduce that the polyhedral measure is a bounded measure.

For 0 ⩽ j ⩽ N
m
b − 1, each polygon Pm,j (which is convex) contains an inscribed circle, whose

Lebesgue measure is greater than
h
inf
m Lm
CNb

, where h
inf
m is the minimal height introduced in part iv. of

Definition 2.6,on page 10, and where CNb is a strictly positive constant, which depends on the value
of the integer Nb (depending on the number of sides of the polygon, i.e., depending on the value of
this integer, we can express the radius of this circle in function of the side lengths of the polygon). We
now recall that, thanks to Property 2.12, on page 15, for any m ∈ N, we have the following estimate,

Cinf L
2−DW
m ⩽ h

inf
m ,

where

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
> 0 ⋅

Consequently, the Lebesgue measure µL (Pm,j) of each polygon Pm,j is such that

µL (Pm,j) ⩾
h
inf
m Lm
CNb

⩾
Cinf L

3−DW
m

CNb
⋅

In the same way, for 0 ⩽ j ⩽ N
m
b − 2, the Lebesgue measure µL (Pm,j) of each polygon Qm,j is

such that

µL (Qm,j) ⩾
h
inf
m Lm
CNb

⩾
Cinf L

3−DW
m

CNb
⋅

We then deduce that, for any vertex X of Vm,

µ (X,Pm,Qm) ⩾ 1

Nb

Cinf L
3−DW
m

CNb
⋅

Hence, since the total number of polygons involved is greater than N
m
b − 1 ⩾

N
m
b

2
, we can deduce

that

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩾ N

m
b

2

Cinf L
3−DW
m

NbCNb
,

or, equivalently,

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩾ ε

−m
m

2 (Nb − 1)
Cinf ε

m (3−DW)
m

NbCNb
⋅
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We then have that

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ⩾ 1

2 (Nb − 1)
Cinf
NbCNb

> 0 ,

from which, upon passing to the limit when m→∞, we can deduce that the polyhedral measure is a
nonzero measure, and that its total mass satisfies inequality (10).

iii. The support of µ coincides with the entire curve ΓW .

This simply comes from the proof given in ii. just above that the measure µ is nonzero. In the
case of a positive, continuous function u defined on the Weierstrass Curve, we have that

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u(X) ⩾ 1

2 (Nb − 1)
Cinf
NbCNb

(min
ΓW

∣u∣) > 0 ⋅

Hence, upon passing to the limit whenm→∞, we deduce that ϕ(u) = ∫
ΓW

u dµ > 0, and thus, ϕ(u) ≠ 0,

from which the claim follows easily.

Indeed, otherwise, if suppµ ≠ ΓW , there exists M ∈ ΓW \ suppµ, and thus, by Urisohn’s lemma
(see, e.g., [Fol99], [Rud87] or [Rud91]), there exists u ∈ C (ΓW) and an open neighborhood V(M)
of M in ΓW disjoint from suppµ and such that

u(M) = 1 , 0 ⩽ u ⩽ 1 , and u∣ΓW\V(M) = 0 ⋅

Hence, by the above argument, ϕ(u) ≠ 0, which contradicts the fact that M ∉ suppµ (see, e.g.,
loc. cit.).

iv. µ is a singular measure.

First, note that

µ
L (ΓW) = 0 ,

because DW < 2, and, up to a multiplicative positive constant, µ
L

coincides with the 2-dimensional
measure on R2

. Now, since suppµ ⊂ ΓW , and µ
L (ΓW) = 0, it follows that µ is supported on a set

of Lebesgue measure zero, which precisely implies that µ (viewed as a Borel measure on the rectan-

gle [0, 1] × [mW ,MW] in the obvious way), is singular with respect to the restriction of µ
L

to this
rectangle.

v. µ is the weak limit of the discrete measures µm.

Indeed, this follows at once from the latter part of Property 3.5, on page 24, according to which,
for every u ∈ C (ΓW),

∫
ΓW

u dµ = lim
m→∞

∫
ΓW

u dµm ,

as desired.

This completes the proof of Theorem 3.7, given on page 25.
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Remark 3.4. This choice of measure is obtained in the same manner as the one we introduced while
working on the Arrowhead Curve [Dav20]. In our present case, however we define the measure more
precisely, as well as establish several new properties.

Considering a two-dimensional measure is both essential and natural in so far as we will consider
geometric conditions and two-dimensional nets in Section 4.

4 Atomic Decompositions – Trace Theorems, and Consequences

Notation 15 (Set of Polynomials in Two Real Variables).

In the sequel, R[X,Y ] denotes the set of all real polynomials in two real variables.
Given k ∈ N, we will denote by Polk ⊂ R[X,Y ] the set of all real polynomials in two real variables
of degree at most equal to k.

Definition 4.1 (Two-Dimensional πr-net ([Wal91], on page 119)).

Given a strictly positive real number r, we will call two-dimensional πr-net a tessellation of R2
into

half-open, non-overlapping squares of side lengths r, obtained by intersecting R2
with lines orthogonal

to the coordinate axes.

r

r

Figure 6: A two-dimensional πr-net.

Definition 4.2 (Two-Dimensional Polygonal πW,m-Net, m ∈ N).

Given a strictly positive integer m, we call two-dimensional polygonal πW,m-net a tessellation of R2

into half-open Nb-gons of side lengths at most equal to
√

2hm which contains the set of polygons

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N
m
b −1

⋃
j=0

Pm,j
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N
m
b −2

⋃
k=1

Qm,k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅
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X ∈ �m

Pm, j

�m,k+1
Pm, j+1

Pm, j+2

�m,k

1
x

-1

1

y

Figure 7: A two-dimensional polygonal πW,m-net. Note that the polygons are not necessarily isometric.

Property 4.1. Given a strictly positive integer m, the following properties hold:

i. For any integer j ∈ {0,⋯, N
m
b − 1}, and any pair of vertices (X,Y ) ∈ (Vm ∩ Pm,j)2

:

dEucl(X,Y ) ≲ Nb hm ≲ N
−m (2−DW)
b ⋅

ii. For any integer j ∈ {1,⋯, N
m
b − 2}, and any pair of vertices (X,Y ) ∈ (Vm ∩Qm,j)2

:

dEucl(X,Y ) ≲ Nb hm ≲ N
−m (2−DW)
b ⋅

Proof. This simply comes from the fact that the polygons have Nb sides, and that two adjacent vertices
are distant from at most an Euclidean distance equal to hm.

Notation 16 (Set of Piecewise Polynomial Functions on a Polygonal Net).

Given a pair of natural integers (k,m), and a polygonal πW,m-net, we denote by Polk (πW,m) the
set of non-smooth splines of degree k on πW,m, i.e., piecewise polynomial functions on πW,m:

Polk (πW,m) = {spline such that for any polygon P ∈ πW,m, there exists P ∈ Polk ∶ spline∣P = P∣P}
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Definition 4.3 (Atoms (Generalization of [Kab12])).

Given a strictly positive real number s < 1, a real number p > 1, two natural integers m and
j ∈ {0,⋯, N

m
b − 1}, a function fm,j defined on the prefractal graph ΓWm

will be called a (Pm,j , s, p)-
atom if the following three conditions are satisfied:

i. Supp fm,j ⊂ Pm,j ;

ii. ∀X ∈ Vm ∩ Pm,j ∶ ∣fm,j(X)∣ ≲ µL (Pm,j)
s

DW
− 1
p ,

or, equivalently,

∀X ∈ Vm ∩ Pm,j ∶ ∣fm,j(X)∣ ≲ (N (DW−3)m
b )

s
DW

− 1
p

;

iii. ∀ (X,Y ) ∈ (Vm ∩ Pm,j)2
∶ ∣fm,j(X) − fm,j(Y )∣ ≲ dEucl(X,Y )µL (Pm,j)

s−1
DW

− 1
p ,

or, equivalently,

∀ (X,Y ) ∈ (Vm ∩ Pm,j)2
∶ ∣fm,j(X) − fm,j(Y )∣ ≲ dEucl(X,Y ) (N (DW−3)m

b )
s−1
DW

− 1
p
⋅

Similarly, given a strictly positive real number s < 1, a real number p > 1, two natural integers m
and j ∈ {1,⋯, N

m
b − 2}, a function gm,j on the prefractal graph ΓWm

will be called a (Qm,j , s, p)-atom
if the following three conditions are satisfied:

i. Supp gm,j ⊂ Qm,j ;

ii. ∀X ∈ Vm ∩Qm,j ∶ ∣gm,j(X)∣ ≲ µL (Qm,j)
s

DW
− 1
p ,

or, equivalently,

∀X ∈ Vm ∩Qm,j ∶ ∣gm,j(X)∣ ≲ (N (DW−3)m
b )

s
DW

− 1
p

;

iii. ∀ (X,Y ) ∈ (Vm ∩Qm,j)2
∶ ∣gm,j(X) − gm,j(Y )∣ ≲ dEucl(X,Y )µL (Qm,j)

s−1
DW

− 1
p ,

or, equivalently,

∀ (X,Y ) ∈ (Vm ∩Qm,j)2
∶ ∣gm,j(X) − gm,j(Y )∣ ≲ dEucl(X,Y ) (N (DW−3)m

b )
s−1
DW

− 1
p
⋅

Remark 4.1 (Atoms as Hölder Functions).

Insofar as,

∀ (X,Y ) ∈ (Vm ∩ Pm,j)2
∶ dEucl(X,Y ) ≲ N−m (2−DW)

b ,

the above condition ii. for a (Pm,j , s, p)–atom can be also written as

∀ (X,Y ) ∈ (Vm ∩ Pm,j)2
∶ ∣fm,j(X) − fm,j(Y )∣ ≲ N

−m (2−DW)+(DW−3)m ( s−1
DW

− 1
p
)

b ,
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which corresponds to a Hölder exponent of

1 −
(3 −DW)
2 −DW

(s − 1

DW
−

1
p) ⋅

Note that, due to their definition, (Pm,j , s, p)–atoms are necessarily continuous.

An entirely similar property holds if the polygons Pm,j are replaced by their counterpart Qm,j ,
and the (Pm,j , s, p)–atoms are replaced by the (Qm,j , s, p)–atoms.

Remark 4.2 (Atoms Associated with the Weierstrass Function).

In the case of the Weierstrass function W, for any m ∈ N, and any pair (X,Y ) of adjacent vertices
in Vm, we have that

∣W(X) −W(Y )∣ ⩽ dEucl(X,Y )2−DW ⋅

By the triangle inequality, we immediately deduce that,

∀ (X,Y ) ∈ (Vm ∩ Pm,j)2 (resp., (Vm ∩Qm,j)2 ) ∶ ∣W(X) −W(Y )∣ ⩽ dEucl(X,Y )2−DW ⋅

At the same time, thanks to the estimates given in Property 3.3, on page 22, and in the proof
of part ii. of Theorem 3.7, on page 25 (see relation (11) and relation (12)), for any polygon Pm,j
(resp., Qm,j), we have that

N
(DW−3)m
b ≲ µL (Pm,j) ≲ N

(DW−3)m
b (resp., N

(DW−3)m
b ≲ µL (Qm,j) ≲ N

(DW−3)m
b ) ,

or, equivalently,

dEucl(X,Y )
3−DW
2−DW ≲ µL (Pm,j) ≲ dEucl(X,Y )

3−DW
2−DW (resp., dEucl(X,Y )

3−DW
2−DW ≲ µL (Qm,j) ≲ dEucl(X,Y )

3−DW
2−DW ) ⋅

We then deduce that

∀ (X,Y ) ∈ (Vm ∩ Pm,j)2 (resp., (Vm ∩Qm,j)2 ) ∶

∣W(X) −W(Y )∣ ≲ dEucl(X,Y )µL (Pm,j)(1−DW) 2−DW
3−DW

(resp., ∣W(X) −W(Y )∣ ≲ dEucl(X,Y )µL (Qm,j)(1−DW) 2−DW
3−DW ) ⋅

It then follows that

s

DW
−

1
p = (1 −DW) 2 −DW

3 −DW
, i.e., s =

DW
p +DW

(1 −DW) (2 −DW)
3 −DW

,

and that the restriction of the Weierstrass function to each polygon Pm,j , (resp., Qm,j) is a (Pm,j , s, p)-
atom (resp., a (Qm,j , s, p)-atom).
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Definition 4.4 (Atomic Decomposition of a Function Defined on the Weierstrass Curve).

Given a continuous function f on the Weierstrass Curve, we will say that f admits an atomic
decomposition in the following form:

f = lim
m→∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N
m
b −1

∑
j=0

∑
X vertex of Pm,j

p (X,Pm) λf,m,j,X fm,j,X +
N
m
b −2

∑
j=1

∑
X vertex of Qm,j

p (X,Qm) λg,m,j,X gm,j
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= lim
m→∞

{
N
m
b −1

∑
j=0

∑
X vertex of Pm,j ,X ∉Qm

λf,m,j,X fm,j,X

+
N
m
b −2

∑
j=1

∑
X vertex of Pm,j ,X ∈Pm∩Qm

{λf,m,j,X fm,j,X + λg,m,j,X gm,j}

+
N
m
b −2

∑
j=1

∑
X vertex of Qm,j ,X ∉Pm

λg,m,j,X gm,j} ,

where, for any m ∈ N, the functions fm,j , 0 ⩽ j ⩽ N
m
b − 1 and gm,j , 1 ⩽ j ⩽ N

m
b − 2 are respec-

tively (Pm,j , s, p) and (Qm,j , s, p)–atoms, s < 1, p > 1, while the coefficients λf,m,j , 0 ⩽ j ⩽ N
m
b − 1

and λg,m,j , 1 ⩽ j ⩽ N
m
b − 2, denote real numbers.

For the sake of simplicity, we will write the above decomposition in the following briefer form:

f = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m,X f̃m,X = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m f̃m ,

where

λ̃f,m,X f̃m,X =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λf,m,j,X fm,j,X , ifX ∉ Qm , X is a vertex of Pm,j , 0 ⩽ j ⩽ N
m
b − 1 ,

λg,m,j,X gm,j,X , ifX ∉ Pm , X is a vertex of Qm,j , 1 ⩽ j ⩽ N
m
b − 2 ,

λf,m,j,X fm,j,X+λg,m,j,X gm,j,X fm,j,X , ifX ∈ Pm ∩Qm , X is a vertex of Pm,j and Qm,j ,
1 ⩽j⩽N

m
b − 2 ⋅

For any m ∈ N, we say that λ̃f,m is the m
th

—atomic coefficient.

From now on, the functions f̃m,X and f̃m will be called (m, s, p′)–atoms. In the sequel, we will use
the most suitable notation among these two possibilities.

Property 4.2 (Atomic Decomposition of Spline Functions in Polk (πN (DW−3)n
b

), n ∈ N ).

Given a pair (n, k) of natural integers, a spline function (denoted by spline) in Polk (πN (DW−3)n
b

)
admits an atomic decomposition of the form

spline = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃s,m,X s̃plinem,X ⋅

Polk (πr) = {spline such that for any square Cr ∈ πr, there exists P ∈ Polk ∶ spline∣Cr = P∣Cr}
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Proof. This directly comes from the definition of functions of Polk (πNn
b
) as piecewise polynomial

functions.

Property 4.3. Given the polyhedral measure µ on the Weierstrass Curve ΓW , and a continuous
function f on ΓW , of atomic decomposition

f = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m,X f̃m,X ,

we have that

∫
D(ΓW)

f dµ = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

λ̃f,m,X f̃m,X µ (X,Pm,Qm) ⋅

Proof. This simply comes from the Definition 3.6, on page 25, of the polyhedral measure on the
Weierstrass IFD.

Remark 4.3. Such a decomposition makes sense since the set of vertices (Vm)m∈N is dense in ΓW .
Thus, because we deal with continuous functions, given any point X of the Weierstrass Curve, there
exists a sequence (Xm)m∈N such that

f(X) = lim
m→∞

f(Xm) ,

where, for any m ∈ N, Xm belongs to the prefractal graph ΓWm
.

We can naturally write f(Xm) as

f(Xm) = ∑
Ym ∈Vm

f(Ym) δXmYm(Xm) ,

where δ is the classical Kronecker symbol; i.e.,

∀Ym ∈ Vm ∶ δXmYm(Ym) = { 1 , if Ym = Xm ,
0 , else.

This, of course, yields

f(X) = lim
m→∞

∑
Ym ∈Vm

f(Ym) δXmYm(Ym) ⋅

Now, we can go a little further and, as in [Str06], introduce spline functions ψ
m
Xm such that

∀Y ∈ ΓW ∶ ψ
m
Xm (Y ) = { δXmYm , ∀Y ∈ Vm

0 , ∀Y ∉ Vm ,

and write

f(X) = lim
m→∞

∑
Ym ∈Vm

f(Ym)ψmXm(Ym) ,
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which is nothing but the application of the Weierstrass approximation theorem. In particular, spline
functions are a natural choice for atoms.

Convention. In the sequel, all functions f considered on the Weierstrass Curve are implicitely sup-
posed to be Lebesgue measurable.

Definition 4.5 (L
p
-Norm of a Function on the Weierstrass Curve).

Given a function f on the Weierstrass Curve, we define its L
p
-norm via

∥f∥Lp(ΓW) = (∫
D(ΓW)

∣f∣p dµ)
1
p

= ( lim
m→∞

ε
m (DW−2)
m µ

L (X,Pm,Qm) ∣fp(X)∣)
1
p
⋅

Property 4.4 (L
p
-Norm of a Function on the Weierstrass Curve Defined by Means of an

Atomic Decomposition).

Given a positive integer p, and a continuous function f on ΓW , whose absolute value ∣f∣ is defined
by means of an atomic decomposition as

∣f∣ = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃∣f ∣,m,X ∣̃f∣m,X ,

its L
p
-norm for the measure µ is given by

∥f∥Lp(ΓW) = (∫
D(ΓW)

∣f∣p dµ)
1
p

=

⎛
⎜
⎝

lim
m→∞

ε
m (DW−3)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) λ̃p∣f ∣,m,j,X ∣̃f∣pm,j,X

⎞
⎟
⎠

1
p

⋅

In particular, we have that

∥f∥L1(ΓW) = ∫
D(ΓW)

∣f∣ dµ

= lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) λ̃∣f ∣,m,j,X ∣̃f∣m,j,X

⋅

Remark 4.4. In the above definition, two limits are a priori considered at the same time; the limit
associated to the integral, with respect to the polyhedral measure µ, namely,

35



lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) ∣f(X)∣p ,

and the limit associated to the atomic decomposition

lim
m→∞

∑
X ∈Pm⋃Qm

λ̃∣f ∣,m,j,X ∣̃f∣pm,j,X ⋅

In fact, these two limits coincide.

Definition 4.6 (Besov Space on the Weierstrass Curve (Extension of the result given
by Theorem 6, on page 135, in [JW84])).

Given k ∈ N, a real number α such that

k < α ⩽ k + 1 ,

and two real numbers p and q greater or equal to 1, the Besov space B
p,q
α (ΓW) is defined as the set of

functions f ∈ L
p(µ) such that there exists a sequence (cm)m∈N ∈ `

q
of nonnegative real numbers such

that for every π
N

(DW−3)m
b

-net, one can find a spline function spline (π
N

(DW−3)m
b

) ∈ Pol[α] (πN (DW−3)m
b

)
satisfying

ÂÂÂÂÂÂf − spline (πN (DW−3)m
b

)ÂÂÂÂÂÂLp(µ) ⩽ N
(DW−3)mα
b cm , for all m ∈ N, (CondBesov spline)

where, if we write the respective atomic decompositions of f and spline (π
N

(DW−3)m
b

) as

f = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m,X f̃m,X ,

and

spline (ππ
N

(DW−3)m
b

) = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃
spline(π

N
(DW−3)m
b

),m,X
s̃pline (π

N
(DW−3)m
b

)
m,X

,

we then have that

ÂÂÂÂÂÂÂÂ
f − spline (ππ

N
(DW−3)m
b

)
ÂÂÂÂÂÂÂÂ

p

Lp(µ)
= lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) λ̃p»»»»»»»»»

f−spline(π
N

(DW−3)m
b

)
»»»»»»»»»
,m,X

̃»»»»»»f − spline (πN(DW−3)m
b

)»»»»»»
p

m,X
;

here, for the sake of simplicity, we have introduced the atomic decomposition of
»»»»»»f − spline (πN (DW−3)m

b
)»»»»»»

as

»»»»»»»»
f − spline (ππ

N
(DW−3)m
b

)
»»»»»»»»
= lim

m→∞
∑

X ∈Pm⋃Qm

λ̃»»»»»»»»
f−spline(π

N
(DW−3)m
b

)
»»»»»»»»
,m,X

̃»»»»»»f − spline (πN (DW−3)m
b

)»»»»»»m,X ⋅

Remark 4.5. The atomic decomposition used in [Kab12] is obtained by introducing small neighbor-
hoods of the curve under study (union of balls). Our polygonal domain introduced in Definition 4.2,
on page 29 appears to be a more natural choice. Indeed, unlike the aforementioned balls, the polygons
involved do not overlap with each other, which works better for the required nets.
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Definition 4.7 (Besov Norm).

Given k ∈ N, a real number α such that

k < α ⩽ k + 1 ,

and two real numbers p and q greater or equal to 1, one can define, as in [Wal91], the B
p,q
α (ΓW)-norm

of a function f defined on the Weierstrass Curve as

∥f∥Bp,qα (ΓW) = ∥f∥Lp(ΓW) + inf {∑
n∈N

c
q
n}

1
q

,

where the infimum is taken over all the sequences (cm)m∈N ∈ `
q

of nonnegative real numbers involved
in condition (CondBesov spline) in Definition 4.6, on page 36 just above.

Yet, in order to obtain a characterization of the Besov space B
p,q
α (ΓW) by means of its norm, it is

more useful to deal with the equivalent norm given by

∥f∥Bp,qα (ΓW) = ∥f∥Lp(ΓW) + {∫∫
(T,Y )∈Γ2

W

∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

dµ
2}

1
q

⋅

Remark 4.6 (Alternative Definition of a Besov Space on the Weierstrass Curve).

One of the interesting properties of Besov spaces is that they can be defined in two different
ways: as given previously in Definition 4.6, on page 36, by means of a polynomial approximation,
which provides information on the degree of regularity of the functions involved; also, as the set of
functions of a finite specific norm as in Definition 4.7, on page 37. This latter definition is all the more
interesting, because it enables one to make the link with discrete and fractal Laplacians, by means of
the fractional difference quotients involved. Our present case is, of course, distinct from the classical
one on RN , with N ∈ N. Yet, the case of RN enables us to understand the underlying connection;
namely,

B
p,q
α (RN) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f ∈ L

p(RN) , ∑
∣j∣⩽k

ÂÂÂÂÂD
j
f
ÂÂÂÂÂLp(ΓW) + ∑

∣j∣=k
{∫

RN

∥∆hf∥qLp(ΓW)

∣h∣n+(α−k) q
dh}

1
q

<∞

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

where ∆h denotes the usual first difference, defined here by

∀ t ∈ ΓW , ∀h ∈ Rn , ∆hf(t) = f(t + h) − f(t) ⋅
For any m ∈ N, we have that

ε
m (DW−2)
m ∑

T ∈Pm

µ
L (T,Pm,Qm) λ̃f,m

»»»»»∆mf̃m(T )»»»»»
q
= ε

m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2, Y ∼
m
T

µ
L (T,Pm,Qm) λ̃⋆,m

»»»»»f̃m(T ) − f̃mf(Y )»»»»»
q

d
DW+(α−k)q
Eucl (T, Y )

⩽ ε
m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
µ
L (T,Pm,Qm) λ̃⋆,m

»»»»»f̃m(T ) − f̃m(Y )»»»»»
q

d
DW+(α−k)q
Eucl (T, Y )

,

where, for the sake of simplicity, we have denoted by λ̃⋆,m the atomic coefficients involved.

Note that more points are involved on the right side of the inequality; indeed, on the left side, only
adjacent points are considered.
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Remark 4.7.

i. This enables us to obtain the first side of the comparison relation required in order to establish the
equivalence of norms. It is the side that plays the most significant part in the definition of Besov spaces
on the Weierstrass Curve. Thus, characterizing Besov spaces on ΓW by means of the norm introduced
in Definition 4.7, on page 37, is directly associated to the definition of a sequence of (suitably renormal-
ized) discrete graph Laplacians (∆m)m∈N on the sequence of prefractal approximations (ΓWm

)m∈N.
In a sense, it is also connected to the existence of the limit

lim
m→∞

∆m

by means of an equivalent pointwise formula expressed in terms of integrals, somehow the counter-
part, in a way, of the one which is well known in the case of the fractal Laplacian on the Sierpiński
Gasket [Kig01], [Str06].

ii. The difficulty, in our context, is to obtain an equivalent formulation of the definition of Besov
spaces with the sequence of discrete Laplacians alluded to in part i. Clearly, a discrete Laplacian
corresponds to the usual first difference ∆h. Working with discrete Laplacians, along with atomic
decompositions of functions, leads to expressions of the following form:

lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2, Y ∼
m
T

µ
L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m

»»»»»f̃m(T ) − f̃mf(Y )»»»»»
q

d
DW+(α−k) q
Eucl (T, Y )

,

Property 4.5 (Characterization of Besov Spaces (Sufficient and Necessary Condition)).

Given k ∈ N, a real number α such that

k < α ⩽ k + 1 ,

two real numbers p and q greater or equal to 1, and a continuous function f given by means of an
atomic decomposition of the form

f = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m,X f̃m,X

belongs to the Besov space B
p,q
α (ΓW) if and only if the following two conditions are satisfied,

(3 −DW) {q (1
p −

s − 1

DW
)} + (2 −DW) (DW + (α − 1) q) < 2 , (CondBesov)

and

DW
3 −DW

+
DW
p ⩽ s , (CondLp)

where the real number s ∈ ]0, 1[ has been introduced in Definition 4.3, on page 31.
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Proof.

i. We have that

∥f∥q
B
p,q
α (ΓW) = ∥f∥pLp(ΓW) + ∫

T ∈ΓW

∫
Y ∈ΓW

∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

dµ
2
,

where

∫
T ∈ΓW

∫
Y ∈ΓW

∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

dµ
2

= lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
µ (T,Pm,Qm) µ (Y,Pm,Qm) ∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

= lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
µ
L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m

»»»»»f̃m(T ) − f̃m(Y )»»»»»
q

d
DW+αq
Eucl (T, Y )

⋅

Note that since the function f is continuous, the atomic coefficients λ⋆,m are necessarily bounded
(since ΓW is compact, and hence, f is bounded).

Since we deal with the atomic decomposition of f , due to part iii. of Definition 4.3, on page 31,
we have that

µ
L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m

»»»»»f̃n(T ) − f̃m(Y )»»»»»
q

d
DW+αq
Eucl (T, Y )

≲ µ
L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m

(N−mq (3−DW )
b )

s−1
d
− 1

p

d
DW+αq−q
Eucl (T, Y )

⋅

We also have that

1

dEucl(T, Y ) <
1

∣hjm∣ ≲ L
DW−2
m ≲ N

(2−DW)m
b ,

and

dEucl(T, Y ) ≲ hm ≲ L
2−DW
m ≲ N

(DW−2)m
b ⋅

Moreover,

µ
L (T,Pm,Qm) ≲ hm Lm ≲ L

3−DW
m ≲ N

(DW−3)m
b

and, in the same way,

µ
L (Y,Pm,Qm) ≲ N (DW−3)m

b ⋅

We therefore deduce that

µ
L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m

(N−mq (3−DW )
b )

s−1
d
− 1

p

d
DW+αq−q
Eucl (T, Y )

≲ N
2m (DW−3)
b λ̃f,m (N−mq (3−DW )

b )
s−1
DW

− 1
p
N

(2−DW )m (DW+αq−q)
b ,

and

ε
2m (DW−2)
m µ

L (T,Pm,Qm) µL (Y,Pm,Qm) λ̃f,m
(N−mq (3−DW )

b )
s−1
d
− 1

p

d
DW+αq−q
Eucl (T, Y )

≲ ε
2m (DW−2)
m N

2m (DW−3)
b λ̃f,m (N−mq (3−DW )

b )
s−1
DW

− 1
p
N

(2−DW )m (DW+αq−q)
b ,
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∫
T ∈ΓW

∫
Y ∈ΓW

(N−mq (3−DW)
b )

s−1
d
− 1
p

d
DW+αq−q
Eucl (T, Y )

dµ
2
=

= lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
µ
L (T,Pm,Qm) µL (Y,Pm,Qm)

(N−mq (3−DW)
b )

s−1
DW

− 1
p

d
DW+αq−a
Eucl (T, Y )

≲ lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
µ
L (T,Pm,Qm)µL (Y,Pm,Qm) (N−mq (3−DW)

b )
s−1
DW

− 1
p
N

(2−DW)m (DW+αq−q)
b

≲ lim
m→∞

ε
2m (DW−2)
m ∑

(T,Y )∈ (Pm⋃Qm)2
N

2m (DW−3)
b (N−mq (3−DW)

b )
s−1
DW

− 1
p
N

(2−DW)m (DW+αq−q)
b ⋅

The function f will thus belong to the Besov space B
p,q
α (ΓW) provided that

∑
m∈N

ε
2m (DW−2)
m N

2m (DW−3)
b (N−mq (3−DW)

b )
s−1
DW

− 1
p
N

(2−DW)m (DW+αq−q)
b <∞ ,

or, equivalently,

∑
m∈N

N
−2m (DW−2)
b N

2m (DW−3)
b (N−mq (3−DW)

b )
s−1
DW

− 1
p
N

(2−DW)m (DW+αq−q)
b <∞ ,

converges, which requires that

−2 (DW − 2) + 2 (DW − 3) − q (3 −DW) (s − 1

DW
−

1
p) + (2 −DW) (DW + α q − q) < 0 ,

i.e.,

(3 −DW) {q (1
p −

s − 1

DW
)} + (2 −DW) (DW + (α − 1) q) < 2 ⋅ (CondBesov)

At the same time, thanks to Property 4.4, on page 35, and in light of Definition 4.3, on page 31,
we have that

∥f∥pLp(ΓW) = lim
m→∞

ε
m (DW−3)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) λ̃p∣f ∣,m,j,X ∣̃f∣pm,j,X

≲ lim
m→∞

ε
DW−3 ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) λ̃p∣f ∣,m,j,X µL (Pm,j)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

≲ µ
L (X,Pm,Qm)

s
DW

− 1
p

≲ lim
m→∞

ε
m (DW−3)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm)

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
≲ N

(DW−3)m
b

1+ s
DW

− 1
p

≲ lim
m→∞

N
m (3−DW)
b ∑

X ∈Pm⋃Qm

N
(DW−3)m (1+ s

DW
− 1
p
)

b

≲ lim
m→∞

N
m
b N

m (3−DW)
b N

(DW−3)m (1+ s
DW

− 1
p
)

b ⋅
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The convergence of this latter expression requires that

1 + 3 −DW + (DW − 3) (1 +
s

DW
−

1
p) = 1 + (DW − 3) ( s

DW
−

1
p) ⩽ 0 ,

i.e.,

1 ⩽ (3 −DW) ( s

DW
−

1
p) ,

or, equivalently,

DW
3 −DW

+
DW
p ⩽ s ⋅ (CondLp)

ii. Conversely, we can check that if the above conditions (CondBesov) and (CondLp) are satisfied,

∥f∥Lp(ΓW) + {∫∫
(T,Y )∈Γ2

W

∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

dµ
2}

1
q

<∞ ,

as desired.

Corollary 4.6 (The Specific Case of B
p,p
β (ΓW)).

Given k ∈ N, a real number p greater or equal to 1, we set

β = k −
2 −DW

p ⋅

A function f , given by means of an atomic decomposition of the form:

f = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f,m,X f̃m,X ,

belongs to the Besov space B
p,p
β (ΓW) if and only if

(3 −DW) {p (1
p −

s − 1

DW
)} + (2 −DW) (DW + (β − 1) p) < 2 ,

and

DW
3 −DW

+
DW
p ⩽ s ⋅

Definition 4.8 (Trace of an L
1
loc(R2) Function on the Weierstrass Curve).

Along the lines of [JW84], on page 15, or [Wal91], we will say that an L
1
loc(R2) function f is strictly

defined at a vertex X of the Weierstrass Curve if the following limit exists and is given by

f̄(X) = lim
m→∞

1

µL (X,Pm,Qm)
∑
Y ∼X

f(Y ) <∞⋅

This enables us to define the trace f∣ΓW of the function f on the Weierstrass Curve, via

∀X ∈ ΓW ∶ f∣ΓW (X) = f̄(X) ⋅
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Remark 4.8. The trace f̄ of an L
1
loc(R2) function thus naturally admits an atomic decomposition of

the form

f̄ = lim
m→∞

∑
X ∈Pm⋃Qm

λ̃f̄ ,m,X
˜̄fm,X ⋅

The following simple property was already used implicitly when introducing the polyhedral mea-
sure, earlier in Section 3.

Property 4.7 (The Compact Set of R2
which Contains the Weierstrass Curve).

The Weierstrass Curve ΓW is contained in the following compact set of R2
,

ΩW = [0, 1] × [mW ,MW] ,
where mW and MW respectively denote the minimal and maximal values of the Weierstrass function W
on [0, 1], introduced in Notation 13, on page 24.

Notation 17 (Interior of the Compact Set ΩW).

We hereafter denote by Ω̊W the interior of the compact set ΩW .

Definition 4.9 (Sobolev Space on the Open Set Ω̊W).

Given k ∈ N, and p ⩾ 1, we recall that the Sobolev space on the open set Ω̊W ⊂ R2
, denoted

by W
p
k (Ω̊W), is given by

W
p
k (Ω̊W) = {f ∈ L

p (Ω̊W) , ∀α ⩽ k , D
α
f ∈ L

p (Ω̊W)} ,

where L
p (Ω̊W) denotes the Lebesgue space of order p on Ω̊W , while, for the multi-index α ⩽ k, D

α
f

is the classical partial derivative of order α, interpreted in the weak sense.

The following result is the counterpart, in our context, of the corresponding one obtained in [JW84],
Chapter VI.

Theorem 4.8 (The Trace of Sobolev Spaces as Besov Spaces).

Given a positive integer k, and a real number p ⩾ 1, we set

βk,p = k −
2 −DW

p ⋅

We then have that

W
p
k ( Ω̊W)∣ΓW

= B
p,p
βk,p

(ΓW) ⋅

42



Corollary 4.9 (The Specific Case k = 2, and its Consequences – Order of the Fractal
Laplacian).

Given a real number p ⩾ 1, we then have that

W
p
2 ( Ω̊W)∣ΓW

= B
p,p
β2,p

(ΓW) ,

where

β2,p = 2 −
1
p

lnλ

lnNb
= 2 +

2 −DW
p ⋅

In particular, in the case where p = 2, which corresponds to

β2,2 = 2 +
2 −DW

2
,

and provided that

(3 −DW) {2 (1

2
−
s − 1

DW
)} + (2 −DW) (DW − 2 (1 +

2 −DW
2

)) < 2 ,

i.e.,

1 −DW − 2 (3 −DW) s − 1

DW
+ (2 −DW) (2DW − 3) < 0 ,

or, equivalently,

s > 1 +DW
1 −DW + (2 −DW) (2DW − 3)

2 (3 −DW) ,

we then have that

W
2
2 (ΩW)∣ΓW

= B
2,2
β2,2

(ΓW) ,
where

β2,2 = 2 −
1

2

lnλ

lnNb
> 2 ⋅

Consequently, by analogy with the classical theories, the Laplacian on the Weierstrass Curve (see
Remark 4.7, on page 38 above) arises as a differential operator of order β2,2 ∈ ]2, 3[.

Remark 4.9 (Connection with the Optimal Exponent of Hölder Continuity).

We note that

β2,2 = 2 +
αW
2
,

where the Codimension αW = 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder exponent

for the Weierstrass function, as was initially obtained by G. H. Hardy in [Har16]), and then, by a com-
pletely different method – geometrically – in [DL22b] (this latter result is recalled in Theorem 2.13,
on page 16, and in Corollary 2.14, on page 16).
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Property 4.10 (Connection with Fractional Derivatives).

In Definition 4.7, on page 37, the Besov norm of a function f defined on the Weierstrass Curve
involves the integral

∫∫
(T,Y )∈Γ2

W

∣f(T ) − f(Y )∣q

d
DW+αq
Eucl (T, Y )

dµ
2
⋅ (◊)

For p = 2, q = 1 and α = 3 −DW , i.e., if f ∈ B
2,1
3−DW

(ΓW), the integral in (◊) just above can
be connected to the associated fractional derivative of order γ = 2 −DW ∈ ]0, 1[, defined, for any
vertex Y ∈ Vm0

⊂ ΓW , with m0 ∈ N, by the following expression:

D
2−DWf(Y ) =

2 −DW
Γ(DW − 1) lim

m→∞
∫
T ∈D(ΓW), T ∼

m
Y

∣f(T ) − f(Y )∣
d

3−DW
Eucl (T, Y )

dµ

=
2 −DW

Γ(DW − 1) lim
m→∞

ε
m (DW−2)
m ∑

T ∼
m
Y

µ
L (T,Pm,Qm) λ⋆,m

»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

,

where, for any m ∈ N, λ⋆,m is the m
th

scalar coefficient involved, and where Γ denotes the usual
Gamma function.

Remark 4.10 (On the Existence of Fractional Derivatives).

Note that due to the first condition given in Definition 5.1, on page 46 below, there exist strictly
positive constants C̃inf and C̃sup such that, for all vertices (T, Y ) ∈ Vm × Vm ⊂ ΓW × ΓW ,

C̃inf d
2−DW
Eucl (T, Y ) ⩽ »»»»»f̃m(T ) − f̃m(Y )»»»»» ⩽ C̃sup d

2−DW
Eucl (T, Y ) ⋅

Hence, we have that, for all vertices (T, Y ) ∈ Vm × Vm ⊂ ΓW × ΓW ,

C̃inf

dEucl(T, Y ) ⩽
»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

⩽
C̃sup

dEucl(T, Y ) ,

or, equivalently, expressed in terms of the cohomology infinitesimal ε
m

(see Definition 3.1, on page 19),

C̃inf
εm

⩽

»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

⩽
C̃sup
εm

,

which, in conjunction with the estimates given in Property 3.3, on page 22, namely,

µ
L (X,Pm,Qm) ≲ εm (3−DW)

m ,

yields

ε
m (DW−2)
m ε

m (3−DW)
m

C̃inf
εm

≲ ε
m (DW−2)
m µ

L (T,Pm,Qm)
»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

≲ ε
m (DW−2)
m ε

m (3−DW)
m

C̃sup
εm

;
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i.e.,

C̃inf ≲ ε
m (DW−2)
m µ

L (T,Pm,Qm)
»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

≲ C̃sup ⋅

Since the vertex Y ∈ Vm admits at most two adjacent vertices in Vm, we then deduce that

C̃inf ∣λ⋆,m∣ ≲ εm (DW−2)
m µ

L (T,Pm,Qm) ∣λ⋆,m∣
»»»»»f̃m(T ) − f̃mf(Y )»»»»»
d

3−DW
Eucl (T, Y )

≲ C̃sup ∣λ⋆,m∣ ⋅

Note that in the case of a continuous function f , the atomic coefficients λ⋆,m are necessarily
bounded (since ΓW is compact, and hence, f is bounded).

5 Towards an Extension of Morse Theory

Classical Morse theory (see, e.g., [Bot82], [Bot88] and [Mil63]) enables us to explore the shape
(i.e., the topology) of a smooth manifold by means of the study of the critical points of suitable
smooth functions defined on the manifold. Such functions are required to be nondegenerate – in the
sense that their Hessian determinant is nonzero at critical points – and are then called Morse functions.

In the classical Morse theory, i.e., for smooth manifolds, the height function plays a major role.
More precisely, along with its critical points and its level sets, it encodes the information that enables
us to reconstruct the manifold.

For fractal curves or IFDs such as, for instance, the Weierstrass Curve, this does not make sense
anymore. Since fractals are involved, a change of shape occurs at each vertex of each prefractal ap-
proximation.

In particular, we will show that the Weierstrass function W is a fractal Morse function. Note
(as in [DL22b], [DL22c], [DL22a]) that W can be viewed as a function on ΓW , namely, the identity
function; see Remark 5.4, on page 53 below.

By using some of the results of [DL22b], [DL22c], [DL22a], we hereafter begin to lay the foundations
of a fractal Morse theory that should eventually enable us to explore the shape of fractal manifolds
(viewed as higher-dimensional IFDs). The important example of the Weierstrass Curve ΓW – or,
rather, of the associated Weierstrass IFD – sheds a useful light, especially when it comes to studying
not only the (appropriately defined) critical points, but also other suitable (inflection) points of fractal
Morse functions, and the remainaing points, which are themselves subject to a change of shape, in
connection with the associated angle between the corresponding adjacent edges; i.e., a typical change
of curvature.

In this light, the simple knowledge of the equivalent of the usual Morse indexes, along with a
suitable analogue of the height function, does not appear as being sufficient when it comes to recon-
struct the fractal IFD. The missing data can be obtained by means of the sequence of cohomological
integers associated, at each step m ∈ N of the prefractal approximation, with the set of vertices Vm;
see Definition 5.5, on page 49.

Also, in our context, the sequence of sets of critical point introduced in Definition 5.6, on page 49
is an increasing sequence. For this reason, instead of the height function, we choose to consider the
increasing reordering of the absolute heights, as introduced in Definition 5.11, on page 54 below. We
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believe that this increasing reordering still bears the fractality of the Weierstrass Curve.

As was previously encountered in Corollary 2.17, on page 17, at any given level m ∈ N of
the prefractal graph approximation of the Curve, the extreme and bottom vertices of the poly-
gons Pm,k, 0 ⩽ k ⩽ N

m
b − 1, are respectively local maxima and minima of the Weierstrass function W.

Those points are isolated ones, a result that directly comes from the construction of the Weierstrass
Curve. Then, there remains to identify points that could play the role of degenerate ones, and to
define fractal suited Morse functions. Also, as was evoked in the introduction, the respective no-
tions of maximal Complex Dimension and cohomogical vertex integers naturally arise from our results
obtained in [DL22c] on the fractal cohomology of the Weierstrass Curve. For the sake of a better
understanding, we next briefly recall those results.

Definition 5.1 (Set of Functions of the Same Nature as the Weierstrass Function W [DL22c]).

i. We say that a continuous, complex-valued function f , defined on ΓW ⊃ V
⋆
, is of the same nature

as the Weierstrass function W, if it satisfies local Hölder and reverse–Hölder properties analogous
to those satisfied by the Weierstrass function W; i.e., for any m ∈ N and for any pair of adjacent
vertices (M,M

′) with respective affixes (z, z′) ∈ C2
, of the prefractal graph ΓWm

, we have that

C̃inf ∣z′ − z∣2−DW
⩽

»»»»»f(z
′) − f(z)»»»»» ⩽ C̃sup ∣z

′
− z∣2−DW ,

where C̃inf and C̃sup denote suitable positive and finite constants possibly depending on f . This can
be written, equivalently, as

»»»»»z − z
′»»»»»

2−DW
≲

»»»»»f(z) − f(z
′)»»»»» ≲

»»»»»z − z
′»»»»»

2−DW
⋅ (♦) (13)

(Compare with Theorem 2.13, on page 16, and Corollary 2.14, on page 16 above.)

Hereafter, we will denote by Ḧold (ΓW) the set consisting of the continuous, complex-valued func-
tions f , defined on ΓW ⊃ V

⋆
and satisfying relation (13); see part i. just above.

ii. Moreover, we will denote by Ḧoldgeom (ΓW) ⊂ Ḧold (ΓW) the subset of Ḧold (ΓW) consisting of the
functions f of Ḧold (ΓW) which satisfy the following additional geometric condition (14), again, for
any pair of adjacent vertices (M,M

′) of the prefractal graph Vm with respective affixes (z, z′) ∈ C2
,

and for m ∈ N arbitrary; namely,

»»»»»arg (f(z)) − arg (f(z′))»»»»» ≲ ∣z − z′∣DW−1
⋅ (♠) (14)

Remark 5.1. Note that, according to the results of [DL22b] and [DL22c], the Weierstrass function W
belongs to Ḧoldgeom (ΓW) – and hence, also, to Ḧold (ΓW).

Definition 5.2 ((m,p)–fermion [DL22c]).

By analogy with particle physics, given a pair of integers (m, p), with m ∈ N and p ∈ N⋆, we will
call (m, p)–fermion on Vm, with values in C, any antisymmetric map f from V

p+1
m to C. Note that

these maps are not assumed to be multilinear (which would be meaningless here, anyway, since Vm is
not a vector space).
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For any m ∈ N, an (m, 0)-fermion on Vm (or a 0-fermion, in short) is simply a map f from Vm
to C. We adopt the convention according to which a 0–fermion on Vm is a 0-antisymmetric map on Vm.

In the sequel, for any (m, p) ∈ N2
, we will denote by Fp (Vm,C) the complex vector space

of (m, p)–fermions on Vm, which makes it an abelian group with respect to the addition, with an
external law from C × Fp (Vm,C) to Fp (Vm,C).

Definition 5.3 ((m − 1,m)-Differentials [DL22c]).

Given a strictly positive integer m, we define the (m − 1,m)-differential δm−1,m from F0 (Vm,C)
to FNb+1 (Vm,C), for any f in F0 (ΓW ,C) and any (Mi,m−1,Mi+1,m−1,Mj+1,m,⋯,Mj+Nb−2,m) ∈ V

Nb+1
m

such that

Mi,m−1 =Mj,m and Mi+1,m−1 =Mj+Nb,m ,

by

δm−1,m(f) (Mi,m−1,Mi+1,m−1,Mj+1,m,⋯,Mj+Nb−1,m) = cm−1,m (
Nb

∑
q=0

(−1)q f (Mj+q,m)) ,

where cm−1,m denotes a suitable positive constant.

Theorem 5.1 (Fractal Cohomology of the Weierstrass Curve [DL22c]).

Within the set Ḧoldgeom (ΓW) of continuous, complex-valued functions f , defined on the Weier-

strass Curve ΓW ⊃ V
⋆
= ⋃
n∈N

Vn (see part ii. of Definition 5.1, on page 46 above), let us consider the

Complex (which can be called the Total Fractal Complex of ΓW),

H
⋆
= H

• (F• (ΓW ,C) , δ•) =
∞

⨁
m=0

Hm ,

where, for any integer m ⩾ 1, and with the convention H0 = Im δ−1,0 = {0}, Hm is the cohomology
group

Hm = ker δm−1,m/Im δm−2,m−1 ⋅

Then, H
⋆

is the set consisting of functions f on ΓW , viewed as 0–fermions (in the sense of
Definition 5.2, on page 46), and, for any integer m ⩾ 1, of the restrictions to Vm of (m,Nm

b + 1)–

fermions, i.e., the restrictions to (the Cartesian product space) V
N
m
b +1

m of antisymmetric maps on ΓW ,
with N

m
b + 1 variables (corresponding to the vertices of Vm), involving the restrictions to Vm of the con-

tinuous, complex-valued functions f on ΓW – as, naturally, the aforementioned 0–fermions – satisfying
the following convergent (and even, absolutely convergent)Taylor-like expansions (with V

⋆
= ⋃
n∈N

Vn ),

∀M⋆,⋆ ∈ V
⋆
∶ f (M⋆,⋆) =

∞

∑
k=0

ck (f,M⋆,⋆) ε
k (2−DW)
k ε

i `k p
=

∞

∑
k=0

ck (f,M⋆,⋆) ε
k (2−DW)+i `k p
k , (♠♠♠)

(15)
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where, for each integer k ⩾ 0, ck (⋆,⋆) = ck (f,⋆) ∈ C, the number ε
k
> 0 is the k

th
component of

the k
th

cohomology infinitesimal introduced in Definition 3.1, on page 19, and where `k denotes an
integer (in Z) such that

»»»»»»»»
{`k

ln ε

lnNb
}
»»»»»»»»
≲
ε
k (DW−1)

2π
⋅

Note that since the functions f involved are uniformly continuous on the Weierstrass Curve ΓW ⊃ V
⋆

,
and since the set V

⋆
is dense in ΓW , they are uniquely determined by their restriction to V

⋆
, as given

byr elation (15). We caution the reader, however, that at this stage of our investigations, we do not
know wether f(M) is given by an expansion analogous to the one in relation (15), for every M ∈ ΓW ,
rather than just for all M ∈ V

⋆
.

For each M⋆ =M⋆,m ∈ V
⋆

, as is shown in [DL22c], the coefficients ck (⋆,⋆) (for any k ∈ N) are
the residues at the possible cohomological Complex Dimensions − (k (2 −DW) + i `k p)) of a suitable
global scaling zeta function evaluated at M⋆.

The group H
⋆
=

∞

⨁
m=0

Hm is called the total fractal cohomology group of the Weierstrass Curve ΓW

(or else, of the Weierstrass function W).

Definition 5.4 (Maximal (Real) Complex Dimension of a Prefractal Approximation).

Given m ∈ N, we define the maximal real Complex Dimension of the prefractal approxima-
tion ΓWm

as

ωm = −m (2 −DW) ⋅

Remark 5.2. Clearly, the successive prefractal approximations play the role of level sets, in our present
context.

We now to recall the following result, obtained in [DL22c].

Property 5.2 (Complex Dimensions Series Expansion of the Weierstrass Complexified
Function Wcomp [DL22c]).

For any strictly positive integer m and any j in {0,⋯,#Vm}, we have the following exact expan-
sion, indexed by the Complex Codimensions k (DW − 2) + i `k p, with 0 ⩽ k ⩽ m,

Wcomp (j εm) = (Nb − 1)2−DW cm ε
m (2−DW)+i `m p
m + (Nb − 1)2−DW

m−1

∑
k=0

ck ε
k (2−DW)+i `k p
k ,

where cm ∈ C⋆ and `m ∈ Z are such that

cm ε
i `m p

=Wcomp (
j

Nb − 1
) , (⋄) (16)
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ε
m
m is the (m − k)th cohomology infinitesimal introduced in Definition 3.1, on page 19, and where, for

any integer k in {0,⋯,m − 1}, ck ∈ C⋆ and `k ∈ Z are such that

(Nb − 1)2−DW e
i 2π
Nb−1

j ε
m−k
m

= ck ε
i `k p , (⋄⋄) (17)

with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve, as introduced in [DL22b],

and where, as above, ε
m−k
m−k is the (m − k)th cohomology infinitesimal introduced in Definition 3.1, on

page 19.

Definition 5.5 (Cohomological Vertex Integer).

Given m ∈ N, and a vertex Mj,m ∈ Vm, of abscissa j ε
m
m, with 0 ⩽ j ⩽ #Vm − 1, we introduce the

cohomological vertex integer associated to Mj,m as the unique integer `j,m ∈ Z such that

ε
im `j,m p
m =

∣cm∣ Wcomp (
j

Nb − 1
)

cm
»»»»»»»»
Wcomp (

j

Nb − 1
)
»»»»»»»»

, [
`j,m ln ε

m
m

lnNb
] = 0 ,

where p =
2π

lnNb
denotes the oscillatory period of the Weierstrass Curve, as introduced in [DL22b], Wcomp

is the complexified Weierstrass function (see Definition 2.2, on page 5), ε
m
m is the m

th
cohomology in-

finitesimal introduced in Definition 3.1, on page 19, and where the nonzero complex coefficient cm
has been introduced in Property 5.2, on page 48 just above. Note that since εm depends on m, the
integer `j,m itself also depends on the choice of m ∈ N.

Remark 5.3. Note that each integer `j,m (choosen as in Definition 5.5, on page 49 just above) is asso-
ciated to the sequence of geometric angles introduced in part v. of Property 2.6, on page 10; see also
Definition 5.1, on page 46. In this light, the cohomological vertex integer carries the information asso-
ciated to an angle change between adjacent edges (and, hence, to a change of shape) when switching
from Mj,m to its consecutive neighbor Mj+1,m.

For the condition on the integer part [
`j,m ln ε

m
m

lnNb
], we refer to [DL22c].

Definition 5.6 (Sequence of Sets of Critical Points of the Weierstrass Curve).

We define the sequence of sets of critical points of the Weierstrass function W – or, equivalently, of
the Weierstrass IFD – as the sequence (Crit (ΓWm

))m∈N such that, for anym ∈ N, the set Crit (ΓWm
)

is obtained as the union of the set of local extrema given in Corollary 2.17, on page 17, and of the set
of vertices with a reentrant angle of the prefractal approximation ΓWm

, as given in Property 2.18, on
page 17.
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Definition 5.7 (Topological Laplacian of Level m ∈ N⋆).

For any m ∈ N⋆, and any real-valued function f , defined on the set Vm of the vertices of the
prefractal graph ΓWm

, we introduce the topological Laplacian of level m, ∆
τ
m(f), as applied to f , as

follows:

∀X ∈ Vm \ ∂Vm ∶ ∆
τ
mf(X) = ∑

Y ∈Vm, Y ∼
m
X

(f(Y ) − f(X)) ⋅

As a consequence, in the case of the Weierstrass function W, we also have that

∀X ∈ Vm \ ∂Vm ∶ ∆
τ
mW(X) = ∑

Y ∈Vm, Y ∼
m
X

(W(Y ) −W(X)) ⋅

Note that we are excluding the case when m = 0 here, because V0 = ∂V0.

Proposition 5.3 (Topological Laplacian of the Weierstrass function at Vertices of a Pre-
fractal Graph Approximation).

For any m ∈ N⋆, any integer k in {0,⋯, N
m
b − 1}, and any j in {1,⋯, Nb − 2}, we have that

∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) =W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) +W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

) − 2W (k (Nb − 1) + j
(Nb − 1)Nm

b

) ⋅

Property 5.4 (Sign of the Topological Laplacian of Level m ∈ N⋆).

i. For any positive integer m, and any k in {0,⋯, N
m
b − 1}, we have that, for the initial vertex

of a polygon Pm,k,

W (k (Nb − 1) − 1

(Nb − 1)Nm
b

) <W ( k (Nb − 1)
(Nb − 1)Nm

b

) ,

along with

W (k (Nb − 1) + 1

(Nb − 1)Nm
b

) <W ( k (Nb − 1)
(Nb − 1)Nm

b

) ,

which enables us to deduce that

∆
τ
mW ( k (Nb − 1)

(Nb − 1)Nm
b

) < 0 ⋅
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ii. When Nb < 7, for any positive integer m, any k in {0,⋯, N
m
b − 1}, and any j in {1,⋯, Nb − 2},

one has:

↝ For the left-side vertices in Definition 2.7, on page 12, distinct from the initial one,
of a polygon Pm,k, we have that

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) <W (k (Nb − 1) + j
(Nb − 1)Nm

b

) ,

along with

»»»»»»»»
W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
>

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
,

which enables us to obtain that

∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) > 0 ⋅

↝ For the right-side vertices in Definition 2.7, on page 12, distinct from the last one,
of a polygon Pm,k, we have that

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) >W (k (Nb − 1) + j
(Nb − 1)Nm

b

) ,

along with

»»»»»»»»
W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
<

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
,

which enables us to obtain that

∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) > 0 ⋅

iii. When Nb ⩾ 7, for any m ∈ N⋆, any integer k in {0,⋯, N
m
b − 1}, and any j in {1,⋯, Nb − 2}

such that

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 ,

we respectively have that:

↝ For the left-side vertices in Definition 2.7, on page 12, distinct from the initial one,
of a polygon Pm,k,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) <W (k (Nb − 1) + j
(Nb − 1)Nm

b

) ,

along with

»»»»»»»»
W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
<

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
,
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which yields

∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) < 0 ⋅

↝ For the right-side vertices in Definition 2.7, on page 12, distinct from the last one,
of a polygon Pm,k,

W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) >W (k (Nb − 1) + j
(Nb − 1)Nm

b

) ,

along with

»»»»»»»»
W (k (Nb − 1) + j − 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
>

»»»»»»»»
W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)
»»»»»»»»
,

which enables us to obtain that

∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) > 0 ⋅

Proof. This is an immediate consequence of the proof of Property 2.18, on page 17 above given
in [DL22b].

Definition 5.8 (m
th

–Level Discrete Hessian).

Given m ∈ N⋆, any k in {0,⋯, N
m
b − 1}, and any j in {1,⋯, Nb − 2}, we define the m

th
–level

discrete Hessian Hm as follows:

Hm (k (Nb − 1) + j
(Nb − 1)Nm

b

) = ∆
τ
mW (k (Nb − 1) + j

(Nb − 1)Nm
b

) ⋅

The vertex

(k (Nb − 1) + j
(Nb − 1)Nm

b

,W (k (Nb − 1) + j
(Nb − 1)Nm

b

))

is said nondegenerate, with respect to Hm, if

Hm (k (Nb − 1) + j
(Nb − 1)Nm

b

) ≠ 0 ⋅

Property 5.5 (Absence of Degenerate Points for the Sequence of Discrete Hessians).

Given m ∈ N⋆, any integer k in {0,⋯, N
m
b − 1}, and any j in {1,⋯, Nb − 2}, the m

th
-level dis-

crete Hessian Hm introduced in Definition 5.8, on page 52 just above never vanishes.
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Proof. This is a direct consequence of Property 5.4, on page 50.

Definition 5.9 (Fractal Morse Function).

A function f defined on the Weierstrass Curve ΓW will be said to be a fractal Morse function it its
critical points are nondegenerate; i.e., if, for any m ∈ N⋆, its discrete Hessian Hm (see Definition 5.8,
on page 52) never vanishes.

Remark 5.4 (The Weierstrass Function Viewed as the Identity Function on ΓW).

As in [DL22c], we set, for any real number t in [0, 1],

γW(t) = (t,W(t)) ⋅
We then obtain the identity function on the Weierstrass Curve ΓW as 1ΓW . In this manner, the

Weierstrass function can be viewed as the identity map on ΓW .

Property 5.6 (The Weierstrass Function Viewed as a Fractal Morse Function).

Since the discrete Hessian introduced in Definition 5.8, on page 52 , never vanishes, the Weierstrass
function W is a fractal Morse function, in the sense of Definition 5.9, on page 53 just above.

Proof. This is a direct consequence of Property 5.5, on page 52, according to which the Weierstrass
function W does not have any degenerate point.

Definition 5.10 (m
th

-Level Fractal Morse Index).

Given m ∈ N⋆, and any j in {1,⋯,#Vm − 1}, the m
th

-level fractal Morse index ιj,m of the ver-
tex Mj,m is defined as follows:

ιj,m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 , if Hm ( j

(Nb − 1)Nm
b

) < 0 ,

0 , if Hm ( j

(Nb − 1)Nm
b

) > 0 ⋅

Remark 5.5. An overview of the values of the indexes for the different types of vertices involved is
given in Table 1, on page 54.
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Vertex

Junction
point

(between
consecutive
polygons)

Bottom
point

Plain interior point
(obtuse angle)

Left-side
acute corner

Right-side
acute corner

Index 1 0 0 1 0

Table 1: An overview of the values of the indexes for the different types of vertices involved.

Remark 5.6. One should note that, as in the classical Morse theory, the index of a nondegenerate
critical point is equal to the dimension of the largest subspace of what plays the role of a tangent space
between two points, i.e., in our context, the edge that connects them (a line segment), where the Hes-
sian is negative definite. It thus takes the value 1 at local maxima, and zero at local minima. It also
takes the value zero at the right-side vertices with reentrant interior angles provided in Property 2.18,
on page 17. This specific configuration corresponds, in a sense, to a sign change in the curvature.

Definition 5.11 (Absolute Height Sequence of the Weierstrass Curve).

We define the absolute heights sequence of the Weierstrass function W – or, equivalently, of the
Weierstrass IFD – as the sequence of positive numbers (AbsH (ΓWm

))m∈N where, for any m ∈ N,

AbsH (ΓWm
) = {W ( j

Nm
b

) + 1

1 − λ
, 0 ⩽ j ⩽ #Vm − 1} ⋅

Remark 5.7. The fact that, for any m ∈ N and any j in {0,⋯,#Vm − 1}, the value AbsH (ΓWm
) is

positive simply comes from the fact that the minimum value of the Weierstrass function on [0, 1] is

equal to mW = −
1

1 − λ
; see Notation 13, on page 24 in Section 3.

Property 5.7 (Fractal Morse Height Increasing Reordered Sequence).

Given m ∈ N, the set AbsH (ΓWm
) introduced in Definition 5.11, on page 54, admits an associated

increasing reordered set.

Proof. This simply comes from the fact that, for any m ∈ N, the set AbsH (ΓWm
) is a finite set of

positive numbers, therefore allowing us to reorder the points of AbsH (ΓWm
) in increasing order.

Definition 5.12 (Fractal Morse Height Increasing Reordered Sequence).

We define the fractal Morse height reordered sequence of the Weierstrass function W – or, equiva-
lently, of the Weierstrass IFD – as the sequence of positive increasing reordered numbers (AbsreordH (ΓWm

))
m∈N

where, for anym ∈ N,Abs
reord
H (ΓWm

) is the increasing reordered set associated to the finite setAbsH (ΓWm
).
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Figure 8: Plot of the fractal Morse heightsAbs
reord
H (ΓW1

),AbsreordH (ΓW2
),AbsreordH (ΓW3

),AbsreordH (ΓW4
)

and Abs
reord
H (ΓW5

), presented from top to bottom and from left to right.

55



6 Further Perspectives: The Weierstrass Curve as the Projection
of a Vertical Comb

In this section, we place ourselves in the Euclidean plane of dimension 3, equipped with a direct
orthonormal frame. The usual Cartesian coordinates are denoted by (x, y). The usual axes will be
respectively referred to as (x′x), (y′y) and (z′z).

Thanks to Property 2.1, on page 5, for any strictly positive integer m and any j in {0,⋯,#Vm},
we have that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

Nb − 1
) +

m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) , (§) (18)

or, equivalently, expressed in terms of the cohomology infinitesimal ε (see Definition 3.1, on page 19),

W ( j

(Nb − 1)Nm
b

)

(Nb − 1)2−DW
= ε

m (2−DW)
m W ( j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW)
k cos( 2πN

k
b j

(Nb − 1)Nm
b

) ⋅ (§ § ) (19)

If we consider the three-dimensional vertical comb, respectively comprised of the set of points

( j

(Nb − 1)Nm
b

,
k
m, ε

k (2−DW)
k cos( 2πN

k
b j

(Nb − 1)Nm
b

)) , for 0 ⩽ j ⩽ #Vm − 1 and 0 ⩽ k ⩽ m − 1 ,

along with the periodic set of points

( j

(Nb − 1)Nm
b

, 0, ε
m (2−DW)
m W ( j

Nb − 1
)) , for 0 ⩽ j ⩽ #Vm − 1 ,

we note that the expression in relation (19) just above corresponds to the superposition of the teeth
of the comb; see Figures 9, on page 57 and Figure 10, on page 57.

We can thus envision the following three-dimensional vertical comb, respectively comprised of the
set of horizontal (rear) rows,

( j

(Nb − 1)Nm
b

,
k
m, ε

k (2−DW)
k ) , for 0 ⩽ k ⩽ m − 1 ,

along with the front row

( j

(Nb − 1)Nm
b

, 0, ε
m (2−DW)
m W ( j

(Nb − 1))) , for 0 ⩽ k ⩽ m − 1 ,

and a moving observer who moves on this latter set of points (the front teeth of the comb): when it
comes to a specific value of the integer k in 0,⋯,m − 1, the observer looks at the associated comb
under an angle of value

ϑj,k,m =
2πN

k
b j

(Nb − 1)Nm
b

=
2π j ε

(m−k) (2−DW)

(Nb − 1) ,

so that the expression in relation (19) just above corresponds to the successive superposition of the
projections of the teeth of the combs; see Figures 11, on page 58 and 12. Namely, each horizontal row
of the comb corresponds to a prefractal level set; see Figure 13, on page 59.
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We note that

ϑj,k+1,m =
ϑj,k,m
ε ,

which means that the projection angle increases as one gets closer to the front row.

Note also that in connection with the results of Section 5, the angle
2πN

k
b j

(Nb − 1)Nm
b

can be represented

by a cohomological vertex integer `j,k, as given in Definition 5.5, on page 49; see Figure 13, on page 59.

Figure 9: The vertical comb, for m = 5 – front view.

Figure 10: The vertical comb, for m = 5 – side view.
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Figure 11: The vertical comb, before projection, for m = 5 – side view.

Figure 12: The resulting vertical comb, after projection – face view.

In later work on the subject, it would be interesting to investigate the following open problem.

Problem 1. To what extent does the knowledge of the fractal Morse height reordered sequence given
in Definition 5.12, on page 54, along with the fractal Morse indexes introduced in Definition 5.10,
on page 53, the maximal real Complex Dimension introduced in Definition 5.4, on page 48, and the
cohomological vertex integers given in Definition 5.5, on page 49, enable us to reconstruct the fractal
(i.e., in our present setting, the Weierstrass Curve)?
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Figure 13: The top view of the vertical comb. Each horizontal row coincides with a

prefractal level set ε
k (2−DW)
k , 0 ⩽ k ⩽ m.
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