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Infectionwith SARS-CoV-2 variantOmicron is considered tobe less severe than
infection with variant Delta, with rarer occurrence of severe disease requiring
intensive care. Little information is available on comorbid factors, clinical
conditions and specific viral mutational patterns associated with the severity
of variant Omicron infection. In this multicenter prospective cohort study,
patients consecutively admitted for severe COVID-19 in 20 intensive care units
in FrancebetweenDecember 7th 2021 andMay 1st 2022were included. Among
259 patients, we show that the clinical phenotype of patients infected with
variant Omicron (n = 148) is different from that in those infected with variant
Delta (n = 111). We observe no significant relationship between Delta and
Omicron variant lineages/sublineages and 28-day mortality (adjusted odds
ratio [95% confidence interval] = 0.68 [0.35–1.32]; p = 0.253). Among Omicron-
infected patients, 43.2% are immunocompromised, most of whom have
received two doses of vaccine or more (85.9%) but display a poor humoral
response to vaccination. The mortality rate of immunocompromised patients
infected with variant Omicron is significantly higher than that of non-
immunocompromised patients (46.9% vs 26.2%; p =0.009). In patients infec-
ted with variant Omicron, there is no association between specific sublineages
(BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/
mutational profile and 28-day mortality.

The emergence of SARS-CoV-2 Variants of Concerns (VOCs) at the end
of 2020 marked a turning point in the COVID-19 crisis that challenged
and continues to challenge public health policies worldwide. The
epidemiological situation has worsened with the emergence in
November 2021 and subsequent rapid spread of the highly mutated
Omicron variant and its sublineages. Although variant Omicron
appears to cause a less severe disease than its predecessor variant
Delta1–4, with less frequent requirement for intensive care1, a sub-
stantial number of Omicron-infected patients experienced severe
COVID-19 with acute respiratory distress syndrome (ARDS) requiring
intensive care support. A recent observational study has suggested
that themortality of critically ill patients infectedwith variant Omicron
was not significantly different from that of patients infected with

variant Delta5. However, little is known on the comorbid factors and
clinical conditions associated with the severity of variant Omicron
infection. Specifically, the characteristics of patients with acute
respiratory failure/ARDS admitted to intensive care units (ICUs) have
not been reported and their impact on mortality remains unknown,
making it difficult for health authorities to make informed decisions.

Variant Omicron expansion has been characterized by the emer-
gence and subsequent spread of several sublineages (initially BA.1,
BA.1.1, and BA.2; more recently BA.4 and BA.5). Compared to previous
SARS-CoV-2 strains, Omicron variants carry a large number (26 to 32)
of non-synonymousmutations (substitutions and/or deletions) in their
spike (S) protein gene, and approximately 20 additional mutations in
other structural and non-structural genes6,7. Although several of these
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mutations have already been observed inprevious variants of concern,
the majority of Omicron mutations are unique and their impact of
disease severity is unknown.

In the present study, we compared the characteristics of critically
ill patients with acute respiratory failure infectedwith variant Omicron
with those of patients infected with variant Delta and explored the
relationship between Omicron sublineages and specific viral muta-
tions/mutational patterns with the clinical features and outcomes of
COVID-19 disease in these patients.

Results
Between December 7th, 2021, and May 1st, 2022, 377 patients were
admitted in one of the 20 participating ICUs and included in the study.
Variant lineage was identified in 310 of them, while day-28 follow-up
was available in 259, including 111 patients infected with variant Delta
and 148 patients with variant Omicron. Full-length viral genome
sequence analysis yielding high coverage (>90%) was performed in 97
of the 148 Omicron-infected patients. Figure 1 illustrates the dynamics
of emerging SARS-CoV-2 lineages and sublineages during the study
period. Variant Delta was predominant in December 2021 (i.e., during
the first 5 weeks of the inclusion period), but was then rapidly replaced
by variant Omicron, sublineages BA.1 and BA.1.1 which became pre-
dominant in the second week of January 2022, then by lineage BA.2,
which became dominant in March 2022 and remained so until the end
of the inclusion period.

Clinical phenotype and vaccination background of Omicron vs
Delta-infected patients
Compared to patients infected with variant Delta, those infected with
variant Omicron were older and had significantly more frequent
comorbidities, including hypertension, chronic respiratory failure, and
chronic renal failure, together with a higher clinical frailty scale
(Table 1). Three times more Omicron- than Delta-infected patients
were immunosuppressed (43.2% (n = 64/148) vs 13.6% (n = 15/111),
respectively; p < 0.0001).

Patients infected with variant Omicron had significantly more
often been vaccinated than those infected with variant Delta (at
least one dose received: 60.1% (n = 89/148) vs 29.1% (n = 32/111),

respectively; p <0.0001) (Table 1). Vaccinated Omicron-infected
patients had received a significantly higher number of vaccine doses
(half of them had received 3 doses of vaccine) than Delta-infected
patients (Table 1). However, the proportion of patients with detectable
anti-S antibodies at ICU admission was not significantly different
between the groups, possibly because of the high proportion of
immunosuppressed patients in the better vaccinated Omicron group.

There was a marked difference between the Omicron and Delta
groups regarding the severity of the disease at ICU admission. Indeed,
patients infected with variant Omicron exhibited higher SOFA and
SAPS II scores, as a consequence of more severe extra-pulmonary
organ failures, including renal and hematological failures (Fig. 2). In
contrast, although the difference in need for invasive mechanical
ventilation support was not significant between the two groups,
patients infectedwith variant Delta hadmore severe respiratory failure
at ICU admission, with more ARDS with refractory hypoxemia requir-
ing veno-venous extracorporealmembrane oxygenation (ECMO) (8.2%
(n = 9/111) for Delta vs 1.4% (n = 2/148) for Omicron, respectively;
p =0.011) (Table 1).

To better characterize the phenotypic differences between
patients infected with variants Omicron and Delta, we used the SOM
methodology to plot 2-D maps of patients grouped according to their
clinical and biological characteristics at ICU admission (Fig. 3). SOM
analysis confirmed the differences between Delta- and Omicron-
infected patients. As shown in the figure, patients infected with variant
Omicron clustered in the upper left area of themap, where the highest
frequencies of immunosuppression and vaccination also clustered.
Patients infected with variant Delta were distinctly located in the lower
half area of themap. Patients with the highest rates of day-28mortality
clustered in the upper right area of the map, where the highest values
of the SOFA and SAPS II scores also clustered together with a high
frequency of comorbidities and immunosuppression, involving a
mixture of both Delta- and Omicron-infected patients.

Influence of infecting variants (Delta vs Omicron) on
management and day-28 mortality
Half of the patients (51.0%, n = 132/259) required invasive mechanical
ventilation during their ICU stay, with no significant difference

Fig. 1 | Dynamics of infecting SARS-CoV-2 variants during the study period in
patients requiring intensive care hospitalized in the 20 participating centers.
Delta lineages/sublineages are in green, Omicron lineages/sublineages are in

orange/red. VOC: variants of concern; Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-022-33801-z

Nature Communications |         (2022) 13:6025 2



Table 1 | Clinical and biological characteristics of the 259 patients with severe SARS-CoV-2 infection at the time of their
intensive care unit admission according to the infecting SARS-CoV-2 variant (Delta vs Omicron)

All patients Delta Omicron p-value
N = 259 N = 111 N = 148

Demographics and comorbidities

Sex, females 82 (31.66%) 40 (36.04%) 42 (28.38%) 0.190

Age, years 61.2 (±12.8) 57.6 (±14.5) 63.9 (±10.8) <0.0001

Diabetes 86 (33.46%) 35 (31.82%) 51 (34.69%) 0.629

Obesity 99 (38.52%) 48 (43.24%) 51 (34.93%) 0.175

Chronic heart failure 21 (8.14%) 6 (5.45%) 15 (10.14%) 0.174

Hypertension 118 (45.74%) 42 (38.18%) 76 (51.35%) 0.036

Chronic respiratory failure 23 (8.91%) 4 (3.64%) 19 (12.84%) 0.010

Chronic renal failure 46 (17.97%) 12 (10.91%) 34 (23.29%) 0.011

Cirrhosis 4 (1.55%) 1 (0.91%) 3 (2.03%) 0.472

Immunosuppression (3 cat.) None 179 (69.38%) 95 (86.36%) 84 (56.76%) <0.0001

Solid organ transplant 40 (15.50%) 8 (7.27%) 32 (21.62%)

Onco-hematological malignancies 21 (8.14%) 2 (1.82%) 19 (12.84%)

Othersa 18 (6.98%) 5 (4.55%) 13 (8.78%)

Number of comorbidities 2 (1;3) 1 (0;2) 2 (1;3) <0.0001

Clinical frailty scale 3 (2;4) 3 (2;3) 3 (3;4) 0.005

SARS-CoV-2 infection and Vaccination

Previous SARS-CoV-2 infection 16 (6.23%) 10 (9.09%) 6 (4.08%) 0.100

SARS-CoV-2 vaccination 121 (46.90%) 32 (29.09%) 89 (60.14%) <0.0001

Number of doses among vaccinated 3 (2;3) 2 (2;3) 3 (2;3) 0.005

Last dose - ICU admissionb, days 135 (39;210) 73 (24;174) 151.50 (57;217) 0.038

SARS-CoV-2 serology at ICU admission Unavailable 96 (37.07%) 35 (31.53%) 61 (41.22%) 0.275

Negativec 91 (35.14%) 43 (38.74%) 48 (32.43%)

Positive 72 (27.80%) 33 (29.73%) 39 (26.35%)

First symptoms - ICU admission, days 8 (6;11) 9 (7;11) 7 (4.50;10) 0.006

SARS-CoV-2 RNA detection in nasopharyngeal swabs, Ct 22 (19;26) 22 (20;26) 22 (19;27) 0.643

Patients severity upon ICU admission and biological features

WHO 10-point scale 6 (6;6) 6 (6;7) 6 (6;6) 0.467

SAPS II score 34 (26;43) 31 (23;40) 35 (28;45) 0.022

SOFA score 4 (3;6) 4 (2;5) 4 (3;6) 0.014

PaO2/FiO2 ratio, mmHg 108 (74;167) 106 (69;178) 109 (78;158) 0.781

Arterial lactate level, mM 1.60 (1.10;2.20) 1.60 (1.10;2.20) 1.60 (1.10;2.15) 0.676

Blood leukocytes, G/L 8.20 (5.10;12.40) 9.00 (5.70;12.50) 7.80 (4.85;12.00) 0.187

Blood lymphocytes, G/L 0.60 (0.40;0.90) 0.70 (0.40;1.10) 0.50 (0.30;0.80) 0.001

Blood platelets, G/L 221 (155;301) 248 (200;332) 193 (133;278) <0.0001

Serum urea level, mM 8 (5;15) 7 (5;12) 9 (6;16) 0.007

Serum creatinine level, µM 83 (63;129) 73 (59;106) 95 (67;159) <0.0001

Bacterial coinfection 36 (13.90%) 15 (13.51%) 21 (14.19%) 1.000

Pulmonary embolism 16 (6.32%) 7 (6.54%) 9 (6.16%) 1.000

Lung parenchyma involvement, % 50 (40;75) 50 (50;75) 50 (40;75) 0.880

Oxygen/ventilatory support Oxygen 44 (16.99%) 17 (15.32%) 27 (18.24%) 0.553

High flow oxygen 133 (51.35%) 57 (51.35%) 76 (51.35%)

NIV/C-PAP 21 (8.11%) 7 (6.31%) 14 (9.46%)

Invasive MV 61 (23.55%) 30 (27.03%) 31 (20.95%)

ECMO 11 (4.28%) 9 (8.18%) 2 (1.36%) 0.008

Vasopressor support 33 (13.15%) 14 (12.84%) 19 (13.38%) 0.901

Results are N (%), means (±standard deviation) or medians (interquartile range, i.e., quartile 1; quartile 3).
ICU intensive care unit,Ct cycle threshold,WHOWorld Health Organization, SOFA Sequential Organ Failure Assessment, SAPS II Simplified Acute Physiology Score II, NIV non-invasive ventilation,
C-PAP continuous-positive airway pressure, MVmechanical ventilation, ECMO extracorporeal mechanical ventilation.
aIncludes HIV infection, long-term corticosteroid treatment, and other immunosuppressive treatments.
bTime lag between the last vaccination dose and ICU admission.
cDefined as <30 Binding Antibody Units (BAU)/mL.
Two-tailed p-values come fromunadjusted comparisons usingChi-square or Fisher’s exact tests for categorical variables, and t-tests orMann–Whitney tests for continuous variables, as appropriate.
No adjustment for multiple comparisons was performed; Bolded p-values are significant at the p < 0.05 level.
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between patients infected with variants Omicron or Delta (Table 2).
Nevertheless, Delta-infected patients more often needed veno-
venous ECMO support (18.0% (n = 20/111) vs 6.1% (n = 9/148) in
Omicron-infected patients, respectively; p = 0.003). As far as COVID-
19 specific management was concerned, there was no significant
difference regarding dexamethasone administration, but patients in
the Omicron group received significantly less tocilizumab than those
in the Delta group (35.2% (n = 49/148) vs 55.8% (n = 58/111), respec-
tively; p = 0.001). Monoclonal antibodies were similarly used in both
groups of patients (19.9% of patients overall; n = 48/259). Patients
infected with variant Delta almost exclusively received
casirivimab–imdevimab (80.0%, n = 16/20), while those infected with
variant Omicron mostly received tixagevimab–cilgavimab (85.7%,
n = 24/28).

There was no difference in the frequency of day-28 mortality
between Omicron- and Delta-infected patients (35.1% (n = 52/148) vs
28.8% (n = 32/111); p = 0.283) (Table 2). Univariable (Supplementary

Table 1) and multivariable (Table 3) logistic regression analyses
showed that the variant lineage (Omicron vs Delta) was not sig-
nificantly associated with day-28 mortality, whereas age and SOFA
score were.

Relationship between SARS-CoV-2 mutations/deletions and
day-28 mortality in patients infected with variant Omicron
Over the full-length viral genomes of 97 Omicron sample-related
patients, 199 non-synonymous mutations (leading to amino acid
substitutions) or deletions were detected in at least one sample. We
first focused on mutations previously reported to correlate with
worse clinical outcomes (P681R in Spike, P25L andQ57H in Orf3a and
S194L, R203K or G204R in N)8–11. We found that none of these sub-
stitutions correlated with day-28 mortality. We then investigated
non-biased amino acid modifications (substitutions or deletions) in
Spike and outside Spike protein found in at least 20 viral genome of
patients infected by Omicron (n = 11 positions) and analyzed the
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Fig. 2 | Severity of illness scores in patients infected with variant Delta (red;
n = 111) and variant Omicron (blue; n = 148). a SAPS II scores at ICU admission;
b SOFA score at day 0 (admission at the ICU) and day 3 of hospitalization (by two-
way ANOVA, there was a significant effect of the variant (p =0.0269), no significant
effect of time (p =0.2784), and no significant interaction of both parameters (var-
iant x time; p =0.7668)). In (a) and (b), data distribution is represented using violin
plots and horizontal bars show themedian and quartiles 25 and 75; cOrgan system

components of the SOFA score at ICU admission. Data distribution is represented
using box-and-whisker plots, displaying median values and quartiles 25 and 75 (i.e.,
lower and upper limits of the box), and 5 and 95% percentiles (circles). Two-sidedp-
values have been generated with the Mann–Whitney test or the Sidak post-hoc
ANOVA test; n = 111 and 148 independent measurements in the Delta and Omicron
groups, respectively. SOFA: Sequential Organ Failure Assessment; SAPS II: Simpli-
fied Acute Physiology Score II; Source data are provided as a Source Data file.
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relationship between these mutations and day-28 mortality in uni-
variable analysis. Two amino acid substitutions (ORF1a-K856R =NSP3
K38R and M-D3G) were associated with day-28 mortality but this
relationship was no longer statistically significant after correction of
p-values for test multiplicity using the Benjamini–Hochberg proce-
dure (Fig. 4).

Influence of immunosuppression on the severity of the disease
in patients infected with variant Omicron
Overall, 43.2% of patients infected with variant Omicron had an
underlying immunosuppression. Half of them (50.0%, n = 32/64) had
received an organ transplant, while 29.7% (n = 19/64) had an onco-
hematological malignancy (Table 1).

Compared to non-immunocompromised patients, immunocom-
promised ones hadmore frequent comorbidities, higher clinical frailty
scales, higher severity of illness scores, and higher SARS-CoV-2 RNA
levels (reflected by lower nasopharyngeal RT-PCR Ct values) at ICU
admission (Table 4). Immunosuppressed patients had been more fre-
quently vaccinated than their non-immunocompromised counterparts
(85.9% (n = 55/64) vs 40.5% (n = 34/84), respectively; p < 0.0001).
However, there was no statistically significant difference between the
two groups regarding the proportion of patients with detectable anti-
SARS-CoV-2 spike (S) antibodies at ICU admission. The serum titer of
anti-S antibodies of vaccinated vs non-vaccinated immunocompro-
mised patients was also not significantly different (mean difference
[95% CI]: 1078 Binding Antibody Units (BAU)/mL [−319.4;2475.0];
p =0.160), suggesting poor antibody response to vaccination in this
population, whereas it was significantly different between vaccinated
and non-vaccinated immunocompetent individuals (mean difference
[95% CI]: 1062 BAU/mL [365.0;1760.0]; p = 0.0015) (Fig. 5), in keeping
with deficient antibody response to vaccination in immunosuppressed
patients. Importantly, the median time elapsed between the last vac-
cine dose and ICU admission did not significantly differ between
immunocompromised and non-immunocompromised patients (175
[86–220] vs 116 [39–210] days, respectively; p = 0.191).

Among patients infected with the Omicron variant, those who
were immunocompromised developed more frequent organ failures
than those who were not during the course of their ICU stay (63.6% vs
45.5%, respectively; p =0.025), while the rate of day-28 mortality was
significantly higher (46.9% (n = 30/64) vs 26.2% (n = 22/84), respec-
tively; p = 0.009) (Table 5, Supplementary Table 2). However, in mul-
tivariable analysis, the only variables significantly associated with day-
28 mortality were age, SOFA score, chronic heart failure and diabetes
(Supplementary Table 3).

Immunocompromised patients were less likely to receive anti-
interleukin (IL)-6 receptor antagonists, whereas they more frequently
received monoclonal antibodies (Table 5). An exploratory analysis
assessing the effect of monoclonal antibodies in immunocompro-
mised patients infected with variant Omicron did not reveal a sig-
nificant association with 28-day mortality (52.6% (n = 10/19) vs 45.2%
(n = 19/42) in those treated and not treated, respectively; p =0.592).

Lack of protection by SARS-CoV-2 vaccination against critical
illness in immunocompromised patients infected with variant
Omicron BA.2
Omicron BA.1 and BA.1.1 sublineages co-existed during the first
10 weeks of 2022, and were then both replaced by lineage BA.2 (Fig. 1).
Patients infected with BA.2 more frequently had prior chronic
respiratory failure than patients infected with other variants (38.1%
(n = 8/21) vs 5.5% (n = 6/109), respectively; p =0.0002). They were
immunosuppressed in 57.1% of cases and had more frequent bacterial
co-infections than other patients at ICU admission (28.6% (n = 6/21) vs
11.9% (n = 13/109), respectively; p =0.048).

Patients infected with BA.2 also had a very high anti-SARS-CoV-2
vaccination coverage (85.7%), with amedian number of doses received
of 3 (IQR, 3–3) (Supplementary Table 4). Although there was no sta-
tistically significant difference in day-28 mortality between the differ-
ent Omicron sublineages, patients infected with BA.2 had a
numerically lower mortality rate (19.0%) than patients infected with
other sublineages.

Discussion
This prospective multicenter study included 307 critically ill patients
with COVID-19 hospitalized in 20 French ICUs during winter and early
spring 2022, a period during which variant Delta was progressively
replaced by different lineages/sublineages of variant Omicron (BA.1,
BA.1.1 and BA.2). The main results of our study are the following: (i)
Patients infected with variant Omicron were characterized by a
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different clinical phenotype when compared to those infected with
variant Delta, andmore of themhadbeen vaccinated; (ii) There was no
statistically significant association between main variant lineages and
28-day mortality; (iii) Forty-three percent of patients infected with
variant Omicron were immunocompromised, and their mortality
rate was almost twice as high as that of non-immunocompromised
patients; (iv) In patients infected with variant Omicron, there was no

association between specific sublineages (BA.1, BA.1.1 and BA.2) or
any viral genome polymorphism or mutational profile and 28-day
mortality.

Critically ill patients infected with variant Omicron displayed
striking phenotype differences with those infected with variant Delta.
Indeed, they were older, frailer with more comorbidities, including
immunosuppression, and had higher severity of illness scores at ICU
admission, reflecting more extra-pulmonary organ failures. Patients
infected with variant Omicron had a different vaccination background
from those infected with Delta, the vaccinated former having been
more frequently vaccinated and those vaccinated having received
more doses.

Our study is, to the best of our knowledge, the first one to accu-
rately and extensively describe the clinical presentation of critically ill
patients with COVID-19 infected with variant Omicron. Bouzid et al.
compared the clinical presentations of patients presenting to the
emergencydepartmentwithDelta andOmicron variant infections. They
did not observe the same differences between groups1, suggesting that
the sub-population of ICU patients exhibits specific clinical features.

We found no association between viral characteristics, including
the main variant lineages, and mortality. This result contrasted with
previous findings in the general population. Indeed, infection with
variant Omicron was shown in recent observational cohort studies to
be associatedwith a reduced risk of hospitalization1,2,12,13 and death1,13,14,
as compared to Delta infection. Our study is in keeping with a recent
one5, indicating that there is no significant difference between variants
Omicron and Delta in terms of mortality when focusing on the specific

Table 2 | Intensive care management and outcomes of patients with severe SARS-CoV-2 infection (n = 259) during their
intensive care unit stay according to the SARS-CoV-2 infecting variant (Delta or Omicron)

All patients Delta Omicron p-value
N = 259 N = 111 N = 148

Invasive MV 132 (50.97%) 63 (56.76%) 69 (46.62%) 0.106

Prone positioning 101 (41.74%) 51 (48.11%) 50 (36.76%) 0.076

MV duration, days 16 (6;29) 19 (8;34) 12.50 (5;20) 0.019

ECMO support 29 (11.20%) 20 (18.02%) 9 (6.08%) 0.003

Duration of ECMO, days 27 (10;48) 35.50 (12.50;63.50) 8 (8;25) 0.047

Vasopressor support 113 (43.97%) 54 (48.65%) 59 (40.41%) 0.188

Duration of vasopressors, days 5.50 (2;16) 8.50 (3.50;27.50) 4 (1;12) 0.016

Renal Replacement Therapy 39 (15.06%) 14 (12.61%) 25 (16.89%) 0.341

Ventilator-acquired pneumonia (among IMV) 86 (67.19%) 45 (73.77%) 41 (61.19%) 0.130

Number of VAP episodes Median (IQR) 1 (0;2) 1 (0;2) 1 (0;2) 0.100

0 42 (33.07%) 16 (26.67%) 26 (38.81%) 0.020

1 42 (33.07%) 22 (36.67%) 20 (29.85%)

2 28 (22.05%) 10 (16.67%) 18 (26.87%)

3 15 (11.81%) 12 (20.00%) 3 (4.48%)

CAPA 18 (7.06%) 11 (10.09%) 7 (4.79%) 0.102

Dexamethasone 214 (88.43%) 93 (90.29%) 121 (87.05%) 0.436

Tocilizumab 107 (44.03%) 58 (55.77%) 49 (35.25%) 0.001

Monoclonal antibodies 48 (19.92%) 20 (19.23%) 28 (20.44%) 0.816

Casirivimab–Imdevimab 16 (33.33%) 16 (80.00%) 0 (0.00%) <0.0001

Tixagevimab–Cilgavimab 26 (54.17%) 2 (10.00%) 24 (85.71%) <0.0001

Sotrovimab 4 (8.33%) 0 (0.00%) 4 (14.29%) 0.077

Day-28 mortality 84 (32.43%) 32 (28.83%) 52 (35.14%) 0.283

Duration of ICU stay, days 11 (6;22) 11 (6;27.50) 11 (5;20) 0.132

Results are N (%), means (±standard deviation) or medians (interquartile range, i.e., quartile 1; quartile 3).
MV mechanical ventilation, ECMO extracorporeal mechanical ventilation, VAP ventilator-acquired pneumonia, IMV invasive mechanical ventilation, CAPA COVID-19-associated pulmonary asper-
gillosis,
aVAP episodes were recorded per definition in patients under IMV since more than 48h.
Two-tailed p-values come fromunadjusted comparisons usingChi-square or Fisher’s exact tests for categorical variables, and t-tests orMann–Whitney tests for continuous variables, as appropriate.
No adjustment for multiple comparisons was performed; Bolded p-values are significant at the p < 0.05 level.

Table3 | Independentpredictors of day-28mortality available
within 24 h after ICU admission by multivariable logistic
regression analysis in the 259 patients with Omicron or Delta
infection

aOR (CI95%) p-value

Age, years 1.06 (1.03;1.09) <0.0001

SOFA score 1.20 (1.07;1.34) 0.002

Chronic heart failure 4.47 (1.50;13.34) 0.007

Sex, females 0.83 (0.43;1.62) 0.585

Immunosuppression 1.60 (0.76;3.35) 0.213

Variant Delta 1(ref)

Omicron 0.68 (0.35;1.32) 0.253

SARS-CoV-2 vaccination 1.49 (0.73;3.04) 0.275

aOR (CI 95%): adjusted Odds Ratio (95% confidence interval).
SOFA Sequential Organ Failure Assessment.
p-values come frommultivariable logistic regression models; Bolded p-values are significant at
the p < 0.05 level.
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population of patients with severe COVID-19 pneumonia requiring ICU
admission, despite the fact that this condition is rarer in patients with
Omicron infection.

In the Omicron group, immunocompromised patients repre-
sented up to 43% of cases, and their mortality rate was high (47%). We
showed that vaccinated immunocompromised patients had a poor
humoral response, with no significantly different serum anti-S titers
following vaccination (two or three doses) from non-vaccinated
patients. Whether additional booster vaccine doses would enhance
the humoral response in these patients remains unknown.Monoclonal
antibodies were used in one-third of immunocompromised patients,
following the positive results of the RECOVERY trial15. However, no
differences in outcomes were observed with or without treatment,
suggesting that therapy could have been initiated too late during the
course of the infection. Overall, our results point to the need for tar-
geting COVID-19 preventionmeasures to the high-risk of critical illness
and death immunocompromised population. These measures include
prevention of infection, reinforcement of early preemptive treatments
with antiviral agents (e.g., paxlovid and/or other direct-acting antiviral
agents that were not used in our study), and early administration of
variant-active monoclonal antibodies.

Here, we report for the first time the clinical phenotypes asso-
ciated with different Omicron sublineages, in particular in the yet
never described group of patients infected with variant Omicron BA.2
requiring ICU admission. These patients had been fully vaccinated in
86% of cases. However, they often had chronic respiratory failure and
were more often immunocompromised. Noticeably, the mortality
rate inpatients infectedwithOmicronBA.2wasnumerically lower than
that observed for other Omicron lineages. Because BA.4 and
BA.5 sublineages derive from BA.216 and these variants have become
dominant after the end of the inclusion period of this study17, our
results are reassuring if confirmed that the effect of these variants on
the clinical severity of the disease is similar to that of BA.2. Overall, the
clinical phenotype of BA.2-infected patients reported here further
emphasizes the crucial role of implementing early preventive therapy
in immunocompromised patients to prevent severe cases. We found
no statistically sound association between SARS-CoV-2 mutations

(deletions/ substitutions) in Omicron sublineages and day-28 mortal-
ity, highlighting the role of host factors rather than virus variability in
the pathophysiology of severe diseases.

Our study has some limitations. The relatively small number
of BA.2-infected patients included may have limited our statistical
ability to show between-group differences. In-depth mutation
analysis could not be performed for all patients, because full-length
viral genome sequences were analyzed only when the sequencing
coveragewas greater than90%. However, our study also has strengths,
including the constitution of a unique prospective multicenter cohort
of well-phenotyped critically ill patients and the availability of full-
length SARS-CoV-2 genome sequences generated by up-to-date
technology.

In conclusion, critically ill patients infected with variant Omicron
exhibited a different clinical phenotype from that observed in patients
infected with variant Delta. However, the variant lineage had no effect
on day-28mortality in this population. Immunocompromised patients
infected with variant Omicron, in particular its BA.2 sublineage,
represented a high-risk group with a poor humoral response to vac-
cination. In patients infected with variant Omicron, we found no
association between specific sublineages (BA.1, BA.1.1 and BA.2) or any
viral genome polymorphism or mutational profile and day-28
mortality.

Methods
Study design and patients
This is a prospective multicenter observational cohort study. Patients
admitted between December 7th, 2021 (week 49/21) andMay 1st, 2022
(week 17/22) in one of the 20 participating ICUs (17 from the Greater
Paris area and 3 from the North-East of France) were eligible for
inclusion in the SEVARVIR cohort study (NCT05162508) if they pre-
sented the following inclusion criteria: age ≥18 years, SARS-CoV-2
infection confirmed by a positive reverse transcriptase-polymerase
chain reaction (RT-PCR) in nasopharyngeal swab samples, admission in
the ICU for acute respiratory failure (i.e., peripheral oxygen saturation
(SpO2) ≤90% and need for supplemental oxygen or any kind of venti-
lator support), patient or next of kin informed of study inclusion.

Day 28 mortality (%) Day 28 survival (%)

Presence of mutation 
(Total N= 97) OR (CI95%)

Raw p-
value

Corrected p-
value*

75 3.35 (1.03;10.86) 0,044 0,154

22 0.96 (0.36;2.57) 0.934 0,934

54 2.51 (1.05;5.98) 0,334 0,492

65 1.82 (0.73;4.53) 0,201 0,485

33 1.16 (0.49;2.75) 0,739 0,776

22 0.96 (0.36;2.57) 0,934 0,934

66 1.69 (0.68;4.24) 0,261 0,485

59 2.72 (1.10;6.73) 0,031 0,154

66 1.69 (0.68;4.24) 0,261 0,485

66 0.50 (0.21;1.19) 0,118 0,381

72 0.35 (0.14;0.88) 0,026 0,154

Fig. 4 | Relationship between SARS-CoV-2 mutations/deletions and day-28
mortality in patients infected with variant Omicron. Over the full-length viral
genomes of 97 Omicron sample-related patients, we investigated amino acid
modifications (substitutions or deletions) outside Spike protein found in at least 20
viral genomes of patients infected by Omicron (n = 11 positions) and analyzed the
relationship between these mutations and day-28 mortality in univariable analysis.
Two amino acid substitutions (ORF1a-K856R =NSP3 K38R and M-D3G) were

significantly associated with day-28 mortality but this relationship was no longer
significant after correction of p-values for test multiplicity using the
Benjamini–Hochberg procedure. Day 28 mortality is displayed in red and day
28 survival in blue; p-values come from unadjusted logistic regression modeling.
Horizontal bars represent percentages; Source data are provided as a Source
Data file.
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Table 4 | Clinical and biological characteristics of the 148 patients infected with variant Omicron at the time of ICU admission
according to the existence of underlying immunosuppression

No immunosuppression Immunosuppression p-value
N = 84 N = 64

Demographics and comorbidities

Sex, females 22 (26.19%) 20 (31.25%) 0.499

Age, years 64.1 (±10.9) 63.6 (±10.6) 0.806

Diabetes 27 (32.14%) 24 (38.10%) 0.453

Obesity 39 (46.99%) 12 (19.05%) <0.0001

Chronic heart failure 11 (13.10%) 4 (6.25%) 0.172

Hypertension 38 (45.24%) 38 (59.38%) 0.088

Chronic respiratory failure 11 (13.10%) 8 (12.50%) 0.915

Chronic renal failure 5 (6.02%) 29 (46.03%) <0.0001

Cirrhosis 1 (1.19%) 2 (3.13%) 0.408

Number of comorbidities 1.50 (1;2) 3 (2;4) <0.0001

Clinical frailty scale 3 (2;4) 3 (3;4) 0.009

SARS-CoV-2 infection and vaccination

Previous SARS-CoV-2 infection 5 (6.02%) 1 (1.56%) 0.175

SARS-CoV-2 vaccination 34 (40.48%) 55 (85.94%) <0.0001

Number of doses among vaccinated 2.50 (2;3) 3 (3;3) 0.010

Last dose - ICU admissionb, days 144 (39;210) 175 (86;217) 0.265

SARS-CoV-2 serology at ICU admission Unavailable 38 (45.24%) 23 (35.94%) 0.516

Negative 25 (29.76%) 23 (35.94%)

Positive 21 (25.00%) 18 (28.13%)

First symptoms - ICU admission, days 7 (4.50;10) 7.50 (4.50;12) 0.228

SARS-CoV-2 RNA detection in nasopharyngeal swabs, Ct 25 (20;27) 20 (18;24) 0.003

Patients severity upon ICU admission and biological features

WHO 10-point scale 6 (6;6) 6 (6;6.5) 0.531

SAPS II score 32.50 (26;42) 39 (31;49.5) 0.005

SOFA score 4 (2;6) 5.50 (4;7) 0.001

PaO2/FiO2 ratio, mmHg 107 (77;147) 114 (83;167) 0.362

Arterial lactate level, mM 1.65 (1.20;2.35) 1.55 (0.95;2.05) 0.096

Blood leukocytes, G/L 8.00 (5.90;12.00) 7.25 (3.70;13.15) 0.305

Blood lymphocytes, G/L 0.60 (0.40;0.90) 0.30 (0.10;0.50) <0.0001

Blood platelets, G/L 216.50 (162.50;286) 161 (117;249) 0.006

Serum urea level, mM 7 (5;11) 14 (9;23) <0.0001

Serum creatinine level, µM 77 (59;101) 133.50 (96;223.5) <0.0001

Bacterial coinfection 13 (15.48%) 8 (12.50%) 0.607

Pulmonary embolism 6 (7.23%) 3 (4.76%) 0.539

Lung parenchyma involvement, % 50 (40;75) 62 (37;75) 0.487

Oxygen/ventilatory support Oxygen 15 (17.86%) 12 (18.75%) 0.306

High flow oxygen 43 (51.19%) 33 (51.56%)

NIV/C-PAP 11 (13.10%) 3 (4.69%)

Invasive MV 15 (17.86%) 16 (25.00%)

ECMO 1 (1.20%) 1 (1.56%) 0.853

Vasopressor support 8 (10.00%) 11 (17.74%) 0.179

Results are N (%), means (±standard deviation) or medians (interquartile range, i.e., quartile 1; quartile 3).
ICU intensive care unit,Ct cycle threshold,WHOWorld Health Organization, SOFA Sequential Organ Failure Assessment, SAPS II Simplified Acute Physiology Score II, NIV non-invasive ventilation,
C-PAP continuous-positive airway pressure, MVmechanical ventilation, ECMO extracorporeal mechanical ventilation.
aIncludes HIV infection, long-term corticosteroid treatment, and other immunosuppressive treatments.
bTime lag between the last vaccination dose and ICU admission.
cDefined as <30 Binding Antibody Units (BAU)/mL.
Two-tailed p-values come fromunadjusted comparisons usingChi-square or Fisher’s exact tests for categorical variables, and t-tests orMann–Whitney tests for continuous variables, as appropriate.
No adjustment for multiple comparisons was performed; Bolded p-values are significant at the p < 0.05 level.
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Patients with SARS-CoV-2 infection but no acute respiratory failure or
with a RT-PCR cycle threshold (Ct) value >32 in nasopharyngeal swabs
were not included. The study was approved by the Comité de Pro-
tection des Personnes Sud-Méditerranée I (N° EudraCT/ID-RCB: 2021-
A02914-37). Informed consent was obtained from all patients or their
relatives.

Demographics, clinical and laboratory variables were recorded
upon ICU admission and during ICU stay. Patients’ frailty was assessed
using the Clinical Frailty Scale18. The severity of the disease upon ICU
admission was assessed using the World Health Organization (WHO)
10-point ordinal scale19, the sequential organ failure assessment
(SOFA20) score, and the simplified acute physiology score (SAPS) II
score21. Acute respiratory distress syndrome (ARDS) was defined
according to the Berlin definition22. The primary clinical endpoint of
the study was day-28 mortality.

SARS-CoV-2 variant determination
Full-length SARS-CoV-2 genomes from all included patients were
sequenced by means of next-generation sequencing. Briefly, viral RNA
was extracted from nasopharyngeal swabs in viral transport medium
using NucliSENS® easyMAG kit on EMAG device (bioMérieux, Marcy-
l’Étoile, France). Sequencing was performed with the Illumina® COV-
IDSeq Test (Illumina, San Diego, California), which uses 98-target
multiplex amplifications along the full SARS-CoV-2 genome. The
libraries were sequenced with NextSeq 500/550 High Output Kit v2.5
(75 Cycles) on a NextSeq 500 device (Illumina). The sequences were
demultiplexed and assembled as full-length genomes by means of the

DRAGEN COVIDSeq Test Pipeline on a local DRAGEN server (Illumina).
Lineages and clades were interpreted using Pangolin and NextClade,
before being submitted to the GISAID international database (https://
www.gisaid.org). Full-length Omicron genome sequence analysis
yielding high coverage (>90%) were deposited in Genbank (accession
numbers OP160034 to OP160218).

For mutational pattern analysis at the amino acid level, only high-
quality sequences, i.e., sequences covering ≥90% of the viral genome,
were considered. For variant comparison (Delta vs Omicron),
mutation-specific RT-PCR was performed whenever the full-length
genomewas insufficiently covered by sequencing. For this, amultiplex
mutation-specific RT-PCR kit (IDTM SARS CoV-2/VOC Revolution Pen-
taplex, IDSolutions, Grabels, France) was used to search for the pre-
sence of Spike amino acid mutations K417N, E484K, and L452R.

Statistical analysis
Descriptive results are presented as means (±standard deviation [SD])
or medians (1st–3rd quartiles) for continuous variables, and as num-
bers with percentages for categorical variables. Two-tailed p <0.05
were considered statistically significant. Unadjusted comparisons
between patients infected with variants Delta and Omicron and
between those infected with Omicron with or without immunosup-
pression were performed using Chi-square or Fisher’s exact tests for
categorical variables, and t-tests or Mann–Whitney tests for con-
tinuous variables, as appropriate. Adjusted analyses of the association
between variants (i.e., Delta and Omicron) or Omicron subvariant
lineages and 28-day mortality relied on multivariable logistic regres-
sion models, entering variables associated with a p < 0.20 in univari-
able analysis, then applying a stepwise backward approach by
retaining only variables statistically significant at the p <0.05 level and
those previously shown to be important confounding factors, includ-
ing vaccination status, gender and immunosuppression. Adjusted
odds ratios (aOR) along with their 95% confidence intervals (CI) were
computed. An exploratory evaluation of the associations between 28-
day mortality and results from mutational pattern analysis at the
amino acid level in Omicron-infected patients (N = 97 with available
data) was performed by unadjusted logistic regression modeling. To
limit the occurence of false positive findings, we analysed only those
mutations outside Spike present or absent in at least 20 patients (i.e.,
N = 11) and we applied a correction of p-values for test multiplicity
using the Benjamini–Hochberg procedure.

To illustrate differences in phenotypes of patients infected
with variants Omicron or Delta, we performed an exploratory
unsupervised clustering analysis using the Kohonen’s self-
organized map (SOM) methodology23, allowing us to build
2-dimensional maps from multidimensional datasets. In a nutshell,
each map is divided into districts in which patients are located by
the SOM algorithm on the basis of their characteristics: patients
with similar features are closely located on the maps, while
patients with distinct profiles are farther from each other, hence
allowing to identify key differences or similarities among them.
The SOMs were obtained with the Numero package framework for
the R statistical platform24 after variables with missing information
were imputed using the k-nearest neighbors (k-NN) approach and
principal component analysis adapted for mixtures of qualitative
and quantitative variables was applied (PCAMix)25,26. All measure-
ments were taken from distinct samples. Analyses were performed
using Stata V16.1 statistical software (StataCorp, College Station,
TX, USA), and R 4.2.0 (R Foundation for Statistical Computing,
Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Fig. 5 | Serum anti-spike (S) antibody titers in vaccinated and non-vaccinated,
immunocompromised (light blue) and non-immunocompromised (deep blue)
patients. By two-way ANOVA, therewas a significant effect of vaccination on anti-S
titers (p =0.0023), no significant effect of the immunocompromised status
(p =0.6023) and no significant interaction between both parameters (vaccination x
immunocompromised status; p =0.9824); Data distribution is represented using
violin plots; Horizontal bars show median and quartiles 25 and 75; Displayed p-
values have been obtained with the Sidak’s post-hoc test.; BAU Binding Antibody
Units, Source data are provided as a Source Data file.
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Data availability
Source data are provided with this article. Due to the sensitive nature
of the data, all the clinical datasets generated during and/or analyzed
during the current study are available from the corresponding author
on reasonable request (S.F.).

Full-length Omicron genomes were deposited in Genbank
(accession numbers OP160034 to OP160218). Source data are pro-
vided with this paper.
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