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Abstract

Several important problems in Mechanics can be efficiently solved using Raviart-Thomas mixed
finite element methods. Whenever the domain of interest has a curved boundary the methods of this
family for N -simplexes are the natural choice. But in this case the question arises on the best way
to prescribe normal flux conditions across the boundary, if any. It is generally acknowledged that
the normal component of the flux variable should preferably not take up corresponding prescribed
values at nodes shifted to the boundary of the approximating polytope in the underlying normal di-
rection. This is because an accuracy downgrade is to be expected, as shown in [1]. In that work an
order-preserving technique was studied, based on a parametric version of these elements with curved
simplexes. In this work an alternative with straight-edged triangles for two-dimensional problems is
examined. The key feature of this approach is a Petrov-Galerkin formulation, in which the test-flux
space is a little different from the shape-flux space. Based on previous author’s experience with this
technique, as applied to Lagrange finite elements, it would lead to an overall accuracy improvement
here as well. The experimentation reported hereafter provides examples and counterexamples con-
firming or not such an expectation, depending on the unknown field of the mixed problem at hand.

Keywords: Accuracy improvement; Curved domains; Mixed finite elements; Neumann conditions;
Raviart-Thomas; Straight-edged triangles.

1 Introduction

This work deals with a specific type of Petrov-Galerkin formulation, designed to preserve the order
and/or to improve the accuracy of finite element methods to solve boundary value problems posed in
domains having a smooth curved boundary, on which degrees of freedom (DOFs) are prescribed. In
previous work the author applied it to conforming Lagrange and Hermite finite element methods to
solve both two- and three-dimensional second and fourth order elliptic equations, in the aim of preserv-
ing their order higher than one in the inherent energy norm, with straight-edged triangles or tetrahedra.
More recently it was shown that this technique has the very same effect, as applied to nonconforming
finite element methods, even those having boundary-prescribed DOFs different from values at vertexes
or function values at other points of an edge or a face of the elements. For all these contributions the au-
thor refers to [7] and references therein. Although this approach can be adopted for any type of element
geometry, it appears most effective as combined to N -simplexes. The technique under consideration is
simple to implement as it deals only with polynomial algebra. Moreover it definitively eliminates the
need for curved elements, and consequently the use of non affine mappings.

Here we examine possible advantages of this formulation, in the framework of the solution of
second-order boundary value problems in a smooth plane domain, with Neumann conditions prescribed
on a boundary portion, by Raviart-Thomas mixed finite elements for N -simplexes. We recall that in
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this case the normal components of the flux variable in the underlying mixed formulation are prescribed.
Our premise is that the approximate flux variable should preferably not take up corresponding prescribed
values at nodes shifted to the boundary of the approximating polytope. Moreover, even when there is
no node shift, in order to improve accuracy, presumably the prescribed flux on the boundary should be
normal to the true boundary and not to the one of the approximating polytope. Actually a technique
following these principles was studied in [1] for Raviart-Thomas mixed elements, based on a parametric
version of theirs with curved simplexes. In that work the authors showed that globally their approach
does bring about better accuracy. In contrast, in this paper the aforementioned Petrov-Galerkin formula-
tion with straight-edged triangles is employed, to tackle this problem. Our experiments clearly advocate
in favor of this approach in some cases, while in some others accuracy does not improve, even if in no
case it really downgrades either.

2 The model problem

Our numerical study in connection with the Raviart-Thomas mixed finite elements, will be carried out
for the Poisson first order system. Before recalling it, we observe that accuracy enhancement is strongly
dependent on the solution regularity. Hence although our technique can be applied to mixed Dirichlet-
Neumann boundary conditions in very general situations, in order to make sure that the solution of
the problem at hand will has the required regularity for its theoretical order to prevail, we consider the
following model equation.
Let Ω be a two-dimensional smooth domain and Γ be its boundary, consisting of two non intersecting
portions Γ0 and Γ1 with meas(Γ1) > 0. We denote by n the outer normal vector to Γ and by V , either
the space L2(Ω) if Γ0 6= ∅, or its subspace L2

0(Ω) consisting of those functions g such that
∫

Ω g = 0
otherwise. Now given f ∈ V the problem to solve is,

Find (p;u) with
∫

Ω u = 0 if Γ0 = ∅, such that
−∇ · p = f and p−∇u = 0 in Ω;
u = 0 on Γ0 and p · n = 0 on Γ1 .

(1)

Referring to [4], let Q be the subspace of H(div,Ω) of those fields q such that q · n = 0 on Γ1.
Then denoting by (·, ·) the standard inner product of L2(Ω), problem (1) can be recast in the following
equivalent variational form: 

Find (p;u) ∈ Q× V such that,
−(∇ · p, v) = (f, v) ∀v ∈ V ;
(p,q) + (u,∇ · q) = 0 ∀q ∈ Q.

(2)

We shall deal with the Raviart-Thomas mixed finite element method for triangles [4] known as RTk,
separately for k = 0 and k > 0. This is because, in the former case, we will also study the effect
of different ways to prescribe normal fluxes across Γ1, in connection with the Hermite analog of RT0

introduced in [5].
We recall that, provided u belongs to Hk+2(Ω) (see e.g. [2]), this method is of order k + 1 in the

usual norm ||| · ||| of the space H(div,Ω)× L2(Ω). Denoting the standard norm of L2(Ω) by ‖ · ‖, the
norm ||| · ||| is defined by |||(q; v)||| =

[
‖q‖2 + ‖∇ · q‖2 + ‖v‖2

]1/2. From the assumption that Γ0 and
Γ1 have no common points, the above regularity of u holds if Γ is of the Ck-class and f ∈ Hk(Ω).

3 Method description

To begin with we give some notations related to the finite- element meshes.
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3.1 Meshes and related sets

Let {Th}h be a regular family of meshes in the sense of [2], consisting of straight-edged triangles
satisfying the usual compatibility conditions for the finite element method, h being the maximum edge
length of all the triangles in the mesh Th. Every element of this mesh is considered to be a closed set
and Th is assumed to fit Ω in such a way that all the vertexes of the polygon Ωh lie on Γ, where Ωh is the
interior of ∪T∈ThT . The boundary of Ωh is denoted by Γh and Γ1,h is the portion of Γh having a non
empty intersection with Γ1.We assume that any element in Th has at most one edge contained in Γh.
Let T1,h be the subset of Th consisting of triangles T having one edge on Γ1,h, say eT . Referring to
Figure 1, for every T ∈ T1,h we denote by OT the vertex of T not belonging to Γ1, and denote by nT

the unit outer normal vector to Γh (i.e. to Γ1,h); we also define ∆T to be the closed set delimited by Γ1

and the edge eT of T whose end-points belong to Γ1.

Figure 1: Normal flux degrees of freedom on Γh and Γ for RT1 (left) and RT0 (right)

3.2 Petrov-Galerkin formulation

Let us introduce three spaces Pk
h, Qk

h and V k
h associated with Th.

• V k
h is the space consisting of functions v ∈ L2(Ωh), whose restriction to every T ∈ Th is a polynomial

of degree less than or equal to k for k ≥ 0, that vanish at a given point of Ωh ∩ Ω in case Γ0 = ∅.
•Qk

h is the space of fields in q ∈ H(div,Ωh), whose restriction to every T ∈ Th belongs to the standard
Raviart-Thomas space RTk [4], fulfilling q · nT = 0 along eT for every T ∈ T1,h.
• Pk

h is the space of fields r satisfying the following conditions:
1. r ∈ H(div,Ωh);
2. The restriction of any r to every T ∈ Th is a field belonging to the standard Raviart-Thomas space

RTk [4] of degree less than or equal to k;
3. r is also defined in Ω̄\ Ω̄h in such a way that, ∀∆T which is not a subset of T ∈ T1,h, the expression

of r in T extends to points in ∆T \ T ;
4. ∀T ∈ T1,h, r(N) · n = 0 for all N which is the nearest intersections with Γ of the half-line with

origin at the vertex OT of T and k + 1 points M of the edge eT chosen to be the Gauss-Legendre points
if k is odd or zero, or the Gauss-Lobatto points otherwise [3] (see Figure 1 for k = 1 and k = 0) 1.

Pk
h is a non empty finite-dimensional space, at least if h is sufficiently small. This result can be

established following the main lines of [7] and references therein.

Now let us set the problem associated with spaces Ph
h, Qk

h and V k
h , whose solution is an approxi-

mation of the solution of (2). Extending f in Ωh \ Ω in such a way that such an extension belongs to
Hk−1(Ω ∪ Ωh). Still denoting the resulting function by f , and defining (·, ·)h to be the standard inner

1 The construction of the nodes associated with Pk
h located on Γ1 advocated in item 4. is not mandatory. It is just a balanced

choice, but there are many other possibilities to choose such k + 1 nodes for our Petrov-Galerkin formulation to work fine.
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product of L2(Ωh), the problem to solve is,
Find (ph;uh) ∈ Pk

h × V k
h such that

−(∇ · ph, v)h = (f, v)h ∀v ∈ V k
h ;

(ph,q)h + (uh,∇ · q)h = 0 ∀q ∈ Qk
h.

(3)

Using arguments similar to those exploited by the author in [6], provided h is sufficiently small we
can prove that problem (3) has a unique solution, and moreover that it is uniformly stable. This opens
wide doors towards proving that this method converges with order k + 1 in the norm of H(div,Ωh) ×
L2(Ωh), as h goes to zero.

3.3 Petrov-Galerkin formulation for the Hermite analog of RT0

Referring to [5] for a Hermite version of RT0, we briefly recall it below as applied to problem (2).
Denoting by P2(D) the space of polynomials of degree less than or equal to 2 in a bounded set D of <2,
let UH

h and V H
h be the finite-dimensional spaces defined as follows:

• V H
h := {w| w ∈ L2(Ωh), w|T ∈ P2(T ) ∀T ∈ Th and ∇w ∈ Q0

h};
• UH

h := {w| u ∈ L2(Ωh), w|T ∈ P2(T ) ∀T ∈ Th and∇w ∈ P0
h}.

Then we approximate u by uHh ∈ UH
h and p by∇uHh , where uHh is the unique function fulfilling:{

ah(uHh , w) = (f, w)h ∀w ∈ V H
h , with

ah(w, v) := (∇w,∇v)h − (∆w, v)h + (w,∆v)h ∀w ∈ UH
h and ∀v ∈ V H

h .
(4)

The main difference between (4) and (3) for k = 0 is the fact that u is approximated in a space of
incomplete quadratic functions in each triangle, though containing all linear functions. As pointed out
in [5], this actually leads to second order approximations of u in L2(Ω), whenever Ω is a convex polygon,
while maintaining first order approximations of p by∇uHh in H(div,Ω). A similar behavior is expected
in the case of smooth domains, which will be confirmed hereafter.

4 Numerical experiments

Let us now go into the main purpose of this paper, that is, numerical experimentation of the methods
defined by (3) and (4).

4.1 Solution of a test-problem with RT1

We checked the performance of (3) for k = 1, by solving a test-problem in an annulus with inner radius
ri = 1/2 and outer radius re = 1, for an exact solution given by u(x, y) = (r2 − 2rri + 2rire − r2

e)/2,
where r =

√
x2 + y2. This function satisfies u = 0 on Γ0, namely, the circle given by r = re and

∂u/∂r = 0 on Γ1, namely, the circle given by r = ri. We computed with a quasi-uniform family of
meshes for a quarter annulus, constructed for a quarter unit disk with 2L2 triangles for L = 2m, by
removing the L2/2 triangles fully contained in the disk with radius 1/2. For simplicity we set h = 1/L.
In the upper part of Table 1 we supply the approximation errors of u, p and ∇ · p measured in the
norm of L2(Ωh), for formulation (3) with k = 1, taking m = 2, 3, 4, 5, 6. In order to highlight eventual
advantages of the Petrov-Galerkin approximation (3) over the standard Galerkin approach, consisting
of replacing Pk

h by Qk
h in (3), we present in the lower part of Table 1, the same kind of errors for the

solution (p̄h; ūh) obtained by the latter formulation.
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h −→ 1/4 1/8 1/16 1/32 1/64

‖ uh − u ‖h −→ 0.19094E-2 0.47687E-3 0.11917E-3 0.29791E-4 0.74483E-5

‖ ph − p ‖h −→ 0.19268E-2 0.48957E-3 0.12299E-3 0.30790E-4 0.77001E-5

‖ ∇ · (ph − p) ‖h −→ 0.41343E-2 0.10625E-2 0.26788E-3 0.67119E-4 0.16789E-4

‖ ūh − u ‖h −→ 0.16376E-2 0.40823E-3 0.10198E-3 0.25491E-4 0.63733E-5

‖ p̄h − p ‖h −→ 0.38339E-2 0.96853E-3 0.24283E-3 0.60752E-4 0.15191E-4

‖ ∇ · (p̄h − p) ‖h −→ 0.41343E-2 0.10625E-2 0.26788E-3 0.67119E-4 0.16789E-4

Table 1: L2-errors for the Petrov-Galerkin and the Galerkin formulation of the RT1 method

4.2 Solution of a test-problem with RT0 and its Hermite analog

In this subsection we present the results obtained for a test-problem in the ellipse centered at the origin
with half-axes equal to one and e = 1/2. We take an exact solution u satisfying only homogeneous
Neumann boundary conditions, given by u(x, y) = (e2x2 + e4y2 − x4/2 − e4y4/2 − e2x2y2)/2. The
same kind of meshes as above for the quarter unit disk are employed for a quarter ellipse with 2L2 tri-
angles, for L = 2m, this time with m = 3, 4, 5, 6, 7. Tables 2,3,4 display respectively the errors of u, p
and ∇ · p, when (p;u) is approximated by:

• The pair (ph;uh) that solves (3) with k = 0;
• The pair (p̄h; ūh) that solves the Galerkin analog of (3) with k = 0, by replacing P0

h with Q0
h;

• The pair (∇uHh ;uHh ), where uHh solves (4);
• The pair (∇ūHh ; ūHh ), where ūHh solves the Galerkin analog of (4), by replacing UH

h with V H
h .

h −→ 1/8 1/16 1/32 1/64 1/128

‖ uh − u ‖h −→ 0.42528E-3 0.17986E-3 0.85079E-4 0.41881E-4 0.20856E-4

‖ ūh − u ‖h −→ 0.53435E-3 0.20712E-3 0.90368E-4 0.42781E-4 0.21005E-4

‖ uH
h − u ‖h −→ 0.18500E-3 0.48191E-4 0.12493E-4 0.32565E-5 0.92059E-6

‖ ūH
h − u ‖h −→ 0.32559E-3 0.99666E-4 0.29191E-4 0.83411E-5 0.24152E-5

Table 2: L2-errors of u for four versions of the RT0 method

h −→ 1/8 1/16 1/32 1/64 1/128

‖ ph − p ‖h −→ 0.28254E-2 0.14254E-2 0.71504E-3 0.35800E-3 0.18127E-3

‖ p̄h − p ‖h −→ 0.28596E-2 0.14308E-2 0.71581E-3 0.35811E-3 0.18127E-3

‖ ∇(uH
h − u) ‖h −→ 0.28256E-2 0.14255E-2 0.71505E-3 0.35800E-3 0.18127E-3

‖ ∇(ūH
h − u) ‖h −→ 0.28598E-2 0.14308E-2 0.71581E-3 0.35811E-3 0.18127E-3

Table 3: L2-errors of p = ∇u for four versions of the RT0-method
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h −→ 1/8 1/16 1/32 1/64 1/128

‖ ∇ · (ph − p) ‖h −→ 0.17060E-1 0.85475E-2 0.42759E-2 0.21382E-2 0.10691E-2

‖ ∇ · (p̄h − p) ‖h −→ 0.17060E-1 0.85475E-2 0.42759E-2 0.21382E-2 0.10691E-2

‖ ∆(uH
h − u) ‖h −→ 0.17060E-1 0.85475E-2 0.42759E-2 0.21382E-2 0.10691E-2

‖ ∆(ūH
h − u) ‖h −→ 0.17060E-1 0.85475E-2 0.42759E-2 0.21382E-2 0.10691E-2

Table 4: L2-errors of∇ · p = ∆u for four versions of the RT0-method

5 Conclusions

From the results of the previous section, we can draw the following conclusions, preceded by EX for
success or by CO for failure of the improvement attempt.

EX - The order in the norm ||| · ||| of the RT1 method in the Petrov-Galerkin formulation (3) is two 2.
EX - In terms of the field p, the RT1 method works better in the Petrov-Galerkin formulation than in
the Galerkin formulation.
CO - The approximations of∇ · p are the same for both methods above.
CO - As for the function u, the Petrov-Galerkin formulation and the Galerkin formulation for the RT1

method are fairly equivalent, but the latter is a little more accurate.
EX - The Petrov-Galerkin formulation for the original RT0 method is slightly more accurate in terms of
the function u, as compared to the Galerkin formulation.
EX - The Hermite analog of the RT0 method in both formulations is much more accurate than the
original RT0 method, as far as the function u is concerned.
CO - The four versions of the RT0 method produce practically the same results for the field p.
EX - The convergence rate of the solution uHh of (4) in the L2-norm is almost equal to 2, while it
downgrades to a value close to 7/4 for the corresponding Galerkin formulation.
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