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EXAMPLES OF CREATIVE EXTINCTION

IN DYNAMIC ECOLOGY

E. SANCHEZ-PALENCIA AND JEAN–PIERRE FRANÇOISE

Abstract. In problems of ecological dynamics involving bistability (two dis-
joint attractors A1 and A2), we present (with various examples) a natural

ecological mechanism allowing the transfer from the attraction basin of A1 to

the other basin, so allowing to reach A2 from any initial configuration. The
mechanism involve an extra species which changes the dimension of the phase

space and the topology of the attraction basins. The extra species disappear

in a natural way, so that this mechanism keeps some relation with apoptosis,
but is different of it.

1. Introduction and basic example

When considering complex ecological communities, it often appears a phenom-
enon of bi-stability, i. e. there are two different attractors one “trivial” (it means
that the asymptotic populations are 0) and another “non-trivial”, (obviously with
disjoint attraction basins). Starting from an initial state containing small popula-
tions (so in the attraction basin of the trivial attractor), it is impossible to reach
the non-trivial configuration. The actual presence of a system working at the non-
trivial attractor is usually explained by invoking a change of the general conditions
in the distant past ; one must imagine that in the early times the system was
another, allowing a gradual transition to the present state. This is not very con-
vincing, as the given system is unable to describe the whole process. We show here
that it is often possible to overcome this difficulty in another very different way,
by taking account of an extra species (then changing the dimension of the space)
which changes the topology of the attraction basins and that disappears naturally
after a transient period.

Let us see this with a very simple model system in dimension 2:

(1)

{
ẏ = −y(y − 2)(y + z − 1)
ż = −z(1 + z2 + y − 3/2)

The system reduced to the axis y, is one-dimensional, with two stable equilibria,
(0, 0) (trivial) and (2, 0) non-trivial. The attraction basins are separated by a third
(unstable) equilibrium (1, 0), and it is impossible to go to the non-trivial attractor
starting with a very small quantity of y(0) (See 1, axis Y ). Nevertheless, taking
account of the whole system in dimension 2, the only attractor is the point (2, 0),
with the whole quadrant (unless the boundary) as attraction basin, allowing to
reach the non-trivial attractor from any point out of the axes.

We see that the key point in this mechanism is that the non-trivial attractor (2, 0)
is also a two-dimensional attractor (as it is transversally stable), whereas the two
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Figure 1. The phase portrait of (1)

others equilibria (0, 0) and (1, 0) are transversally unstable, so repelling the moving
point.

Imagine that y and z are populations of two species. In the strict absence of z,
a small quantity of y(0) automatically sends to the trivial attractor (0, 0), whereas
having in addition a (even very small) quantity of z(0) sends to the non-trivial
attractor (2, 0) ; note that this implies the extinction of z, which operates as a
starter: it is necessary to start the process, and its ulterior extinction sends the
system to the non-trivial configuration.

Note also that this is an essentially non-linear process: in order to start, the
species z must be growing for small y ; oppositely, in the region nearby the non-
trivial attractor, it is demographically less performant than y, it is decreasing and
vanishes for t→ +∞. In more general problems, the attractors are not necessarily
points, most of times they are periodic cycles.

The purpose of this paper is to show examples of this mechanism in real situations
involving several species. The role of y is played by two or three species submitted
to complex interactions. We shall also show examples of the classical explanation
involving time-dependent laws.

This mechanism of creative extinction keeps some relation with the apoptosis
(programmed cell death) of developmental biology (for instance, the fetus develops
webbed hands, the fingers appearing by apoptosis of the cells between the fingers),
but is different of it.

This paper is issued from a talk to the Conference on Qualitative Properties of
PDEs on occasion of the J. I. Diaz’s 70 birthday, on July 15, 2021. For the sake
of completeness, we took again (sections 2 and 3) in a succinct way some elements
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about predation and predation - commensalism systems exhibiting bistability con-
tained in [2]. The new material in the present paper is the above model problem
in dimension 2, the end of section 6 and the whole sections 7 and 8.

2. The Predation system (and the efficiency threshold for invasion)

We use a predator – prey system within the large Kolmogorov framework. After
normalisation, the system is (1) , with functional response of type Holder II):

(2)

{
ẋ = ax(1− (x/P ))− y tanh(ex)
ẏ = −cy + y tanh(ex)

Where x and y are the populations of the prey and the predator. In the absence
of y, the preys x satisfy a logistic equation: a is the population growth for small x
and P is the population of equilibrium with the subsistences (i. e. the capacity of
the medium). The predators alone cannot subsist (−c is the mortality ratio). The
interaction terms in x and y are negative for the preys and positive for the predators
; they are the same (this means that, with suited units, the conversion rate is equal
to one). This term is y tanh(ex), where tanh(ex) is the “functional response”, the
number of preys that each predator eats per unit of time. When x is small, it is
equal to ex (so proportional to x, according to the number of preys statistically
encountered), whereas for large x it is constant, equal to the satiety threshold (the
maximum number of preys that each predator can eat (which is equal to one by
normalization). The proportionality constant e is a measure of the efficiency of the
predation process, and it plays an important role in the sequel. When e is small,
such that tanh(eP ) < c, there is no invasion of the predator, (this is easily seen from
the second equation (2), as y′/y < 0 in the vicinity of (P, 0)) and the attractor of
the two-dimensional system is merely the point (P, 0), the equilibrium of the preys
alone, and the predators disappear. It is maybe useful to point out that, as the
axis x is an invariant manifold, the jacobian matrix of the system at (P, 0) has an
eigenvector along the axis x (with a negative eigenvalue), and tanh(eP ) − c is the
other eigenvalue. When e is sufficiently large for tanh(eP ) > c, according to the
second equation, the population of predators takes off from (P, 0), and it is said
that y is an invading species (there is an attractor with y strictly positive). There
are then two different patterns of the phase portrait:

-For moderately large values of e, the attractor is a point (2).
-For larger values of the efficiency e, there is a Poincaré-Andronov-Hopf bifurca-

tion and the attractor is a periodic cycle (2) :

3. The predation-commensalism system (bistability)

Commensalism is a relation between two species where one of them takes (de-
mographic) profit of the other, which is (demographically) indifferent to the first.
An obvious example appears when a species takes profit of the waste of the other.

We consider a predator – prey system where, in addition to the obvious predator –
prey relations, the prey takes benefit of the predator in another way, as the predator
increases the “capacity” of the medium. Among the very complex interactions
between two species, an example of this is: The preys are herbivores and the
predators are insects (parasites of the preys), which also increase the capacity on the
medium by pollination. Clearly, the predators have two (opposite, but of different
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Figure 2. An orbit of system (2) for a = 1, c = 0.716, P = 4,
e = 0.6 starting from a point nearby the equilibrium of the preys
alone, (P, 0). The same attractor is reached from any point out of
the axes.

nature) actions on the prey: they eat (or kill in the parasite case) the preys and
they improve the capacity of the medium. The equations are the previous ones,
but P is no longer constant, it is an increasing function of y ; we shall use either

(3) P = P0 + λy

(influence of the predators themselves) or

(4) P = P0 + λy tanh(ex)

(influence of the predation activity); here, λ is a parameter describing the inten-
sity of the influence.

The results are qualitatively analogous for (3) or (4) . We shall give some com-
putations, mainly for (4). There is a threshold for invasion of y from the vicinity
of (P0, 0) ; it is the same as in the standard predator – prey system, as according
to (3) or (4)the new commensalism term vanishes for small y.

The invasive case (i. e. tanh(eP0) > c) is qualitatively analogous to the standard
predator-prey system).

In the non - invasive case (i. e. tanh(eP0) < c) the results are highly dependent
on λ. For small λ, the new term has negligible influence and the attractor is
obviously the equilibrium of the preys alone, (P0, 0) ( 3):

But for larger λ, there is a bifurcation with simultaneous inception of two new
equilibria, a (unstable) saddle S and a stable focus A (attractor). But (P0, 0) is
always an attractor, and there is a bi-stability phenomenon (see 3). The unstable
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Figure 3. Two orbits of system (2) for a = 1, c = 0.716, P =
4, e = 0.85. One starts from a point nearby the equilibrium of
the preys alone, (P, 0) and spirals around the limit cycle from the
outside. The other starts from a point inside the cycle and wraps
on the cycle from the inside. The cycle is reached starting from
any point out of the axes.

manifold of the saddle S sends on both sides towards the two attractors E and A,
whereas the stable manifold of S is the border separating the two attraction basins.
In fact, this pattern is very much natural: in the region y small, everything is alike
in F, sending to E ; oppositely, for sufficiently large y, the commensalism term
increases the effective value of P and there is invasion of the y, but this happens
not from E, but from S (= for sufficiently high y), so that the upper part of the
pattern is analogous to 3. The pattern is shown in 3:

Moreover, increasing again λ, the previous description remains true, but there is
a new Poincaré – Andronov – Hopf bifurcation (somewhat analogous to that from
2 to 2) of the upper attractor, which becomes a periodic cycle, whereas the focus
becomes unstable (I in 3).

4. How to reach the upper attractor from the equilibrium of the
preys alone?

Let us focus on the case of bi – stability, ( 3 or 3). It is apparent that it is
impossible to reach the upper attractor starting with a small number of predators;
in that case, the dynamics leads to the equilibrium of the preys alone, so that
the predators disappear at the limit (t = +∞). In principle, the presence of an
important population of predators nearby the upper attractor cannot be explained
with this scheme.
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Figure 4. The phase portrait of system (2), (4) for small e = 0.6
(no invasion) and moderate λ = 3 (other parameters as in the
previous section). The attractor is the equilibrium of the preys
alone (E on the figure).

Figure 5. The phase portrait with small e = 0.6 (no invasion) and
larger λ = 5 (other parameters as in the previous figure). There
is a new attractor A in addition to E. The stable manifold of the
saddle S is the curve separating the attraction basins of A and E.
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Figure 6. The phase portrait with small e = 0.6 (no invasion) and
even larger λ = 6 (other parameters as in the previous figures).
The upper attractor becomes a periodic cycle C and the upper
equilibrium (I) is unstable. The stable manifold of the saddle S is
always the curve separating the attraction basins of C and E.

This is a classical situation in biology: the ecological consistency of the present
state is understood, but it does not allow to explain the evolution from a natural
initial state. The classical explanation in this kind of situation consists in evoking
different conditions in the distant past, allowing a gradual transition towards the
present state. This will be illustrated in the next section 5. But we shall see that
there is another possibility, which consists in the presence of another predator (able
to invade), playing the role of a starter; if, in the subsequent process (with both
predators) it is less performant than the first predator, it disappears in the limit,
whereas the first remains at the upper attractor. This will be illustrated in section
6.

5. Classical explanation with a non-autonomous system

As an example, we consider the system (2), (3) with the parameters depending on
time (then it is a non-autonomous system, out of the previous framework), namely
:

(5)


c = 0.8− 0.3e−µt,
e = 0.6 + 1.2e−µt

a = 0.5, b = 1, µ = 0.01,
P = 1 + λy,
λ = 5− e−µt.



8 E. SANCHEZ-PALENCIA AND J.-P. FRANÇOISE

Figure 7. A trajectory of the non-autonomous system (2), (5)
starting nearby E = (1, 0) evolves slowly to the point attractor
A = (1.82, 0.64) on the right. The saddle S=(1.82,0.29) is also
represented

We observe that these parameters are slowly dependent of t (note that µ is very
small). It is easily seen that the final values correspond to an autonomous system
in the framework of 3, with bi –stability and a point upper attractor, impossible to
reach starting with small y(0). But, the (variable) parameters are chosen initially
with larger efficiency e and smaller death ratio c, allowing invasion.

The next fig 7 is a superposition of three orbits: the first one corresponds to the
limit parameters (t = +∞) and converges to the point attractor (starting from a
near point). The second orbit is for the constant initial values of the parameters;
it starts from a point nearby the equilibrium of the preys alone and converges to
the corresponding attractor (a cycle, on the left). The third one is for the very
non-autonomous system, starting nearby the equilibrium of the preys alone; it first
behaves as the initial autonomous system, then evolves slowly approaching the
point attractor on the right.

Obviously, there are very many variants of this. In Fig 8 we have an analogous
example where the final attractor is a periodic cycle (as in Fig 6), obtained with a
non-autonomous system (2), (5) with

a = 1, e = 0.2 + 1.5e−µt,

µ = 0.03, P = 4 + 2.9y tanh(ex), c = 0.8
(6)
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Figure 8. A trajectory of the non-autonomous system (2), (5)
starting nearby E evolves slowly to the point attractor on the right.

6. A new (non-classical) explanation. Autonomous system in
dimension n+1. First example of creative extinction

The idea is to consider another predator y2 with parameters different of those
of the first one (now denoted by y1). The new predator is invasive (in particular
e2 > e1), but when the populations are large, y1 displaces y2 (in particular, c2 > c1),
so that the attractor is on the plane y2 = 0. (But obviously, the initial values must
contain both species). Specifically, we take the system (with constant parameters):

(7)

 ẋ = ax(1− x/P )− y1 tanh(e1x)− y2 tanh(e2x)
ẏ1 = −c1y1 + y1 tanh(e1x)
ẏ2 = −c2y2 + y2 tanh(e2x)

with

(8)


a = 0.5, b1 = 1.7, b2 = 1
P = 1 + λ1y1b1 tanh(e1x/b1) + λ2y2b2 tanh(e2x/b2)
e1 = 0.72, e2 = 1.33,
λ1 = 10, λ2 = 6,
c1 = 0.72, c2 = 0.86.

It will prove useful to point out that the planes y1 = 0 and y2 = 0 are invariant,
so that the equilibrium of the preys alone (1, 0, 0) is non-degenerate, with an eigen-
vector in the direction of the x axis, and the two other inside the invariant planes,
so that the invasion properties are merely those of each predator with the prey.

For y2 = 0, we have a non – invasive predator y1 in the bi-stability context of
Fig 6, with an upper cyclic attractor (so impossible to reach from the vicinity of
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Figure 9. An orbit of the system (7) (8) starting nearby E. It
first approaches C and then migrates to the attractor A.

E). Oppositely, for y1 = 0, the predator y2 is invasive, allowing orbits starting near
E to grow nearby the attractor of the plane y1 = 0, which is transversally unstable,
so that the orbit migrates towards y2 = 0 with significant values of y1, so on the
above attraction basin (Fig 9). The same solution as function of t appears in Fig
10.

There is an interesting property concerning the mechanics just described. We
note that the given example is concerned with a case where the final attractor is
a periodic cycle. The mechanism does not work in the case where the attractors
are points. Indeed, let us denote hi(x) = bi tanh(eix/bi) (i = 1, 2) the functional
responses of the two predators. As y2 is invading and y1 is not, we have

c1 > h1(P0),(9)

c2 < h2(P0).(10)

Let us assume that (x∗, y∗1 , 0) is a global attractor. Then, y2 cannot be invading
from this point, so tat

c2 > h2(x∗).(11)

From (10) and (11), as h2 is increasing,

x∗ < P0.(12)
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Figure 10. The same solution of (7) (8) as a function of t. The
starter y2 first grows and then dies out naturally, whereas y1 re-
mains.

This is impossible, as in our bi-stability problem, the equilibria have abscissas
> P0. Indeed, at the equilibrium, we have

h1(x∗) = c1(13)

But, from (13) and (9),

x∗ > P0(14)

which is in contradiction with (12). Q.E.D.
We shall see in the next section that certain modifications of the basic mechanism

make it effective even in the previous case.

7. Devices for improving the robustness of this mechanism

The success of this process lies on two mechanisms: first, the solution must
take off from C (the attractor of y2 alone) and then it must past to A (the final
attractor). It should be noticed that the differences between the two predators
give advantages and disadvantages in the various pertinent regions. Obviously, it
is not very easy to get values of the parameters allowing the whole process: as a
consequence, the intervals of values of the parameters are narrow (out of them,
either the starter remains, or y1 cannot take off from C). But it is possible to add
other small terms (with easy ecological meaning) in order to ensure the robustness
of this basic mechanism. In particular:
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-a) A (even small) term of commensalism of y1 on y2 (i. e. y1 takes benefit from
the presence of the starter y2) helps the orbit to take off from C (the attractor of
x, y2), without modifying essentially the behaviour in the vicinity of y2 = 0.

-b) A (even small) term of negative commensalism of y2 on y1 (i. e. the starter
y2 undergoes prejudice from the presence of y1) helps the orbit to paste to A (the
attractor of x, y1), without modifying essentially the behaviour in the vicinity of
y1 = 0.

-c) the two previous properties may be combined to give: A (even small) term
of predation of y1 (predator) on y2 (prey) helps the orbit to take off from C (the
attractor of x, y2) and to paste to A (the attractor of x, y1).

These properties follow easily from classical properties of perturbation of the
initial conditions in the direction transversal to the coordinate planes. They allow
to construct a great variety of examples of creative extinction with very suitable
robustness (with respect to the values of the parameters). For simplicity, we shall
consider the new terms without satiety threshold, but this is not essential.

We are proving property a; the proofs of the two others are analogous, exchanging
y1 and y2 with the suited signs. The profs are in the framework of small (linear)
perturbation of the cycle C in the plane x, y2 (of the prey and the starter). For the
sake of simplicity in the proof we denote x by y3, and we write the variables in the
order.

(15) y = (y1, y2, y3) = (y1, y2, x)

Let yc(t) = (0, yc2(t), yc3(t)) be the equation of the cycle C (parametrized by the
time t). The complete system of equations writes

(16)

 ẏ1 = f1(y1, y2, y3)
ẏ2 = f2(y1, y2, y3))
ẏ3 = f3(y1, y2, y3))

with

(17) f1(0, y2, y3) = 0

as the plane y1 = 0 is an invariant manifold. The linearization amounts to make
the change

(18)

 y1 = z1

y2 = yc2(t) + z2

y3 = yc3(t) + z3

and linearizing for small z. This gives

(19) ż = J(t)z

where J(t) denotes the jacobian matrix at the point (0, yc2(t), yc3(t)). It follows
from (17) that J12 = J13 = 0, so that ż1 = J11z1 and then

(20) z1(t) = exp(

∫ t

0

J11(τ)dτ)z1(0).
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It then follows that the invasion of z1 from the vicinity of C amounts to

(21) exp(

∫ T

0

J11(τ)dτ) > 0.

where T is the period of the cycle. On the other hand, a term of commensalism
of y1 on y2 consist in adding to f1 a term of the form ηy1h(y2) where h(y2) is
the functional response (vanishing at the origin and positive for positive y2), and
η denotes a small positive coefficient, allowing linearization). This gives an extra
contribution ηh(xc2(t)) to J11(t), so proving the first part of property a.

Moreover, the extra term ηy1h(y2) in f1 amounts to a perturbation of the vec-
tor field in the direction of the y1 axis, then tangential to the plane y1 = 0. A
computation of the perturbation analogous to the previous one gives obviously no
contribution to the normal perturbation z2 of the cycle on y2 = 0. The properties
of approaching to the plane y2 = 0 are then not modified, which amounts to the
second part of property a.

Here we have an example of the property b. We consider a system analogous to
the previous one, but such that the final attractor A is a point instead of a periodic
cycle, and we add a small term (η = 0.05) in the framework of the above property
b:

(22)

 ẋ = ax(1− x/P )− y1b1 tanh(e1x/b1)− y2b2 tanh(e2x/b2)
ẏ1 = −c1y1 + y1b1 tanh(e1x/b1)
ẏ2 = −c2y2 + y2b2 tanh(e2x/b2)− ηy2y1

with

(23)

 P = 1 + λ1y1b1 tanh(e1x/b1) + λ2y2b2 tanh(e2x/b2)
a = 0.5, b1 = 3.75, b2 = 1.0, e1 = 0.70, e2 = 1.33, η = 0.05
λ1 = 10, λ2 = 6, c1 = 0.72, c2 = 0.86, c1 = 0.72, c2 = 0.86.

An orbit starting from the immediate vicinity of the equilibrium of the preys
alone is shown in Fig 11 and Fig 12 (which are very much analogous to Fig 9 and
Fig 10 unless the attractor A is now a point).

In this example, the role of the small term η (property b) is essential: taking
η = 0 the phenomenon disappears (the three species x, y1, y2 remain in a cyclic
attractor), see fig 13.

8. Complements. Example of a purely dynamical community
accessible using a species that eventually disappears

The previous mechanism is somewhat general, and it may be applied to overcome
a barrier between two attraction basins by adding a new variable which disappears
at the limit (t = +∞). We are giving here an example analogous to the previous
ones, but with three variables at the limit (x, y1, y2, a prey and two predators) plus a
starter (y3, a new predator). The community x, y1, y2, exhibits bi-stability: there is
an attractor A (a periodic cycle) with an attraction basin which is strictly disjoint of
the equilibrium of the preys alone, (P0, 0, 0). This example is somewhat analogous
to the previous one, but with one more predator, which remains in the limit. This
limit problem exhibits the particularity that it has no internal equilibrium point (i.
e., equilibrium with all the variables different from zero). This is in the framework
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Figure 11. An orbit of the system (22) (23) (with a point attrac-
tor) starting nearby E = (1, 0, 0) first go up and then migrates to
the point attractor A = (1.1, 0.6, 0).

Figure 12. The same solution of (22) (23) as a function of t. The
starter y2 first grows and then dies out naturally, whereas y1 re-
mains.
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Figure 13. The same without the term η: there is persistence of
the three species (the attractor is a periodic cycle disjoint of the
coordinate planes).

of the (false, often controverted) competitive exclusion principle; it constitutes a
new counter-example, exhibiting, in addition, bi-stability.

Let us recall a little the context of this problem. It is concerned with the general
question of the possibility of two predators to subsist in a stable way with one prey.

The negation of such a possibility (known as competitive exclusion principle)
comes back to Gause [12], on the basis of heuristic reasons (some difference between
the predators should induce a demographic advantage of one of them, which should
be the survivor in the competition). Nevertheless, since 1974, certain numerical
computations [11] showed in certain cases the presence of stable periodic solutions
involving the three species. In 1977 appeared the celebrated mathematical paper
of McGehee and Armstrong [4], where was proved the existence of an attractor
involving both predators. But the proof was more involved, and the attractor and
the phase portrait were not explicit. The next year appeared two papers [5], [6])
with computations on this kind of solutions, and the falsehood of the exclusion
principle seemed proven. Nevertheless, because of the involved structure of the
solutions and certain topological peculiarities of the attraction basin, the question
was often subject to discussion (see for instance [13] and [9]). In recent times, a
large variety of new examples, often with explicit description of the topology of the
attraction basin was available (see [3], and also [8], [10], [1], [2]).

The next example is then concerned with both this context and creative ex-
tinction. The equations are the same as before (with one more predator and the
obvious notations) with the parameters (we note that the efficiency e3 and the
natural mortality c3 are larger than the others):
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Figure 14. A solution of (24). The starter y3 is initially active
and then dies out and the community x, y1, y2 remains (the prey
x is not represented).

(24)


P = 4 + λ1y1 + λ2y2 + λ3y3

a = 1, b1 = 1.4, b2 = 0.75, b3 = 0.8
e1 = 0.1, e2 = 0.1, e3 = 0.3,
λ1 = 3.5, λ2 = 3.5, λ3 = 2.5
c1 = 0.54, c2 = 0.45. c3 = 0.715

Fig 14 is a plot of the three predators (the prey is not represented). The starter
y3 is practically alone in a first phase of the process; it then dies out, replaced by
the community y1, y2, which remains in the attractor.

This pattern is not very robust; for instance, it holds true only for 0.71 < c3 <
0.72 (the other parameters are fixed).

We can make it a little more robust by adding a small predation term of y2 on
the starter y3 (obviously this disappears at the limit). Here we have an example
of community in x, y1, y2 which is impossible to reach from the equilibrium of the
preys alone (because of bi - stability). It is reached with the starter y3. Fig 15
is a plot of the projection of an orbit on the subspace x, y1, y2 (so, the starter is
not represented). This pattern is somewhat robust (for instance, fixing the other
parameters, we may take 0.52 < c3 < 0.61).

(25)


ẋ = ....
ẏ1 = ....
ẏ2 = ....+ εy2y3

ẏ3 = ....− ηy2y3
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Figure 15. A plot of the projection of an orbit of (25) (26) on the
space x, y1, y2 (so, the starter is not represented). The persistence
is apparent.

with

(26)



ε = 0, η = 0.03
P = 4 + λ1y1 + λ2y2 + λ3y3

a = 1, b1 = 1.4, b2 = 0.75, b3 = 0.8
e1 = 0.1, e2 = 0.1, e3 = 0.3,
λ1 = 3.5, λ2 = 3.5, λ3 = 2.5
c1 = 0.54, c2 = 0.45. c3 = 0.715
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