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Sequential and Swap Mechanisms for Public Housing Allocation with Quotas
and Neighbourhood-based Utilities

NATHANAËL GROSS–HUMBERT, NAWAL BENABBOU,
AURÉLIE BEYNIER, and NICOLAS MAUDET, LIP6 - CNRS, Sorbonne Université, France

We consider the problem of allocating indivisible items to agents where both agents and items are partitioned into disjoint groups.

Following previous works on public housing allocation, each item (or house) belongs to a block (or building) and each agent is assigned

a type (e.g. ethnicity group). The allocation problem consists in assigning at most one item to each agent in a good way while respecting

diversity constraints. Based on Schelling’s seminal work, we introduce a generic individual utility function where the welfare of an agent

not only relies on her preferences over the items but also takes into account the fraction of agents of her own type in her own block. In

this context, we investigate the issue of stability, understood here as the absence of mutually improving swaps, and we define the cost of

requiring it. Then we study the behaviour of two existing allocation mechanisms: an adaptation of the sequential mechanism used in

Singapore and a distributed procedure based on mutually improving swaps of items. We first present the theoretical properties of these

two allocation mechanisms and we then compare their performances in practice through an experimental study.
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1 INTRODUCTION

Fairly dividing indivisible items among agents is a central problem in multiagent systems (see [8], and [5, 24] for recent

surveys). There are often relations connecting both items (e.g. spatial or temporal relations [8]) and agents (e.g. belonging

to the same hierarchical structure, or being of the same type). In public housing allocation problems for instance, agents

get assigned to locations (houses), belonging to blocks (or buildings). They may of course have preferences over those

locations, but importantly, this is also a setting where externalities naturally occur: it makes a difference whether your

friends, for instance, get assigned to the same block as you. While agents may naturally seek the proximity of other

agents of the same type (a phenomenon well-known as homophily), the objective might be opposite at the society level.

From the designer’s perspective, it is indeed often desirable to preserve some diversity. In practice this can be done by

imposing some quotas. Recently, several papers have studied variants of these settings (we review the most relevant

literature below). However to the best of our knowledge, none of them addressed a model where agents are motivated (to

some extent) by such an homophily bias, while the system has a conflicting diversity objective enforced through a system

of quotas. In this paper we undertake the study of such a model. Our main research question is to understand the interplay
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between these notions, and to investigate the behaviour of some existing allocation mechanisms. We place ourselves

in the setting of public housing allocation, and compare (an adaptation of) the existing sequential mechanism used in

Singapore, with a simple swap dynamics whereby agents can exchange items when this is mutually beneficial for them,

until a stable allocation is reached. Stability has been identified as a key feature in market design [22], evidenced by a

number of non-stable mechanisms abandoned in recent history. Specifically, the basic notion of swap stability we study

in this paper is of high practical relevance because the opportunity of an improving exchange is likely to be noticed by

agents (unlike with the stronger notion of Pareto-optimality). This may encourage some of them to perform deals outside

of the mechanism, thus jeopardising its long-term survival, and raising issues of fairness. While the sequential mechanism

used in Singapore is appealing because of its simplicity, we will see that it fails to guarantee swap stability. On the other

hand, we will show that the above mentioned swap dynamics is guaranteed to terminate even when the utility function

accounts for externalities. Our paper explores both theoretically and experimentally how these mechanisms compare,

especially in terms of social welfare, and how combining them might be a viable solution in practice.

1.1 Related work

The seminal work of Schelling [23] describes an agent-based model that explains the emergence of global residential

segregation in metropolitan areas. In the Schelling model, agents are divided into two groups (or types) that might

represent ethnic origins, social characteristics or economic status. The satisfaction of an agent depends on the fraction of

agents of her own type in her neighbourhood. If this fraction is below a given tolerance threshold 𝜏 , then the agent is

unsatisfied. An unsatisfied agent can move to another unoccupied location or can swap with another unsatisfied agent.

Schelling demonstrated that the system converges to large regions of homogeneous agents, i.e. regions composed of

agents of the same type. This phenomenon is observed even when 𝜏 is small.

Chauhan et al. [11] enriched Schelling’s model by allowing the agents to have preferences over locations. While in

Schelling’s model the new location of an agent is chosen at random among satisfying locations, Chauhan et al. considered

strategic agents with two goals. The first goal of an agent is to find a location that exceeds her tolerance threshold. Among

the set of such locations, an agent then tries to be as close as possible to her favourite location. Elkind et al. [13] extended

these models to 𝑘 types of agents and introduced social Schelling games where possible locations are represented by an

undirected graph. Agents are assumed to care only about their location independently of their neighbourhood or to care

only about their surroundings independently of their location. Elkind et al. studied the existence of equilibria on different

graph topologies and they investigated both the Price of Anarchy (PoA) and the Price of Stability (PoS).

In a different paper, Elkind et al. [14] studied the problem of allocating plots of land to agents that have preferences

over the plots and over the number of friends in their neighbourhood. Neighbouring plots are represented as an undirected

graph. Elkind et al. proved that even when all agents assign the same value to all their friends, the problem of maximizing

the social welfare is NP-hard.

Utility functions based on the homogeneity of the surroundings have also been studied in Fractional Hedonic Games

[4, 9, 20]. In such games, each agent assigns a real value to every player and aims to join the coalition which maximizes

the sum of her utilities for the agents of the coalition divided by the size of the coalition. In Simple Fractional Hedonic

Games, all the values assigned to the other agents are either 1 or 0. Such games allow for formalizing social cohesive

groups [4, 18] where each agent wants to maximize the fraction of agents of her own type in the coalition.

Finally, requiring diversity constraints has been recently studied in various two-sided matching settings such as the

course allocation problem, the hospital resident problem and college admissions [26]. Most existing approaches consider

the point of view of mechanism design and propose matching mechanisms guaranteeing desired properties such as fairness
Manuscript submitted to ACM
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[10] or incentive incompatibility [3]. Ágoston et al. [26] proposed integer programming formulations for two-sided

matchings with diversity constraints and studied the stability of the solutions.

Benabbou et al. [6] introduced the public-housing allocation problem under diversity constraints inspired from the

Singaporean public housing system. Each agent has a type (or group) and each item belongs to a block. The allocation of

items to agents has to respect block diversity constraints limiting the percentage of agents of a type in the same block.

The framework is very close to the one studied in this paper but the utility function studied in [6] only considered the

utility for the items (i.e. called the item-based utility in this paper). The authors describe the sequential mechanism used

to allocate new apartments to residents of Singapore and study how diversity constraints impact the social welfare.

1.2 Outline of the paper

This paper is organized as follows: in Section 2, we provide a formal definition of the allocation problem under study and

introduce our general utility model. In Section 3, we study the price of stability, and we show (among other things) that it

is upper bounded by 2 in the general case. In Section 4, we focus on a sequential mechanism that is used to solve real

public housing problems. In particular, we show that it does not always return a stable allocation, and that its worst-case

error (or utility loss) is unbounded in the general case; a tight upper bound is obtained for a special case. In Section 5, we

consider a distributed allocation mechanism based on mutually improving swaps of items, and we show that it always

reaches a stable outcome after a finite number of steps. We also show that its worst-case error is unbounded in the general

case, and a tight upper bound is obtained for a special case. We conclude with some experiments (Section 6) studying the

stability and the efficiency of the existing sequential mechanism, and of the swap-deal mechanism which may possibly

take place after the sequential allocation.

2 OUR MODEL

In this paper, we consider an allocation problem involving a set N of 𝑛 agents, partitioned into a set𝑇 of 𝑘 types𝑇1, . . . ,𝑇𝑘 ,

and a set M of 𝑚 items/houses, partitioned into a set 𝐵 of 𝑙 blocks 𝐵1, . . . , 𝐵𝑙 , where the inequality |N | ≥ |M| holds;

note that it is a realistic assumption, especially when considering the allocation of public goods. We denote by T (𝑖) the

type of any agent 𝑖 ∈ N and by B(ℎ) the block of any item ℎ ∈ M. Following the work of Benabbou et al. [6], diversity

constraints are here defined using type-block capacities/quotas 𝜆𝑝,𝑞 ∈ N, with (𝑝, 𝑞) ∈ [𝑘] × [𝑙], such that 𝜆𝑝,𝑞 stands for

the maximum number of agents of type 𝑇𝑝 allowed in block 𝐵𝑞 . Without loss of generality, we assume that the inequality

𝜆𝑝,𝑞 ≤ |𝐵𝑞 | holds for all (𝑝, 𝑞) ∈ [𝑘] × [𝑙] since it is not possible to assign more than |𝐵𝑞 | items in block 𝐵𝑞 by definition.

We also assume that the inequality
∑
𝑝∈[𝑘 ] 𝜆𝑝,𝑞 ≥ |𝐵𝑞 | holds for all blocks 𝑞 ∈ [𝑙] otherwise all allocations satisfying

diversity constraints would leave some items unassigned.

DEFINITION 1 (VALID ALLOCATION). An allocation 𝐴 : N → 2M is a function that maps every agent 𝑖 ∈ N to a

subset 𝐴(𝑖) ⊂ M of items. An allocation 𝐴 is valid iff:

(1) ∀𝑖 ∈ N , |𝐴(𝑖) | ≤ 1 (each agent gets at most one item).

(2) ∀𝑖, 𝑗 ∈ N , 𝐴(𝑖) ∩𝐴( 𝑗) = ∅ (agents do not share items).

(3)
⋃

𝑖∈N 𝐴(𝑖) = M (all items are assigned).

(4) ∀(𝑝, 𝑞) ∈ [𝑘] × [𝑙], |{𝑖 ∈ 𝑇𝑝 : 𝐴(𝑖) ∈ 𝐵𝑞}| ≤ 𝜆𝑝,𝑞 (diversity constraints are satisfied).

Note that checking whether there exists a valid allocation or not can be performed in polynomial time using a network

flow formulation [6].
Manuscript submitted to ACM
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Utility model. We assume here that the utility 𝑢𝑖 (𝐴) of an agent 𝑖 ∈ N for an allocation 𝐴 has two components:

• 𝑢𝐼
𝑖
(𝐴) ∈ [0, 1]: an item-based utility representing the utility derived by agent 𝑖 for the item 𝐴(𝑖) she receives. If 𝑖

does not receive any item (i.e. 𝐴(𝑖) = ∅), then 𝑢𝐼
𝑖
(𝐴) = 0. For simplicity, we will denote by 𝑢𝐼

𝑖
(ℎ) the item-based

utility of agent 𝑖 for any item ℎ ∈ M.

• 𝑢𝑁
𝑖
(𝐴) ∈ [0, 1] ∩ Q: a neighbour-based utility which is equal to the fraction of agents of type T (𝑖) assigned to

items in block B(𝐴(𝑖)). More formally, when 𝑖 gets an item, it is defined by:

𝑢𝑁𝑖 (𝐴) =
∑

𝑗 ∈N:𝐴( 𝑗) ∈B(𝐴(𝑖)) I(T (𝑖),T ( 𝑗))
|B(𝐴(𝑖)) |

where I(T (𝑖),T ( 𝑗)) equals 1 if agents 𝑖 and 𝑗 have the same type, and equals 0 otherwise. If the agent 𝑖 gets no

item, then 𝑢𝑁
𝑖
(𝐴) = 0.

The utility of agent 𝑖 ∈ N for allocation 𝐴 is defined by:

𝑢𝑖 (𝐴) = 𝑢𝐼𝑖 (𝐴) + 𝜑𝑖 × 𝑢𝑁𝑖 (𝐴)

where 𝜑𝑖 ∈ [0, 1] is called the utility trade-off and is used to define the relative importance of the item-based utility and

the neighbour-based utility. This type of utility function thus allows to model agents which are both concerned by the

item they obtain, as well as their neighbourhood. In this paper, a special focus will be placed on the following two types

of behaviour: item-focused and neighbour-focused agents. Agents are said to be item-focused if they only care about the

item they receive. Agents are said to be neighbour-focused when they only care about the neighbourhood. More formally:

DEFINITION 2 (ITEM-FOCUSED AGENTS). Agent 𝑖 ∈ N is said to be item-focused when 𝜑𝑖 = 0 and 𝑢𝐼 (𝐴) ≠ 0 for

some valid allocation 𝐴.

DEFINITION 3 (NEIGHBOUR-FOCUSED AGENTS). Agent 𝑖 ∈ N is said to be neighbour-focused when 𝜑𝑖 ≠ 0 and

𝑢𝐼 (𝐴) = 0 for every valid allocation 𝐴.

Social welfare. When assessing the welfare of the whole society of agents, we rely on the classical utilitarian social

welfare:

𝑠𝑤 (𝐴) =
∑︁
𝑖∈N

𝑢𝑖 (𝐴)

The house allocation problem with quotas and neighbourhood-based utilities. An instance I of this problem is a tuple

I = ⟨N ,M, 𝐵,𝑇 ,𝑢𝐼 , 𝑢𝑁 , 𝜆, 𝜑⟩ with:

• N ,M, 𝐵,𝑇 as defined above,

• 𝜆 = ⟨𝜆1,1, · · · , 𝜆𝑘,𝑙 ⟩ the [𝑘] × [𝑙] matrix of quotas,

• 𝑢𝐼 = ⟨𝑢𝐼1, · · · , 𝑢
𝐼
𝑛⟩ the item-based utility profile,

• 𝑢𝑁 = ⟨𝑢𝑁1 , · · · , 𝑢𝑁𝑛 ⟩ the neighbour-based utility profile,

• 𝜑 = ⟨𝜑1, · · · , 𝜑𝑛⟩ the utility trade-offs.

Note that the problem of maximizing the utilitarian social welfare is computationally difficult since it is NP-complete

even in the special case where 𝜑𝑖 = 0 for all 𝑖 ∈ N (as proved in [6]). It is also known that the problem of maximizing

the utilitarian social welfare is NP-complete even when the number of agents of each type is at most 2 and there is

only one block with 2 items while all the other blocks contain 1 item (translation of Theorem 3.2 from [14] to our

context). In Appendix A, we propose two mixed-integer linear programs, involving a polynomial number of variables and
Manuscript submitted to ACM
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constraints, for the computation of a valid allocation maximizing the utilitarian social welfare and a stable valid allocation

of maximum utilitarian social welfare. In this paper, we will use the same utility trade-off for all agents (simply denoted

by 𝜑), as a first step in the study of the interplay between our neighbourhood-based utility model and type-block quotas.

The general case considering possibly different utility trade-offs is discussed in Appendix F.

Motivation and relation to the state of the art. Our utility model takes inspiration from the model of [14] but the

differences are important to notice. First, both our type and neighbourhood relations are partitions among agents (“being

of the same type" or “living in the same block"), while they are arbitrary (undirected) graphs in [14]: they would thus

correspond to collections of cliques in their model. [17] studied the dorm assignment problem where a resource is shared

by several agents. They considered a similar utility function to ours where the utility of an agent 𝑖 is defined from the

utility for the resource and but also from externalities depending on the other agents sharing the resource with the agent 𝑖.

In this context, [17] have been interested in Pareto envy-free assignments.

Now regarding the neighbour-based utility specifically, by taking the ratio of agents of the same type, our model is

closer in spirit to the model of Simple Symmetric Fractional Hedonic Games (SSFHG) [4] where each block can be

viewed as a coalition. In such a SSFHG, each agent would assign 1 to an agent of her own type in her own block and 0

to the other agents. The game would be symmetric since for all couples of agents, both agents assign the same value to

each other. However, in our context, the size of the blocks (i.e. the coalitions in a SSFHG) is fixed beforehand. This is an

important difference that distinguishes our work from Fractional Hedonic Games. To compare to [14] again, our setting

would correspond to the binary friendship-uniform and symmetric case (instances where the preferences of an agent for

the others are either 0 or 1, and they are symmetric). Unlike [14], our neighbour-based utility averages the values for the

other agents in the block (i.e. neighbourhood) over the size of the block. This definition is similar to Fractional Hedonic

Games but differs from the friendship utility introduced in [14] except when all blocks have the same size.

Finally, we note that our definition implicitly assumes that an agent counts herself among the agents of her type. To

motivate our choice, consider the situation where the residents of a block have to make decisions locally to their block.

When decisions are taken from a voting rule (the majority rule for instance), an agent would want to form the largest

coalition in the block with agents sharing her opinion or her preferences on possible decisions. Moreover, with this

definition, the model remains consistent when an agent is alone: an agent would prefer to be alone in a small block than in

a large block where it would fear to be ignored. Note that not counting the agent herself would lead to a utility of 0 for

blocks with different sizes leading the agent to be indifferent between these blocks.

We conclude the section with a technical lemma on the largest utility ratio which may occur between any two valid

allocations – it will be useful when analyzing the worst-case utility losses of allocation procedures.

LEMMA 1. The largest utility ratio between any two valid allocations is unbounded in the general setting. When 𝜑 ≠ 0
and 𝑘 is a constant, it is upper bounded by 1+𝜑

𝜑 𝑘 and the bound is tight.

The proof is given in Appendix B. Thus the largest utility ratio between any two valid allocations grows with 𝑘 and

inversely with 𝜑 . For instance, in the Singapore public housing system, agents are partitioned into 𝑘 = 3 types (ethnic

groups), and therefore we already know that the worst-cast error of any house allocation procedure returning a valid

allocation would be upper bounded by 6 when item-based and neighbour-based utilities are given the same importance

(i.e. 𝜑 = 1), whereas it would be upper bounded by 9 when the former is twice as important as the latter (i.e. 𝜑 = 0.5).

Manuscript submitted to ACM
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3 THE PRICE OF STABILITY

A key property of an allocation is stability, whether it is such that no agent would like to deviate from the prescribed

allocation. Roth suggested that stability is an important criterion to develop a successful matching mechanism [22]. In our

context, we shall concentrate on the notion of swap-stability [2, 19]: it shouldn’t be the case that two agents would be

happy to swap their items (i.e perform a swap-deal), resulting in a valid allocation.

DEFINITION 4 (IMPROVING SWAP-DEAL). Given a valid allocation 𝐴, a swap-deal among a pair of agents (𝑖, 𝑗) ∈
N × N is said to be improving if and only if 𝑢𝑖 (𝐴𝑖⇔𝑗 ) >𝑢𝑖 (𝐴) and 𝑢 𝑗 (𝐴𝑖⇔𝑗 ) >𝑢 𝑗 (𝐴), where 𝐴𝑖⇔𝑗 is the allocation

obtained from 𝐴 by swapping the items of agents 𝑖 and 𝑗 .

Note that agents are assumed to be myopic and swap-deals only consider the immediate utility improvement. From a

given valid allocation 𝐴, some improving swap-deals may lead to an invalid allocation due to type-block quotas. We thus

restrict the set of swap-deals that can be applied from an allocation as follows.

DEFINITION 5 (VALID SWAP-DEAL). Given a valid allocation, a swap-deal among a pair of agents (𝑖, 𝑗) ∈ N × N
is valid if and only if the resulting allocation satisfies the diversity constraints.

We can now introduce our stability notion and the price of stability.

DEFINITION 6 (STABLE ALLOCATION). An allocation 𝐴 is stable if and only if there is no valid improving swap-deal

from 𝐴.

The price of stability (PoS) is the largest utility ratio between any valid allocation of maximum social welfare and any

valid stable allocation of maximum social welfare. More formally:

DEFINITION 7 (PRICE OF STABILITY (POS)). The Price of Stability (PoS) is defined by:

𝑃𝑜𝑆 = sup
I

𝑠𝑤 (𝐴∗
I )

𝑠𝑤 (𝐴⊤
I )

where 𝐴∗
I (resp. 𝐴⊤

I ) is the maximum social welfare allocation that is valid (resp. valid and stable) for the instance I.

We begin our analysis with the following positive result.

PROPOSITION 1. PoS = 1 when all agents are item-focused. The same applies to neighbour-focused agents.

PROOF. Here we only need to prove that any valid allocation that maximizes the utilitarian social welfare is stable.

For the case of item-focused agents, the argument is straightforward: if two agents wish to swap and they are allowed to

do so, then implementing the swap would strictly increase the utilities of both agents, while leaving the other utilities

unchanged, which yields an allocation with a strictly larger utility. Therefore any valid allocation maximizing the social

welfare is necessarily stable. For the case of neighbour-focused agents, it can be proved that if two agents wish to swap to

increase their utilities, the utilitarian social welfare will increase by twice as much (the detailed proof is given in Appendix

C). Thus any improving swap-deal would strictly increase the social welfare, which implies that any valid allocation

maximizing the social welfare is necessarily stable. □

Unfortunately, this result no longer holds when we consider the general form of our utility model. In that case, it can be

that two agents have an incentive to swap their items, but that the externalities on other agents make it overall damaging

for social welfare, as shown in the following example.
Manuscript submitted to ACM
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EXAMPLE 1. Consider an instance of the problem with a set of 6 agents N = {1, 2, 3, 4, 5, 6} partitioned into 2 types

𝑇1 = {1, 2, 3},𝑇2 = {4, 5, 6}, and a set of 6 items M = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} partitioned into 2 blocks 𝐵1 = {ℎ1, ℎ2, ℎ3} and

𝐵2 = {ℎ4, ℎ5, ℎ6}. Assume that type-block quotas are defined by 𝜆𝑝,𝑞 = 3 for all (𝑝, 𝑞) ∈ {1, 2} × {1, 2}. Now set 𝜑 = 1 and

define the item-based utilities as follows: 𝑢𝐼1 (ℎ6) =
3
4 , 𝑢𝐼6 (ℎ1) =

3
4 , 𝑢𝐼

𝑖
(ℎ𝑖 ) = 1 for all 𝑖 ∈ {2, 3, 4, 5}, and 𝑢𝐼

𝑖
(ℎ 𝑗 ) = 0 for

any other agent-item pair (𝑖, 𝑗). In the optimal allocation, agents 1, 2 and 3 get assigned to ℎ1, ℎ2, and ℎ3 respectively (in

block 𝐵1), while agents 4, 5, and 6 get assigned to ℎ4, ℎ5, and ℎ6 respectively (in block 𝐵2), leading to a social welfare of

(0+1)+(1+1)+(1+1)+(1+1)+(1+1)+(0+1) = 10. But take agents 1 and 6: by swapping their items, they would gain 3
4 in

terms of item-based utility, and lose 2
3 in terms of neighbour-based utility. Therefore, the allocation is not stable. Observe

that in the resulting allocation𝐴1⇔6, we have 𝑠𝑤 (𝐴1⇔6) = ( 34 +
1
3 )+ (1+

2
3 )+ (1+

2
3 )+ (1+

2
3 )+ (1+

2
3 )+ (

3
4 +

1
3 ) =

53
6 < 10.

On the positive side, we establish the following lower and upper bounds on the price of stability.

PROPOSITION 2. In the general case, 1.6 < 𝑃𝑜𝑆 ≤ 2.

The arguments of the proof exploit notions introduced in the next sections. For readability reasons, we thus defer the

proof of this result in Appendix D.

4 A SEQUENTIAL MECHANISM

In this section, we analyze the sequential procedure presented in [6]1 which is a simplified version of the Singaporean

public housing allocation process: in some random order, the agents sequentially pick the items that maximize their

utilities at the time of their selection, while respecting the diversity constraints (in other words, they are not allowed

to pick items in blocks where type-block quotas are reached). This mechanism, called SEQ-mechanism hereafter, is

an example of a (constrained) random serial dictatorship or random priority procedure [1, 7]. This procedure benefits

from being simple and requires little information about the agents’ preferences: at her turn, an agent only communicates

her most preferred item among the remaining admissible items. This is undoubtedly an advantage as discussed in [22].

However, this mechanism may “waste” some items due to diversity constraints (see Proposition 3), leading to invalid

allocations. Even when it does return a valid allocation, its worst-case utility loss is unbounded in the general case, and is

equal to the largest utility ratio between any two valid allocations when 𝜑 ≠ 0 and 𝑘 is a constant (see Proposition 4).

Moreover, it is not guaranteed to return a stable allocation in the general case (see Propositions 5 and 6).

PROPOSITION 3. SEQ-mechanism does not always return a valid allocation, even when all agents are neighbour-

focused.

PROOF. Consider an instance with a set of 4 neighbour-focused agents N = {1, 2, 3, 4} partitioned into two types

𝑇1 = {1, 2} and 𝑇2 = {3, 4}, a set of 4 items M = {ℎ1, ℎ2, ℎ3, ℎ4} partitioned into two blocks 𝐵1 = {ℎ1, ℎ2} and

𝐵2 = {ℎ3, ℎ4}, and the following type-block capacities: 𝜆1,1 = 𝜆2,1 = 1 (at most one agent per type in block 𝐵1) and

𝜆1,2 = 𝜆2,2 = 2 (at most two agents per type in block 𝐵2). When SEQ-mechanism is runned with agent order (1, 2, 3, 4),
nothing prevent the first two agents from picking the two items available in block 𝐵2, which then forces agent 3 to pick an

item in block 𝐵1, leaving agent 4 unassigned since her quota is reached in block 𝐵1. In that case, the resulting allocation is

not valid as one item remains unassigned. □

Note that SEQ-mechanism always returns a valid allocation when we further assume that type-quotas satisfy inequality∑𝑙
𝑞=1 𝜆𝑝,𝑞 ≤ |𝑇𝑝 | for all 𝑝 ∈ [𝑘]. These inequalities are naturally verified in problems where the number of agents is very

1This mechanism is referred to as “lottery-based” mechanism in [6].
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large compared to the number of items, or when the type-block quotas are somewhat proportional to the percentages

of the groups in the general population (see e.g., [6]). Now we analyze the worst-case utility loss of SEQ-mechanism,

defined as the largest utility ratio between a social welfare optimum and any valid allocation returned by SEQ-mechanism.

PROPOSITION 4. The worst-case utility loss of SEQ-mechanism is unbounded in the general case. When 𝜑 ≠ 0 and 𝑘

is a constant, it reaches the upper bound of Lemma 1.

PROOF. Given a parameter 𝑘 ∈ N, we consider a family of instances with 𝑘 types of agents, 𝑘 blocks of items and 𝑘

items per block (i.e. |𝐵𝑞 | = 𝑘 for all 𝑞 ∈ [𝑙]). All but the first type of agents are composed of exactly 𝑘 agents (i.e. |𝑇𝑝 | = 𝑘

for all 𝑝 ∈ {2, . . . , 𝑘}), whereas the first type 𝑇1 is partitioned into two groups 𝑇 1
1 and 𝑇 2

1 such that |𝑇 1
1 | = 𝑘2 and |𝑇 2

1 | = 𝑘 .

Hence we have 𝑛 = 2𝑘2 agents and 𝑚 = 𝑘2 items. The type-block capacities are as follows: 𝜆1,𝑞 = 𝑘 for all 𝑞 ∈ [𝑙] and

𝜆𝑝,𝑞 = 1 for all 𝑝 ∈ {2, . . . , 𝑘} and all 𝑞 ∈ [𝑙]. Finally, we assume that all agents 𝑖 ∈ N\𝑇 1
1 are neighbour-focused (i.e.,

𝑢𝐼
𝑖
(𝐴) = 0 for any valid allocation 𝐴), while the remaining agents have a utility of 1 for all items (i.e., 𝑢𝐼

𝑖
(𝐴) = 1 for any

valid allocation 𝐴). Obviously, any allocation 𝐴∗ assigning all the items to the agents in 𝑇 1
1 maximizes the utilitarian

social welfare and we have:

𝑠𝑤 (𝐴∗) =
∑︁
𝑖∈𝑇 1

1

(
𝑢𝐼𝑖 (𝐴

∗) + 𝜑𝑢𝑁𝑖 (𝐴∗)
)
=

∑︁
𝑖∈𝑇 1

1

(
1 + 𝜑 × 1

)
= 𝑘2 × (1 + 𝜑)

Now consider some agent order such that all the agents in N\𝑇1 are positioned before the agents in 𝑇 2
1 , which in turn are

all positioned before the agents in 𝑇 1
1 . If SEQ-mechanism is applied with this agent order, then we will obtain a valid

allocation 𝐴 where blocks only include one agent per type, but no agent from 𝑇 1
1 . The corresponding social welfare is:

𝑠𝑤 (𝐴) =
∑︁

𝑖∈N\𝑇 1
1

𝑢𝑖 (𝐴) =
∑︁

𝑖∈N\𝑇 1
1

(
0 + 𝜑 × 1

𝑘

)
= 𝑘2 × 𝜑

1
𝑘
= 𝜑𝑘

Thus the utility loss of SEQ-mechanism is here equal to:

𝑠𝑤 (𝐴∗)
𝑠𝑤 (𝐴) =

𝑘2 × (1 + 𝜑)
𝜑𝑘

=
(1 + 𝜑)

𝜑
𝑘

which is exactly equal to the bound of Lemma 1. Note that it grows linearly with 𝑘 , which means that it is unbounded in

the general case. □

We now focus on stability.

PROPOSITION 5. For some instances, SEQ-mechanism never returns a stable valid allocation, whatever the agent

order (even when there exist valid stable allocations).

PROOF. Consider an instance with a set of 4 agents N = {1, 2, 3, 4} partitioned into 2 types 𝑇1 = {1, 2} and 𝑇2 = {3, 4},

and a set of 4 items M = {ℎ1, ℎ2, ℎ3, ℎ4} partitioned into 2 blocks 𝐵1 = {ℎ1, ℎ2} and 𝐵2 = {ℎ3, ℎ4}. Assume that quotas

are defined by 𝜆1,1 = 1, 𝜆2,1 = 2, 𝜆1,2 = 2 and 𝜆2,2 = 1. Now set 𝜑 = 1 and define the item-based utilities as follows:

𝑢𝐼
𝑖
(ℎ1) = 1, 𝑢𝐼

𝑖
(ℎ2) = 𝑢𝐼

𝑖
(ℎ3) = 𝑢𝐼

𝑖
(ℎ4) = 0.75 for all agents 𝑖 ∈ 𝑇1, and 𝑢𝐼

𝑖
(ℎ3) = 1, 𝑢𝐼

𝑖
(ℎ1) = 𝑢𝐼

𝑖
(ℎ2) = 𝑢𝐼

𝑖
(ℎ4) = 0.75 for

all agents 𝑖 ∈ 𝑇2. Whatever the agent order, the sequential mechanism always returns an allocation with only one agent

per type in each block since the first agent always picks the item for which she has an item-based utility of 1, which is in

the block where her type-block quota is equal to 1. Such an allocation is not stable as the swap-deal among (𝑖, 𝑗) with

𝑖 ∈ 𝑇1 and 𝑗 ∈ 𝑇2 such that 𝐴(𝑖) ∈ 𝐵2 and 𝐴( 𝑗) ∈ 𝐵1 is a valid improving swap-deal. Note that it is easy to check that the

resulting allocation is a valid stable allocation. □
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PROPOSITION 6. SEQ-mechanism does not always return a stable allocation, even when all agents are neighbour-

focused. It always returns a stable allocation when all agents are item-focused.

PROOF. Consider an instance with a set of 4 neighbour-focused agents N = {1, 2, 3, 4} partitioned into 2 types

𝑇1 = {1, 2} and 𝑇2 = {3, 4}, and a set of 4 items M = {ℎ1, ℎ2, ℎ3, ℎ4} partitioned into 2 blocks 𝐵1 = {ℎ1, ℎ2} and

𝐵2 = {ℎ3, ℎ4}. Assume that type-block quotas are defined by 𝜆𝑝,𝑞 = 2 for all (𝑝, 𝑞) ∈ {1, 2} × {1, 2}, which implies that

they are not restrictive in this example. When we run the sequential procedure with agent order (1, 3, 2, 4), we can obtain

an allocation 𝐴 where agents 1 and 3 get an item in block 𝐵1 and agents 2 and 4 get an item in block 𝐵2. In that case, each

agent 𝑖 ∈ N has a utility 𝑢𝑖 (𝐴) = 0 + 𝜑 × 1/2 since the blocks only include one agent per type. Note that agents 2 and 3
would be happy to swap their items as they would get a utility of 0 + 𝜑 × 2/2 > 𝑢𝑖 (𝐴).

When all agents are item-focused, the proof is straightforward: since their utilities do not depend on the choices made

by the other agents, an item-focused agent can only envy an agent that picked an item before her, and therefore it cannot

be the case that two item-focused agents wish to exchange their items. □

5 A SWAP-DEAL MECHANISM

A natural distributed approach in multiagent resource allocation is to start from a valid allocation and let the agents

perform bilateral improving swap-deals until they reach a stable outcome [12, 15, 25]. Swap-deals require very little

coordination: the agents do not need to have full knowledge about the utilities and allocation of the other agents, and only

two agents have to interact to make a swap. Under such swap mechanisms, the agents have an initial (valid) endowment,

which reflects the current state of affairs; for the Singaporean public housing allocation problem, it could be the outcome

of the sequential mechanism, as we just proved that it may not be stable (see Propositions 5 and 6). Here we focus on a

simple swap-deal mechanism where at each step, pairs of agents meet randomly and perform swap-deals if possible; this

mechanism will be called SWAP-mechanism hereafter.

When all agents are item-focused or neighbour-focused, it follows from the proof of Proposition 1 that SWAP-

mechanism will converge to a stable outcome (as any improving swap strictly increases the social welfare). In the general

case, our example showing that valid improving swap-deals may decrease social welfare suggests that convergence may

not occur (see Example 1). Still, we can prove that the SWAP-mechanism converges to a stable outcome.

PROPOSITION 7. In the general case, SWAP-mechanism will provably reach a stable outcome.

PROOF. It can be proved that the SWAP-mechanism will always reach an equilibrium by analyzing the potential

function 𝑝𝑜𝑡 defined by:

𝑝𝑜𝑡 (𝐴) = 𝑠𝑤 (𝐴) +
∑︁
𝑖∈N

𝑢𝐼𝑖 (𝐴)

for any valid allocation 𝐴. To do so, consider some non-stable allocation 𝐴 and some valid improving swap-deal between

two agents. Let 𝐴′ denote the allocation obtained after the swap-deal is performed. The variation in social welfare

Δ𝑈 = 𝑠𝑤 (𝐴′) − 𝑠𝑤 (𝐴) can be decomposed as follows:

Δ𝑈 = 𝜑 (Δ𝑈1 + Δ𝑈2) + Δ𝑈3

where Δ𝑈1 (resp. Δ𝑈2) is the variation in the neighbour-based utilities of the agents who participate (resp. do not

participate) in the swap-deal, and Δ𝑈3 is the variation in the item-based utilities of the two agents participating in the

swap-deal (the item-based utilities do not change for the other agents). We know that Δ𝑈1 = Δ𝑈2 (see the detailed proof
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of Proposition 1 given in the supplementary materials), we can thus determine that:

𝑝𝑜𝑡 (𝐴′) − 𝑝𝑜𝑡 (𝐴) = 𝑠𝑤 (𝐴′) − 𝑠𝑤 (𝐴) +
∑︁
𝑖∈N

𝑢𝐼𝑖 (𝐴
′) −

∑︁
𝑖∈N

𝑢𝐼𝑖 (𝐴)

= Δ𝑈 + Δ𝑈3

= 𝜑Δ𝑈1 + 𝜑Δ𝑈2 + Δ𝑈3 + Δ𝑈3

= 2(Δ𝑈3 + 𝜑Δ𝑈1)

Since Δ𝑈3 + 𝜑Δ𝑈1 is the increase in utility of the two agents swapping, it is strictly positive (by definition of improving

swap-deals). Thus, 𝑝𝑜𝑡 strictly increases after each swap-deal. Since 𝑝𝑜𝑡 is upper bounded by 3|M| and the number of

valid allocations is finite, we will reach an equilibrium after a finite number of steps. □

Now we analyze the worst-case loss of SWAP-mechanism, i.e. the largest utility ratio between a social welfare optimum

and any (valid) allocation returned by SWAP-mechanism.

PROPOSITION 8. The worst-case utility loss of SWAP-mechanism is unbounded in the general case. When 𝜑 ≠ 0 and

𝑘 is a constant, it reaches the upper bound of Lemma 1.

The proof of Proposition 8 is given in Appendix E. Now we analyze the price of Price of Anarchy (PoA) [16], which is

here defined as the largest utility ratio between any valid allocation and any valid stable allocation:

DEFINITION 8 (PRICE OF ANARCHY (POA)). The Price of Anarchy (PoA) is defined by:

𝑃𝑜𝐴 = sup
I

𝑠𝑤 (𝐴∗
I )

𝑠𝑤 (𝐴⊥
I )

where 𝐴∗
I (resp 𝐴⊥

I ) is a valid allocation (resp. valid stable allocation) of instance I which maximizes (resp. minimizes)

the social welfare.

In other words, the PoA (resp. PoS) is the largest utility ratio between any social welfare optimum and one of the worst

(resp. best) valid stable allocations. From Lemma 1 and Proposition 8, one can directly derive the following result on the

PoA:

COROLLARY 1. The PoA is unbounded in the general case. When 𝜑 ≠ 0 and 𝑘 is a constant, it is upper bounded by
1+𝜑
𝜑 𝑘 and the upper bound is tight.

6 EXPERIMENTS

In this section, we report the results of numerical tests aiming to evaluate the practical performances of the following

allocation mechanisms:

• RSEQ: in some random order, the agents sequentially select items at random while respecting the diversity

constraints. This procedure will be used as a baseline, generating random allocations using an approach similar to

that of SEQ-mechanism.

• SEQ: SEQ-mechanism, as described in Section 4, where in some random order, the agents sequentially select the

items maximising their utilities while respecting the diversity constraints.

• RSEQ+SWAP: the two-phase procedure consisting in first running RSEQ and then applying SWAP-mechanism.

• SEQ+SWAP: the two-phase procedure consisting in first running SEQ and then applying SWAP-mechanism.
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These four mechanisms are compared in terms of utilitarian social welfare in Sections 6.1 and 6.2. In Section 6.1, we

consider random instances involving only 40 houses/agents, so as to be able to compute the utilitarian social welfare

optimum and empirical price of stability (using the linear programs given in Appendix A). In Section 6.2, these four

mechanisms are compared using a real dataset from Singapore real estate, which involves 1350 houses. In Section 6.3, we

compare RSEQ+SWAP and SEQ+SWAP in terms of number of swaps that are needed to reach a stable allocation; we

generate synthetic datasets of different sizes to study the impact of the number of items/agents on the number of swaps.

6.1 Empirical price of stability and comparison of allocation mechanisms

In this subsection, we consider small instances of the house allocation problem with quotas and neighbourhood-based

utilities, which allows us to compute the social welfare optimum and empirical price of stability (using the linear programs

given in Appendix A). More precisely, we generate 30 instances with 40 houses partitioned into 𝑙 = 5 blocks of same size,

and 40 agents partitioned into 𝑘 = 5 types of same size. The type-block quotas are set to 𝜆𝑝,𝑞 = 2 for all 𝑝, 𝑞 ∈ [5]. The

item-based utilities are uniformly drawn in [0, 1]. We consider two utility trade-offs: 𝜑 = 0.5 and 𝜑 = 1.

For these instances, we have computed the empirical price of stability and it turns out to be exactly equal to 1 —in other

words, the social welfare optimum is stable in every generated instance. Table 1 reports the averaged utility loss incurred by

the four allocation mechanisms, i.e. the utility ratio between the social welfare optimum and the valid allocation returned

by the mechanism2. In this table, we observe that RSEQ is outperformed by SEQ, RSEQ+SWAP and SEQ+SWAP, which

have relatively similar performances on random data. More precisely, their averaged utility losses are relatively close to

the empirical price of stability (when compared to that of RSEQ), and very far from the theoretical upper bound given

in Lemma 1 (which is equal to 1+1
1 × 5 = 10 for 𝜑 = 1 and to 1+0.5

0.5 × 5 = 15 for 𝜑 = 0.5). However, the averaged utility

losses of SEQ and SEQ+SWAP increase with 𝜑 , whereas RSEQ+SWAP is relatively constant. This is mainly due to the

fact that the first agents selecting items under SEQ-mechanism have no vision on their future neighbourhoods, and they

are not allowed to switch items afterwards (the loss is reduced when applying SWAP right after).

RSEQ SEQ RSEQ+SWAP SEQ+SWAP

𝜑 = 0.5 1.757 ± 0.144 1.073 ± 0.028 1.101 ± 0.023 1.069 ± 0.029
𝜑 = 1 1.695 ± 0.118 1.084 ± 0.027 1.102 ± 0.026 1.074 ± 0.021

Table 1. Averaged utility losses on random instances.

6.2 Comparison of mechanisms on real data from Singapore real estate

In this part, we use a dataset from Singapore real estate, with 𝑚 = 1350 houses partitioned into 𝑙 = 9 blocks/buildings

of size 128, 162, 156, 249, 108, 94, 104, 190, and 159 respectively (see [6] for a complete description of the dataset).

The set N of agents is divided into 𝑘 = 3 types of size |𝑇1 | = 0.74 × 𝑛, |𝑇2 | = 0.13 × 𝑛, and |𝑇3 | = 0.13 × 𝑛 (following the

2010 Singapore census report), where 𝑛 = 2700 is the number of agents applying for a house. The type-block quotas are

defined by 𝜆1𝑞 = 0.87× |𝐵𝑞 |, 𝜆2𝑞 = 0.25× |𝐵𝑞 |, and 𝜆3𝑞 = 0.15× |𝐵𝑞 | for all blocks 𝑞 ∈ [𝑙] (as defined by the Housing and

Development Board in Singapore). In our tests, we set 𝜑 to 1, and for the item-based utilities, we consider the following

two utility models (introduced in [6]):

2RSEQ and SEQ needed to be run respectively 1.87 ± 1.74 and 1.83 ± 1.29 times on average to obtain a valid allocation.
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• The distance-based utility model (Dist(𝜎2)): in this model, each agent 𝑖 has a preferred geographic location 𝑝𝑖 ,

uniformly drawn at random in [0, 10]2. The utility derived by agent 𝑖 for item ℎ in block 𝐵𝑞 is then generated

according to a normal distribution: N(1/𝑑 (𝑝𝑖 , 𝐿(𝐵𝑞)), 𝜎2) where 𝐿(𝐵𝑞) is the location of block 𝐵𝑞 and 𝑑 (·) is the

Euclidean distance.

• The ethnicity-based utility model (Ethn(𝜎2)): in this model, all agents of the same type have the same preferred

location.

We consider two values of 𝜎2 (variance): 0.01 and 1. In Table 2, we report the social welfare3 of the allocations constructed

by the four allocation mechanisms, averaged over 30 runs. In this table, we observe that RSEQ is here also outperformed

by SEQ, RSEQ+SWAP, and SEQ+SWAP, in terms of social welfare. The latter three allocation procedures achieve

similar performances on all settings, except for Dist(0.01) where SEQ is significantly less efficient than SEQ+SWAP and

RSEQ+SWAP. This is due to the fact that agents of the same type have very different item-based utility values under

Dist(0.01), which makes them choose different blocks at the first iteration steps of SEQ. Interestingly though, adding

SWAP after SEQ allows to significantly improve the social welfare in that case.

Dist(𝜎2) Ethn(𝜎2)

𝜎2 = 0.01 𝜎2 = 1 𝜎2 = 0.01 𝜎2 = 1
RSEQ 903 ± 14 1465 ± 43 1133 ± 84 1466 ± 41
SEQ 989 ± 23 1678 ± 60 1264 ± 99 1706 ± 60

RSEQ+SWAP 1057 ± 19 1659 ± 58 1242 ± 93 1684 ± 55
SEQ+SWAP 1072 ± 23 1690 ± 61 1268 ± 101 1716 ± 61

Table 2. Averaged social welfare values on the dataset from Singapore real estate.

6.3 Empirical number of swaps

Now we analyse the number of swaps needed by SWAP-mechanism to reach a stable allocation. More precisely, we

compare RSEQ+SWAP and SEQ+SWAP on randomly generated instances with 𝑙 = 10 blocks of equal size, varying

the number of agents/items from 100 to 1400 (in steps of 100). The set of agents is divided into 𝑘 = 3 types of size

|𝑇1 | = 0.74×𝑛, |𝑇2 | = 0.13×𝑛, and |𝑇3 | = 0.13×𝑛, and type-block quotas are defined by 𝜆1𝑞 = 0.87×|𝐵𝑞 |, 𝜆2𝑞 = 0.25×|𝐵𝑞 |,
and 𝜆3𝑞 = 0.15 × |𝐵𝑞 | for all blocks 𝑞 ∈ [𝑙] (following the dataset from Singapore real estate). Item-based utilities are

uniformly drawn at random within [0, 1] and 𝜑 is set to 1.

In Figure 1, we report the results obtained on 20 instances (for every value of 𝑛), and linear regressions are applied on

the corresponding data points:

• For the blue points (RSEQ+SWAP), we obtain a slope of 1.88, an intercept of -141.20 and a correlation factor of

0.998 (very high correlation);

• For the red points (SEQ+SWAP), we obtain a slope of 0.08, an intercept of 43.53, and a correlation factor of 0.74

(high correlation).

3We do not report the averaged utility losses here, as it was not possible to compute the social welfare optimum efficiently using our linear programming
formulation (due to the high number of agents/items).
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Thus for both procedures, the number of swaps grows linearly with the number of agents in practice. However, SEQ+SWAP

is here clearly the best procedure as it requires far fewer swaps than RSEQ+SWAP to reach a stable outcome. In fact, that

number grows very moderately as the size of the instance augments.

Other experiences were made with constant numbers of agents, items and types, but varying the number of blocks. The

results suggested that the number of blocks has almost no impact on the empirical time complexity of SWAP-mechanisms.

Fig. 1. Linear regression on the number of swaps needed to reach an equilibrium.

7 CONCLUSION

This paper investigated a model where, while agents have an homophily component in their utility function (whose

relative importance is determined by a parameter 𝜑), there is a society-wide objective to promote diversity (in that case,

through the use of quotas). Our work has connection to (and takes inspiration from) a number of recent works, but it

is unique in the combination of these different features. We analyse the properties of two mechanisms: the sequential

approach used in Singapore, and the swap-deal approach letting agents exchange their items when this is beneficial. While

both exhibit the same worst-case loss (in terms of social utility), this does not mean that the two algorithms are equivalent:

we show in particular that the sequential algorithm has several drawbacks, among which the lack of swap stability is

certainly the most annoying, as agents can rather easily notice it, and (justifiably) ask for explanations. An easy patch is

thus to let agents swap until a stable allocation is reached – but is there such a guarantee? We show that this is the case,

despite the fact that swaps may actually decrease social welfare. In other words, stability comes at a price. We provided an

upper bound on this price that supports the stability requirement since the worst-case price is constant and quite low. As

suggested in the introduction, another compelling argument in favour of a stable mechanism is indeed that in the absence

of this property agents may develop their own system to perform swaps. However, such a system would be unlikely to be

inclusive, raising concerns of fairness – did anyone really get a chance to swap? This issue happened in practice in the

Netherland in 2015, as reported in [21], when “an Amsterdam court ruled (...) that students going to high school aren’t

allowed to trade places with each other at different schools.” Our results suggest that it may be possible to avoid this

issue by allowing swaps in a second phase after the sequential mechanism, as long as they are implemented through a

legitimate platform guaranteeing equal access to all users. A challenging issue is to identify actual swap opportunities,

but this can be done by eliciting preferences from users on a voluntary basis. In France, web platforms have recently
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been developed to make easier the exchange of lands between farmers4 and the exchange of public housings in Ile de

France5. These websites connect the agents and make swaps easier. A related issue which we didn’t touch upon here is

the problem of manipulability. Finally, there are of course several other metrics which could refine our understanding

of the relative merits of these algorithms, for instance it would be good to study various fairness measures. Another

interesting issue would be to investigate settings where different agents may have different homophily biases, i.e. different

utility trade-offs 𝜑 . In Appendix F we show how such problems can be mapped to the setting where 𝜑 is the same for all

agents, and discuss which results gets affected by this translation. Finally, while diversity is only assessed through the

satisfaction of quotas in this paper, a more ambitious research agenda would be to investigate the interplay between (a

metric of) diversity and utility, for instance by adjusting the quota thresholds.
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[1] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship and the core from random endowments in house allocation problems.

Econometrica, 66(3):689–701, 1998.
[2] Aishwarya Agarwal, Edith Elkind, Jiarui Gan, and Alexandros A. Voudouris. Swap stability in schelling games on graphs. In Proceedings of the 34th

AAAI Conference on Artificial Intelligence, AAAI 2020, pages 1758–1765, 2020.
[3] Orhan Aygun and Inácio Bó. College admission with multidimensional privileges: The brazilian affirmative action case. Game Theory & Bargaining

Theory eJournal, 2019.
[4] Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik Peters. Fractional hedonic games. ACM Trans. Econ. Comput.,

7(2), June 2019.
[5] Haris Aziz. Developments in multi-agent fair allocation. In Proceedings of The 34th AAAI Conference on Artificial Intelligence, AAAI 2020, pages
13563–13568, New York, NY, USA, 2020. AAAI Press.

[6] Nawal Benabbou, Mithun Chakraborty, Xuan-Vinh Ho, Jakub Sliwinski, and Yair Zick. Diversity constraints in public housing allocation. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS’18, page 973–981, 2018.

[7] Anna Bogomolnaia and Hervé Moulin. A new solution to the random assignment problem. Journal of Economic Theory, 100(2):295 – 328, 2001.
[8] Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Dominik Peters. Fair division of a graph. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, IJCAI’17, pages 135–141, 2017.
[9] Robert Bredereck, Edith Elkind, and Ayumi Igarashi. Hedonic diversity games. In Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS’19, page 565–573, 2019.
[10] Inácio Bó. Fair implementation of diversity in school choice. Games and Economic Behavior, 97:54 – 63, 2016.
[11] Ankit Chauhan, Pascal Lenzner, and Louise Molitor. Schelling segregation with strategic agents. In Algorithmic Game Theory, pages 137–149.

Springer International Publishing, 2018.
[12] Anastasia Damamme, Aurélie Beynier, Yann Chevaleyre, and Nicolas Maudet. The power of swap deals in distributed resource allocation. In

Proceedings of 14th International Conference on Au-tonomous Agents and MultiAgent System, 2015.
[13] Edith Elkind, Jiarui Gan, Ayumi Igarashi, Warut Suksompong, and Alexandros A. Voudouris. Schelling games on graphs. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI’19, pages 266–272, 7 2019.
[14] Edith Elkind, Neel Patel, Alan Tsang, and Yair Zick. Keeping your friends close: Land allocation with friends. In Christian Bessiere, editor,

Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI’20, pages 318–324, 7 2020.
[15] Ulle Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Negotiating socially optimal allocations of resources. Journal of artificial intelligence

research, 2006.
[16] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Christoph Meinel and Sophie Tison, editors, Proceedings of the 16th

Symposium on Theoretical Aspects of Computer Science, STACS, pages 404–413, 1999.
[17] Bo Li and Yingkai Li. Fair resource sharing and dorm assignment. In Proceedings of the 19th International Conference on Autonomous Agents and

MultiAgent Systems, AAMAS ’20, page 708–716, Richland, SC, 2020. International Foundation for Autonomous Agents and Multiagent Systems.
[18] Jiamou Liu and Ziheng Wei. Network, popularity and social cohesion: A game-theoretic approach. In Proceedings of the 31st AAAI Conference on

Artificial Intelligence, AAAI’17, pages 600–606, 2017.
[19] Sagar Massand and Sunil Simon. Graphical one-sided markets. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,

IJCAI’19, 2019.

4https://www.echangeparcelle.fr
5https://www.echangerhabiter.fr

Manuscript submitted to ACM

https://www.echangeparcelle.fr
https://www.echangerhabiter.fr


Sequential and Swap Mechanisms for Public Housing Allocation with Quotas and Neighbourhood-based Utilities 15

[20] M. Olsen. On defining and computing communities. In Proceedings of the 18th Computing: Australian Theory Symposium (CATS), pages 97–102,
2012.

[21] Ronald de Haan. Why a Dutch court stopped high school students from swapping schools. https://medium.com/social-choice/why-a-dutch-court-
stopped-high-school-students-from-\exchanging-schools-1315303a48b6, 2017. Accessed: 2020-10-08.

[22] Alvin E. Roth. The economist as engineer: Game theory, experimental economics and computation as tools of design economics. Econometrica,
4:1341–1378, July 2002.

[23] Thomas C. Schelling. Models of segregation. The American Economic Review, 59(2):488–493, 1969.
[24] Toby Walsh. Fair division: The computer scientist’s perspective. In Christian Bessiere, editor, Proceedings of the 29th International Joint Conference

on Artificial Intelligence, IJCAI 2020, pages 4966–4972, 2020.
[25] Xiaoming Zheng and Sven Koenig. K-swaps: Cooperative negotiation for solving task-allocation problems. In Proceedings of the 21st International

Joint Conference on Artificial Intelligence, IJCAI’09, pages 373–379, 2009.
[26] Kolos Csaba Ágoston, Péter Biró, and Richárd Szántó. Stable project allocation under distributional constraints. Operations Research Perspectives,

5(C):59–68, 2018.

A MIXED-INTEGER-LINEAR PROGRAMMING FORMULATIONS

In order to compute a valid allocation of maximum utilitarian social welfare, one can use the following mixed-integer

linear program (involving only a polynomial number of variables/constraints):

max
∑︁
𝑖∈N

∑︁
ℎ∈M

𝑥𝑖ℎ × 𝑢𝐼𝑖 (ℎ) + 𝜑
∑︁
𝑖∈N

∑︁
𝑗 ∈T (𝑖)

∑︁
𝑞∈[𝑙 ]

𝑠𝑖 𝑗𝑞

|𝐵𝑞 |
(1)

s. t.
∑︁
ℎ∈M

𝑥𝑖ℎ ≤ 1 ∀𝑖 ∈ N (2)∑︁
𝑖∈N

𝑥𝑖ℎ = 1 ∀ℎ ∈ M (3)∑︁
𝑖∈𝑇𝑝

∑︁
ℎ∈𝐵𝑞

𝑥𝑖ℎ ≤ 𝜆𝑝,𝑞 ∀𝑝 ∈ [𝑘], 𝑞 ∈ [𝑙] (4)

𝑏𝑖𝑞 =
∑︁
ℎ∈𝐵𝑞

𝑥𝑖ℎ ∀𝑖 ∈ N , 𝑞 ∈ [𝑙] (5)

𝑠𝑖 𝑗𝑞 ≤ 𝑏𝑖𝑞 ∀𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙] (6)

𝑠𝑖 𝑗𝑞 ≤ 𝑏 𝑗𝑞 ∀𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙] (7)

𝑥𝑖ℎ ∈ {0, 1}, 𝑏𝑖𝑞 ∈ {0, 1}, 𝑠𝑖 𝑗, ∈ {0, 1} ∀𝑖, 𝑗 ∈ N , ℎ ∈ M (8)

where 𝑥𝑖ℎ , 𝑏𝑖,𝑞 and 𝑠𝑖 𝑗𝑞 , with 𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙], are the variables of the program (see Equation (8)). Variable 𝑥𝑖ℎ is equal to

one if item ℎ is assigned to agent 𝑖. Variable 𝑏𝑖,𝑞 is equal to 1 if agent 𝑖 is assigned to an item in block 𝐵𝑞 . Variable 𝑠𝑖 𝑗𝑞 is

equal to one if agents 𝑖 and 𝑗 are both assigned to block 𝐵𝑞 . Equation (2) is used to ensure that every agent is assigned

to at most one item, while Equation (3) ensures that every item is assigned to one agent. Equation (4) corresponds to

type-block quotas. Equation (5) imposes that variables 𝑏𝑖𝑞 are equal to 1 if and only if agent 𝑖 is assigned to an item in

block 𝐵𝑞 . Equations (6-7) are used to ensure that boolean variables 𝑠𝑖 𝑗𝑞 are equal to 0 when agents 𝑖 or 𝑗 are not in 𝐵𝑞 ,

and to 1 otherwise (since the objective function is to be maximized).

Now we propose the following mixed-integer program for finding a valid stable allocation of maximum utilitarian

social welfare.
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max
∑︁
𝑖∈N

∑︁
ℎ∈M

𝑥𝑖ℎ × 𝑢𝐼𝑖 (ℎ) + 𝜑
∑︁
𝑖∈N

∑︁
𝑗 ∈T (𝑖)

∑︁
𝑞∈[𝑙 ]

𝑠𝑖 𝑗𝑞

|𝐵𝑞 |
(9)

s.t.
∑︁
ℎ∈M

𝑥𝑖ℎ = 1 ∀𝑖 ∈ N (10)∑︁
𝑖∈N

𝑥𝑖ℎ = 1 ∀ℎ ∈ M (11)∑︁
𝑖∈𝑇𝑝

∑︁
ℎ∈𝐵𝑞

𝑥𝑖ℎ ≤ 𝜆𝑝𝑞 ∀𝑝 ∈ [𝑘], 𝑞 ∈ [𝑙] (12)

𝑏𝑖𝑞 =
∑︁
ℎ∈𝐵𝑞

𝑥𝑖ℎ ∀𝑖 ∈ N , 𝑞 ∈ [𝑙] (13)

𝑠𝑖 𝑗𝑞 ≤ 𝑏𝑖𝑞 ∀𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙] (14)

𝑠𝑖 𝑗𝑞 ≤ 𝑏 𝑗𝑞 ∀𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙] (15)

𝑐𝑖 𝑗1 ≥
∑︁
ℎ∈M

(𝑥 𝑗ℎ − 𝑥𝑖ℎ) × 𝑢𝐼𝑖 (ℎ)

+ 𝜑
∑︁
𝑞∈[𝑙 ]

©­«
𝑏 𝑗𝑞−𝑠𝑖 𝑗𝑞

|𝐵𝑞 |
+

∑︁
𝑎∈T (𝑖)\{ 𝑗 }

𝑠 𝑗𝑎𝑞

|𝐵𝑞 |
−
∑︁

𝑎∈T (𝑖)

𝑠𝑖𝑎𝑞

|𝐵𝑞 |
ª®¬ ∀𝑖, 𝑗 ∈ N (16)

𝑐𝑖 𝑗2 ≥
∑︁
ℎ∈M

(𝑥𝑖ℎ − 𝑥 𝑗ℎ) × 𝑢𝐼𝑗 (ℎ)

+ 𝜑
∑︁
𝑞∈[𝑙 ]

©­«
𝑏𝑖𝑞−𝑠𝑖 𝑗𝑞

|𝐵𝑞 |
+

∑︁
𝑎∈T ( 𝑗)\{𝑖 }

𝑠𝑖𝑎𝑞

|𝐵𝑞 |
−

∑︁
𝑎∈T ( 𝑗)

𝑠 𝑗𝑎𝑞

|𝐵𝑞 |
ª®¬ ∀𝑖, 𝑗 ∈ N (17)

𝑐𝑖 𝑗3 × Λ≥
∑︁
𝑞∈[𝑙 ]

©­«𝜆𝑇 (𝑖)𝑞 × 𝑏 𝑗𝑞 −
∑︁

𝑎∈𝑇 (𝑖)
𝑠 𝑗𝑎𝑞

ª®¬ ∀𝑖, 𝑗 ∈N , 𝑗 ∉T (𝑖) (18)

𝑐𝑖 𝑗4 × Λ≥
∑︁
𝑞∈[𝑙 ]

©­«𝜆𝑇 ( 𝑗)𝑞 × 𝑏𝑖𝑞 −
∑︁

𝑎∈𝑇 ( 𝑗)
𝑠𝑖𝑎𝑞

ª®¬ ∀𝑖, 𝑗 ∈N , 𝑗 ∉T (𝑖) (19)

4∑︁
𝑟=1

𝑐𝑖 𝑗𝑟 ≤ 3 ∀𝑖, 𝑗 ∈ N (20)

𝑥𝑖ℎ ∈ {0, 1} ∀𝑖 ∈ N , ℎ ∈ M (21)

𝑏𝑖𝑞 ∈ {0, 1}, 𝑠𝑖 𝑗𝑞 ∈ {0, 1} ∀𝑖, 𝑗 ∈ N , 𝑞 ∈ [𝑙] (22)

𝑐𝑖 𝑗𝑟 ∈ {0, 1} ∀𝑖, 𝑗 ∈ N , 𝑟 ∈ [4] (23)

where 𝑥𝑖ℎ , 𝑏𝑖𝑞 , 𝑠𝑖 𝑗𝑞 , and 𝑐𝑖 𝑗𝑟 , with 𝑖, 𝑗 ∈N , 𝑞 ∈ [𝑙], 𝑟 ∈ [4], are the variables of the program, and Λ is a constant defined by

Λ = max𝑝∈[𝑘 ],𝑞∈[𝑙 ] 𝜆𝑝𝑞 . Variables 𝑥𝑖ℎ , 𝑏𝑖𝑞 and 𝑠𝑖 𝑗𝑞 are defined as before. Boolean variables 𝑐𝑖 𝑗𝑟 , with 𝑟 ∈ [4], are used to

ensure stability. More precisely, for any two agents 𝑖, 𝑗 ∈N :

• 𝑐𝑖 𝑗1 is equal to 1 if and only if 𝑖 prefers the item assigned to agent 𝑗 to hers (Equation (16)).

• 𝑐𝑖 𝑗2 is equal to 1 if and only if 𝑗 prefers the item assigned to agent 𝑖 to hers (Equation (17)).
Manuscript submitted to ACM
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• 𝑐𝑖 𝑗3 is equal to 1 if and only if type-block quotas allow agent 𝑖 to receive the item assigned to agent 𝑗 (Equation

(18)).

• 𝑐𝑖 𝑗4 is equal to 1 if and only if type-block quotas allow agent 𝑗 to receive the item assigned to agent 𝑖 (Equation

(19)).

Equation (20) is used to check that at least one condition is not verified. If they are all verified, then there is a valid

improving swap deal between 𝑖 and 𝑗 , which means that the allocation is not stable.

B PROOF OF LEMMA 1

PROOF. First, let us prove that the largest utility ratio between any two valid allocations is unbounded in the general

case. Given a parameter 𝑘 ∈ N, we consider a family of problem instances I𝑘 with 𝑘 types of agents, 𝑘 agents per type

(i.e. |𝑇𝑝 | = 𝑘 for all 𝑝 ∈ [𝑘]), 𝑘 blocks of items, 𝑘 items per block (i.e. |𝐵𝑞 | = 𝑘 for all 𝑞 ∈ [𝑙]) and type-block capacities

𝜆𝑝,𝑞 = 𝑘 for all 𝑝 ∈ [𝑘] and 𝑞 ∈ [𝑙]. Thus, we have 𝑛 = 𝑘2 agents and𝑚 = 𝑘2 items in total, and type-block quotas are not

restrictive.

Let each type of agents and each block of goods be ordered so that we can call 𝑎𝑝,𝑖 the agent number 𝑖 of type 𝑝 and

𝑏𝑞,𝑗 the good number 𝑗 of block 𝑞.

Assume that the agents’ item-based utilities are defined by:

𝑢𝐼𝑝,𝑖 (𝐴) =

1 if item 𝐴(𝑝, 𝑖) = 𝑏𝑞,𝑗 is in such that 𝑝 = 𝑞 and 𝑖 ≠ 𝑗,

0 otherwise.

and 𝜑 ≠ 0. Obviously, any allocation 𝐴 such that 𝐴(𝑝, 𝑖) = 𝑏𝑝,𝑖+1[𝑘 ] for all agents 𝑖 ∈ N is valid and maximizes the

utilitarian social welfare (every agent receives an item with top utility and blocks are only composed of agents of the

same type). Let 𝐴∗
I𝑘 be some optimal allocation of instance I𝑘 . By definition, we have:

𝑠𝑤 (𝐴∗
I𝑘 ) =

𝑘∑︁
𝑝=1

𝑘∑︁
𝑖=1

(
𝑢𝐼𝑝,𝑖 (𝐴

⊤
I𝑘 ) + 𝜑𝑢𝑁𝑝,𝑖 (𝐴

⊤
I𝑘 )

)
=

𝑘2∑︁
𝑖=1

(1 + 𝜑 × 1)

=

𝑘2∑︁
𝑖=1

(1 + 𝜑)

= 𝑘2 (1 + 𝜑)
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Now consider any allocation 𝐴𝑘 such that each block only includes one agent per type, and such that, in each bloc q, the

agent 𝑎𝑞,𝑖 is allocated to a good 𝑏𝑞,𝑗 with 𝑗 = 𝑖. Allocation 𝐴𝑘 is obviously valid, and we have:

𝑠𝑤 (𝐴𝑘 ) =
𝑘∑︁

𝑝=1

𝑘∑︁
𝑖=1

(
𝑢𝐼𝑝,𝑖 (𝐴𝑘 ) + 𝜑𝑢𝑁𝑝,𝑖 (𝐴𝑘 )

)
=

𝑘∑︁
𝑝=1

𝑘∑︁
𝑖=1

(
0 + 𝜑 × 1

B(𝐴𝑘 (𝑝, 𝑖))

)
=

𝑘2∑︁
𝑖=1

𝜑
1
𝑘

= 𝜑𝑘

Therefore, for instance I𝑘 , we have:
𝑠𝑤 (𝐴∗

I𝑘 )
𝑠𝑤 (𝐴𝑘 )

=
𝑘2 (1 + 𝜑)

𝜑𝑘
=

1 + 𝜑

𝜑
𝑘

Since this utility ratio grows linearly with 𝑘 , the largest utility ration between any two valid allocations is unbounded in

the general case.

Now, let us prove that 1+𝜑
𝜑 𝑘 is a tight upper bound when 𝑘 is a constant and 𝜑 > 0. To do so, it is now sufficient

to prove that the utility ratio between any two valid allocations cannot be greater than this value. Note that the value

𝑠𝑤𝑢𝑝 := (1 + 𝜑) ×𝑚 is an obvious upper bound on the utility of a valid allocation (each item is assigned to an agent with

an item-based utility equal to 1 and blocks only include agents of the same type). We now focus on the determination of

a lower bound on the utility of a valid allocation. Since the item-based utility value can be equal to zero for all agents

simultaneously (when they all receive an item for which they have no utility for it), we only need to find a lower bound on

the sum of the agents’ neighbour-utilities. Let us focus on a block 𝐵𝑞 , with 𝑞 ∈ [𝑙]. For any valid allocation 𝐴, the sum of

the neighbour-utilities in block 𝐵𝑞 is given by:∑︁
𝑖∈N

𝐴(𝑖) ∈𝐵𝑞

𝑢𝑁𝑖 (𝐴) =
∑︁
𝑖∈N

𝐴(𝑖) ∈𝐵𝑞

∑︁
𝑗 ∈N

𝐴( 𝑗) ∈𝐵𝑞

I(T (𝑖),T ( 𝑗))
|𝐵𝑞 |

=
1

|𝐵𝑞 |

𝑘∑︁
𝑝=1

|{𝑖 ∈ 𝑇𝑝 : 𝐴(𝑖) ∈ 𝐵𝑞}|2

Therefore, we can obtain a lower bound on this value by solving the following convex optimization problem:

min
1

|𝐵𝑞 |

𝑘∑︁
𝑝=1

𝑥2𝑝,𝑞

s.t .
𝑘∑︁

𝑝=1
𝑥𝑝,𝑞 = |𝐵𝑞 |

𝑥𝑝,𝑞 ∈ R+,∀𝑝 ∈ [𝑘]

where 𝑥𝑝,𝑞 is a continuous variable representing the number of agents of type 𝑇𝑝 who are assigned to an item in block 𝐵𝑞 ,

for all 𝑝 ∈ [𝑘]. The corresponding optimal solution 𝑥∗ is such that:

∃𝜆 ∈ R, ∇𝑓 (𝑥∗) + 𝜆∇𝑔(𝑥∗) = 0
Manuscript submitted to ACM



Sequential and Swap Mechanisms for Public Housing Allocation with Quotas and Neighbourhood-based Utilities 19

where 𝑓 (𝑥)= 1
|𝐵𝑞 |

∑𝑘
𝑝=1 𝑥

2
𝑝,𝑞 and 𝑔(𝑥)=

(∑𝑘
𝑝=1 𝑥𝑝,𝑞

)
− |𝐵𝑞 |. Thus we know that 𝑥∗ and 𝜆 are such that:

2
|𝐵𝑞 |

©­­­«
𝑥∗1
.
.
.

𝑥∗
𝑘

ª®®®¬ + 𝜆

©­­­«
1
.
.
.

1

ª®®®¬ = 0

and therefore 𝑥∗𝑝 = −𝜆 |𝐵𝑞 |
2 for all 𝑝 ∈ [𝑘]. Since

∑𝑘
𝑝=1 𝑥

∗
𝑘
= |𝐵𝑞 | also holds, we obtain 𝜆 = − 2

𝑘
and then 𝑥∗𝑝 =

|𝐵𝑞 |
𝑘

for all

𝑝 ∈ [𝑘]. We finally obtain the following lower bound on the sum of the neighbour-utilities in block 𝐵𝑞 :∑︁
𝑖∈N

𝐴(𝑖) ∈𝐵𝑞

𝑢𝑁𝑖 (𝐴) ≥ 𝑓 (𝑥∗) = 1
|𝐵𝑞 |

𝑘∑︁
𝑝=1

( |𝐵𝑞 |
𝑘

)2
=

|𝐵𝑞 |
𝑘

for any valid allocation 𝐴. Summing over all blocks 𝐵𝑞 , 𝑞 ∈ [𝑙], we obtain a lower bound on the sum of the neighbour-

utilities: ∑︁
𝑖∈N

𝑢𝑁𝑖 (𝐴) =
𝑙∑︁

𝑞=1

∑︁
𝑖∈𝑁

𝐴(𝑖) ∈𝐵𝑞

𝑢𝑁𝑖 (𝐴) ≥
𝑙∑︁

𝑞=1

|𝐵𝑞 |
𝑘

=
1
𝑘

𝑙∑︁
𝑞=1

|𝐵𝑞 | =
𝑚

𝑘

Thus for any valid allocation 𝐴, we have:

𝑠𝑤 (𝐴) =
∑︁
𝑖∈N

𝑢𝑖 (𝐴) =
∑︁
𝑖∈N

(
𝑢𝐼𝑖 (𝐴) + 𝜑𝑢𝑁𝑖 (𝐴)

)
≥ 0 + 𝜑

𝑚

𝑘

and therefore 𝑠𝑤𝑙𝑜𝑤 := 𝜑𝑚
𝑘

is a lower bound on the utility of any valid allocation. Hence the utility ratio between any two

valid allocations cannot be greater than
𝑠𝑤𝑢𝑝

𝑠𝑤𝑙𝑜𝑤
=

1+𝜑
𝜑 𝑘 . □

C DETAILED PROOF OF PROPOSITION 1

PROOF. Here we only need to prove that any valid allocation that maximizes the utilitarian social welfare is stable.

For the case of item-focused agents, the argument is straightforward: if two agents wish to swap and they are allowed to

do so, then implementing the swap would strictly augment the utilities of both agents, while leaving the other utilities

unchanged, which yields an allocation with a strictly larger utility. Therefore any valid allocation maximizing the social

welfare is necessarily stable.

For neighbour-focused agents, we now prove that if two agents wish to swap to increase their individual utilities, the

utilitarian social welfare will increase by twice as much. For a given non-stable allocation 𝐴, consider a valid improving

swap-deal between some agent 𝑖1 ∈ 𝑇𝑝1 with 𝐴(𝑖1) ∈ 𝐵𝑞1 and some agent 𝑖2 ∈ 𝑇𝑞2 with 𝐴(𝑖2) ∈ 𝐵𝑞2 . Since the item-based

component of their utilities is equal to zero, we know that these two agents are of different types and belong to different

blocks (i.e., we necessarily have 𝑝1 ≠ 𝑝2 and 𝑞1 ≠ 𝑞2). Let Δ𝑈 be the utility difference between 𝐴′ the allocation resulting

from the swap-deal and allocation 𝐴, i.e. Δ𝑈 = 𝑠𝑤 (𝐴′) − 𝑠𝑤 (𝐴). Let us decompose Δ𝑈 as follows:

Δ𝑈 = Δ𝑈1 + Δ𝑈2

where Δ𝑈1 (resp. Δ𝑈2) is the change of utility for the agents that are involved (resp. not involved) in the swap-deal. Since

the composition of blocks 𝐵𝑞1 and 𝐵𝑞2 changes, the swap may incur a loss or a gain in utility on the agents in both blocks.

This externalities are measured by 𝑈2. For all 𝑝 ∈ [𝑘] and 𝑞 ∈ [𝑙], let 𝐴𝑝,𝑞 denote the number of agents of type 𝑇𝑝 in
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block 𝐵𝑞 . Using these notations, the swap-deal modifies the utilities of the two swapping agents as follows:

Δ𝑈1 = 𝑢𝑖1 (𝐴′) − 𝑢𝑖1 (𝐴) + 𝑢𝑖2 (𝐴′) − 𝑢𝑖2 (𝐴)

= 𝜑

(𝐴𝑝1,𝑞2 + 1
|𝐵𝑞2 |

−
𝐴𝑝1,𝑞1

|𝐵𝑞1 |
+
𝐴𝑝2,𝑞1 + 1

|𝐵𝑞1 |
−
𝐴𝑝2,𝑞2

|𝐵𝑞2 |

)
= 𝜑

(𝐴𝑝2,𝑞1 −𝐴𝑝1,𝑞1 + 1
|𝐵𝑞1 |

+
𝐴𝑝1,𝑞2 −𝐴𝑝2,𝑞2 + 1

|𝐵𝑞2 |

)
We now prove that Δ𝑈2 = Δ𝑈1:

Δ𝑈2 =
∑︁

𝑖∈𝑇𝑝1\{𝑖1 }
𝐴(𝑖) ∈𝐵𝑞1∪𝐵𝑞2

(
𝑢𝑖 (𝐴′) − 𝑢𝑖 (𝐴)

)
+

∑︁
𝑖∈𝑇𝑝2\{𝑖2 }

𝐴(𝑖) ∈𝐵𝑞1∪𝐵𝑞2

(
𝑢𝑖 (𝐴′) − 𝑢𝑖 (𝐴)

)

= (𝐴𝑝1,𝑞1 − 1) ×
(𝐴𝑝1,𝑞1 − 1

|𝐵𝑞1 |
−
𝐴𝑝1,𝑞1

|𝐵𝑞1 |

)
𝜑 +𝐴𝑝1,𝑞2

(𝐴𝑝1,𝑞2 + 1
|𝐵𝑞2 |

−
𝐴𝑝1,𝑞2

|𝐵𝑞2 |

)
𝜑

+𝐴𝑝2,𝑞1

(𝐴𝑝2,𝑞1 + 1
|𝐵𝑞1 |

−
𝐴𝑝2,𝑞1

|𝐵𝑞1 |

)
𝜑 + (𝐴𝑝2,𝑞2 − 1)

(𝐴𝑝2,𝑞2 − 1
|𝐵𝑞2 |

−
𝐴𝑝2,𝑞2

|𝐵𝑞2 |

)
𝜑

= (𝐴𝑝1,𝑞1 − 1) −1
𝑀𝑞1

𝜑 +𝐴𝑝1,𝑞2
1

𝑀𝑞2
𝜑 +𝐴𝑝2,𝑞1

1
𝑀𝑞1

𝜑 + (𝐴𝑝2,𝑞2 − 1) −1
𝑀𝑞2

𝜑

= 𝑢𝑖1 (𝐴′) − 𝑢𝑖1 (𝐴) + 𝑢𝑖2 (𝐴′) − 𝑢𝑖2 (𝐴)

= Δ𝑈1

Thus Δ𝑈 = 2Δ𝑈1, which means that any improving swap-deal would strictly increase the social welfare. This implies that

any valid allocation maximizing the social welfare is necessarily stable. □

D PROOF OF PROPOSITION 2

PROOF. We need to show that we have 𝑃𝑜𝑆 ≤ 2 and 𝑃𝑜𝑆 > 1.6.

𝑃𝑜𝑆 ≤ 2. From Example 1, we know that there exist instances for which no optimal allocation is stable. Let us consider

such an instance, and let𝑂𝑃𝑇 denote such an optimal allocation. From this allocation, we can apply the SWAP-mechanism

(presented in Section 5) which consists in performing bilateral improving swap-deals until reaching a stable outcome (see

Proposition 7). Let 𝑃𝑂𝑆𝑇 be such an equilibrium. Our aim is to prove that the inequality 𝑠𝑤 (𝑂𝑃𝑇 )
𝑠𝑤 (𝑃𝑂𝑆𝑇 ) ≤ 2 holds. To do so,

let us decompose 𝑠𝑤 (𝑂𝑃𝑇 ) and 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) as follows:

𝑠𝑤 (𝑂𝑃𝑇 ) = 𝑈 𝐼
𝑂𝑃𝑇 + 𝜑𝑈𝑁

𝑂𝑃𝑇

𝑠𝑤 (𝑃𝑂𝑆𝑇 ) =𝑈 𝐼
𝑃𝑂𝑆𝑇 + 𝜑𝑈𝑁

𝑃𝑂𝑆𝑇

where 𝑈 𝐼
𝑂𝑃𝑇

(resp. 𝑈 𝐼
𝑃𝑂𝑆𝑇

) is the sum of the item-based utilities of the agents in the allocation 𝑂𝑃𝑇 (resp. 𝑃𝑂𝑆𝑇 ), and

𝑈𝑁
𝑂𝑃𝑇

(resp. 𝑈𝑁
𝑃𝑂𝑆𝑇

) is the sum of their neighbour-based utilities in the same allocation. We now use 𝑝𝑜𝑡 the potential

function introduced in the proof of Proposition 7, which is defined by:

𝑝𝑜𝑡 (𝐴) = 𝑠𝑤 (𝐴) +
∑︁
𝑖∈N

𝑢𝐼𝑖 (𝐴)

In particular, we have 𝑝𝑜𝑡 (𝑂𝑃𝑇 ) = 𝑠𝑤 (𝑂𝑃𝑇 ) +𝑈 𝐼
𝑂𝑃𝑇

and 𝑝𝑜𝑡 (𝑃𝑂𝑆𝑇 ) = 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) +𝑈 𝐼
𝑃𝑂𝑆𝑇

. In the proof of Proposition 7,

it is shown that 𝑝𝑜𝑡 strictly increases when performing any valid improving swap. Since 𝑃𝑂𝑆𝑇 is obtained from
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𝑂𝑃𝑇 by performing at least one valid improving swap, we have 𝑝𝑜𝑡 (𝑃𝑂𝑆𝑇 ) > 𝑝𝑜𝑡 (𝑂𝑃𝑇 ), i.e. 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) + 𝑈 𝐼
𝑃𝑂𝑆𝑇

>

𝑠𝑤 (𝑂𝑃𝑇 ) +𝑈 𝐼
𝑂𝑃𝑇

.

Moreover, we have 𝑠𝑤 (𝑂𝑃𝑇 ) > 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) since OPT is optimal (and no optimal allocation is stable by hypothesis).

Therefore, we necessarily have 𝑈 𝐼
𝑂𝑃𝑇

< 𝑈 𝐼
𝑃𝑂𝑆𝑇

. Now, note that we have:

𝑠𝑤 (𝑂𝑃𝑇 )
𝑠𝑤 (𝑃𝑂𝑆𝑇 ) =

𝑠𝑤 (𝑂𝑃𝑇 ) + 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) − 𝑠𝑤 (𝑃𝑂𝑆𝑇 )
𝑠𝑤 (𝑃𝑂𝑆𝑇 ) = 1 + 𝑠𝑤 (𝑂𝑃𝑇 ) − 𝑠𝑤 (𝑃𝑂𝑆𝑇 )

𝑠𝑤 (𝑃𝑂𝑆𝑇 )
Moreover, we have:

𝑠𝑤 (𝑂𝑃𝑇 ) − 𝑠𝑤 (𝑃𝑂𝑆𝑇 )

= 𝑠𝑤 (𝑂𝑃𝑇 ) − 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) +𝑈 𝐼
𝑂𝑃𝑇 −𝑈 𝐼

𝑂𝑃𝑇

= 𝑝𝑜𝑡 (𝑂𝑃𝑇 )−𝑠𝑤 (𝑃𝑂𝑆𝑇 )−𝑈 𝐼
𝑂𝑃𝑇 +𝑈

𝐼
𝑃𝑂𝑆𝑇 −𝑈

𝐼
𝑃𝑂𝑆𝑇

= 𝑝𝑜𝑡 (𝑂𝑃𝑇 ) − 𝑝𝑜𝑡 (𝑃𝑂𝑆𝑇 ) +𝑈 𝐼
𝑃𝑂𝑆𝑇 −𝑈 𝐼

𝑂𝑃𝑇

Therefore, we obtain:

𝑠𝑤 (𝑂𝑃𝑇 )
𝑠𝑤 (𝑃𝑂𝑆𝑇 ) = 1 +

𝑝𝑜𝑡 (𝑂𝑃𝑇 )−𝑝𝑜𝑡 (𝑃𝑂𝑆𝑇 )+𝑈 𝐼
𝑃𝑂𝑆𝑇

−𝑈 𝐼
𝑂𝑃𝑇

𝑠𝑤 (𝑃𝑂𝑆𝑇 )

< 1 +
𝑈 𝐼
𝑃𝑂𝑆𝑇

−𝑈 𝐼
𝑂𝑃𝑇

𝑠𝑤 (𝑃𝑂𝑆𝑇 ) (since 𝑝𝑜𝑡 (𝑂𝑃𝑇 ) < 𝑝𝑜𝑡 (𝑃𝑂𝑆𝑇 ))

< 1 +
𝑈 𝐼
𝑃𝑂𝑆𝑇

𝑠𝑤 (𝑃𝑂𝑆𝑇 ) (since 𝑈 𝐼
𝑂𝑃𝑇 ≥ 0)

< 2 (since 𝑠𝑤 (𝑃𝑂𝑆𝑇 ) = 𝑈 𝐼
𝑃𝑂𝑆𝑇 + 𝜑𝑈𝑁

𝑃𝑂𝑆𝑇 )

This means that any equilibrium that is reachable from the optimal allocation is at least half as good as the optimum.

Since the best equilibrium is at least as good as any reachable equilibrium, it is also at least half as good as the optimum.

Thus the utility ratio between any optimal allocation and any equilibrium maximizing the social welfare is strictly smaller

than 2 for any instance of our allocation problem with diversity constraints. Since PoS is the least upper bound on this

utility ratio over all possible instances, we can conclude that 𝑃𝑜𝑆 ≤ 2 holds.

𝑃𝑜𝑆 > 1.6. We show here that the price of stability is at least 1.6, by providing an instance for which the utility ratio

between the optimal and the best (valid) stable allocations reaches this value. More precisely, we consider an instance with

16 agents partitioned into 4 types:𝑇1 = {𝑎1,1, 𝑎1,2, 𝑎1,3, 𝑎1,4},𝑇2 = {𝑎2,1, 𝑎2,2, 𝑎2,3, 𝑎2,4},𝑇3 = {𝑎3,1, 𝑎3,2, 𝑎3,3, 𝑎3,4}, and𝑇4 =

{𝑎4,1, 𝑎4,2, 𝑎4,3, 𝑎4,4}. It involves 16 items partitioned into 4 blocks: 𝐵1 = {ℎ1,1, ℎ1,2, ℎ1,3, ℎ1,4}, 𝐵2 = {ℎ2,1, ℎ2,2, ℎ2,3, ℎ2,4},
𝐵3 = {ℎ3,1, ℎ3,2, ℎ3,3, ℎ3,4}, and 𝐵4 = {ℎ4,1, ℎ4,2, ℎ4,3, ℎ4,4}. Type-block quotas are defined by 𝜆𝑝𝑞 = 4 when 𝑝 = 𝑞, and

𝜆𝑝𝑞 = 1 otherwise. The utility trade-off 𝜑 is equal to 1. The item-based utilities are defined by the matrix 𝑃𝜖 , with 𝜖 > 0,

as follows:

∀𝑖 ∈ 𝑇𝑝 , ℎ ∈ 𝐵𝑞, 𝑢
𝐼
𝑖 (ℎ) = 𝑃𝑝,𝑞 where 𝑃𝜖 =

©­­­­­­­«

0 3
4 + 𝜖 2

4 + 𝜖 1
4 + 𝜖

3
4 + 𝜖 0 1

4 + 𝜖 2
4 + 𝜖

2
4 + 𝜖 1

4 + 𝜖 0 3
4 + 𝜖

1
4 + 𝜖 2

4 + 𝜖 3
4 + 𝜖 0

ª®®®®®®®¬
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It can be shown6 that:

• the social welfare is maximized by any allocation assigning all the agents of type𝑇𝑝 in block 𝐵𝑝 , for 𝑝 ∈ {1, . . . , 4}.

In such an allocation, the utility of each agent is 0 + 𝜑 × 4
4 = 1 and the social welfare is equal to 16. Note that such

an allocation is not stable, e.g., agents of type 𝑇1 and agents of type 𝑇2 want to swap with their items to increase

their utilities from 1 to 1 + 𝜀

• any allocation assigning one agent of each type in every block is a valid stable allocation of maximum social welfare.

Its social welfare is equal to 4× (0+𝜑 × 1
4 ) + 4× ( 14 + 𝜀 +𝜑 × 1

4 ) + 4× ( 24 + 𝜀 +𝜑 × 1
4 ) + 4× ( 34 + 𝜀 +𝜑 × 1

4 ) = 10+ 12𝜀.

Hence, the utility ratio between any optimal allocation and any valid stable allocation of maximum social welfare is equal

to 16
10+12𝜀 , which tends towards 1.6 when 𝜀 tends towards 0.

□

E PROOF OF PROPOSITION 8

PROOF. Given a parameter 𝑥 ∈ N, we consider a family of instances with 𝑘 types of agents, each type containing

𝑥𝑘 − 1 agents: for all 𝑝 ∈ [𝑘], 𝑇𝑝 = {𝑎𝑝,1, 𝑎𝑝,2, . . . , 𝑎𝑝,𝑥𝑘−1}. Similarly, we consider 𝑘 blocks, each of them including

𝑥𝑘 − 1 items: for all 𝑞 ∈ [𝑘], 𝐵𝑞 = {ℎ𝑞,1, ℎ𝑞,2, . . . , ℎ𝑞,𝑥𝑘−1}. For all 𝑝, 𝑞 ∈ [𝑘], the type-quota capacities are defined by:

𝜆𝑝,𝑞 =


𝑥𝑘 − 1 if 𝑝 = 𝑞

𝑥 otherwise

Now, for any allocation 𝐴, we define the agents’ utilities as follows: for all types 𝑝 ∈ [𝑘] and all 𝑎𝑝,𝑖 ∈ 𝑇𝑝 , the item-based

utility of agent 𝑎𝑝,𝑖 is given by:

𝑢𝐼𝑎𝑝,𝑖 (𝐴) =

1 if 𝐴(𝑎𝑝,𝑖 ) = ℎ𝑝,𝑖

0 otherwise

Here the optimal allocation 𝐴𝑏𝑒𝑠𝑡 is simply defined by 𝐴𝑏𝑒𝑠𝑡 (𝑎𝑝,𝑖 ) = ℎ𝑝,𝑖 for all 𝑝 ∈ [𝑘] and all 𝑎𝑝,𝑖 ∈ 𝑇𝑝 , which consists

in grouping the agents according to their types, while assigning every item to the single agent with a utility of 1 for it. The

utilitarian social welfare of 𝐴𝑏𝑒𝑠𝑡 is obviously:

𝑠𝑤 (𝐴𝑏𝑒𝑠𝑡 ) =
𝑘∑︁

𝑝=1

𝑥𝑘−1∑︁
𝑖=1

(
𝑢𝐼𝑎𝑝,𝑖 (𝐴) + 𝜑𝑢𝑁𝑎𝑝,𝑖 (𝐴)

)
=

𝑘∑︁
𝑝=1

𝑥𝑘−1∑︁
𝑖=1

(1 + 𝜑)

= 𝑘 (𝑥𝑘 − 1) (1 + 𝜑)

We now build an allocation, called 𝐴𝑤𝑜𝑟𝑠𝑡 , that minimizes the utilitarian social over all possible stable valid allocations.

For this, we first rename the agent: each agent of type𝑇𝑝 is identified by a triplet (𝑝, 𝑞,𝑦) ∈ [𝑘]2×[𝑥]\{(𝑧, 𝑧, 𝑥) : ∀𝑧 ∈ [𝑘]}.

Similarly, each item of block 𝐵𝑝 is identified by a triplet (𝑝, 𝑞,𝑦) ∈ [𝑘]2 × [𝑥] \ {(𝑧, 𝑧, 𝑥) : ∀𝑧 ∈ [𝑘]}. By doing so, every

item gives a utility of 1 to the agent who shares the same triplet. Now, for all 𝑝 ∈ [𝑘] and for all 𝑦 ∈ [𝑥 − 1], we set:

𝐴𝑤𝑜𝑟𝑠𝑡 (𝑎 (𝑝,𝑝,𝑦) ) =

ℎ (𝑝,𝑝,𝑦−1) if 𝑦 ∈ {2, . . . , 𝑥 − 1},

ℎ (𝑝,𝑝,𝑥−1) otherwise (i.e. when 𝑦 = 1).

6These results can be shown using our mixed-integer linear programming formulations given in Appendix A, or by enumerating all the valid allocations.
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Thus 𝑥 − 1 agents of each type 𝑇𝑝 are assigned to 𝑥 − 1 items of block 𝐵𝑝 , but none of them receives her favourite item.

Moreover, there is no pair of agents such that both agents would be happy to swap due to the cycling structure.

To allocate the remaining agents (i.e. agents 𝑎 (𝑝,𝑞,𝑦) with 𝑝, 𝑞 ∈ [𝑘], 𝑝 ≠ 𝑞, and 𝑦 ∈ [𝑥]), we consider 𝑘 one-to-one

correspondences 𝜎𝑝 , with 𝑝 ∈ [𝑘], such that 𝜎𝑝 : {1, . . . , 𝑘}\{𝑝} → {1, . . . , 𝑘}\{𝑝} and 𝜎𝑝 (𝑞) ≠ 𝑞 for all 𝑞 ∈ [𝑘]\{𝑝}.
Then, for all 𝑝, 𝑞 ∈ [𝑘], with 𝑞 ≠ 𝑝, and for all 𝑦 ∈ [𝑥], we set:

𝐴𝑤𝑜𝑟𝑠𝑡 (𝑎 (𝑝,𝑞,𝑦) ) = ℎ (𝑞,𝜎𝑝 (𝑞),𝑦)

Thus, for each type 𝑇𝑝 with 𝑝 ∈ [𝑘], the remaining (𝑘 − 1)𝑥 agents are distributed evenly among the blocks 𝐵𝑞 , with

𝑞 ≠ 𝑝, so that each of them includes exactly 𝑥 agents of type 𝑇𝑝 . It is easy to check that 𝐴𝑤𝑜𝑟𝑠𝑡 satisfies type-block

quotas, which implies that it is a valid allocation. Moreover, for each type 𝑝 ∈ [𝑘] and each block 𝐵𝑞 , with 𝑞 ≠ 𝑝, the

corresponding 𝑥 agents would be happy to swap their items only with the agents in block 𝐵𝑝 that own their favourite

items, but type-block quotas prevent such swaps from happening (we know that they are not of types 𝑝 or 𝑞 by definition

of 𝜎𝑝 ). Therefore, 𝐴𝑤𝑜𝑟𝑠𝑡 is a valid stable allocation, whose social welfare is:

𝑠𝑤 (𝐴𝑤𝑜𝑟𝑠𝑡 ) =
𝑘∑︁

𝑝=1

𝑥𝑘−1∑︁
𝑖=1

(
𝑢𝐼𝑎𝑝,𝑖 (𝐴𝑤𝑜𝑟𝑠𝑡 ) + 𝜑𝑢𝑁𝑎𝑝,𝑖 (𝐴𝑤𝑜𝑟𝑠𝑡 )

)
=

𝑘∑︁
𝑝=1

𝑥𝑘−1∑︁
𝑖=1

(
0 + 𝜑𝑢𝑁𝑎𝑝,𝑖 (𝐴𝑤𝑜𝑟𝑠𝑡 )

)
= 𝜑

𝑘∑︁
𝑝=1

( 𝑥−1∑︁
𝑖=1

𝑢𝑁𝑎𝑝,𝑖 (𝐴𝑤𝑜𝑟𝑠𝑡 ) +
𝑘𝑥−1∑︁
𝑖=𝑥

𝑢𝑁𝑎𝑝,𝑖 (𝐴𝑤𝑜𝑟𝑠𝑡 )
)

= 𝜑

𝑘∑︁
𝑝=1

( 𝑥−1∑︁
𝑖=1

𝑥 − 1
𝑘𝑥 − 1

+
𝑘𝑥−1∑︁
𝑖=𝑥

𝑥

𝑘𝑥 − 1

)
= 𝜑

𝑘∑︁
𝑝=1

(
(𝑥 − 1)2
𝑥𝑘 − 1

+ 𝑥2 (𝑘 − 1)
𝑥𝑘 − 1

)
=
𝜑𝑘 (𝑥2𝑘 − 2𝑥 + 1)

𝑥𝑘 − 1
It follows that the largest utility ratio between any two valid stable allocations is:

𝑠𝑤 (𝐴𝑏𝑒𝑠𝑡 )
𝑠𝑤 (𝐴𝑤𝑜𝑟𝑠𝑡 )

=
(1 + 𝜑) (𝑥𝑘 − 1)𝑘
𝜑𝑘 (𝑥2𝑘−2𝑥+1)

𝑥𝑘−1

=
(1 + 𝜑) (𝑥𝑘 − 1)2

𝜑 (𝑥2𝑘 − 2𝑥 + 1)

When 𝑥 tends towards +∞, this ratio tends towards (1+𝜑) (𝑥𝑘)2
𝜑𝑥2𝑘

=
(1+𝜑)𝑘

𝜑 , which implies that the bound is reached at the

limit. □

F NEIGHBOURHOOD-BASED UTILITIES WITH DIFFERENT UTILITY TRADE-OFFS

In the main part of the paper, we assumed that all the agents have the same utility trade-off 𝜑 balancing the relative

importance of the item-based utility and the neighbour-based utility. In this section, we discuss whether instances where

the agents have different utility trade-offs can be translated to a single utility trade-off instance. More precisely, here we

consider instances where each agent 𝑖 has its own utility trade-off 𝜑𝑖 ∈ (0, 1], and item-based utilities are normalized, i.e.

each agent 𝑖 has at least one item ℎ ∈ M such that 𝑢𝐼
𝑖
(ℎ) = 0 and at least one item ℎ ∈ M such that 𝑢𝐼

𝑖
(ℎ) = 1. We first
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show how to convert such an instance to another one with a unique utility trade-off. We then discuss the convergence of

the swap mechanism and investigate the validity of our worst-case results.

Instance transformation. From an instance I1 where the agents have different utility trade-offs, we define a new

instance I2 with the same components N ,M, 𝐵,𝑇 , 𝜆 where the agents have the same utility trade-off 𝜑 =𝑚𝑖𝑛𝑖∈N𝜑𝑖 . More

precisely, we consider new utilities (𝑣𝑖 )𝑖∈N defined by:

𝑣𝑖 (𝐴) = 𝑣𝐼𝑖 (𝐴) + 𝜑𝑣𝑁𝑖 (𝐴)

for every allocation 𝐴, where 𝑣𝐼
𝑖
(𝐴) = 𝜑

𝜑𝑖
𝑢𝐼
𝑖
(𝐴) and 𝑣𝑁

𝑖
(𝐴) = 𝑢𝑁

𝑖
(𝐴).

On the convergence of the swap-deal mechanism. Note that 𝑣𝑖 (𝐴) is simply obtained by multiplying 𝑢𝑖 (𝐴) by a positive

value. Therefore, 𝑢𝑖 and 𝑣𝑖 correspond to the same ordinal preferences over allocations, meaning that any valid improving

swap-deal for (𝑢𝑖 )𝑖∈N is also an improving swap-deal for (𝑣𝑖 )𝑖∈N , and vice-versa. Since we proved the convergence

to an equilibrium in I1 (see Proposition 8), we can also reach an equilibrium in I2 by applying the same sequence of

swap-deals. We can conclude that the swap mechanism always converges to a stable outcome even when all agents have

different utility trade-offs 𝜑 .

On the optimal social welfare. Unfortunately, not all our results can be freely translated to the case of a single 𝜑 using

our transformation, as some notions such as the social welfare will be altered by the transformation. In particular, the

optimal allocation of instance I1 may be different from the optimal allocation of the translated instance I2, as shown in

the following example.

EXAMPLE 2. Consider an instance I1 with 3 agents partitioned into 2 types 𝑇1 = {1, 2} and 𝑇2 = {3}, and 3 items

partitioned into 2 blocs 𝐵1 = {ℎ1, ℎ2} and 𝐵2 = {ℎ3}. The utilities are given by:

• 𝑢𝐼1 (ℎ1) = 1 and 𝑢𝐼1 (ℎ2) = 𝑢𝐼1 (ℎ3) = 0 with 𝜑1 = 0.01.

• 𝑢𝐼2 (ℎ1) = 𝑢𝐼2 (ℎ3) = 0 and 𝑢𝐼2 (ℎ2) = 1 with 𝜑2 = 1
• 𝑢𝐼3 (ℎ2) = 1 and 𝑢𝐼3 (ℎ1) = 𝑢𝐼3 (ℎ3) = 0 with 𝜑3 = 0.01.

For this instance, allocation 𝐴 defined by 𝐴(1) = ℎ1, 𝐴(2) = ℎ2, and 𝐴(3) = ℎ3 is a valid allocation with maximum social

welfare, with 𝑠𝑤 (𝐴) = 3.02. Now let us consider the instance 𝐼2 obtained from 𝐼1 using our transformation. Here we have

𝜑 = min{0.01, 1} = 0.01, and (𝑣𝑖 )𝑖∈N are given by:

• 𝑣𝐼1 (ℎ1) = 1 and 𝑣𝐼1 (ℎ2) = 𝑣𝐼1 (ℎ3) = 0.

• 𝑣𝐼2 (ℎ1) = 𝑣𝐼2 (ℎ3) = 0 and 𝑣𝐼2 (ℎ2) = 0.01
• 𝑣𝐼3 (ℎ2) = 1 and 𝑣𝐼3 (ℎ1) = 𝑣𝐼3 (ℎ3) = 0.

For instance I2, allocation 𝐴′ defined by 𝐴′(1) = ℎ1, 𝐴′(2) = ℎ3, and 𝐴′(3) = ℎ2 is such that 𝑠𝑤 (𝐴′) = 2.02, whereas

𝑠𝑤 (𝐴) = 1.04. Thus instances I1 and I2 have different optimal allocations.
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