
HAL Id: hal-03953971
https://hal.sorbonne-universite.fr/hal-03953971v1

Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Optimization of Submodular Functions
under Matroid Constraints

Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

To cite this version:
Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny. Interactive Optimization of Sub-
modular Functions under Matroid Constraints. ADT 2021 - 7th International Conference on Algo-
rithmic Decision Theory, Nov 2021, Toulouse, France. pp.307-322, �10.1007/978-3-030-87756-9_20�.
�hal-03953971�

https://hal.sorbonne-universite.fr/hal-03953971v1
https://hal.archives-ouvertes.fr

Interactive Optimization of Submodular
Functions under Matroid Constraints

Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
firstname.lastname@lip6.fr

Abstract. Various practical optimization problems can be formalized
as the search of an optimal independent set in a matroid. When the set
function to be optimized is additive, this problem can be exactly solved
using a greedy algorithm. However, in some situations, the set function
is not exactly known and must be elicited before or during the optimiza-
tion process. Moreover, the set function is not always additive due to
possible interactions between the elements of the set. Here we consider
the problem of maximizing a submodular set function under a matroid
constraint. We propose two interactive approaches aiming at interweav-
ing the elicitation of the submodular set function with the construction
of an optimal independent subset subject to a matroid constraint. The
first one is based on a greedy algorithm and the other is based on local
search. These algorithms are tested on practical problems involving a
matroid structure and a submodular function to be maximized.

Keywords: Submodular function, matroid, preference elicitation, greedy
search, local search.

1 Introduction

In many problems studied in combinatorial optimization, admissible solutions
are defined as subsets of a ground set satisfying a structural property. A set
function representing the utility or the cost of any subset is generally used to
model preferences and the selection problem consists in determining an admis-
sible subset having the maximal utility or the minimal cost. In particular, the
optimization of a set function under a matroid constraint has received much
attention since the seminal work of Edmonds [5]. This problem has multiple
applications in various contexts such as recruitment, committee election, com-
binatorial auctions, scheduling, resource allocation, facility location and sensor
placement, just to give a few examples. Various algorithms are now available to
solve this problem either to optimality or approximately, for specific classes of
set functions, see e.g., [4, 10–12, 14, 15, 17].

When the set function is additive (i.e., the value of any set is defined as the
sum of the values of its elements), it is well known, after Edmonds [5], that the
problem can be efficiently solved by a greedy algorithm. However, preferences
are not always representable by additive functions due to possible interactions

2 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

among elements. In decision theory, the additivity of utilities is often relaxed
and submodular utility functions are frequently used to guarantee a principle
of diminishing returns [1, 9, 17]. This principle states that adding an element
to a smaller set has more value than adding it to a larger set, formally the
set function w should satisfy the following property: w(X ∪ {i}) − w(X) ≥
w(Y ∪{i})−w(Y) whenever X ⊆ Y and i /∈ Y . This is known to be equivalent to
submodularity of function w defined by: w(X ∪ Y) +w(X ∩ Y) ≤ w(X) +w(Y)
for all X,Y . Various set functions naturally considered in practical problems
appear to be both submodular and monotonic with respect to set inclusion. Let
us mention, for example, the budgeted-additive set function defined by w(X) =
min{

∑
i∈X wi, B}, but also the coverage measure defined by w(X) = |

⋃
i∈X Ei|

(where Ei is the list of elements covered by i) and satisfaction measures of the
form w(X) =

∑
i∈I pi maxj∈X{uij} used in the facility location problem (where

I denotes a set of clients and uij the utility of location j for client i).
Although the problem of minimization of submodular functions is known

to be polynomially solvable [14], the maximization of a submodular function is
hard in general because it includes max-cut as special case. Approximate greedy
and local search algorithms have been proposed for the maximization problem
and some interesting worst case bounds on the quality of the approximations
returned are known, see, e.g., [4, 12, 15, 17]. In this paper we stay on this prob-
lem of finding a global maximum of a general submodular and monotonic set
function under a matroid constraint, but in a different perspective. We propose
an active learning approach aiming to iteratively collect preference information
over sets to progressively infer new preference statements over other sets until
an optimal subset can be determined. More precisely, our approach interleaves
preference queries with some optimization steps of a combinatorial algorithm
aiming to construct an optimal set. In particular, we propose an interactive
greedy algorithm and an interactive local search algorithm combining preference
elicitation and search to determine an optimal (or near-optimal) subset. The
approach proposed in the paper extends to non-additive submodular functions
a recent approach proposed in [2] for additive set functions.

The paper is organized as follows: in Section 2 we recall some background on
matroids and regret-based incremental preference elicitation. Then in Section 3
we propose a near-admissible interactive greedy search algorithm for submodu-
lar optimization. In Section 4 we introduce an interactive local search algorithm
based on improving sequences of element swaps for the same problem. In Section
5, both algorithms are tested on optimization problems involving different sub-
modular set functions and different matroid constraints. We analyse and compare
their performance and obtain various possible tradeoffs between the number of
preference queries and the quality of the final solution returned.

2 Background

In this work, we consider the problem of finding a maximum weight independent
set in a matroid. A matroid M is a pair (E, I) where E is a set of size n

Interactive Optimization of Submodular Functions 3

(called the ground set) and I ⊆ 2E is a non-empty collection of sets (called the
independent sets) such that, for all X,Y ∈ 2E , the following properties hold:

(A1): (Y ∈ I and X ⊆ Y)⇒ X ∈ I.

(A2): (X ∈ I and Y ∈ I and |Y | > |X|)⇒ ∃e ∈ Y \X s.t. X ∪ {e} ∈ I.

Axiom A1 is sometimes called the hereditary property (or the downward-closed
property) whereas A2 is known as the augmentation property (or the independent
set exchange property). Axiom A2 implies that all maximal independent sets
(w.r.t set inclusion) have the same cardinality. A maximal independent set is
called a basis of the matroid, and the set of all bases will be denoted by B in
the sequel. The cardinality of a basis is called the rank of the matroid and it
will be denoted by r(M) in the sequel. In this paper, a special focus will be
given to the uniform matroid, which is defined by I = {X ⊆ E : |X| ≤ k}
for a given positive integer k ≤ n. In the numerical tests, we will also consider
the partition matroid which is defined by a collection D = {D1, . . . , Dq} of q
disjoints subsets of E, a positive integer di ≤ |Di| for all i ∈ {1, . . . , q} and
I = {X ⊆ ∪qi=1Di : ∀i ∈ {1, . . . , q}, |X ∩Di| ≤ di}.

The problem of finding a maximum weight independent set in a matroid
can be defined as follows: given a matroid M = (E, I), we want to compute
maxX∈I w(X) where w is a positive set function defined on 2E measuring the
weight (or utility) of any subset of E. Here we assume that w(∅) = 0, w is
submodular (i.e., w(X ∪ Y) + w(X ∩ Y) ≥ w(X) + w(Y) for all X,Y ⊆ E)
and w is monotonic with respect to set inclusion (i.e., w(X) ≤ w(Y) for all
X ⊂ Y ⊆ E). Note that the latter assumption implies that we can focus on the
bases of the matroid when searching for an optimal independent subset.

In this paper, we assume that w is a set function representing the subjective
preferences of a Decision Maker (DM): for any two sets X,Y ∈ 2E , X is preferred
to Y if and only if w(X) ≥ w(Y). Hence finding a maximum weight basis amounts
to determining an optimal basis according to the DM’s preferences. Moreover, we
assume that w is initially not known. Instead, we are given a (possibly empty) set
P of pairs (X,Y) ∈ I×I such that X is known to be preferred to Y by the DM.
Such preference data can be obtained by asking comparison queries to the DM
(i.e., by asking the DM to compare two subsets and state which one is preferred).
Let W be the uncertainty set implicitly defined as the set of all functions w
that are compatible with P, i.e., such that w(X) ≥ w(Y) for all (X,Y) ∈ P.
The problem is now to determine the most promising basis under preference
imprecision. To this end, we consider the minimax regret decision criterion which
is commonly used to make robust recommendations under preference imprecision
in various decision contexts. The minimax regret (MMR) can be defined using
pairwise max regrets (PMR) and max regrets (MR) as follows:

Definition 1 For any collection of sets S ⊆ 2E and for any two sets X,Y ∈ S:
PMR(X,Y,W) = maxw∈W {w(Y)− w(X)}
MR(X,S,W) = maxY ∈S PMR(X,Y,W)
MMR(S,W) = minX∈SMR(X,S,W)

4 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

Thus PMR(X,Y,W) is the worst-case loss when choosing X instead of Y .
MR(X,S,W) is the worst-case loss incurred when selecting X instead of any
other set Y ∈ S. The set arg minX∈SMR(X,S,W) is the set of all optimal sets
according to the minimax regret decision criterion. By definition, recommending
any of these optimal sets allows to minimize the worst-case loss. Moreover, if
MMR(S,W) = 0, then we know that these sets are necessarily optimal accord-
ing to the DM’s preferences.

Note that, depending on the available preference statements, the MMR value
(representing the worst-case loss) might still be at an unacceptable level for the
DM. As the MMR value can only decrease when adding new preference state-
ments in P, the minimax regret decision criterion can be used within an incre-
mental elicitation process that progressively asks preference queries to the DM
until the MMR value drops below a given tolerance threshold δ ≥ 0 (represent-
ing the maximum allowable gap to optimality) [3]. At that time, recommending
any optimal basis for the minimax regret criterion ensures that the loss incurred
by not choosing the preferred basis is bounded above by that threshold. This
approach is sometimes referred to as regret-based incremental elicitation in the
literature. Note that if we set δ = 0, then the returned basis is necessarily opti-
mal according to the DM’s preferences. However, using δ > 0 allows to reduce
the number of generated preference queries in practice.

For matroid optimization problems, computing the MMR value at every step
of the elicitation procedure may induce prohibitive computation times as it may
require to compute the pairwise max regrets for all pairs of distinct bases in B.
Therefore, we propose instead to combine search and regret-based incremental
elicitation to reduce both computation times and number of queries. More pre-
cisely, preference queries are generated during the search so as to progressively
reduce the set W until being able to determine a (near-)optimal basis.

3 An interactive greedy algorithm

For problems where w is exactly observable, good approximate solutions can be
constructed using the following simple greedy algorithm: starting from X = ∅,
the idea is to select an element e ∈ E\X that maximizes the marginal contribu-
tion to X, i.e.,

∆(e|X) = w(X ∪ {e})− w(X) (1)

without loosing the independence property. The algorithm stops when no more
element can be added to X (set X is a basis at the end of the procedure). For
monotonic submodular set functions, this greedy algorithm has an approxima-
tion ratio of (1− 1

e) ≈ 0.63 for the uniform matroid and an approximation ratio
of 1

2 in the general case [6, 12]. For problems where the set function w is im-
precisely known, we propose an interactive version of the greedy algorithm that
generates preference queries only when it is necessary to discriminate between
some elements. More precisely, queries are generated only when the available
preference data is not sufficient to identify an element that could be added to
set X so as to ensure that the returned basis is a good approximate solution with

Interactive Optimization of Submodular Functions 5

provable guarantees. We implement this idea by computing minimax regrets on
sets S = {X ∪{e} : e ∈ E\X s.t. X ∪{e} ∈ I}, asking preference queries at step
i until MMR(S,W) drops below a given threshold δi ≥ 0, where δi is a fraction

of the tolerance threshold δ such that
∑r(M)
i=1 δi = δ (see Algorithm 1).

Algorithm 1: Interactive Greedy Algorithm

1 X ← ∅;
2 Ec ← E;
3 for i = 1 . . . r(M) do
4 S ← {X ∪ {e} : e ∈ Ec};
5 while MMR(S,W) > δi do
6 Ask the DM to compare two elements of S;
7 Update W according to the DM’s answer;

8 end
9 Select e ∈ Ec such that MR(X ∪ {e},S,W) ≤ δi and move e from Ec to X;

10 Remove from Ec all elements e such that X ∪ {e} 6∈ I;

11 end
12 return X;

Note that Algorithm 1 generates no more than a polynomial number of
queries. At every step, the number of queries is indeed bounded above by |E|2 as
comparison queries are generated until MMR(S,W) ≤ δi, where S ⊆ {X∪{e} :
e ∈ E} (in the worst-case scenario, the DM is asked to compare all the elements
of S). Hence the number of steps of the while loop is also polynomial. Note
however that the implementation of Algorithm 1 may differ significantly from
one application context to another. In particular, checking whether X ∪{e} ∈ I
can be more or less complex depending on the matroid under consideration. For
example, when considering the uniform and partition matroids, the indepen-
dence tests (line 10) can be performed in polynomial time. A second source of
complexity is the computation of MMR values, which can be more or less simple
depending on the assumptions made on w. An interesting option is to focus on
parametric functions that are linear in their parameters (e.g., a linear combina-
tion of spline functions, or a linear multiattribute utility, or an ordered weighted
average of criterion values). In that case, regret optimization can be performed
in polynomial time using linear programming. Moreover, defining w by a para-
metric function enables to reduce the number of queries in practice, since any
preference statement of type w(X) ≥ w(X ′) translates into a constraint on the
parameter space, reducing possible preferences over other subsets.

We now provide theoretical guarantees on the quality of the returned solution.
Before considering the general case, let us focus on the uniform matroid.

Proposition 1. Let Wf be the final set W when Algorithm 1 stops. For the
uniform matroid, Algorithm 1 is guaranteed to return a basis X such that:

∀w ∈Wf , w(X) ≥
(
1− 1

e

)
w(X∗)− δ, where X∗ ∈ arg max

Y ∈I
w(Y).

6 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y). We want to prove that
w(X) ≥

(
1− 1

e

)
w(X∗)− δ holds. Let ei, i ∈ {1, . . . , r(M)}, be the ith element

inserted in X during the execution of Algorithm 1. Let Xi be the set X at the
end of the ith iteration step (i.e., Xi = {e1, . . . , ei}). Let Wi (resp. Si) denote
the uncertainty set W (resp. the set S) at the end of the ith iteration step. Let
e∗i , i ∈ {1, . . . , r(M)}, denote the ith element of X∗ in an arbitrary order.

For any step i ∈ {1, . . . , r(M)}, we have MR(Xi−1∪{ei},Si,Wi) ≤ δi due to
line 9. Since w ∈Wf ⊆Wi, we know that w(Xi−1 ∪ {e})− w(Xi−1 ∪ {ei}) ≤ δi
for all e ∈ Ec, where Ec = E\Xi−1 for the uniform matroid (see lines 2 and
10). Then, from Equation (1), we can derive ∆(e|Xi−1) − ∆(ei|Xi−1) ≤ δi for
all e ∈ E\Xi−1. Note that the last inequality also holds for all e ∈ Xi−1 as
∆(e|Xi−1) = 0. Hence, for any step i ∈ {1, . . . , r(M)}, we have:

∆(e|Xi−1)−∆(ei|Xi−1) ≤ δi, ∀e ∈ E (2)

Then we obtain:

w(X∗) ≤ w(Xi−1 ∪X∗) (since w is monotonic)

= w(Xi−1) +

r(M)∑
j=1

(
w(Xi−1 ∪ {e∗1, . . . , e∗j})− w(Xi−1 ∪ {e∗1, . . . , e∗j−1})

)
= w(Xi−1) +

r(M)∑
j=1

∆(e∗j |Xi−1 ∪ {e∗1, e∗2, . . . , e∗j−1}) (by Equation (1))

≤ w(Xi−1) +

r(M)∑
j=1

∆(e∗j |Xi−1) (since w is submodular)

≤ w(Xi−1) +

r(M)∑
j=1

(∆(ei|Xi−1) + δi) (by Equation (2))

= w(Xi−1) + r(M)×
(
∆(ei|Xi−1) + δi

)
From the last inequality, we can derive:

1

r(M)

(
w(X∗)− w(Xi−1)

)
− δi ≤ ∆(ei|Xi−1)

which can be rewritten as follows:

1

r(M)

(
w(X∗)− w(Xi−1)

)
− δi ≤ w(X∗)− w(Xi−1)−

(
w(X∗)− w(Xi)

)
since Xi = Xi−1∪{ei}. Therefore we have Πi−1

r(M)−δi ≤ Πi−1−Πi or equivalently:

Πi ≤
(
1− 1

r(M)

)
Πi−1 + δi

Interactive Optimization of Submodular Functions 7

where Πi is simply defined by Πi = w(X∗) − w(Xi) for all i ∈ {0, . . . , r(M)}.
By recursively applying this inequality, we obtain:

Πr(M) ≤
(

1− 1

r(M)

)r(M)

×Π0 +

r(M)∑
i=1

δi

(
1− 1

r(M)

)r(M)−i

Then, since Π0 = w(X∗) and Πr(M) = w(X∗)− w(X), we obtain:

w(X∗)− w(X) ≤
(

1− 1

r(M)

)r(M)

× w(X∗) +

r(M)∑
i=1

δi

(
1− 1

r(M)

)r(M)−i

or equivalently:

w(X) ≥
(

1−
(
1− 1

r(M)

)r(M)
)
w(X∗)−

r(M)∑
i=1

δi

(
1− 1

r(M)

)r(M)−i

Finally, using 1−x ≤ e−x for all x ∈ R, and 1− 1
x ≤ 1 for all x ∈ R∗+, we obtain:

w(X) ≥
(
1− 1

e

)
w(X∗)−

r(M)∑
i=1

δi =
(
1− 1

e

)
w(X∗)− δ

�

Note that Proposition 1 cannot be extended to the case of general matroid,
as inequalities of type ∆(ei|Xi−1) + δi ≥ ∆(e∗j |Xi−1) may not hold anymore
(Ec 6= E\Xi in the general case). We now establish a more general result.

Proposition 2. Let Wf be the final set W when Algorithm 1 stops. Algorithm 1
is guaranteed to return a basis X such that:

∀w ∈Wf , w(X) ≥ 1

2

(
w(X∗)− δ

)
, where X∗ ∈ arg max

Y ∈I
w(Y).

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y). We want to prove that
w(X) ≥ 1

2 (w(X∗) − δ) holds. Let ei, i ∈ {1, . . . , r(M)}, be the ith element
inserted in X during the execution of Algorithm 1. Let Xi be the set X at the
end of the ith iteration step (i.e., Xi = {e1, . . . , ei}). Let Wi (resp. Si) denote
the uncertainty set W (resp. the set S) at the end of the ith iteration step.

Due to a well-known multiple exchange theorem [7], there exists a one-to-one
correspondence σ : X → X∗ such that Bi = (X\{ei}) ∪ {σ(ei)} is a basis of
the matroid for every element ei ∈ X. Then we can derive Xi−1 ∪ {σ(ei)} ∈ I
from Xi−1 ∪ {σ(ei)} ⊆ Bi (using Axiom A1), and therefore we necessarily have
Xi−1 ∪ {σ(ei)} ∈ Si at step i. Since MR(Xi−1 ∪ {ei},Si,Wi) ≤ δi (line 9), we
obtain w(Xi−1 ∪ {σ(ei)})− w(Xi−1 ∪ {ei}) ≤ δi, which can be rewritten:

∆(σ(ei)|Xi−1)−∆(ei|Xi−1) ≤ δi (3)

8 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

Then we obtain:

w(X∗) ≤ w(X ∪X∗) (since w is monotonic)

= w(X)+

r(M)∑
i=1

(
w(X ∪ {σ(e1), . . . , σ(ei)})− w(X ∪ {σ(e1), . . . , σ(ei−1)})

)
= w(X) +

r(M)∑
i=1

∆(σ(ei)|X ∪ {σ(e1), . . . , σ(ei−1)}) (by Equation (1))

≤ w(X) +

r(M)∑
i=1

∆(σ(ei)|Xi−1) (since w is submodular and Xi−1 ⊆ X)

≤ w(X) +

r(M)∑
i=1

(∆(ei|Xi−1) + δi) (by Equation (3))

= 2w(X) +

r(M)∑
i=1

δi (by Equation (1))

= 2w(X) + δ (which establishes the result) �

Example 1. We now present an execution of our algorithm. Consider an instance
of the maximum coverage problem over a uniform matroid with a set V =
{v1, . . . , vq}, q = 10, and a family of n = 8 subsets E = {S1, . . . , Sn} defined by:

S1 S2 S3 S4 S5 S6 S7 S8

v3 v1 v6 v2 v7 v6 v2 v1
v4 v3 v10 v8 v9 v7 v8 v3
v5 v10 v5

Table 1. Subsets used in Example 1.

A feasible solution is a collection of subsets X ⊆ E such that |X| ≤ k (here
we set k = 2), and the goal is to identify a feasible solution X maximizing w(X)
for a given set function w defined on 2E . Here we assume that w is defined by:

w(X) =
∑

v∈
⋃

S∈X S

u(v) (4)

where u(v) ≥ 0 is the utility of element v ∈ V . In that case, it can be proved
that w is monotone and submodular [8]. We further assume that all elements
v ∈ V are evaluated with respect to 3 criteria (denoted by u1, u2, and u3), and
their evaluations are given in Table 2. Then, the utility of any element v ∈ V is:

u(v) =

3∑
i=1

λiui(v) (5)

where λ = (λ1, λ2, λ3) ∈ R+ represents the value system of the DM.

Interactive Optimization of Submodular Functions 9

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
u1 4 2 2 3 7 6 8 7 7 1
u2 5 7 1 2 3 1 5 1 9 1
u3 4 5 3 7 2 5 3 8 4 4

Table 2. Performance vectors attached to elements in Example 1.

In this example, we assume that the DM’s preferences can be represented
by the set function w∗ defined by the hidden parameter λ∗ = (0.2, 0.5, 0.3).
Here we start the execution with no preference data, and therefore we have to
consider all weighting vectors λ in the set Λ = {λ ∈ [0, 1]3 :

∑3
i=1 λi = 1}, which

implicitly defines the uncertainty set W using Equations (4-5). In Figure 1, Λ
is represented by triangle ABC in the space (λ1, λ2), λ3 being implicitly defined
by λ3 = 1−λ1−λ2. Now, let us execute Algorithm 1 with δ = 0. Note that only
two iteration steps are needed as the rank of the uniform matroid is equal to k.

First iteration step: We have X = ∅ and Ec = E, and therefore S = E.
Since MMR(S,W) = 6 > 0, the DM is asked to compare two elements of
S, say S5 and S7. Since we have w∗({S5}) = 12.1 ≥ 9.7 = w∗({S7}), the
answer is: “subset S5 is better than subset S7”. Then W is updated by imposing
the constraint w({S5}) ≥ w({S7}) which amounts to restricting Λ by imposing
λ2 ≥ 1

2 − λ1. Now Λ is represented by the polyhedron BCDE in Figure 2. Since
MMR(S,W) = 2.5, the DM is asked to compare two subsets, say S5 and S6.
Since we have w∗({S5}) = 12.1 ≥ w∗({S6}) = 10.1, the DM answers: “subset
S5 is better than subset S6”. Then, W is updated by imposing the constraint
w({S5})≥ w({S6}), which amounts to further restricting Λ by imposing λ2 ≥
5
12 −

5
12λ1. Now Λ is represented by the polyhedron BCFE in Figure 3. We have

MMR(S,W) = MR({S5},S,W) = 0, and therefore S5 is added to X.
Second iteration step: We haveX = {S5} and Ec = E\{S5}, and therefore

S = {{S5}∪{S} : S ∈ Ec}. SinceMMR(S,W) = 1.5, we ask the DM to compare
two elements of S, say {S5, S8} and {S5, S7}. The DM prefers the former option
as w∗({S5, S8}) = 21.9 ≥ w({S5, S7}) = 21.8. The uncertainty set W is therefore
updated by imposing w({S5, S8}) ≥ w({S5, S7}), i.e., λ2 ≥ 1 − 8

3λ1. Now Λ is
represented by the triangle BGC in Figure 4. Since we have MMR(S,W) =
MR({S5, S8},S,W) = 0, then subset S8 is added to X.

As |X| = k = 2, the algorithm stops and returns X = {S5, S8} which is
the optimal solution for this instance. This shows that we are able to make good
recommendations without knowing λ∗ precisely (here only 3 queries are needed).

λ1

λ2

•A
0

•B1

•
C

1

• λ∗

Fig. 1. Initial set Λ.

λ1

λ2

0

•B1

•
C

1

• λ∗

•
D

•E

Fig. 2. Λ after 1 query.

10 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

λ1

λ2

0

•B1

•
C

1

• λ∗
•
F

•E

Fig. 3. Λ after 2 queries.

λ1

λ2

0

•B1

•
C

1

• λ∗

•
G

Fig. 4. Λ after 3 queries.

4 An interactive local search

In this section, we consider another efficient way of constructing a good approx-
imate solution to matroid optimization problems with monotonic submodular
functions. More precisely, we focus on the following simple local search approach:
starting from an arbitrary basis X, the idea is to replace one element e ∈ X by
an element e′ ∈ E\X such that X ∪{e′}\{e} belongs to I and is better than X.
This simple exchange principle can be iterated until reaching a local optimum.
When w is exactly observable, the local search algorithm has an approximation
ratio of 1/2, even in the special case of the uniform matroid [6]. When w is not
known, the local search algorithm can be combined with a preference elicitation
method which collects preference data only when it is necessary to identify im-
proving swaps. To implement this idea, we propose Algorithm 2 where NX is
the neighborhood of basis X (i.e., the set of bases that differ from X by exactly
one element). The procedure ComputeInitialBasis called in line 1 can be any
heuristic providing a good starting solution (see the numerical tests).

Algorithm 2: The Interactive Local Search Algorithm

1 X ← ComputeInitialBasis(M);
2 improve ← true;
3 while improve do
4 NX ← {X ′ ∈ B : |{X \X ′} ∪ {X ′ \X}| = 2};
5 S ← NX ∪ {X};
6 while MMR(S,W) > δ/r(M) do
7 Ask the DM to compare two elements of S;
8 Update W according to the DM’s answer;

9 end
10 if MR(X,S,W) ≤ δ/r(M) then
11 improve ← false
12 else
13 X ←RandomSelect(arg min

X′∈NX

MR(X ′,S,W))

14 end

15 end
16 return X;

Interactive Optimization of Submodular Functions 11

The following proposition shows that the basis returned by Algorithm 2 is a
good approximate solution.

Proposition 3. Let Wf be the final set W when Algorithm 2 stops. Algorithm 2
is guaranteed to return a basis X such that:

∀w ∈Wf , w(X) ≥ 1

2

(
w(X∗)− δ

)
, where X∗ ∈ arg max

Y ∈I
w(Y).

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y). We want to prove that
w(X) ≥ 1

2 (w(X∗)− δ) holds. Let ei, i ∈ {1, . . . , r(M)}, denote the ith element
of X in an arbitrary order. Let Xi be the set defined by Xi = {e1, . . . , ei}.
Due to the multiple exchange theorem, there exists a one-to-one correspondence
σ : X → X∗ such that Bi = (X\{ei}) ∪ {σ(ei)} is a basis of the matroid for
every element ei ∈ X. Note that Bi ∈ NX (the neighborhood of X) for all
i ∈ {1, . . . , r(M)} since Bi differs from X by exactly one element. Moreover, we
have MR(X,NX ,W) ≤ δ/r(M) at the end of the execution (due to line 10).
Therefore, w(Bi) − w(X) ≤ δ/r(M) holds by definition of max regrets, which
can be rewritten:

∆(σ(ei)|X\{ei})−∆(ei|X\{ei}) ≤
δ

r(M)
(6)

using Equation (1). Then, we obtain:

w(X∗) ≤ w(X) +
∑
e∈X∗

∆(e|X) (by submodularity, see [12] for a proof)

= w(X) +

r(M)∑
i=1

∆(σ(ei)|X)

≤ w(X) +

r(M)∑
i=1

∆(σ(ei)|X \ {ei}) (by submodularity)

≤ w(X) +

r(M)∑
i=1

(
∆(ei|X \ {ei}) +

δ

r(M)

)
(by Equation (6))

≤ w(X) +

r(M)∑
i=1

(
∆(ei|Xi−1) +

δ

r(M)

)
(since Xi−1 ⊆ X\{ei})

= 2w(X) + δ (which establishes the result)

�

Contrary to the greedy algorithm, we cannot prove that the local search
algorithm generates a polynomial number of queries and ends after a polyno-
mial number of iterations. More precisely, when δ 6= 0, some cycles of type
(X1, . . . , Xt) with Xi+1 ∈ NXi and X1 = Xt can even occur. Fortunately, when
a cycle is detected, it can be easily broken by iteratively dividing δ by two (while

12 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

still guaranteeing the near-optimality of the returned basis). Despite these poor
theoretical properties, we will see in the experimental section that the local
search algorithm achieves good results in practice.

5 Experimental results

In this section, we report the results obtained by our algorithms on two prob-
lems: the maximum coverage problem and the collective selection of items. Two
matroid constraints have been considered for each problem: the uniform matroid
and the partition matroid. The algorithms are evaluated through three perfor-
mance indicators: number of queries, computation times (given in seconds) and
empirical error, expressed as a percentage from the optimal solution. For the local
search algorithm, we also report the number of iteration steps (NbI) performed
by the algorithm. In our tests, two tolerance thresholds have been used: δ = 0
and δ = 20% of the initial maximum regret (to reduce the number of preference
queries). Results are averaged over 30 runs. All the results have been obtained
with a program written in C++ and tested on an Intel Core i7-9700, 3.00 GHz
with 15,5 GB of RAM. Pairwise max regret optimizations were performed by
CPLEX (https://www.ibm.com/analytics/cplex-optimizer).

To generate preference queries during the execution of our algorithms, we
use the well-known query selection strategy called the Current Solution Strat-
egy (CSS)[3] which consists in asking the DM to compare a solution X mini-
mizing the max regret to one of its best challengers arbitrary chosen in the set
arg maxY PMR(X,Y,W).

5.1 The maximum coverage problem

Here we consider instances of the maximum coverage problem with a set V =
{v1, . . . , vq} of q = 100 elements, and a family E of n = 80 subsets of V . The
family of subsets are generated as suggested in [13]. The utility of an element v ∈
V is defined by a weighted sum uλ(v) =

∑p
i=1 λiui(v) where ui is the evaluation

of v on criterion i ∈ {1, . . . , p}. Utilities are randomly generated within [1, 10]
and three values of p are considered: p = 4, 6, and 8. The DM’s preferences are
then represented by a submodular monotone set function w defined by:

w(X) =
∑

v∈
⋃

S∈X S

uλ(v)

for any X ⊆ E. Here we assume that λ is initially unknown. Answers to
queries are simulated using a hidden vector λ randomly generated before run-
ning the algorithms. For the uniform matroid, we focus on subsets of size at
most k = 16, i.e., I = {X ⊂ E : |X| ≤ 16}. For the partition matroid, set
E is randomly partitioned into q = 4 sets D = {D1, . . . , Dq}, and at most
di = 4 elements can be selected for all i ∈ {1, . . . , q}, i.e., I = {X ⊆ E :
∀i ∈ {1, . . . , 4}, |X ∩ Di| ≤ 4}. The results are given in Table 3 and Table 4

Interactive Optimization of Submodular Functions 13

Greedy Local search (random start) Local search (greedy start)
δ p time(s) queries error(%) time(s) queries error(%) NbI time(s) queries error(%) NbI

0
4 4.4 19.4 1.1 0.2 17.2 0.9 12.6 0.2 12.1 0.5 2.9
6 6.9 36.2 1.3 0.8 32.4 1.0 12.6 0.3 17.1 0.4 2.5
8 9.9 48.3 1.1 1.4 42.9 0.8 12.5 0.5 28.5 0.3 3.0

0.2
4 2.8 7.2 1.3 0.1 7.6 6.1 7.7 0.1 9.5 0.5 2.9
6 3.9 13.7 1.5 0.3 13.1 4.6 8.9 0.3 13.7 0.4 2.4
8 5.0 17.3 1.3 0.6 19.5 4.0 9.4 0.4 21.8 0.3 2.9

Table 3. Results obtained for the maximum coverage problem with uniform matroid.

Greedy Local search (random start) Local search (greedy start)
δ p time(s) queries error(%) time(s) queries error(%) NbI time(s) queries error(%) NbI

0
4 3.8 20.5 4.2 0.2 16.2 4.1 11.1 0.1 9.0 2.2 2.8
6 5.4 33.4 3.5 0.6 25.5 4.5 10.7 0.2 13.4 1.8 2.7
8 6.8 44.3 4.1 0.9 35.9 4.3 10.6 0.3 17.7 2.2 3.0

0.2
4 2.4 7.4 4.3 0.1 7.5 6.8 7.7 0.1 7.2 2.3 2.7
6 3.1 12.4 3.9 0.2 10.6 7.2 7.6 0.2 10.3 1.9 2.7
8 4.1 17.8 4.5 0.4 15.9 5.9 8.8 0.3 14.6 2.2 3.0

Table 4. Results obtained for the maximum coverage problem with partition matroid.

respectively. For our local search algorithm, we consider two implementations
of the procedure ComputeInitialBasis: we generate a basis at random (ran-
dom start), or we use the standard greedy algorithm with the uniform weighting
vector λ = (1/p, . . . , 1/p) (greedy start).

For δ = 0, we observe that the interactive greedy algorithm is outperformed
by the interactive local search procedures: the interactive greedy algorithm is
about 10 times slower on average and asks more preference queries. Moreover,
we observe that the local search performs better when considering the greedy
start heuristic instead of the random start heuristic. We also observe that using
δ = 0.2 allows to significantly reduce the number of queries, without increasing
the error too much (except for the local search with a random starting point).
Finally, we observe that our algorithms perform better on the uniform matroid
than on the partition matroid which is a little more complex.

5.2 The collective subset selection problem

In the collective subset selection problem, we are given a set A of m agents, and
a set E = {e1, . . . , en} of n items. Every agent a ∈ A gives a score sa(e) ≥ 0
to each item e ∈ E, and the utility that agent a derives from a set X ⊆ E
is defined by an ordered weighted average (OWA) [18]. More precisely, for any
X = {x1, . . . , x`} ⊆ E of size ` ≤ n, the utility of agent a is defined by:

uλa(X) =
∑̀
i=1

λisa(x(i))

14 Nawal Benabbou, Cassandre Leroy, Thibaut Lust, Patrice Perny

where (·) is a permutation of {1, . . . , `} sorting the elements ofX is non-increasing
order (i.e., sa(x(1)) ≥ . . . ≥ sa(x(`))), and λ = (λ1, . . . , λn) ∈ [0, 1]n is a non-
increasing normalized vector. Here the set function w is simply defined by:

w(X) =
∑
a∈A

uλa(X)

Note that function w is a submodular as functions uλa , a ∈ A, are submodular
whenever vector λ is non-increasing (see Skowron et al [16]). Here also we assume
that λ is initially unknown, and answers to queries are simulated using a hidden
weighting vector. We consider instances with m = 50 agents and n = 50 items,
and scores are randomly generated within in [1, 100]. For the uniform matroid,
two values of k have been tested: k = 5, and k = 10. For the partition matroid,
E is randomly partitioned into 4 sets, and at most d/4 items can be selected
in each set; we consider two values of d (d = 8 and d = 16). The results are
given in Table 5 and Table 6 respectively. For this problem, we observe that our
interactive greedy algorithm outperforms our interactive local search procedure.
With δ = 0.2, the greedy algorithm is very efficient: the error is less than 0.2%
and the number of queries does not exceed 7.

Greedy Local search (random start) Local search (greedy start)
δ d time(s) queries error(%) time(s) queries error(%) NbI time(s) queries error(%) NbI

0
5 0.9 8.2 0.2 3.1 14.4 0.1 5.8 1.6 11.4 0.0 3.1
10 2.7 25.1 0.1 34.4 45.6 0.0 9.3 31.2 35.5 0.0 4.3

0.2
5 0.6 3.0 0.2 0.8 6.8 0.5 5.0 1.1 6.9 0.1 2.9
10 1.2 4.3 0.1 12.8 16.6 0.6 7.5 17.7 18.5 0.0 4.1

Table 5. Collective selection of items problem under uniform matroid constraint.

Greedy Local search (random start) Local search (greedy start)
δ d time(s) queries error(%) time(s) queries error(%) NbI time(s) queries error(%) NbI

0
8 1.3 14.0 0.2 2.2 24.0 0.0 8.1 1.5 17.7 0.0 3.8
16 3.1 38.9 0.1 21.5 56.9 0.0 12.0 0.4 34.0 0.0 4.1

0.2
8 0.8 4.2 0.2 1.8 18.5 0.1 8.1 1.2 13.4 0.1 3.7
16 1.4 6.3 0.1 16.0 43.4 0.2 11.4 6.9 25.7 0.0 4.0

Table 6. Collective selection of items problem under partition matroid constraint.

6 Conclusion

We have proposed two interactive algorithms (greedy and local search) com-
bining the elicitation of a submodular utility function and the determination
of the optimal independent subset in a weighted matroid. Both algorithms ad-
mit performance guarantees on the quality of the returned basis. The tradeoff
between the quality of solutions and the number of preference queries used in
the process can be controlled by the parameter δ used to define admissible max
regrets. Our approach has been tested on two specific problems, but many oth-
ers could be solved with similar performances due to the generality of matroids.

Interactive Optimization of Submodular Functions 15

Note also that a counterpart of this interactive approach could be proposed for
the optimization of supermodular functions.

References

1. S. Ahmed and A. Atamtürk. Maximizing a class of submodular utility functions.
Mathematical programming, 128(1):149–169, 2011.

2. N. Benabbou, C. Leroy, T. Lust, and P. Perny. Combining preference elicitation
with local search and greedy search for matroid optimization. In 35th AAAI Con-
ference on Artificial Intelligence (AAAI’21), 2021.

3. C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans. Constraint-based op-
timization and utility elicitation using the minimax decision criterion. Artificial
Intelligence, 170(8–9):686–713, 2006.

4. G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák. Maximizing a monotone sub-
modular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

5. J. Edmonds. Matroids and the greedy algorithm. Mathematical programming,
1(1):127–136, 1971.

6. M.L. Fisher, G.L. Nemhauser, and L.A. Wolsey. An analysis of approximations for
maximizing submodular set functions-II, volume 8, pages 73–87. Springer, 1978.

7. C. Greene and T.L. Magnanti. Some abstract pivot algorithms. SIAM Journal on
Applied Mathematics, 29(3):530–539, 1975.

8. D.S. Hochbaum and A. Pathria. Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

9. B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

10. M. Minoux. Accelerated greedy algorithms for maximizing submodular set func-
tions. In Optimization techniques, pages 234–243. Springer, 1978.

11. G.L. Nemhauser and L.A. Wolsey. Maximizing submodular set functions: formula-
tions and analysis of algorithms. In North-Holland Mathematics Studies, volume 59,
pages 279–301. Elsevier, 1981.

12. G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for
maximizing submodular set functions-I. Mathematical programming, 14(1):265–
294, 1978.

13. M. Resende. Computing approximate solutions of the maximum covering problem
with GRASP. Journal of Heuristics, 4(2):161–177, 1998.

14. A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–
355, 2000.

15. P. Skowron. FPT approximation schemes for maximizing submodular functions.
Information and Computation, 257:65–78, 2017.

16. P. Skowron, P. Faliszewski, and J. Lang. Finding a collective set of items: From
proportional multirepresentation to group recommendation. Artif. Intell., 241:191–
216, 2016.

17. J. Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 67–74, 2008.

18. R.R. Yager. On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern., 18(1):183–190, 1988.

