
HAL Id: hal-03954527
https://hal.sorbonne-universite.fr/hal-03954527v1

Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Robustness of Controlled Deep Reinforcement
Learning for Slice Placement

Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin, Pierre Sens

To cite this version:
Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin, Pierre Sens. On the Robustness
of Controlled Deep Reinforcement Learning for Slice Placement. Journal of Network and Systems
Management, 2022, 30 (3), pp.43. �10.1007/s10922-022-09654-8�. �hal-03954527�

https://hal.sorbonne-universite.fr/hal-03954527v1
https://hal.archives-ouvertes.fr

JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT 1

On the Robustness of Controlled Deep
Reinforcement Learning for Slice Placement

Jose Jurandir Alves Esteves (corresponding author) ∗†, Amina Boubendir ∗, Fabrice Guillemin ∗ and Pierre Sens †
∗Orange Labs, France †Sorbonne Université / CNRS / Inria, LIP6, France

{josejurandir.alvesesteves, amina.boubendir, fabrice.guillemin}@orange.com, pierre.sens@lip6.fr

Abstract—The evaluation of the impact of using Machine
Learning in the management of softwarized networks is considered
in multiple research works. In this paper, we propose to evaluate
the robustness of online learning for optimal network slice
placement. A major assumption in this study is to consider
that slice request arrivals are non-stationary. We precisely
simulate unpredictable network load variations and compare
two Deep Reinforcement Learning (DRL) algorithms: a pure
DRL-based algorithm and a heuristically controlled DRL as a
hybrid DRL-heuristic algorithm, in order to assess the impact
of these unpredictable changes of traffic load on the algorithms
performance. We conduct extensive simulations of a large-scale
operator infrastructure. The evaluation results show that the
proposed hybrid DRL-heuristic approach is more robust and
reliable than pure DRL in real network scenarios.

Index Terms—Network Slicing, Placement, Optimization, Deep
Reinforcement Learning, Robustness, Reliability.

I. INTRODUCTION

THE promise of network Slicing is to enable a high
level of customization of network services in future

networks (5G and beyond) leveraged by virtualization and
software defined networking techniques. These key enablers
transform telecommunications networks into programmable
platforms capable of offering virtual networks enriched by
Virtual Network Functions (VNFs) and IT resources tailored
to the specific needs of certain customers (e.g., companies) or
vertical markets (automotive, e-health, etc.) [1], [2]. From an
optimization theory perspective, the Network Slice Placement
problem can be viewed as a specific case of Virtual Network
Embedding (VNE) or VNF Forwarding Graph Embedding
(VNF-FGE) problems [3], [4].

In this context, it is generally possible to formulate Integer
Linear Programming (ILP) problems [5], which however turn
out to beNP-hard [6] with very long execution time. This point
is all the more crucial as network slices are expected to share
resources and coexist in a large and distributed infrastructure.
Moreover, slices have a wide range of requirements in terms of
resources, quality objectives and lifetime. This brings additional
complexity with regard to placement as optimization algorithms
need to be highly scalable with low response time even under
varying network conditions.

J.J. Alves Esteves is with Orange Labs, 92320 Chatilon, France and
also with LIP6 – Inria, Sorbonne Univ., 75005 Paris, France (e-mail:
josejurandir.alvesesteves@orange.com).

A. Boubendir and F. Guillemin are with Orange Labs, 92320 Chatillon,
France (e-mail: firstname.name@orange.com).

P. Sens is with LIP6 – Inria, Sorbonne Univ., CNRS, 75005 Paris, France
(e-mail: pierre.sens@lip6.fr).

As an alternative to optimization techniques and the devel-
opment of heuristic methods, Deep Reinforcement Learning
(DRL) has recently been used in the context of both VNE
and Network Slice Placement [7]–[12]. DRL techniques
are considered as very promising since they allow, at least
theoretically, the determination of optimal decision policies only
based on experience [13]. However, from a practical point of
view, especially in the context of non-stationary environments,
ensuring that a DRL agent converges to an optimal policy is
still challenging as shown by the evaluation results in [14].

As a matter of fact, when the environment is continually
changing, the algorithm has trouble in using the acquired
knowledge to find optimal solutions. The use of a DRL
algorithm online can then become impractical. In fact, most
of existing works based on DRL to solve the Network Slice
Placement or VNE problem assume a stationary environment,
i.e., with constant network load. However, traffic conditions
in real networks are basically non stationary with daily and
weekly variations and subject to drastic changes (e.g., traffic
storm due to an unpredictable event).

To cope with traffic changes, this paper proposes a hybrid
DRL-heuristic strategy called Heuristically Assisted DRL (HA-
DRL) [14]. We applied in [15] this strategy in an online learning
scenario with periodically varying network load conditions
to show how this strategy can be used to accelerate and
stabilize the convergence of DRL techniques in this type of non-
stationary environment. As a follow-up of theses two studies,
we focus in the present paper on a different non stationary
scenario with stair-stepped network load changes. The goal of
the paper is to evaluate and show the robustness of the proposed
strategy method in the case of sudden and stair-stepped traffic
changes.

The contributions of the present paper are threefold:
1) We propose a network load model to describe network

slice demand and adapt it to unpredictable network load
changes;

2) We propose a framework combining Advantage Actor
Critic and a Graph Convolutional Network (GCN) for
conceiving DRL-based algorithms adapted to the non-
stationary case;

3) We show how the use of a heuristic function can control
the DRL learning capability and improve its robustness
to unpredictable network load changes.

The organization of this paper is as follows: In Section II, we
review related work. In Section III, we describe the Network
Slice Placement problem modeling. The learning framework

2 JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT

for slice placement optimization is described in Section IV. The
adaptation of the pure DRL approaches and its control by using
a heuristic is introduced in Section IV-B. The experiments and
evaluation results are presented in Section V, while conclusions
and perspectives are presented in Section VI.

II. RELATED WORK ANALYSIS

We provide in Section II-A a succinct review of the existing
DRL-based approaches for network slice placement. The
interested reader may refer to [14], [15] for a more detailed and
comprehensive discussion. In Section II-B we discuss recent
works on robust slice placement algorithms.

A. On DRL-based Approaches for Slice Placement

DRL has been recently applied to solving network slice
placement and VNE problems. We divide these works into
two categories on the basis of their algorithmic aspects: 1)
pure DRL approaches [7]–[12], in which only the knowledge
acquired by the learning agent via training is used as a basis
for taking placement decisions; and 2) hybrid DRL-heuristic
approaches [14], [16], [17], in which the placement decision
computation is assisted by a heuristic method.

The use of heuristics aims at increasing the reliability of
DRL algorithms. However, most of these works are based on
the assumption that the network load is static, i.e., slice arrivals
occurs at a constant rate. To the best of our knowledge, the
work we proposed in [15] is the first attempt to evaluate an
online DRL-based approach in a non-stationary network load
scenario whereas [18] only considers offline learning.

In addition, in both [15] and [18], it is assumed that the
network load has periodic fluctuations. In the present paper
we study the behavior of the algorithms proposed in [15] in
case of an unpredictable network load disruption.

B. On Robustness of Slice Placement Approaches

The term robustness has different meanings depending on the
field of application. In Robust Optimization (RO), robustness is
related to the decision/solution itself. It is the capability of the
algorithm solution of coping with the worst case without losing
feasibility [19]. In Machine Learning (ML), especially in Deep
Learning (DL), robustness is related to the learned model. It is
the property of the model (i.e., Deep Neural Network (DNN))
that determines its integrity under varying operation conditions
[20].

The authors of [21] are the first ones to discuss robustness
in the DRL context. They propose to use Genetic Algorithm
to improve the robustness of a self-driving car application.
Robustness is considered as the capacity of sustaining a high
accuracy on image classification even when perceived images
change and it is measured by Neuron Coverage (NC), i.e.,the
ratio of the activated neurons in the DNN.

There are only a few recent works on the robustness of
slice placement procedures, most of them on RO [22]–[25].
These works answer a question different from the one we are
investigating in this paper as they evaluate the robustness of
the decision whereas we want to evaluate the robustness of the

learning process. Despite their originality, the above approaches
present some drawbacks, such as the lack of scalability of
ILP, the sub-optimality of heuristic solutions, the fact that
they consider offline optimization in which all slices to be
placed are known in advance, and the fact that they are single
objective optimization approaches, mainly focusing on energy
consumption minimization.

In the present work, we propose to rely on a DRL-based
approach in order to overcome ILP and heuristic drawbacks
and consider multiple-optimization objectives. To the best of
our knowledge, paper [26] is the only one to have proposed
a DRL-based approach for slice placement and evaluated the
learning robustness. However, the authors focus on evaluating
the robustness of the DRL approach against random topology
changes (e.g., node failures or deploying new nodes in the
network topology). Here, we focus on evaluating robustness
against network load unpredictable variations. It seems that
our work is the first to perform such an evaluation.

III. NETWORK SLICE PLACEMENT OPTIMIZATION
PROBLEM

We present in this section the various elements composing
the model for slice placement. Slices are placed on a substrate
network, referred to as Physical Substrate Network (PSN)
and described in Section III-A. Slices give rise to Network
Slice Placement Requests (Section III-B), generating a network
load defined in Section III-C. The optimization problem is
formulated in Section III-D.

A. Physical Substrate Network Modeling

The Physical Substrate PSN is composed of the infrastructure
resources, namely IT resources (CPU, RAM, disk, etc.) needed
for supporting the Virtual Network Functions (VNFs) of
network slices together with the transport network, in particular
Virual Links (VLs) for interconnecting the VNFs of slices.
Fig. 1 shows the PSN structure, which is divided into three main
components: the Virtualized Infrastructure (VI) corresponding
to IT resources, the Access Network (AN), and the Transport
Network (TN). The Virtual Infrastructure (VI) hosting IT
resources is the set of Data Centers (DCs) interconnected
by network elements (switches and routers). We assume that
data centers are distributed in Points of Presence (PoP) or
centralized (e.g., in a big cloud platform).

As in [27], we define three types of DCs with different
capacities: Edge Data Centers (EDCs) close to end users but
with small resources capacities, Core Data Centers (CDCs) as
regional DCs with medium resource capacities, and Central
Cloud Platforms (CCPs) as national DCs with big resource
capacities. We consider that slices are rooted so as to take
into account the location of those users of a slice. We thus
introduce an Access Network (AN) representing User Access
Points (UAPs) such as Wi-Fi APs, antennas of cellular networks,
etc. and Access Links. Users access slices via one UAP, which
may change during the life time of a communication by a user
(e.g., because of mobility). The Transport Network (TN) is the
set of routers and transmission links needed to interconnect
the different DCs and the UAPs.

ALVES ESTEVES et al.: ON THE ROBUSTNESS OF CONTROLLED DEEP REINFORCEMENT LEARNING FOR SLICE PLACEMENT 3

The complete PSN is modeled as a weighted undirected
graph Gs = (N,L) with parameters described in Table I,
where N is the set of physical nodes in the PSN, and L ⊂
{(a, b) ∈ N×N : a 6= b} refers to a set of substrate links. Each
node has a type in the set {UAP, router, switch, server}. The
available CPU and RAM capacities on each node are defined
as capcpun ∈ R, capramn ∈ R for all n ∈ N , respectively. The
available bandwidth on the links are defined as capbw(a,b) ∈ R
for all (a, b) ∈ L.

TABLE I
PSN PARAMETERS

Parameter Description

Gs = (N,L) PSN graph
N Network nodes

S ⊂ N Set of servers
DC Set of data centers

Sdc ⊂ S, ∀dc ∈ DC Set of servers in data center dc
SWdc, ∀dc ∈ DC Switch of of data center dc

L = {(a, b) ∈ N ×N ∧ a 6= b} Set of physical links
capbw

(a,b)
∈ R,∀(a, b) ∈ L Bandwidth capacity of link (a, b)

capcpus ∈ R, ∀s ∈ S available CPU capacity on server s
Mcpu

s ∈ R,∀s ∈ S maximum CPU capacity of server s
caprams ∈ R, ∀s ∈ S available RAM capacity on server s
Mram

s ∈ R,∀s ∈ S maximum RAM capacity of server s
Mbw

s ∈ R,∀s ∈ S maximum outgoing bandwidth from s

Fig. 1. Physical Substrate Network example.

B. Network Slice Placement Requests Modeling

We consider that a slice is a chain of VNFs to be placed and
connected over the PSN. The VNFs of a slice are grouped into
a request, namely a Network Slice Placement Request (NSPR),
which has to be placed on the PSN. Note that in this paper,
we only consider the computation of the initial placement and

we consider that an NSPR has a fixed structure. The study
of the reconfiguration of a slice after the initial placement
(for instance via the migration of some VNF from one data
center to another) is out of the scope of this paper. An NSPR
is represented as a weighted undirected graph Gv = (V,E),
with parameters described in Table II, where V is the set of
VNFs in the NSPR and E ⊂ {(ā, b̄) ∈ V × V ∧ ā 6= b̄} is a
set of VLs interconnecting the VNFs of the slice . The CPU
and RAM requirements of each VNF of an NSPR are defined
as reqcpuv ∈ R and reqramv ∈ R for all v ∈ V , respectively.
The bandwidth required by each VL in an NSPR is given by
reqbw

(ā,b̄)
∈ R for all (ā, b̄) ∈ E.

We consider the existence of different NSPR classes char-
acterizing different levels of resources requirements, lifespan
and arrival rate at described in Section III-C.

TABLE II
NSPR PARAMETERS

Parameter Description

Gv = (V,E) NSPR graph
V Set of VNFs of the NSPR

E = {(ā, b̄) ∈ N ×N ∧ ā 6= b̄} Set of VLs of the NSPR
reqcpuv ∈ R CPU requirement of VNF v
reqramv ∈ R RAM requirement of VNF v
reqbw

(ā,b̄)
∈ R Bandwidth requirement of VL (ā, b̄)

C. Network Load Modeling

The Network Load model allows us to control the percentage
of the total network resources capacity being used at a specific
instant. Let J be the set of resources in the network (i.e., CPU,
RAM, bandwidth). Let K ⊂ N be the set of NSPR classes.
We compute the load generated by arrivals of NSPRs of class
k ∈ K for resource j in J as in [28]:

ρkj =
1

Cj

λk

µk
Akj , (1)

where Cj is the total capacity of resource j, Akj is the number
of resource units requested by an NSPR of class k, λk is the
average arrival rate of NSPRs of class k, and 1/µk is the
average lifetime of an NSPR of class k.

We define the global load ρj for resource j as the sum

ρj =
∑
k∈K

ρkj (2)

If 0 ≤ ρj ≤ 1, the system is not overloaded for resource j;
otherwise, the system is under overload conditions and the
rejection of NSPRs may be high.

D. Network Slice Placement Optimization Problem Statement

The Network Slice Placement optimization problem is stated
as follows (see [14] for more details):
• Given: an NSPR graph Gv = (V,E) and a PSN graph
Gs = (N,L),

• Find: a mapping Gv → Ḡs = (N̄ , L̄), N̄ ⊂ N , L̄ ⊂ L,
• Subject to: the VNF CPU requirements reqcpuv ,∀v ∈
V , the VNF RAM requirements reqramv ,∀v ∈ V , the

4 JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT

VLs bandwidth requirements reqbw
(ā,b̄)

,∀(ā, b̄) ∈ E, the
server CPU available capacity capcpus ,∀s ∈ S, the server
RAM available capacity caprams ,∀s ∈ S, the physical
link bandwidth available capacity capbw(a,b),∀(a, b) ∈ L.

• Objective: maximize the network slice placement request
acceptance ratio, minimize the total resource consumption
and maximize load balancing.

E. P2C Heuristic Principles

A complete mathematical formulation of the network slice
placement introduced in Section III-D problem can be found in
[14] and we have proposed in [29] a heuristic to efficiently solve
it. This heuristic is based on the P2C principle [30], which
states in the present context that considering two possible
data centers chosen “randomly” instead of only one brings
exponential improvement of the solution quality. The pseudo
code of the proposed heuristic is given illustrated in Algorithm
1. It is a greedy algorithm such that for each VNF b̄ ∈ V :

1) Randomly select 2 candidate servers s1, s2 ∈ S;
2) Evaluate the resource consumption when placing b̄ in s1

and s2 and place b̄ on the best server;
3) Map the VLs (ā, b̄) ∈ E associated to b̄.

This heuristic contains the limitations of all heuristic
approaches: the lack of flexibility due to manual feature design,
the difficulties to handle multiple optimization criteria, and the
sub-optimality of the provided solutions. But it also yields low
execution time and good load balancing; it was shown in [29]
that the heuristic outperforms two ILP based algorithms. We
elaborate in the next section on these properties of the heuristic
to propose our HA-DRL approach.

Algorithm 1: Heuristic for Network Slice Placement
Optimization using Power of two Choices (P2C).

Data: NSPR, PSN
1 Starting by the root VNF of the NSPR
2 while not at end of the NSPR do
3 Calculate the set of candidate servers to place the

current VNF of the NSPR
4 if There is available candidate servers then
5 Choose randomly two candidate servers to place

the VNF
6 Calculate resource consumption cost for placing

the VNF in the both servers considering VNF
placement and VL mapping

7 Place the current VNF in the server providing
lower resource consumption cost and map VL
in the associated path

8 else
9 Backtrack to initial PSN state and reject current

NSPR
10 return
11 Move to the next VNF of the NSPR
12 Accept current NSPR
13 return

IV. LEARNING FRAMEWORK FOR NETWORK SLICE
PLACEMENT OPTIMIZATION

We describe in this section the DRL-based approach used to
solve the optimization problem formulated in Section III. As
mentioned above, we adopt the same approach as in [14] but
we focus in this paper on evaluating the performance when an
unpredictable network load change occurs.

A. Learning framework

Figure 2 presents an overview of the DRL framework. The
state contains the features of the PSN and NSPR to be placed.
A valid action is, for a given NSPR graph Gv = (V,E), a
subgraph of the PSN graph Ḡs ⊂ Ḡs = (N,L) to place the
NSPR that does not violate the problem constraints described
in [14] Section III-D. The reward evaluates how good is the
computed action with respect to the optimization objectives
described in [14] Section III-D.

Deep Neural Networks (DNNs) are trained to calculate i)
optimal actions for each state (i.e., placements with maximal
rewards) and ii) the State-value function used in the learning
process. In the following sections, we describe each element
of this framework.

Fig. 2. DRL framework for Network Slice Placement Optimization

1) Policy: We reuse the framework introduced in [14]. We
denote by A the set of possible actions (namely placing VNFs
on nodes) and by S the set of all states. We adopt a sequential
placement strategy so that we choose a node n ∈ N where to
place a specific VNF v ∈ {1, ..., |V |}. The VNFs are placed
in ascending order, which means that the placement starts with
the VNF v = 1 and ends for the VNF v = |V |.

We break then the process of placing one NSPR graph
Gv = (V,E) into a sequence of |V | actions, one for each
v ∈ V , instead of considering the one shot placement of Gv.
The latter strategy would require the definition of the action
as a subgraph of the PSN graph Gs = (N,L) what would
imply |A| = |SG|, where SG is the set of all sub graphs of
Gs, that grows exponentially with size of Gs. Note that with
the sequential placement strategy A = N , thus |A| � |SG|.
At each time step t, the DRL agent focuses on the placement
of exactly one VNF v ∈ V of the NSPR. The mapping of the
virtual links associated to the VNF v to a physical path in the
PSN is done by the shortest path algorithm.

ALVES ESTEVES et al.: ON THE ROBUSTNESS OF CONTROLLED DEEP REINFORCEMENT LEARNING FOR SLICE PLACEMENT 5

At each time step t, given a state σt, the learning agent
selects an action a with probability given by the Softmax
distribution

πθ(at = a|σt) =
eZθ(σt,a),∑
b∈N e

Zθ(σt,b)
, (3)

where the function Zθ : S × A → R yields a real value for
each state and action calculated by a DNN as detailed in
Section IV-B1. The notation πθ is used to indicate that policy
depends on Zθ. The control parameter θ represents the weights
in the DNN.

2) State representation: As in [14], the PSN state is
characterized by available server resources: capcpu = {capcpun :
n ∈ N}, capram = {capramn : n ∈ N} and capbw =
{capbwn =

∑
(n,b)∈L cap

bw
(n,b) : n ∈ N}. In addition, we keep

track of the placement of the outstanding NSPR (i.e., the one
being placed) via the vector χ = {χn ∈ {0, .., |V |} : n ∈ N},
where χn is the number of VNFs of the outstanding NSPR
placed on node n.

The NSPR state is a view of the current placement and
is composed of four characteristics, three related to resource
requirements (see Table II for the notation) of the current VNF
v to be placed: reqcpuv , reqramv and reqbwv =

∑
(v,b̄)∈E req

bw
(v,b̄)

,
and mv = |V | − v+ 1 the number of VNFs of the outstanding
NSPR still to be placed.

3) Reward function: We reuse the reward function intro-
duced in [14]. We precisely consider

rt+1 =

0, if t < T and at is successful∑T

i=0 δ
a
i+1δ

b
i+1δ

c
i+1, if t = T and at is successful

δat+1, otherwise
(4)

where T is the number of iterations of a training episode and
where the rewards δai+1, δbi+1, and δci+1 are defined as follows:

• An Action at may lead to a successful or unsuccessful
placement. We then define the Acceptance Reward value
due to action at as

δat+1 =

{
100, if at is successful,
−100, otherwise. (5)

• The Resource Consumption Reward value for the place-
ment of VNF v via action at is defined by

δct+1 =

{
reqbw(v−1,v)

reqbw
(v−1,v)

|P | = 1
|P | , if |P | > 0,

1, otherwise.
(6)

where P is the path used to place VL (v − 1, v). Note
that a maximum δct+1 = 1 is given when |P | = 0, that is,
when VNFs v − 1 and v are placed on the same server.

• The Load Balancing Reward value for the placement of
VNF v via at, in which parameters M cpu

at and Mram
at

correspond to initial or maximal amount of CPU and
RAM respectively on node at.

δbt+1 =
capcpuat
M cpu
at

+
capramat

Mram
at

. (7)

B. Adaptation of DRL and Introduction of a Heuristic Function

1) Proposed Deep Reinforcement Learning Algorithm : As
in [14], we use a single thread version of the A3C Algorithm
introduced in [31]. This algorithm relies on two DNNs that
are trained in parallel: i) the Actor Network with the set of
parameters θ, which is used to generate the policy πθ at each
time step, and ii) the Critic Network with the set of parameters
θv which generates an estimate νπθθv (σt) for the State-value
function defined by

νπ(t|σ) = Eπ

[
T−t−1∑
k=0

γkrt+k+1|σt = σ

]
,

for some discount parameter γ.
As depicted in Figure 3 both Actor and Critic Networks

have almost identical structure. As in [7], we use the GCN
formulation proposed by [32] to automatically extract advanced
characteristics of the PSN. The characteristics produced by the
GCN represent semantics of the PSN topology by encoding
and accumulating characteristics of neighbour nodes in the
PSN graph. The size of the neighbourhood is defined by
the order-index parameter K. As in [7], we consider in the
following K = 3 and perform automatic extraction of 60
characteristics per PSN node. The NSPR state characteristics
are separately transmitted to a fully connected layer with 4
units. The characteristics extracted by both layers and the
GCN layer are combined into a single column vector of size
60|N | + 4 and passed through a fully connected layer with
|N | units.

Fig. 3. Reference framework for the proposed learning algorithms.

In the Critic Network, the outputs are forwarded to a single
neuron, which is used to calculate the state-value function
estimation νπθθv (σt). In the Actor Network, the outputs represent
the values of the function Zθ introduced in Section IV-A. These
values are injected into a Softmax layer that transforms them
into a Softmax distribution that corresponds to the policy πθ.

During the training phase, at each time step t, the A3C
algorithm uses the Actor Network to calculate the policy
πθ(.|σt). An action at is sampled using the policy and
performed on the environment. The Critic Network is used to
calculate the state-value function approximation νπθθv (σt). The
learning agent receives then the reward rt+1 and next state σt+1

from the environment and the placement process continues
until a terminal state is reached, that is, until the Actor Network

6 JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT

returns an unsuccessful action or until the current NSPR is fully
placed. At the end of the training episode, the A3C algorithm
updates parameters θ and θv by using the same rules as in
[14].

2) Introduction of a Heuristic Function: To guide the
learning process, we use as in [14] the placement heuristic
introduced in [29] (see the pseudo code of the heuristic
in Algorithm 1). This yields the HA-DRL algorithm. More
precisely, from the reference framework shown in Figure 3, we
propose to include in the Actor Network the Heuristic layer
that calculates a Heuristic Function H : S ×A → R based on
external information provided by the heuristic method, referred
as HEU.

Let Zθ be the function computed by the fully connected
layer of the Actor Network that maps each state and action to
a real value which is after converted by the Softmax layer into
the selection probability of the respective action (see Section
IV-A). Let āt = argmaxa∈A Zθ(σt, a) be the action with the
highest Zθ value for state σt. Let a∗t = HEU(σt) be the action
derived by the HEU method at time step t and the preferred
action to be chosen. H(σt, a

∗
t) is shaped to allow the value of

Zθ(σt, a
∗
t) to become closer to the value of Zθ(σt, āt). The

aim is to turn a∗t into one of the likeliest actions to be chosen
by the policy.

The Heuristic Function is precisely formulated as

H(σt, at) ={
Zθ(σt, āt)− Zθ(σt, at) + η, if at = a∗t ,
0, otherwise, (8)

where η parameter is a small real number which can be set so
that H(σt, a

∗
t) is always greater or equal to η. If η is greater

than 0, there will always be a small increase in the value of
Z(σt, a

∗
t) and, therefore, in the probability of choosing the

server a∗t to place the corresponding VNF.
During the training process the Heuristic layer calculates

H(σt, .) and updates the Zθ(σt, .) values by using the following
equation:

Zθ(σt, .) = Zθ(σt, .) + ξH(σt, .)
β (9)

The Softmax layer then computes the policy using the modified
Zθ. Note that the action returned by a∗t will have a higher
probability to be chosen, but it does not mean that the action
a∗t will be systematically chosen by the DRL agent. The ξ and
β parameters are used to control how much HEU influence
the policy (i.e., how much we increase the probability of the
DRL agent choosing action a∗t .)

It is worth noting that the main assumption here is that
since the HEU method generally produces good placement
actions (i.e., actions that bring a high reward), when we use it
to control the DRL agent, the DRL agent learns to increase
the probability of taking good actions. That is, by taking the
actions chosen by the HEU, the DRL agent gets good rewards
and consequently learns good behavior.

C. Implementation Remarks

All resource-related characteristics are normalized to be in
[0, 1]. This is done by dividing capj and reqj , j ∈ {cpu,

ram,bw}, by maxn∈N M
j
n. With regard to the DNNs, we have

implemented the Actor and Critic as two independent Neural
Networks. Each neuron has a bias assigned. We have used the
hyperbolic tangent (tanh) activation for non-output layers of the
Actor Network and Rectified Linear Unit (ReLU) activation for
all layers of the Critic Network. We have normalized positive
global rewards to be in [0, 10]. During the training phase, we
have considered the policy as a Categorical distribution and
used it to sample the actions randomly.

V. IMPLEMENTATION AND EVALUATION RESULTS

A. Implementation Details & Simulator Settings

1) Experimental setting: We developed a simulator in Python
containing: i) the elements of the Network Slice Placement
Optimization problem (i.e., PSN and NSPR); ii) the DRL and
HA-DRL algorithms. The DRL algorithm proposed here is
based on the A3C algorithm which has shown good results in
previous comparative studies for VNE [7] and other problems
[31]. It represents a good basis in the comparisons with the HA-
DRL algorithm performed in this study. We used the PyTorch
framework to implement the DNNs. Experiments were run in
a 2x6 cores @2.95Ghz 96GB machine.

2) Physical Substrate Network Settings: We consider a PSN
that could reflect the infrastructure of an operator as discussed
in [28]. In this network, three types of DCs are introduced as
in Section III. Each CDC is connected to three EDCs which
are distant of 100 km. CDCs are interconnected and connected
to one CCP that is 300 km away.

We consider 15 EDCs each one with 4 servers, 5 CDCs each
with 10 servers and 1 CCP with 16 servers. The CPU and RAM
capacities of each server are 50 and 300 units, respectively. A
bandwidth capacity of 100 Gbps is given to intra-data center
links inside CDCs and CCP, 10Gbps being the bandwidth for
intra-data center links inside EDCs. Transport links connected
to EDCs have 10Gpbs of bandwidth capacity. Transport links
between CDCs have 100Gpbs of bandwidth capacity as well
for the ones between CDCs and the CCP.

3) Network Slice Placement Requests Settings : We consider
NSPRs to have the Enhanced Mobile Broadband (eMBB)
setting described in [29]. Each NSPR is composed of 5 or
10 VNFs (see Section V-B2). Each VNF requires 25 units of
CPU and 150 units of RAM. Each VL requires 2 Gbps of
bandwidth.

B. Algorithms & Experimental Setup

1) Training Process & Hyper-parameters: We consider an
online learning scenario, that is, training is not separated for
execution. The whole training process has a maximum duration
of 6 hours for the considered algorithms. We perform seven
independent runs of each algorithm to assess their average
performance in terms of the metrics introduced below (see
Section V-C).

After having performed Hyper-parameter search (see more
details in [14]), we set the learning rates for the Actor and Critic
networks of DRL and HA-DRL algorithms to α = 5× 10−5

and α′ = 1.25× 10−3, respectively.

ALVES ESTEVES et al.: ON THE ROBUSTNESS OF CONTROLLED DEEP REINFORCEMENT LEARNING FOR SLICE PLACEMENT 7

We program four versions of HA-DRL agents, each with a
different value for the β parameter of the heuristic function
formulation (see Section IV-B2). We set in addition the
parameters ξ = 1 and η = 0.

2) Network load calculation: Network loads are calculated
using CPU resource but the analysis could easily be applied to
RAM; we use the network load model introduced in Section
V-B2. We consider two NSPR classes: i) a Volatile class and
ii) a Long term class.

The differences between the two classes are related to their
resource requirements and their lifespans as Volatile requests
have 5 VNFs and a life-span of 20 simulation time units and
Long-term requests have 10 VNFs and a life span of 500
simulation time units.

3) Network load change scenarios: We consider that the
network runs in a standard regime under a network load being
equal to 40% (i.e., ρ = 0.4) and that the NSPRs of each
class generate half of the total load. We set slice lifespan
parameters 1/µ1 = 20 and 1/µ2 = 500 time units, respectively.
The arrival rate parameter λ varies according to the tested
scenario. In each experiment, the learning agent is trained
during approximately 4 hours for this network load regime.
Then a stair-stepped network load change occurs. We simulated
eight different network load change levels. Each network load
change level is characterized by the addition of a certain amount
of extra network load ranging from 10% to 80% (causing
system overload).

C. Evaluation Metrics
To characterize the performance of the placement algorithms,

we consider two performance metrics:
1) Average execution time: the average execution time

in seconds required to place 1 NSPR. This metric is
calculated based on 100 NSPR placements;

2) Acceptance Ratio per Training phase (TAR): this
metric represents the Acceptance Ratio obtained in each
training phase, i.e., each part of the training process,
corresponding to 500 NSPR arrivals or 500 episodes. It
is calculated as follows: #accepted NSPRs

500 .
This second metric allows us to better observe the evolution

of algorithm performance over time since it measures algorithm
performance in independent parts (phases) of the training
process without accumulating the performance of previous
training phases. For a more comprehensive discussion about
the convergence times and training aspects of this algorithms,
the interested reader can consult previous work [14].

Based on this metric, we identify three other important
metrics used in our results discussion:

1) Rupture TAR: it is the TAR obtained in the training
phase where the network load change occurs, i.e., the
rupture phase;

2) Last TAR: it is the TAR obtained in the training phase
that is prior to the rupture phase;

3) Average TAR: it is the average of the TARs obtained
in the 30 phases preceding the rupture phase;

4) TAR standard deviation: it is the standard deviation
of the TARs obtained in the 30 phases preceding the
rupture phase;

D. Execution Time Evaluation

Figure 4a and 4b present the average execution time of
the HEU, DRL and HA-DRL algorithms as a function of the
number of VNFs in the NSPR and the number of servers in the
PSN, respectively (see Section V-C for details on the metric
calculation). In both evaluations, we start by the PSN and NSPR
settings described in Sections V-A2 and V-A3, respectively, and
generate new settings by increasing either the number of VNFs
per NSPR or the number of servers in the PSN. The evaluation
results confirm our expectations by showing that the average
execution times increase faster for heuristics than for a pure
DRL approach. However, both HEU and DRL strategies have
low execution times (less than 0.6s in the largest scenarios).

5 10 15 20
Number of VNFs in the NSPR

0.0

0.5

1.0

Av
g.
 e
xe

cu
tio

n
tim

e
(s
)

HEU
DRL
HA-DRL

(a)

126 252 504 1008
Number of servers in the network

0.0

0.2

0.4

0.6

Av
g.
 e
xe

cu
tio

n
tim

e
(s
)

HEU
DRL
HA-DRL

(b)

Fig. 4. Average execution time evaluation.

The number of VNFs per NSPR has more impact on the
average execution times of HEU and DRL algorithms than the
number of servers on the PSN. The average execution time of
HEU algorithm is more impacted than DRL by the number
of servers in the PSN. The HA-DRL algorithm depends on a
sequential execution of DRL and HEU. Therefore, the average
execution time of HA-DRL is approximately equal to the sum
of the execution times of HEU and DRL. Since DRL and HEU
have small execution times, the average execution times of
HA-DRL are also small (less than 1.0s for the largest NSPR
setting and about 0.6s for the largest PSN setting).

E. Evaluation of the impact of network load change

Figure 5, 6 and 7 capture the impact of different network load
change levels on the TARs obtained by the different evaluated
algorithms. The rupture phase is identified by a blue vertical
line in the various figures. The performance of the algorithms
seems to drop before the blue line. This impression is caused
by expected performance variations since the training process
is not yet completed and the performances of the algorithms
are not yet stable after only a few hours of training. With the
reduced training time of 6 hours, the only algorithm that has
near optimal performance after 108 training phases is HA-DRL,
with β = 2.0. This is due to the fact that the strong influence
of the Heuristic Function helps the algorithm to become stable
more quickly as discussed in [14] and [15].

We can also observe by the shape of the different curves in
Fig. 5, 6, and 7 that, as expected, all the algorithms have some
variability in their performance during the training phases. In
addition, these figures show that the performance of all the
algorithms is affected at various levels by the network load
change and that, generally speaking, the higher the amount
of extra network load added, the lower is the TAR after the

8 JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(a) Addition of 10% of network load.

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(b) Addition of 20% of network load.

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(c) Addition of 30% of network load.

Fig. 5. Evaluation of impact of network load disruption on TAR: under-loaded
scenarios

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(a) Addition of 40% of network load.

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100
Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(b) Addition of 50% of network load.

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(c) Addition of 60% of network load.

Fig. 6. Evaluation of impact of network load disruption on TAR: critical
scenarios

ALVES ESTEVES et al.: ON THE ROBUSTNESS OF CONTROLLED DEEP REINFORCEMENT LEARNING FOR SLICE PLACEMENT 9

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)
DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(a) Addition of 70% of network load.

78 83 88 93 98 10
3

10
8

11
3

11
8

12
3

12
8

13
3

13
8

Training Phase (500 episodes)

0

20

40

60

80

100

Ac
ce
pt
an
ce
 R
at
io
 (%

)

DRL
HA-DRL,β=0.1
HA-DRL,β=0.5

HA-DRL,β=1.0
HA-DRL,β=2.0

(b) Addition of 80% of network load.

Fig. 7. Evaluation of impact of network load disruption on TAR: overloaded
scenarios

change. Finally, we can also see that the only algorithm to
keep a near optimal performance even in overloaded scenarios
shown in Fig. 7 is HA-DRL, with β = 2.0.

Tables III, IV,V, VI, and VII present other performance
metrics related to the various evaluated algorithms. The
columns “Rupture TAR - Avg. TAR” and “Rupture TAR - Last
TAR” indicate how much the performance of the algorithms
drops in the rupture phase when compared with the Average
TAR and Last TAR, respectively. The TAR Standard Deviation
column indicates the TAR Standard Deviation metric described
in Section V-C.

Those tables confirm that in general the performance gaps,
i.e., the gaps between the Rupture TAR and Average or Last
TAR, grow with the level of disruption for all algorithms. For
instance, in the disruption level “+10”, the performance gaps
are never higher than 5%. But, in the change level “+80” the
performance gaps are never lower than 11%.

In all the evaluated cases, the difference between the Rupture
TAR and the Average TAR is higher than the TAR standard
deviation. For instance, for the DRL algorithm, in network

TABLE III
DRL ALGORITHM RESULTS

Network Load
Disruption Level (%) Rupture TAR -

Avg. TAR (%)
Rupture TAR -
Last TAR (%)

TAR Standard
Deviation (%)

+10 -3.37 -1.89 3.10
+20 -8.19 -7.37 3.09
+30 -11.89 -6.83 4.17
+40 -17.68 -13.8 4.12
+50 -17.00 -9.11 4.32
+60 -18.50 -10.20 4.35
+70 -20.46 -14.26 3.30
+80 -21.65 -15.86 3.27

TABLE IV
HA-DRL, β = 0.1 ALGORITHM RESULTS

Network Load
Disruption Level (%) Rupture TAR -

Avg. TAR (%)
Rupture TAR -
Last TAR (%)

TAR Standard
Deviation (%)

+10 -4.13 -2.60 4.07
+20 -11.02 -8.91 3.51
+30 -16.00 -10.54 4.50
+40 -16.28 -9.83 4.13
+50 -18.66 -11.14 5.05
+60 -17.02 -9.80 3.99
+70 -25.13 -18.20 4.93
+80 -29.41 -21.31 4.85

load disruption level of +50%, rupture TAR is 17% lower than
Average TAR which is 3.94 times the TAR standard deviation.

The algorithm with the lower performance gaps is HA-DRL
with β = 1.0 as we can see in columns “Rupture TAR - Avg.
TAR” and “Rupture TAR - Last TAR” of Table VI. We can state
that this algorithm has significantly better robustness than all
the others as performance gaps are significantly lower. However,
HA-DRL with β = 1.0 has the worst TAR performance as
shown in Fig. 5, 6 and 7, which reduces its applicability.

HA-DRL with β = 2.0 has the second better robustness and
DRL the third as we can see on “Rupture TAR - Avg. TAR”
and “Rupture TAR - Last TAR” columns of Tables VII and III,
respectively. Even if the usage of the Heuristic Function has
helped HA-DRL, with β ∈ {0.1, 0.5} to achieve significantly
better TARs than DRL, the influence of the Heuristic Function
in these algorithms was not sufficient to improve the robustness
of the DRL algorithm against unpredictable network load
disruptions (see Tables IV and V, respectively).

We can observe, however, that HA-DRL with β = 2.0 has
better robustness against unpredictable network load changes
than DRL as the performance gaps obtained with HA-DRL
with β = 2.0 are significantly lower than the ones obtained
with DRL as can be observed in columns “Rupture TAR - Avg.
TAR” and “Rupture TAR - Last TAR” of Tables VII and III,
respectively. These results confirm that HA-DRL with β = 2.0
is the algorithm among those evaluated that is the most adapted
to be used in practice. Indeed, the algorithm presents not only
the better TAR results and quick convergence but also robust
performance.

10 JOURNAL ON NETWORKS AND SYSTEMS MANAGEMENT

TABLE V
HA-DRL, β = 0.5 ALGORITHM RESULTS

Network Load
Disruption Level (%) Rupture TAR -

Avg. TAR (%)
Rupture TAR -
Last TAR (%)

TAR Standard
Deviation (%)

+10 -4.55 -3.43 3.95
+20 -8.80 -9.37 4.21
+30 -12.78 -10.66 4.59
+40 -20.33 -15.94 4.61
+50 -21.24 -13.43 4.56
+60 -19.46 -10.46 5.08
+70 -24.28 -16.26 3.75
+80 -26.78 -20.71 3.88

TABLE VI
HA-DRL, β = 1.0 ALGORITHM RESULTS

Network Load
Disruption Level (%) Rupture TAR -

Avg. TAR (%)
Rupture TAR -
Last TAR (%)

TAR Standard
Deviation (%)

+10 -2.96 -1.11 2.37
+20 -4.94 -6.49 3.50
+30 -6.93 -4.71 2.37
+40 -7.67 -7.00 1.97
+50 -6.80 -4.77 1.72
+60 -8.95 -5.29 2.45
+70 -11.25 -8.00 1.73
+80 -13.62 -11.69 2.89

VI. CONCLUSION

We have introduced in this paper two DRL-based algorithms
and evaluated their performance in a non-stationary network
load scenario with unpredictable changes. In line with the
conclusions of [14], [15], the numerical experiments performed
in this paper show that coupling DRL and heuristic functions
yields good and stable results even under non stationary load
conditions. Therefore, we believe that such an approach is
relevant in real networks that are subject to unpredictable
network load changes.

As part of our future work, we plan to explore distribution
and parallel computing techniques to solve the considered multi-
objective optimization problem using multi-agent or federated
learning approaches to address slice placement in heterogeneous
networks, mainly when the network is decomposed into several
segments or technical domains, where the network abstraction
introduced in this paper is no more valid. Indeed, each
segment should have its own abstractions and data. It is then
necessary to share information between the segments to take a
global decision. Instead of exchanging complete network states,
segments would exchanging minimal information obtained via
heuristics.

ACKNOWLEDGMENT

This work has been performed in the framework of 5GPPP
MON-B5G project (www.monb5g.eu). The experiments were
conducted using Grid’5000, a large scale testbed by Inria and
Sorbonne University (www.grid5000.fr).

REFERENCES

[1] 3GPP, “Management and orchestration; 5G Network Resource Model
(NRM); Stage 2 and stage 3 (Release 17),” 3rd Generation Partnership

TABLE VII
HA-DRL, β = 2.0 ALGORITHM RESULTS

Network Load
Disruption Level (%) Rupture TAR -

Avg. TAR (%)
Rupture TAR -
Last TAR (%)

TAR Standard
Deviation (%)

+10 -2.04 0.09 2.37
+20 -7.01 -5.09 3.50
+30 -7.15 -2.31 2.37
+40 -7.90 -4.69 1.97
+50 -12.13 -5.86 1.72
+60 -10.24 -4.94 2.45
+70 -18.83 -12.34 1.73
+80 -17.79 -11.69 2.89

Project (3GPP), Technical Specification (TS) 28.541, Dec. 2020, version
17.1.0.

[2] ETSI NFV ISG, “Network Functions Virtualisation (NFV); Evolution
and Ecosystem; Report on Network Slicing Support, ETSI Standard GR
NFV-EVE 012 V3.1.1,” ETSI, Tech. Rep., 2017. [Online]. Available:
https://www.etsi.org/technologies-clusters/technologies/nfv

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Trans. Netw. Service Manag., vol. 13,
no. 3, pp. 518–532, Sep. 2016.

[4] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources
and virtual network functions,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1409–1434, 2nd. Quart., 2019.

[5] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Location-based
data model for optimized network slice placement,” in Proc. 2020 6th
IEEE Conf. Netw. Softwarization (NetSoft), 2020, pp. 404–412.

[6] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the
computational complexity of the virtual network embedding problem,”
Electron. Notes Discrete Math., vol. 52, pp. 213–220, Jun. 2016.

[7] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph con-
volutional networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp.
1040–1057, Jun. 2020.

[8] M. Dolati, S. B. Hassanpour, M. Ghaderi, and A. Khonsari, “DeepViNE:
Virtual network embedding with deep reinforcement learning,” in Proc.
IEEE INFOCOM 2019 - IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), 2019, pp. 879–885.

[9] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing, vol.
284, pp. 1–9, Apr. 2018.

[10] H. Wang, Y. Wu, G. Min, J. Xu, and P. Tang, “Data-driven dynamic
resource scheduling for network slicing: A deep reinforcement learning
approach,” Inf. Sci., vol. 498, pp. 106–116, Sep. 2019.

[11] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: Adaptive online service function chain deployment with deep
reinforcement learning,” in Proc. 2019 IEEE/ACM 27th Int. Symp. Qual.
Service (IWQoS), 2019, pp. 1–10.

[12] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, “Multi-
domain non-cooperative VNF-FG embedding: A deep reinforcement
learning approach,” in Proc. IEEE INFOCOM 2019 - IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), 2019, pp. 886–891.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT press, 2015.

[14] J. J. Alves Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A
heuristically assisted deep reinforcement learning approach for network
slice placement,” arXiv preprint arXiv:2105.06741, 2021.

[15] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Drl-based
slice placement under non-stationary conditions,” Submitted to IEEE 17th
International Conference on Network and Service Management (CNSM),
2021.

[16] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 4, pp. 1318–1331, Dec. 2019.

[17] A. Rkhami, Y. Hadjadj-Aoul, and A. Outtagarts, “Learn to improve:
A novel deep reinforcement learning approach for beyond 5G network
slicing,” in Proc. 2021 IEEE 18th Annu. Consum. Commun. Netw. Conf.
(CCNC), 2021, pp. 1–6.

[18] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement
via deep reinforcement learning in sdn/nfv-enabled networks,” IEEE J.
Sel. Areas Commun., vol. 38, no. 2, pp. 263–278, Feb. 2020.

ALVES ESTEVES et al.: ON THE ROBUSTNESS OF CONTROLLED DEEP REINFORCEMENT LEARNING FOR SLICE PLACEMENT 11

[19] D. Bertsimas and A. Thiele, “Robust and data-driven optimization:
modern decision making under uncertainty,” in Models, methods, and
applications for innovative decision making. INFORMS, 2006, pp.
95–122.

[20] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, Apr. 2020.

[21] R. R. O. Al-Nima, T. Han, S. A. M. Al-Sumaidaee, T. Chen, and W. L.
Woo, “Robustness and performance of deep reinforcement learning,”
Applied Soft Comput., vol. 105, p. 107295, Jul. 2021.

[22] A. Marotta, E. Zola, F. D’Andreagiovanni, and A. Kassler, “A fast robust
optimization-based heuristic for the deployment of green virtual network
functions,” J. Netw. Comput. Applications, vol. 95, pp. 42–53, Jul. 2017.

[23] A. Marotta, F. D’andreagiovanni, A. Kassler, and E. Zola, “On the energy
cost of robustness for green virtual network function placement in 5g
virtualized infrastructures,” Comput. Netw., vol. 125, pp. 64–75, Apr.
2017.

[24] V. S. Reddy, A. Baumgartner, and T. Bauschert, “Robust embedding of
vnf/service chains with delay bounds,” in 2016 IEEE Conf. Netw. Funct.
Virtualization Softw. Defined Netw. (NFV-SDN). IEEE, 2016, pp. 93–99.

[25] A. Baumgartner, T. Bauschert, A. A. Blzarour, and V. S. Reddy, “Network
slice embedding under traffic uncertainties — a light robust approach,”
in 2017 13th Int. Conf on Netw. Service Manag. (CNSM). IEEE, 2017,
pp. 1–5.

[26] P. Sun, J. Lan, J. Li, Z. Guo, and Y. Hu, “Combining deep reinforcement
learning with graph neural networks for optimal vnf placement,” IEEE
Commun. Letters, vol. 25, no. 1, pp. 176–180, Jan. 2021.

[27] F. Slim, F. Guillemin, and Y. Hadjadj-Aoul, “CLOSE: A costless service
offloading strategy for distributed edge cloud,” in Proc. 2018 15th IEEE
Annu. Cons. Commun. Netw. Conf. (CCNC), 2018, pp. 1–6.

[28] F. Slim, F. Guillemin, A. Gravey, and Y. Hadjadj-Aoul, “Towards a
dynamic adaptive placement of virtual network functions under ONAP,”
in Proc. 2017 IEEE Conf. on Netw. Function Virtualization Softw. Defined
Netw. (NFV-SDN), 2017, pp. 210–215.

[29] J. J. Alves Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Heuristic
for edge-enabled network slicing optimization using the “power of two
choices”,” in Proc. 2020 IEEE 16th Int. Conf. Netw. Service Manag.
(CNSM), 2020, pp. 1–9.

[30] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp.
1094–1104, Oct. 2001.

José Jurandir Alves Esteves graduated from the
University of Clermont Auvergne in 2017 and from
the Federal University of Minas Gerais in 2019
obtaining two engineering degrees and a master’s
degree in computer science from the University of
Clermont Auvergne. He is doing his PhD between
Orange Labs and the Computer Science Laboratory
of Paris 6 (LIP6), Sorbonne University. His research
is related to automation and optimization models and
algorithms for network slice orchestration.

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Int. Conf. Mach. Learn. PMLR, 2016,
pp. 1928–1937.

[32] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations
(ICLR), 2017, pp. 1–14.

Amina Boubendir is a researcher and project
manager at Orange Labs in France. Her research is
in the area of design, management and softwarization
of networks and services. Amina received a Master
degree in Network Design and Architecture from
Télécom Paris in 2013, and a PhD in Networking
and Computer Science from Télécom Paris in 2016.
She is a member of the Orange Expert community
on ”Networks of the Future”.

Fabrice Guillemin graduated from Ecole Polytech-
nique in 1984 and from Telecom Paris in 1989.
He received the PhD degree from the University
of Rennes in 1992. He defended his “habilitation”
thesis in 1999 at the University Pierre et Marie Curie
(LIP6), Paris. Since 1989, he has been with Orange
Labs (former CNET and France Telecom R&D). He
is currently leading a project on the evolution of
network control. He is a member of the Orange
Expert community on ”Networks of the Future”.

Pierre Sens received his Ph.D. in Computer Sci-
ence in 1994, and the “Habilitation à diriger des
recherches” in 2000 from Paris 6 University (UPMC),
France. Currently, he is a full Professor at Sorbonne
Université (ex-UPMC). His research interests include
distributed systems and algorithms, large scale data
storage, fault tolerance, and cloud computing. He is
leading Delys a joint research team between LIP6 and
Inria. He was member of the Program Committee of
major conferences in the areas of distributed systems
and parallelism (ICDCS, IPDPS, OPODIS, ICPP,

Europar, SRDS, DISC. . .) and has served as general chair of SBAC-PAD and
EDCC. Overall, he has published over 150 papers in international journals
and conferences and has acted for advisor of 25 Ph.D. thesis.

