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Scheduling Bag-of-Tasks in Clouds using Spot
and Burstable Virtual Machines

Luan Teylo, Luciana Arantes, Pierre Sens and Lúcia Maria de A. Drummond

Abstract—Cloud providers offer several types of Virtual Machines (VMs) in diverse markets, with different guarantees in terms of
availability and reliability. Among them, the most popular market models are the on-demand and the spot. On-demand VMs are
allocated for a fixed cost per time, and their availability is ensured during the whole execution. On the other hand, in the spot market,
VMs are offered with a huge discount, but their availability fluctuates according to cloud’s current demand that can terminate or
hibernate a spot VM at any time. Furthermore, to cope with workload variations, cloud providers have also introduced the concept of
burstable VMs, which can burst up their CPU performance during a limited period of time. In this work, we present the Burst
Hibernation-Aware Dynamic Scheduler (Burst-HADS), a framework that executes Bag-of-Tasks applications with deadline constraints
by exploiting both spot and on-demand burstable VMs, aiming at minimizing both the monetary cost and the execution time.
Performance results on Amazon EC2 show that Burst-HADS reduces the monetary cost and meets the application deadline even in
spot hibernation scenarios, when compared to other approaches from the related literature which uses only spot and non-burstable
on-demand instances.

Index Terms—Cloud Computing, BoT Scheduling, Burstable VMs, Spot VM Hibernation
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1 INTRODUCTION

In the past few years, cloud computing has emerged
as an attractive solution to execute different applications.
It brings several advantages compared with dedicated in-
frastructure, as, for example, a significant reduction in oper-
ational costs. However, in cloud environments, besides the
usual goal of minimizing the application’s execution time,
it is also essential to reduce the monetary cost because even
though in the cloud, computational resources are virtually
infinite, the user’s budget is not.

Cloud platforms enable users to dynamically acquire
computational resources wrapped as Virtual Machines
(VMs), that can be selected by the users according to their
application requirements (CPU, memory, I/O, etc.) in a pay-
as-you-use price model. Furthermore, cloud providers offer
VMs in different contract models, with different guaran-
tees in terms of availability and volatility. For instance, in
Amazon EC2, there are three main contract models (also
called markets): i) reserved market, where the user pays an
upfront price, guaranteeing long-term availability; ii) on-
demand market which is allocated for specific periods of
time, and incurs a fixed cost per unit time of use, ensuring
the availability of the instance during this period; iii) spot
market in which unused resources are available up to 90%
discount when compared to the on-demand model, but such
resources can be requested at any time.

In the three markets, there exist a wide range of VM
types that suit different user requirements. According to
Amazon Web Service (AWS), “Instance types comprise
varying combinations of virtual CPUs (vCPUs), memory,
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storage, and networking capacity and give you the flexi-
bility to choose the appropriate mix of resources for your
applications. Each instance type includes one or more in-
stance sizes, allowing you to scale your resources to the
requirements of your target workload”1. Instances types are
grouped into families based on their respective use cases.
For example, the compute-optimized instances (C3, C4, and
C5) are ideal for compute-bound applications that require
high-performance processors.

Regarding the spot market, the availability of its VMs
fluctuates according to the cloud’s current demand. If there
are not enough resources to meet clients’ requests, the
cloud provider can interrupt a spot VM (temporarily or
definitively). Despite the risk of unavailability, the main ad-
vantage of spot VMs is that their costs are much lower than
on-demand VMs since the user requests unused instances
at steep discounts. An interrupted spot VM instance can
either terminate or hibernate. If the VM will be terminated,
the cloud provider warns the user two minutes before its
interruption. On the other hand, hibernated VM instances
are frozen immediately after noticing the user. In this case,
EC2 saves the VM instance memory and context in the
root of EC2 Block Storage (EBS) volume, and during the
VM’s interruption period, the user is only charged for the
EBS storage use. EC2 resumes the hibernated spot instance,
reloading the saved memory and context, only when there
is enough available resource whose price is lower than the
maximum one, with which the user agreed to be charged.

Besides the markets, some leading cloud providers (e.g.
Microsoft Azure, Amazon EC2), introduced in the last
years the concept of a burstable VM that can sprint its
performance during a limited period of time to cope with
sudden workload variations. By operating on a CPU credit

1. https://aws.amazon.com/ec2/instance-types
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regime that controls the processing power offered to users,
burstable VM instances can use 100% of the VM’s processing
power (burst mode) or only a fraction of that processing
power (baseline mode), depending on credits. They can
then accumulate CPU credits per hour, whose amount also
depends on the instance type. If a burstable instance uses
fewer CPU resources than required for baseline performance
(for example, when it is idle), the unspent CPU credits are
accrued in the CPU credit balance of the instance. If the
latter needs to burst above the baseline performance level,
it spends the accrued credits. The higher the number of
credits that a burstable instance has accumulated, the longer
it can burst beyond its baseline when higher performance is
required. Burstable instances have two main advantages: i)
they are offered with an up to 20% discount compared to
non-burstable on-demand instances with equivalent com-
putational resources, and ii) contrarily to spot VMs, they are
not prone to revocation neither hibernation. On the other
hand, to obtain monetary advantages of burstable instances,
the user has to control their respective CPU credit usage by
monitoring their baseline performance and defining burst-
ing periods. In Amazon EC2, burstable VMs are of type T3,
T3a, or T2 [1].

In the current work, we consider Bag-of-Tasks (BoT)
applications, which are commonly used in solving vari-
ous science and engineering problems, such as parameter
sweep, chromosome mapping, Monte Carlo simulation and
computer imaging applications [2]. As the interconnection
network is not the bottleneck for the good performance
of this type of applications, it is possible to speed up
them by distributing their tasks on a large number of VMs
in the cloud. In this context, an important issue is the
definition of an efficient initial scheduling for the tasks
which minimizes both the execution time and the finan-
cial cost, typically conflicting objectives. To this end, we
propose to mathematically formulate it as a multi-objective
integer programming problem and/or solve it by applying
metaheuristics efficiently. Furthermore, for many of such
applications, cost optimization algorithms should respect a
given deadline, otherwise, a temporal failure takes place.
Considering that the application executes on spot VMs that
can be revoked/hibernated, we should provide a second
scheduler, denoted dynamic scheduler, which would be
responsible for provisioning new VMs and migrating tasks
between different VMs, if necessary.

Therefore, this article presents a framework for schedul-
ing Bag-of-Tasks (BoT) applications with deadline con-
straints, exploring hibernate-prone spot instances and on-
demand burstable instances aiming at minimizing both
the monetary cost and the execution time of applica-
tions. The proposed framework, denoted Burst Hibernation-
Aware Dynamic Scheduler (Burst-HADS), is an event-
driven scheduling framework built in a modular way with
two main scheduling modules: i) the Primary Scheduling
Module that defines an initial scheduling map of tasks to
VMs, and ii) a Dynamic Scheduling Module responsible for
task migration in case of hibernation.

In a previous work [3], we have explored the use of
hibernation-prone spot instances to minimize the monetary
cost of BoT applications execution, respecting their deadline
constraints. To meet such a deadline, even in the presence of

multiple hibernations, new on-demand VMs, not allocated
in the initial mapping, could be dynamically launched. In
this case, tasks of the hibernated spot instances and those
not executed yet are migrated to on-demand instances.
Although the strategy can significantly reduce the monetary
costs, always respecting the application deadline, if VM
spots hibernate, the application’s total execution time may
considerably increase when compared to a solution that uses
only on-demand instances. Hence to tackle such a problem,
in this article, we investigate how burstable instances can
be used to reduce the impact on the execution time of the
application and the corresponding monetary costs. We also
propose a formulation of the task scheduling problem as
a multi-objective integer programming problem (execution
time and financial cost objectives), and a heuristic based on
the Iterated Local Search (ILS) [4] method for generating the
initial scheduling map.

Applying different scenarios, we have studied and eval-
uated our proposed framework. The results show that the
burstable instance based approach can optimize the mone-
tary cost without degrading the application execution time,
even in the presence of several hibernations. The evaluation
of Burst-HADS targeted different issues. Firstly, we focused
on the new proposed Iterated Local Search (ILS) based pri-
mary scheduler. The ILS approach was compared to optimal
solutions given by the exact model of the problem and
also with three widely used scheduling heuristics: MinMin,
MaxMin and Greedy [5]. Next, we conducted a series of
experiments with a real scenario using the Amazon EC2
cloud [6], where Burst-HADS was compared to three other
approaches: (i) a baseline case where only on-demand VMs
are used, (ii) HADS, proposed in our previous work [3], and
(iii) an approach based on AutoBoT [7], a BoT scheduler that
also exploits spot VMs to minimize the monetary cost while
meeting the deadline defined by the user. To the best of our
knowledge, AutoBoT is the closest to our work in the liter-
ature. However, since it considers the old EC2 price model,
which was based on price history and spot market bid, and
its original code is not available, we have implemented a
version of AutoBot, denoted AutoBot-like, adapting some
procedures of it to the current EC2 price model, defined
by the supply and demand of spare resources. Performance
results with experiments using both real and synthetic BoT
applications in different scenarios subject to several spot VM
hibernations and resuming events confirm the effectiveness
of Burst-HADS in terms of monetary costs and execution
times when compared to the other approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses some related work, including the descrip-
tion of AutoBot and HADS, used in our analysis. Section 3
presents the mathematical formulation and the primary
and dynamic modules of the Burst-HADS framework. The
evaluation results of both the ILS based primary scheduling
module and the dynamic module are presented in Section 4.
Finally, Section 5 concludes the paper and introduces some
future directions.

2 RELATED WORK

Since AWS introduced the concept of burstable VM, many
works exploring its features have been proposed. Many of
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them focus on evaluating the performance gain obtained by
using burstable VMs. In [8], Leitner and Scheuner presented
a first empirical and analytical study about the second gen-
eration of AWS burstable instances (T2 family). They con-
sidered the T2.micro, T2.small, and T2.medium instances.
Their work aimed at answering if, in terms of monetary cost
and performance, these instance types are more effective
than other ones. The results show that compared to general-
purpose and computed-optimized instances (2015 genera-
tion), the evaluated T2 instances provide a higher CPU
performance-cost ratio as long as the average utilization of
instances is below 40%. To figure out the CPU usage limits
on-the-fly, considering the dynamic variation of workloads,
Ali et al. proposed in [9] an autonomic framework that
combines light-weight profiling and an analytical model.
The objective was to maximize the amount of work done
using the burstable capacity of T2 VM instances. The au-
thors state that the framework extends the CPU credits
depletion period. Similarly to Leitner and Scheuner’s work
[8], their results also confirmed the benefits of active CPU
usage control when burstable instances are exploited.

Jiang et al. [10] analytically modeled the performance
of burstable VMs, considering their configurations, such
as CPU, memory, and CPU credits parameters. They also
showed that providers could maximize their total revenue
by finding the optimal prices for burstable instances. Al-
though their work, contrarily to ours, does not focus on
application performance, its contribution is interesting since
it states that providers can offer burstable instances for low
prices without losing revenue while meeting QoS parame-
ters.

Other works take advantage of burstable instance fea-
tures in scheduling and scaling problems. In [11], for ex-
ample, Baarzi et al. proposed an autoscale tool denoted
BurScale, which uses burstable instances, together with on-
demand ones, in order to handle transient queuing which
arises due to traffic variation. They also presented how
burstable instances can mask VM startup/warmup costs
when autoscaling, which handles flash crowds, takes place.
Using two distinct workloads, a stateless web server clus-
ter and a stateful Memcached caching cluster, the authors
showed that a careful combination of burstable and regular
instances ensures similar performance for applications as
traditional autoscaling systems while reducing up to 50% of
the monetary cost. In [12], Wang et al. combined on-demand,
spot, and burstable instances proposing an in-memory dis-
tributed storage approach. Burstable instances were used as
a backup to overcome performance degradation resulting
from spot instance revocations. According to the authors,
those instances’ burst capacity makes them ideal candi-
dates for such a backup. Performance results show that
the backup using burstable instances presents latency 25%
lower than the latency of backup based on regular instances,
inducing, therefore, a significant monetary cost saving.

Spot and on-demand instances have received a lot of
attention in applications scheduling [7], [13], [14], [15], [16],
[17]. Most of those works cope with termination/revocation
of spot VMs and do not consider the hibernation feature.
Moreover, the majority of them exploit the historical of spot
VM price variation to predict spot VMs’ revocations. How-
ever, since EC2 adopted a new price model (announced in

December 2017), prices of VMs in the spot market are quite
stable and defined exclusively by the supply and demand
of spare capacity and no more by bid prices2. Therefore, it
is no longer possible to predict the revocation/termination
of spot VMs based only on the history of price variations as
those works do.

To the best of our knowledge, the hibernation mecha-
nism of the spot VMs is only discussed in our previous
works [3], [16] and in Fabra et al. [18]. We proposed, in
[16], a static heuristic that creates predefined backup maps
before the execution of the job tasks themselves. It was the
first attempt to cope with spot VMs hibernation, and results
from simulations showed that the hibernation problem is
better handled with a dynamic approach. In [3], we present
a dynamic scheduler, denoted HADS that uses both spot
and regular (non-burstable) on-demand VMs to execute BoT
applications. It aims at minimizing the execution’s monetary
cost respecting application deadline. In [18], the authors
consider a scenario where hibernation-prone spot VMs can
be used and then they show that deadline constraints
add complexity to the problem of resource provisioning.
However, no performance experiment results are presented
neither discussed. Moreover, the work does not focus on the
task scheduling problem, but on resource provisioning.

Recently, in [7], Varshney and Simmhan proposed the
AutoBoT Scheduler. According to the authors, AutoBoT
uses several heuristics to choose a set of spot and on-
demand VMs to execute BoT applications subject to a
deadline defined by the user. The objective is to reduce the
monetary cost of the execution, and the scheduler combines
checkpoints and migration procedures to meet the deadline,
even with spot revocations. Like Burst-HADS, AutoBoT also
has two execution phases: i) the initial mapping, where an
initial execution map is built, and ii) the execution phase,
where the tasks are executed. Similarly to the Dynamic
Scheduling of Burst-HADS, the execution phase of AutoBoT
also reacts to the spot revocations by changing the initial
execution map, adding on-demand VMs, and migrating the
affected tasks. However, there are some crucial differences
between AutoBoT and Burst-HADS. Firstly, although it is
a recent work, AutoBoT takes some scheduling decisions
based on the old spot price model. Moreover, differently
from Burst-HADS, AutoBoT does not explore the hiber-
nation feature of spot VMs neither the burst capacity of
burstable VMs to reduce the monetary cost and minimize
the execution time. Another important point to highlight
is that AutoBoT was not evaluated in a real cloud. Instead,
the authors presented a comprehensive study in a simulated
environment.

3 SCHEDULING WITH HIBERNATION-PRONE SPOT
AND BURSTABLE ON-DEMAND INSTANCES

The Burst Hibernation-Aware Dynamic Scheduler (Burst-
HADS) has two main scheduling modules: i) the Primary
Scheduling Module, that defines an initial scheduling map
(Section 3.2); and ii) a Dynamic Scheduling Module respon-
sible for migrating tasks or executing task rollback recov-
ering in idle VMs (Section 3.3). In this section, we present

2. https://aws.amazon.com/pt/blogs/compute/new-amazon-ec2-
spot-pricing/
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the algorithms and procedures proposed for each one of
these modules. In Section 3.1, we formulate the primary
scheduling map as a multi-objective integer programming
problem.

3.1 Mathematical Formulation

The problem of scheduling tasks in distributed comput-
ing resources is an NP-complete one [19], even in simple
scenarios. Furthermore, some features of clouds render it
more difficult. We thus model the primary task scheduling
problem as a multi-objective integer programming problem
whose objectives are to minimize both the monetary cost
and the total execution time of the application. In other
words, in our case, it is defined as the problem of creating an
initial scheduling strategy, respecting the limit of available
virtual cores (vCPUs) and memory capacity of the used
VMs while minimizing the makespan and the monetary
costs of the execution. Then, a number of burstable VMs,
defined in function of the number of selected spot VMs, are
included as an additional resource at the last step of the
Primary Scheduling Module (see Section 3.2). Therefore, in
the mathematical model we consider only spot VMs.

LetMs be the set of spot VMs that can be used to execute
the BoT application and let D be the application deadline,
defined by the user. We then consider a set T = {1, . . . , D}
of discrete valid time periods. Each vmj ∈ Ms has a
memory capacity of mj gigabytes and nvcj vCPUs. When a
new vmj is launched, the user is charged cj for each period
of time. When the VM terminates or hibernates, the user’s
charge for this VM immediately stops. Let B be the set of
tasks of a BoT application. We assume that each task ti ∈ B
requires a known amount of memory rmi, and it is executed
in only one vCPU of vmj . A multi-core vmj (nvcj > 1) can
execute more than one task simultaneously (one task per
core) only when there is enough main memory to allocate
them in the VM. We also consider that the execution time
eij of each task ti in any vmj ∈Ms is known beforehand.

Aiming at ensuring the application deadlineD no matter
if and when spot VM hibernations happen, in our previ-
ous work [3], we define Dspot as the worst-case estimated
makespan, which guarantees that there will always have
enough spare time to migrate tasks of any hibernated spot
VM to other VMs and to execute them before the deadline
D.Dspot is computed by considering the deadlineD and the
longest tasks that might need to be migrated and executed
to/in the slowest VMs. Let the binary variable Xv

ij indicate
whether a task ti ∈ B allocated to a vmj ∈ Ms will start
executing (Xv

ij = 1), or not (Xv
ij = 0), at time period

v ∈ T . Let also Zj and ZT be continuous variables which
respectively keep the last period of execution of a vmj ∈Ms

and the total execution time of the application (makespan).

All variables and parameters defined in this section are
summarized in Table 1.

TABLE 1: Notation and Variables used in the Mathematical
Formulation.

Name Description
B Set of tasks
Ms Set of spots VMs
T Discretized time set
D Deadline defined by the user

Dspot Estimated time limit which ensures that there will be
enough spare time to migrate tasks of a hibernated spot
VM to other VMs no matter when hibernations take place

vmj Virtual machine
mj Memory capacity of vmj in gigabytes
cj Cost per period of time of vmj

nvcj Number of vCPUs of vmj

ti a task of the BoT application
rmi Amount of memory required by a task ti
eij Time required to execute task ti in a vmj

Xv
ij Binary variable which indicates whether task ti ∈ B

begins its execution in a vmj ∈ Ms at time period v ∈ T
or not

Zj Continuous variable which keep the last period of execu-
tion of a vmj

ZT Continuous variable which indicates the total time to
execute the BoT application (makespan)

The proposed objective function (Equation 1) is a
weighted function that minimizes the monetary cost and
the makespan, where α is the weight given by the user for
the objectives.

min (α× (
∑

vmj∈Ms

Zj × cj) + (1− α)× ZT ) (1)

Note that, in this case, both the monetary cost and the
makespan have to be first normalized. The normalization
procedure updates the target values to share the same mini-
mum and maximum values, 0 and 1, respectively. Thus, the
solution’s total monetary cost was divided by the product
of the monetary cost of hiring the most expensive spot
vmj ∈Ms, during Dspot periods, times the maximum num-
ber of VMs that can be deployed. Similarly, the makespan
is divided by Dspot. When the heuristic finds a solution
with makespan longer than the Dspot limit, it does not
accomplish the normalization, and that solution is discarded
by ILS. The objective function is subject to the following
constraints.

Constraint 2 guarantees that every task ti ∈ B must be
executed, starting at a time v ∈ T in a vmj ∈Ms. Constraint
3 ensures that tasks’ memory demand does not outpace the
memory capacity of the VM, while constraint 4 guarantees
that the number of parallel tasks allocated to a vmj ∈ Ms

does not exceed the number of virtual cores of the VM.

∑
vmj∈Ms

∑
v∈T

Xv
ij = 1,∀i ∈ B (2)

∑
ti∈B

v∑
q=p

rmi ×Xq
ij ≤ mj ,

∀vmj ∈Ms,∀v ∈ T, and p = max(v − eij , 1)
(3)

∑
ti∈B

v∑
q=p

Xq
ij ≤ nvcj ,

∀vmj ∈Ms,∀v ∈ T, and p = max(v − eij , 1)
(4)
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Inequalities 5 and 6 relate the last period of execution
of each vmj ∈Ms with the application total execution time
(makespan). Finally, constraint 7 ensures that the application
makespan does not exceed the Dspot value.

Xv
ij × (v + eij) ≤ Zj

∀ti ∈ B, ∀vmj ∈Ms and ∀v ∈ T
(5)

Xv
ij × Zj ≤ ZT
∀ti ∈ B, ∀vmj ∈Ms and ∀v ∈ T

(6)

Zj ≤ Dspot,∀vmj ∈Ms (7)

As shown in Section 4, the execution time to solve the
exact model is prohibitive even to small BoT applications.
Hence, in order to find good solutions to the scheduling
problem in an acceptable time, we adopt the heuristic ap-
proach presented in Section 3.2.

3.2 Primary Scheduling Module
In order to create the initial scheduling map according to
the Mathematical Formulation presented in Section 3.1, we
propose an Iterated Local Search (ILS) able to solve the
problem in an acceptable time. The ILS [4] is a metaheuristic
that aims at improving a final solution by sampling in a
broad and distant neighborhood of candidate solutions and
then applying a local search technique to refine solutions to
their local optima. It explores a sequence of solutions created
by perturbations of the current best solution to reach these
distant neighborhoods.

Let M b be the set of burstable on-demand VMs. After
finding a scheduling map with the ILS, a second heuristic
is applied to include burstable instances from M b into the
solution. In case of spot VM hibernations, the respective
instances will be used, in burst mode, by the dynamic
scheduler, as an attempt to minimize the impact of these
hibernations in the monetary cost and/or the execution
time. Therefore, the Primary Task Scheduling algorithm
(Algorithm 1) has two parts: i) the Iterated Local Search, that
solves the scheduling problem defined in Section 3.1 and ii)
the burstable instances allocation, that includes burstable
instances to the final solution. Table 2 summarizes the vari-
ables and parameters used in the Primary Task Scheduling
Algorithms 1, 2 and 3.

Initially, in line 2 of Algorithm 1, an initial solution is
generated by calling Algorithm 2, originally proposed in [3].
The latter is a greedy heuristic that schedules the set of tasks
B to a set Ms of spot VMs. First, in line 2 of Algorithm
2, all tasks of B are sorted in descending order by their
memory size requirements. Then, by calling the procedure
check schedule, it verifies if it is possible to schedule task
ti in the selected vmj of the current phase, i.e., the task
is scheduled to the VM if the memory requirements are
satisfied and if Dspot is not violated. Note that scheduling
tasks in an already allocated VM avoids VM deploying time.
Thus, for each task ti ∈ B, the algorithm tries to schedule
it to a vmj from A, the set of already selected VMs (lines
7 to 12). If task ti cannot be scheduled to a vmj of A,
the algorithm tries to select a new spot VM (lines 14 to

TABLE 2: Variables and parameters used in Algorithms 1, 2
and 3

Name Description
B Set of tasks
Ms Set of spot VMs
Mb Set of on-demand burstable VMs
D Application deadline

Dspot Estimated time limit which ensures that there
will be enough spare time to migrate tasks

ti Task ti ∈ B
vmj Virtual machines

max iteration Number of iterations of the ILS
max failed Tolerated number of iterations without improv-

ing the solution
max attempt Maximum number of attempts to find a better

solution
attempt Current attempt to find a better solution
RDspot Relaxed Dspot value

relaxed rate Percentage of increment of the RDspot value
it Current iteration of the ILS

itbest Last iteration where a best solution was found
swap rate Percentage of tasks to be swapped

S A scheduling solution
n Number of burstable VMs added to the final

solution
Sfinal The final scheduling solution

burst rate Percentage of burstable VMs included into the
final solution

A Set of selected VMs

23) using a weighted round-robin algorithm (WRR) [20].
In WRR, each spot VM has an associated weight, and the
algorithm selects the VMs in a round-robin way, according
to such weights.

As shown in Equation 8, the weight of vmj ,
weight(vmj), is equal to the quotient between Gflopsj
of vmj , and cj , the price of the VM per time period. In
this work, the Gflopsj of a vmj is used to quantify the
computing power of vmj . It is previously estimated using
the LINPACK benchmark [21] and allows us to compare
the VMs’ performance. Our choice in using WRR and spot
VMs with different configurations is in agreement with
Amazon’s recommendations3 that say that an application
should use different types of spot VMs to increase the
availability of spot VM instances. Interruptions of spot VMs,
which include hibernation, usually take place in VMs of the
same type. Therefore, a choice of heterogeneous spot VMs
minimizes the impact of possible VM hibernations. Finally,
in line 25, Algorithm 2 calls the function create solution
that receives the set of the selected VMs A and returns a
solution S that defines a scheduling map.

weight(vmj) = Gflopsj/cj ,where vmj ∈M (8)

After obtaining an initial solution, the ILS algorithm tries
to improve it by applying local search and perturbation
procedures (Algorithm 1, lines 3 to 20). Thus, let S be a
solution that defines a scheduling map of all tasks ti ∈ B
to a subset of VMs of Ms. Let fitness(S) be a weighted
function that assigns a value to the quality of S. Since this
function is equivalent to the objective function presented in
Equation 1, we define in Equation 9 the fitness(S,Dspot)

3. https://aws.amazon.com/pt/ec2/spot/instance-advisor/
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Algorithm 1 Primary Task Scheduling

Input: B, M , Ms, Mb, max iteration, max attempt,
max failed, relaxed rate, Dspot and D

1: {/*PART 01 - Iterated Local Search*/}
2: S ← initial solution(B,Ms, Dspot) {Algorithm 2}
3: S ← local search(S,max attempt,B, swap rate,Dspot)
{Algorithm 3}

4: Sbest ← S
5: RDspot ← Dspot

6: it, itbest ← 0
7: while it < max iteration do
8: vmj ← random choice(Ms)
9: S.selected vms← S.selected vms ∪ vmj

10: Ms ←Ms\{vmj}
11: if (it− itbest) > max failed then
12: RDspot ← RDspot + (relaxed rate×RDspot)
13: end if
14: S ← local search(S,max attempt,B, swap rate,RDspot)

15: if fitness(S,RDspot) < fitness(Sbest, RDspot) then
16: Sbest ← S
17: itbest ← it
18: end if
19: it← it+ 1
20: end while
21:
22: {/*PART 02: Burstable instance allocation*/}
23: n← dburst rate× Sbest.selected vmse
24: Sfinal ← burst allocation(Sbest, burst rate,Mb, Dspot, D)
25: create primary map(Sfinal)

function, where cost is the total monetary cost of S and
mkp is the total execution time of the application.

fitness(S,Dspot) =

{
∞, if violates Dspot

α.cost+ (1− α).mkp, otherwise
(9)

Algorithm 1 executes a local search by calling, in line 3,
the local search procedure (Algorithm 3), which executes a
series of attempts to improve the current solution by swap-
ping tasks between the selected VMs. Algorithm 3 receives
as input the current solution S, the max attempt parameter
that determines the number of times the local search will be
executed, the set of tasks B, the swap rate and the Dspot

value. The swap rate ∈ ]0, 1] parameter is tuned before
the execution and determines the number of tasks that will
be swapped at each iteration. All the parameters used in
our experiments, including the swap rate, max attempt,
max iteration and other parameters will be presented in
Section 4.

As can be observed in lines 4 and 8 of Algorithm 3, a
solution S is composed of two structures: (i) a vector, which
controls task allocation, where indexes correspond to tasks,
and each element keeps the identity of the VM that will
execute the corresponding task, and (ii) a list composed by
selected VMs. Firstly, the algorithm computes the number
of tasks that will be swapped at each iteration (line 2) and
randomly selects a destination VM (vmdest, line 4). After
that, the algorithm starts the tasks swapping procedure
(lines 5 to 14), where n tasks, also randomly selected (line
7), are moved to the vmdest. After each swap movement,
the local search procedure checks if the quality of the new
generated solution has improved (line 9) and it updates the

Sbest solution, if necessary. In the end, the procedure returns
the best solution (line 15).

Algorithm 2 Initial Solution

Input: B, Ms, Dspot

1:
2: sort by memory(B) {Sort Tasks ti ∈ B according to rmi}
3: A← ∅ {Set of selected VMs}
4: for all ti ∈ B do
5: {P1: Try to schedule the task in an already selected spot VM}
6: sort by price(A) {Sort VMs vj ∈ A according to cj}
7: for all vmj ∈ A do
8: if check schedule(ti, vmj , Dspot) then
9: schedule(ti, vmj)

10: break {/*Schedule next task*/}
11: end if
12: end for
13: {P2: Try to schedule the task in a new spot VM}
14: if not scheduled then
15: {Select a spot VM using the weighted round-robin heuristic}
16: vmk ← weighted RR(Ms)
17: if check schedule(ti, vmk, Dspot) then
18: schedule(ti, vmk)
19: A← A ∪ {vmk} {Update the set of selected VMs}
20: Ms ←Ms\{vmk}
21: break {/*Schedule next task*/}
22: end if
23: end if
24: end for
25: S ← create solution(A)
26: Return S {Returns a scheduling solution S}

Algorithm 3 Local Search

Input: S, max attempt, B, swap rate and Dspot

1: Sbest ← S
2: n← swap rate× |B|
3: attempt← 0
4: vmdest ← random choice(S.selected vms)
5: while attempt < max attempt do
6: for k ∈ {1, ..., n} do
7: ti ← random choice(B)
8: S.allocation array[ti]← vmdest

9: if fitness(S,Dspot) < fitness(Sbest, Dspot) then
10: Sbest ← S
11: end if
12: end for
13: attempt← attempt+ 1
14: end while
15: return Sbest

After the first execution of the local search procedure
(Algorithm 1, line 3), Algorithm 1 has a loop that firstly
performs a perturbation (lines 8 to 13) and then a new
local search (line 14). The perturbation is responsible for
diverting the metaheuristic from local optimal solutions. In
the current work, we use two perturbation strategies. The
first one includes a not selected spot vmj ∈ Ms into the
current solution S (lines 8 to 10). The second one, called
relaxing perturbation, increases theDspot bound value (lines
11 to 13). Note that the latter is executed only when the
number of iterations without finding a better solution is
higher than themax failed parameter (line 11). In this case,
the metaheuristic increases the Dspot limit in relaxed rate
percent, where relaxed rate ∈]0, . . . , 1] is also a parameter
defined by the user.

Upon finishing the ILS (Part 1), Algorithm 1 executes
the burst allocation procedure (Part 2, lines 22 to 24). In
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this procedure, n burstable VMs are included in the final
solution, where n is a percentage, given by the parameter
burst rate, of the selected spot VMs of the best solution
found by the ILS. For example, if 20 spot VMs were selected
by the ILS, with burst rate = 0.1, only 2 burstable VMs
will be included.

Since the relaxed perturbation leads some tasks to violate
the Dspot limit, the burst allocation procedure also moves
these tasks to the burstable instances. Each burstable VM
can receive at most one task to be executed in baseline mode.
However, if there still exist tasks violating Dspot and no
available burstable VM, the procedure allocates them to the
cheapest regular on-demand VMs. On the other hand, if a
burstable VM remains idle, the task with the latest finishing
time in the scheduling map is moved to it. Remark that
our strategy of having a single task per burstable instance
at a time, executing in baseline mode, induces CPU credits
accumulation. Consequently, these burstable instances be-
come the best candidates to receive tasks in case of spot VM
hibernations.

3.3 Dynamic Scheduling Module

The Dynamic Scheduling Module is responsible for per-
forming some actions in response to events, such as spot VM
hibernation, resuming, and idleness, that may occur along
with the execution.

Let BR, IR, HR, and TR be the set of busy, idle, hibernated,
and terminated VMs respectively. Thus, Burst-HADS consid-
ers that a vmj can be in one of the following states i) busy, if
active and executing tasks (vmj ∈ BR); ii) idle, if active but
not executing any task (vmj ∈ IR); iii) hibernated, if it has
been hibernated by the cloud provider (vmj ∈ HR); and iv)
terminated, if the VM has terminated or it was not available
at the beginning of the application execution (vmj ∈ TR).

One of the main goals of the Dynamic Scheduling Mod-
ule is to decide when a VM should terminate. On the one
hand, as VMs are charged for each period of time (see
Section 3.1), the user has an interest that a VM terminates as
soon it becomes idle, reducing cost and avoiding extra ones.
On the other hand, in some cases, it might be interesting
to keep it because it can receive and execute tasks without
incurring deploying overhead. To tackle such a trade-off,
Burst-HADS has a termination policy where the allocation
time is logically divided into units denoted Allocation Cy-
cles (ACs). A vmj that reaches the end of its current AC,
denoted AC curj , in idle state, is terminated.

The events and respective actions handled by the Dy-
namic Scheduling Module are the following:

• vmj becomes idle: When a vmj finishes the execution
of all tasks scheduled to it, its state is updated to
idle and, if there exist scheduled tasks that have
not completely executed, a work-stealing procedure
assigning some or all of these tasks to vmj , whose
state is, thus, set to busy (see Section 3.5).

• Non-burstable idle vmj reaches the end of AC curj :
If at the end of AC curj a non-burstable vmj re-
mains idle, it is terminated and removed from the
set IR of idle VMs and included into TR, the set of
terminated VMs.

• Spot vmj hibernates: The vmj ’s state is updated to
hibernated and if it was busy, Burst-HADS starts the
burst migration procedure (see Section 3.4).

• Spot vmj resumes: When a hibernated spot vmj re-
sumes, it is excluded from HR, the set of hibernated
VMs, and Burst-HADS starts a work-stealing proce-
dure that tries to move tasks from busy VMs to vmj

(see Section 3.5).

Table 3 summarizes the variables and parameters used
on Algorithms of the Dynamic Schedule Module (Algo-
rithms 4 and 5).

TABLE 3: Variables and parameters used on Algorithms 4
and 5

Name Description
Ql Set of unfinished tasks of a hibernated spot vml

IR Set of idle VMs
BR Set of busy VMs
Mo Set of on-demand VMs
D Application deadline
ccj Current amount of CPU credit
rccij Estimated number of required CPU credits

burst period Number of periods of T corresponding to the use
of one CPU credit

K = IR ∪BR Ordered set of idle and busy VMs
startij The time period a task ti will start executing

when allocated to a vmj

eij Time required to execute task ti in a vmj

ω Time overhead to deploy a new VM
vmj and vmk Virtual machines

STj Set of tasks that can be stolen from vmj

3.4 Burst Migration Procedure
As previously explained, as soon as a spot vml hibernates,
Burst-HADS executes the migration procedure, searching
for a set of VMs to assign and execute non-finished tasks,
that were previously scheduled to vml. These tasks are
denoted affected tasks.

Algorithm 4 presents the migration procedure, which
always respects the deadline D when selecting tasks to
migrate. It receives as input the set Ql ⊂ B of affected tasks,
the sets of idle, busy, and non-launched regular on-demand
VMs (IR, BR and Mo, respectively), and the deadline D.
Note that, in the case of a burstable vmj ∈ M b, eij is the
execution time of task ti in vmj in burst mode (100% of the
vmj processing power) and each vmj ∈ M b have a current
CPU credit amount ccj that is constantly updated by the
cloud provider (in the case of vmj 6∈M b, i.e., non-burstable
VMs, ccj =∞).

Initially, Ql is ordered, giving priority to those tasks that
were executing at the moment of the hibernation and had
been previously checkpointed (line 1). Burst-HADS applies
the checkpoint/recovery mechanism that we proposed and
evaluated in our previous work [22] where checkpoints are
taken with the help of Checkpoint Restore In Userspace
(CRIU) [23], a widely used tool that records the state of
individual applications. In order to avoid the overhead of
launching new VMs, the migration procedure gives pri-
ority to the use of already launched VMs. For each task
ti ∈ Ql, the algorithm first tries to migrate the task to
an idle burstable VM (lines 4 to 13). Otherwise, it tries to
schedule ti to one of the non-burstable idle or busy VM of
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Algorithm 4 Burst Migration Procedure
Input: Ql, IR, BR, Mo, and D
1: Ql ← sort tasks(Ql) {/* Prioritizes tasks with checkpoints */}
2: for each ti ∈ Ql do
3: {Attempt 1 - Try to migrate task to a Burstable IDLE VM}
4: for each burstable vmj ∈ IR do
5: rccij ← deij/burst periode
6: if ccj > rccij and check migration(ti, vmj , D) then
7: {Migrate ti to burstable vmj on burst mode}
8: migrate(ti, vmj)
9: IR← IR\{vmj}

10: BR← BR ∪ {vmj}
11: break {/*Migrate next task*/}
12: end if
13: end for
14: {Attempt 2 - Try to migrate task to a NON-burstable Idle or Busy

VM}
15: if not migrated then
16: {/* Prioritizes idle spot VMs */}
17: K ← sort by market(IR ∪BR)
18: for each NON-burstable vmj ∈ K do
19: if check migration(ti, vmj , D) then
20: migrate(ti, vmj)
21: if vmj ∈ IR then
22: IR← IR\{vmj}
23: BR← BR ∪ {vmj}
24: end if
25: break {/*Migrate next task*/}
26: end if
27: end for
28: end if
29: {Attempt 3 - Migrate task to a new NON-burstable on-demand

VM}
30: if not migrated then
31: sort by price(Mo)
32: for each vmj ∈Mo do
33: if startij + eij + ω < D then
34: start vm(vmj)
35: migrate(ti, vmj)
36: Mo ←Mo\{vmj}
37: BR← BR ∪ {vmj}
38: break {/*Migrate next task*/}
39: end if
40: end for
41: end if
42: end for

set K = IR ∪ BR (lines 18 to 27). Note that, the set K is
created by sorting the idle and busy VMs according to its
market, putting the spot VMs in the front of the ordered set
K (Algorithm 4 line 17).

Tasks migrated to burstable VMs are executed in burst
mode, i.e., using 100% of the VM’s CPU processing power.
Therefore, it is necessary to ensure that a selected burstable
VM will have enough CPU credits to execute all tasks
assigned to it. Let burst period be the number of periods of
T corresponding to one credit consumption in burst mode.
Since we consider that a task ti is executed in only one
core (see Section 3.1), it is possible to estimate (line 5) the
number of CPU credits consumed by task ti, where eij is
the execution time of ti on vmj in burst mode, and rccij
is the estimated number of required CPU credits. Then, the
algorithm checks if vmj has enough CPU credits and call
the check migration function to guarantee that vmj has
enough memory and will execute ti before the deadline D
(line 6). If both conditions are satisfied, ti is migrated to
vmj in burst mode (line 8). In this case the burstable vmj is
removed from set IR and included in set BR (lines 9 and
10). Note that the cloud provider continuously updates the

number of credits, ccj , of every burstable VM.
Similarly, when Algorithm 4 migrates a task ti to a

non-burstable idle or busy vmj , it also calls the function
check migration to verify if the VM has enough memory
and will be able to finish the task, respecting the deadline
D (line 19). However, if vmj is a spot VM, the function
check migration should also verify if there will be enough
spare time in vmj between the end of the execution of vmj

tasks (including task ti) and the deadline D since, in this
case, a busy or idle spot vmj is also subject to hibernation.
The spare time has to be greater than the execution time of
the longest task scheduled to vmj , ensuring, therefore, that
if a hibernation occurs, there will be enough time to migrate
and execute all affected tasks before the deadline D.

Finally, if there does not exist any available already
deployed VM able to execute task ti, the algorithm migrates
the task to a new on-demand VM of set Mo (lines 32 to
40). In this case, it is necessary to verify that, considering
the start period of ti in vmj (startij), plus its execution
time (eij) will not violate the deadline (line 33). The new
allocated on-demand VM is then removed from set Mo and
included in set BR (lines 36 and 37).

3.5 Work-Stealing
The work-stealing procedure, presented in Algorithm 5,
aims at reducing the allocation time duration of regular on-
demand VMs as well as balancing the load of spot VMs.
It is triggered when a hibernated spot VM resumes or
when a VM (spot or on-demand) becomes idle. Basically,
the procedure tries to move tasks from non-burstable busy
VMs to the idle VM.

For each non-burstable busy vmj ∈ BR the procedure
selects the tasks that can be stolen from it (line 3) and tries
to migrate them to the idle vmk (lines 4 to 14). Since regular
on-demand VMs are more expensive than spot ones, the
procedure considers firstly the tasks from the former (line
1).

Similarly to the migration procedure, for each selected
task of a vmj , the work-stealing procedure also verifies, by
calling the function check migration, if the task migration
would result in deadline violation (line 5). Since tasks mi-
grated to burstable VMs by the work-stealing procedure are
executed in the baseline mode, after verifying if the idle vmk

is burstable (line 6), the algorithm sets up the execution to
the baseline mode (line 7). In this work, to set up a burstable
VM to the baseline mode means that the task cannot run
using 100% of the CPU processing power, but uses only the
baseline performance defined by the provider. In order to
limit the use of the CPU, Burst-HADS exploits the cpulimit
tool4, an open-source program that limits the CPU usage
of a process in GNU/Linux. Moreover, if the idle vmk is
burstable, only one task is moved to it, to avoid a queue
of tasks to be executed in the baseline mode, which could
increase the application total execution time. Since stolen
tasks are executed in baseline mode on burstable VMs non
consumed CPU credits consuming keep available if a spot
VM hibernates. Thus, after moving one task to the burstable
vmk, the algorithm stops the loop (line 9). Finally, if at least
one task is migrated to vmk, its state changes to busy and,

4. http://cpulimit.sourceforge.net/
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consequently, it is included into the set of busy VMs and
removed from the idle set (lines 17 and 18).

Algorithm 5 Burst Work-Stealing Procedure
Input: BR, IR, vmk , D
1: sort by market(BR) {/*Prioritizes non-burstable on-demand

VMs*/}
2: for each NON-burstable vmj ∈ BR do
3: STj ← selectTasks(vmj) {Select the tasks that can be stolen/}
4: for each ti ∈ STj do
5: if check migration(ti, vmk, D) then
6: if vmk is burstable then
7: set baseline mode(ti, vmk)
8: migrate(ti, vmk)
9: stops the loop

10: else if vmk not burstable then
11: migrate(ti, vmk)
12: end if
13: end if
14: end for
15: end for
16: if at least one task was stolen then
17: BR← BR ∪ {vmk}
18: IR← IR\{vmk}
19: end if

4 EXPERIMENTS AND RESULTS

In this section, we first evaluate the ILS, part one of Al-
gorithm 1, in terms of quality of solution and execution
time, by comparing it with the solutions given by the math-
ematical formulation presented in Section 3.2 (solved with
Gurobi 9.1) and with three commonly used BoT scheduling
heuristics [24], [25], [26]: MinMin, MaxMin and Greedy
(Section 4.1). We also present a evaluation in AWS EC2
(Section 4.2), where the jobs were executed in a real cloud
environment. In the experiments, we have considered two
distinct workloads: i) synthetic BoT applications composed
by tasks generated with the application template proposed
in Alves et al. [27], and ii) the ED application available in
the GRIDNBP 3.1 suite of NAS benchmark [28]. The tasks of
the synthetic applications execute vector operations whose
execution times depend on the size of the vectors.

According to AWS, only spot VMs of types C3, C4, C5,
M4, M5, R3, and R4 with memory amount smaller than 100
GB are hibernation-prone. Therefore, in our experiments, we
used spot VMs C3 and C4, which are compute-optimized
and have high availability in the spot market. Moreover,
we also use the T3.large instances that are the newest
generation of the general proposed burstable instances of
EC2. Table 4 shows the computational characteristics and
the corresponding prices in on-demand and spot markets in
November 2020.

TABLE 4: VMs attributes

Type #VCPUs Memory Price per Hour (USD) Baseline
on-demand spot performance

C3.large 2 3.75 GB 0.105$ 0.0299$ -
C4.large 2 3.75 GB 0.100$ 0.0366$ -

C3.xlarge 4 7.50 GB 0.199$ 0.0634$ -
T3.large 2 8 GB 0.0832$ - 20%

For the execution of Algorithms 1 and 3, the following in-
put parameters were used: α = 0.5, max iteration = 200;
max attempt = 50; swap rate = 0.10; max failed = 20;
relaxed rate = 0.25; burst rate = 0.2. Moreover, we

defined AC = 900 seconds. Except for α = 0.5, which
was used to give the same weights to both objectives,
the parameters’ values were defined by executing a set of
empirical tests. As mentioned in Section 3.4, Burst-HADS
uses a checkpoint approach proposed in [3] where the user
defines the parameter ovh as the maximum percentage of
time overhead that the checkpoint mechanism is allowed
to add to the original execution time of a task. From this
parameter, Burst-HADS defines the time interval between
checkpoints. In this work, ovh = 10% for all experiments.

4.1 Evaluation of the ILS Primary Task Scheduling
To evaluate the quality of the solution given by the ILS
executed in the first part of the primary scheduling heuristic
(Algorithm 1), we compared it with the optimal solution
given by the exact model and also with the solutions given
by three widely used benchmark scheduling heuristics [5]:
(i) MinMin, where the scheduling gives priority to VMs with
the minimum earliest completion time; (ii) MaxMin, where
the scheduling gives priority to VMs with the maximum
earliest completion time; and (iii) Greedy, where the shortest
execution time task is scheduled to the cheapest available
VM.

For the comparison with the exact model, we create six
small synthetic jobs (from 5 to 30 tasks), composed of tasks
with execution times varying from 5 to 15 seconds. We have
chosen this set with up to 30 tasks because the exact model
took more than ten hours to solve the problem for jobs
with more than 30 tasks. In these experiments, the deadline
was fixed in 15 minutes (D = 900) for all jobs, and we
used as input the spot VMs presented in Table 4, except
for the burstable VM, since we are evaluating just the ILS
heuristic. The experiments were executed on a computer
with a processor Intel Core i7-3770 CPU 3.40 GHz with 12GB
of memory and Ubuntu 18.04 was used. The mathematical
formulation was solved by using the Gurobi Solver 9.05.

Table 5 summarizes the results with both the exact
approach and the ILS-based heuristic. The first column
identifies the number of tasks. The three columns that
follow correspond to the results achieved by ILS: makespan,
monetary cost, and the execution time to obtain the solution.
The next three columns present the same results for the exact
approach. The values shown for the ILS are averages of three
executions. The ILS standard deviations were zero for all
jobs.

TABLE 5: Results of the ILS-based Primary Scheduling
Heuristic and the Exact Approach

# Tasks ILS Exact Approach
Makespan Cost Time Makespan Cost Time

5 21 $0.0005 0.0071 21 $0.0005 49.04
10 34 $0.0011 0.0306 34 $0.0011 70.10
15 34 $0.0020 0.0297 34 $0.0020 106.03
20 34 $0.0021 0.0558 34 $0.0021 233.10
25 34 $0.0027 0.0736 34 $0.0027 751.72
30 34 $0.0035 0.0922 34 $0.0035 9346.21

As we can observe in Table 5, ILS obtains the same
solutions of the exact approach for these small jobs, taking
significantly less time than the mathematical formulation.

5. http://www.gurobi.com
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On average, the ILS takes 0.048s against 2101.43s of the ex-
act approach. Although these results are very encouraging,
the experiments were limited to jobs with few tasks (up to
30 tasks) due to the huge required time to obtain the exact
solution for jobs with more tasks.

For the evaluation with the other heuristics, six synthetic
jobs were created with sizes varying from 50 to 300 tasks.
The tasks execution times varied from 15 to 35 seconds, and
the same deadline of 15 minutes (D = 900) was applied.
Table 6 presents the makespan and monetary cost obtained
by the ILS, MinMin, MaxMin, and Greedy heuristics. As
shown in Table 6, the ILS heuristic outperforms MinMin
in terms of monetary cost but increases the makespan. On
average, the ILS makespan is increased of 18.11%, while the
average monetary cost is reduced by more than 38.00%.

TABLE 6: Results of the ILS-based Primary Scheduler, Min-
Min, MaxMin and Greedy Heuristics.

# Tasks ILS MinMin MaxMin Greedy
mkp cost mkp cost mkp cost mkp cost

50 57 $0.0060 47 $0.0073 610 $0.0055 597 $0.0051
100 86 $0.0112 71 $0.0220 897 $0.0107 843 $0.0101
150 109 $0.0169 99 $0.0338 885 $0.0157 823 $0.0148
200 138 $0.0235 123 $0.0376 898 $0.0220 819 $0.0205
250 163 $0.0282 133 $0.0461 888 $0.0261 793 $0.0246
300 204 $0.0340 168 $0.0551 899 $0.0323 775 $0.0317

Compared to both MaxMin and Greedy, the ILS presents
an average reduction in the makespan by more than 80%,
with an average increment in the monetary cost by only
6.78% when compared to MaxMin, and 13.14% when com-
pared to the Greedy heuristic. Contrarily to the MinMin
heuristic, both MaxMin and Greedy heuristics reduce the
solution’s monetary cost since they give priority to the
cheapest VMs, which increases the makespan.

It is worth noticing that both objectives were evenly
considered in the ILS solutions and that the average loss
in one of the objectives was always smaller than the gain
in the other. Those results confirm the effectiveness of the
proposed ILS to the BoT primary scheduling problem.

4.2 Evaluation of Burst-HADS on AWS EC2

For the experiments, several synthetic tasks were created,
each one with a memory footprint between 2.81 MB and
13.19 MB, resulting in execution times which vary from
102 to 330 seconds. Then, we conceived three synthetic BoT
applications, J60, J80, and J100 by randomly selecting the
tasks. Concerning the ED application, a real embarrassingly
distributed application, the job ED200 comprises 200 tasks
solving the largest problem size (class B), taking 211 seconds
per task on average.

Table 7 shows the four jobs’ features, including their
respective number of tasks, memory footprint and tasks
runtime. In our experiments, we considered the shortest
deadline in which Burst-HADS can find a feasible solution
for all evaluated jobs, D = 2700 seconds (45 minutes),
respecting the constraints. For some jobs, it was a tight
deadline, while for other ones it was not. This approach
allowed us to observe the behavior of the framework in
those different scenarios.

TABLE 7: Characteristics of the Jobs

job # tasks memory footprint task runtime(s)
min avg max min avg max

J60 60 2.85MB 4.69MB 12.20MB 102 198 323
J80 80 2.91MB 4.71MB 13.19MB 103 199 322

J100 100 2.81MB 4.49MB 10.86MB 107 190 330
ED200 200 153.74MB 168.68MB 177.77MB 161 211 354

We have firstly evaluated Burst-HADS in a scenario
without hibernation, comparing it with (1) the schedule
given by the proposed ILS using only on-demand VMs;
(2) the schedule given by HADS, and (3) the schedule
given by AutoBoT-like. The aim of these experiments is to
measure the impact of including burstable on-demand VMs
into the scheduling procedure in both the monetary cost
and execution time. Table 8 presents the average of three
executions of the synthetic jobs J60, J80, and J100, and the
real application ED200, for each case.

AutoBoT-like is inspired by the work presented in [7]
(see Section 2). AutoBoT-like uses the same heuristics, pro-
cedures and parameters defined in [7], but the price history
and the spot market bid are not considered in that adapted
version. In our implementation, we use the current price
model of AWS, which is more stable.

Initially, AutoBoT-like, as in the original version, consid-
ers a critical time point beyond which it is not possible to
complete the remaining tasks without violating the deadline
constraint, in case of a spot VM revocation. Thus, when
a task, running on a spot VM, reaches this point, it is
immediately migrated to an on-demand VM. The number
of launched on-demand VMs in this case is defined in
accordance with a sweep heuristic, based on the following
parameters: the number of available on-demand VMs, the
deadline and the total number of tasks of the application.

In the second step, along with the execution of the appli-
cation, AutoBot-like, as in the original version, takes check-
points and migrate tasks to on-demand VMs. Although the
authors propose three different strategies for checkpoint-
ing, we adopted the optimistic one, where checkpoints are
recorded just before the critical time point, because the other
ones depended on the price history and they did not present
significant advantages.

In comparison with HADS, Table 8 shows that Burst-
HADS reduces the makespan in 44.37%, 42.09%, 28.82%, and
11.82%, for jobs J60, J80, J100, and ED200, respectively. How-
ever, the average monetary cost increases by 66.34%, 44.54%,
57.55%, and 33.71%, for the same comparison. It happens
because Burst-HADS already starts by using some burstable
on-demand VMs. Moreover, the ILS based primary schedul-
ing uses more VMs to reduce the execution time, while in
HADS, the initial scheduling aims at minimizing only the
monetary cost.

As can also observe in in the same table, in the executions
without spot revocations, Burst-HADS presents an average
reduction of 20.92% in the monetary cost and 31.11% in
the makespan, when compared to AutoBoT-like. Such a
result is expected since AutoBoT-like launches additional
on-demand instances even without spot revocations when
the BoT execution gets the critical time point.

On the other hand, compared to the ILS on-demand
strategy, on average, Burst-HADS reduces the monetary cost
by more than 52.00%, with an average increase of 15%
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TABLE 8: Cost and Makespan of Burst-HADS, HADS (with-
out hibernation), AutoBoT-like (without spot interruptions)
and ILS On-demand only.

JOB
Burst-HADS

w/o Hibernation
HADS

w/o Hibernation
AutoBoT-like

w/o Interruptions ILS On-demand

cost makespan cost makespan cost makespan cost makespan

J60 $0.112 1274 $0.067 2290 $0.166 2221 $0.271 1112
J80 $0.151 1329 $0.104 2295 $0.199 2266 $0.312 1190
J100 $0.176 1660 $0.112 2332 $0.218 2342 $0.371 1462

ED200 $0.357 2275 $0.267 2580 $0.387 2566 $0.698 1887

in the makespan. The ILS on-demand strategy uses the
scheduling plan given by the ILS proposed in Algorithm
1, which includes neither spot nor burstable VMs, but only
regular on-demand VMs. The longer makespan is due to the
execution of tasks in the baseline mode of burstable VMs,
which does not occur in the ILS on-demand strategy.

Since cloud users have no control over spot VM hiber-
nations, we have emulated different patterns of the events
of spot hibernations and resume by using a Poisson distri-
bution function. We have applied the Poisson function to
modeling several scenarios where hibernating and resuming
events have different probability mass functions defined by
the parameters λh and λr, respectively. Let the λ parameter
of Poisson distribution be the number of expected events
divided by a time interval. Since the application execution
is discretized by time interval and D is the application
deadline, if we respectively define kh and kr , as the expected
number (rate) of hibernating and resuming events during
the application execution, λh and λr parameters are given
by λh = kh/D and λr = kr/D. Table 9 presents five
different scenarios by varying kh and kr. Note that, since
AutoBoT-like does not explore the hibernation feature of
the spot VMs, instead of emulating the hibernation, the spot
instances are terminated according to the Poisson function
with probability mass functions also defined by the param-
eters λh.

TABLE 9: Different execution scenarios generated by vary-
ing parameters λh and λr

ID hibernating resuming λh λr

sc1 kh = 1 kr = 0 1/2700 0/2700
sc2 kh = 5 kr = 0 5/2700 0/2700
sc3 kh = 1 kr = 5 1/2700 5/2700
sc4 kh = 5 kr = 5 5/2700 5/2700
sc5 kh = 3 kr = 2.5 3/2700 2.5/2700

Table 10 presents the averages of three executions of
jobs J60, J80, J100, and ED200 using Burst-HADS, HADS
and AutoBoT-like in each of the five execution scenarios.
For each job and scenario, the table shows the average
number of hibernations/revocations followed by resume
events. It also includes the number of non-burstable on-
demand VMs launched during the frameworks’ execution
and the average of monetary cost and makespan. Finally,
the last four columns present the percentage differences
related to the monetary cost and the makespan between
Burst-HADS and HADS (Diff HADS), and between Burst-
HADS and AutoBoT-like (Diff AutoBoT-like).

As shown in Table 10, in comparison to HADS, Burst-
HADS minimizes the makespan in all execution scenarios,
presenting an average reduction of 25.87%. As explained in

Section 3.4, whenever a spot VM hibernates, Burst-HADS
immediately migrates the interrupted tasks to other VMs.
Thus, the increase in the makespan is due to the overhead
of this procedure, which might include the launch of new
VMs. However, in these scenarios, the overhead has a lower
impact in small jobs, i.e., jobs with fewer tasks, than in the
ones with a higher number of tasks. For example, while
for job J60, the average makespan reduction, considering
all scenarios, is 40.10%, for job ED200, that reduction is only
10.24%. Such a behavior can be explained because, in our
experiments, we have fixed the same deadline for all jobs
and, therefore, small jobs have more spare time between its
expected makespan defined by the ILS and the deadline.
Consequently, in this case, Burst-HADS benefits more from
the burst mode of the burstable VMs since it has more
idle time to earn CPU credits. Moreover, it also executes
the work-stealing more frequently, which also reduces the
makespan. On the other hand, independently of the scenario
or job, HADS’s makespan gets closer to the deadline when-
ever a hibernation occurs. That happens because the HADS
framework postpones as much as possible the execution of
the migration procedure. Since HADS gives priority to the
monetary cost saving, its central idea is to wait as much as
possible for the resume of hibernated VMs in order to avoid
the launch of new VMs.

Still compared to HADS, Burst-HADS improves the
monetary cost for all jobs in scenarios sc2 and sc5. The sc2
is the worst case scenario, since it has the highest rate of
hibernation (kh = 5) and no resume (kr = 0), while sc5 is
the average case scenario where the rate of hibernation is
kh = 3.0, and the rate of resume is kh = 2.5 (see Table 9). In
these scenarios, Burst-HADS uses fewer regular on-demand
VMs than HADS. Moreover, in both cases, the number of
hibernations is higher than the number of resumes. Hence,
in those cases, by migrating tasks to busy and idle VMs and
burstable VMs, exploring the burst mode, Burst-HADS is
more effective in minimizing the impact of spot hibernations
than HADS. It is also worth pointing out that, considering
all executions, the average increase of Burst-HADS mone-
tary cost is 1.92% compared to HADS.

Compared to AutoBoT-like, Burst-HADS can reduce the
monetary cost for all jobs in almost all scenarios, presenting
an average reduction of 11.65%. In our evaluation, AutoBoT-
like reduced the monetary cost only in scenario sc2 and for
the jobs J60 and ED200. As explained before, this scenario
has the highest rate of hibernation (kh = 5), but there are
no resume events (kr = 0). Therefore, in this case, HADS
and Burst-HADS cannot explore the resumed spot VMs
to minimize the monetary cost. Although Burst-HADS is
more effective than HADS to minimize that impact by using
burstable VMs, for these two jobs, AutoBoT-like migrated
the majority of tasks just before the VMs interruptions and
selected a cheap set of on-demand VMs able to execute the
remaining tasks. However, we should point out that the
AutoBot-like approach is unsuitable for the other scenarios
since it does not take advantage of the hibernation feature.
In terms of makespan, Burst-HADS presented a better result
in almost all cases when compared to AutoBoT-like, with
an average reduction of 21.08%. The only exception for
the makespan was scenario sc4 for job J80, where there
were many hibernations and resumes, which increased the
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TABLE 10: Comparison between Burst-HADS, HADS and AutoBoT-like in terms of monetary cost and makespan in
scenarios sc1 to sc5

Job scenario # hibernations # resumes # used regular on-demand VMs Burst-HADS HADS AutoBoT-like Diff HADS (%) Diff AutoBoT-like (%)
Burst-HADS HADS AutoBoT-like cost makespan cost makespan cost makespan cost makespan cost makespan

J60

sc1 0.66 0.00 0.00 0.00 1 $0.119 1274 $0.091 2620 $0.166 2221 -30.77% 51.37% 28.31% 42.64%
sc2 3.33 0.00 1.33 2.33 1 $0.204 1277 $0.257 2549 $0.173 2228 20.54% 49.90% -17.92% 42.68%
sc3 2.33 2.33 1.33 0.00 1 $0.127 1752 $0.101 2539 $0.178 2237 -26.07% 31.00% 28.46% 21.68%
sc4 5.33 4.00 1.67 0.00 1 $0.142 1857 $0.119 2634 $0.180 2252 -19.90% 29.50% 21.07% 17.54%
sc5 2.66 1.00 1.33 2.00 1 $0.150 1445 $0.169 2359 $0.170 2236 11.44% 38.75% 11.96% 35.38%

J80

sc1 1.00 0.00 1.33 0.33 2 $0.167 1419 $0.150 2581 $0.206 2273 -11.33% 45.03% 18.93% 37.57%
sc2 5.00 0.00 1.00 3.00 2 $0.210 2267 $0.298 2591 $0.211 2278 29.48% 12.50% 0.47% 0.48%
sc3 3.00 1.00 1.67 1.00 2 $0.164 1367 $0.147 2602 $0.214 2276 -11.34% 47.46% 23.52% 39.94%
sc4 9.66 7.66 1.00 2.00 3 $0.244 2488 $0.212 2607 $0.301 2460 -15.25% 4.56% 18.83% -1.14%
sc5 3.00 1.00 1.33 3.00 2 $0.195 1589 $0.246 2529 $0.228 2266 20.47% 37.17% 14.25% 29.88%

J100

sc1 2.00 0.00 0.00 0.00 2 $0.191 1798 $0.157 2332 $0.226 2350 -21.76% 22.90% 15.49% 23.49%
sc2 7.00 0.00 1.33 3.00 2 $0.212 1900 $0.353 2518 $0.222 2342 39.94% 24.54% 4.50% 18.87%
sc3 6.00 3.00 1.67 1.00 2 $0.201 1925 $0.166 2636 $0.224 2360 -21.08% 26.97% 10.27% 18.43%
sc4 11.00 9.00 1.00 0.00 3 $0.286 2453 $0.278 2591 $0.312 2677 -2.88% 5.33% 8.33% 8.37%
sc5 3.66 2.00 1.00 2.50 2 $0.166 1547 $0.189 2543 $0.227 2366 12.49% 39.15% 26.98% 34.62%

ED200

sc1 3.00 0.00 1.00 0.33 3 $0.388 2327 $0.314 2680 $0.414 2630 -23.57% 13.17% 6.28% 11.52%
sc2 8.00 0.00 2.00 5.00 3 $0.482 2448 $0.512 2676 $0.430 2661 5.86% 8.52% -12.09% 8.00%
sc3 6.66 4.00 2.33 1.00 3 $0.427 2345 $0.387 2672 $0.457 2675 -10.34% 12.24% 6.56% 12.34%
sc4 9.00 6.00 2.00 1.00 3 $0.411 2560 $0.389 2690 $0.447 2667 -5.66% 4.83% 8.05% 4.01%
sc5 4.33 2.33 1.67 3.00 3 $0.367 2342 $0.467 2674 $0.411 2765 21.41% 12.42% 10.71% 15.30%

overhead of Burst-HADS due to migrations and task work-
stealing. But even in this case, the makespan difference was
only 1.14%.

Finally, compared to the ILS On-demand, both Burst-
HADS and HADS minimize the monetary cost for all ex-
ecution cases, presenting an average reduction of 41.80%
and 39.65%, respectively. For job ED200, for example, in
the worst execution scenario, sc2, Burst-HADS reduces the
monetary cost by 30.96%, while HADS presents an average
reduction of 26.66%.

Since cloud environments can face random fluctuation in
terms of performance, we also carried out some experiments
considering an increase of 20% in the execution time of the
tasks of job J60. We observed in Table 11 that both frame-
works, AutoBoT-like and Burst-HADS, were able to meet
the deadlines for all scenarios. However, just Burst-HADS
kept the monetary cost below the on-demand only solution
($0.271). However, for tight deadlines and depending on the
range of the fluctuations, the frameworks might not meet
the deadlines.

TABLE 11: Comparison of Burst-HADS and AutoBoT-like
with an unexpected increment of 20% in the execution time
of the tasks of J60

With Time Fluctuation (20%) Without Fluctuation
Burst-HADS AutoBoT-like Burst-HADS AutoBoT-like

cost makespan cost makespan cost makespan cost makespan
$0.199 1429 $0.269 2408 $0.112 1274 $0.166 2221
$0.231 1493 $0.274 2424 $0.119 1274 $0.166 2221
$0.254 2595 $0.295 2453 $0.204 1277 $0.173 2228
$0.227 1834 $0.282 2457 $0.127 1752 $0.178 2237
$0.225 1833 $0.276 2439 $0.142 1857 $0.180 2252
$0.195 1648 $0.279 2483 $0.150 1445 $0.170 2236

5 CONCLUSION AND FUTURE WORK

This paper proposes the Burst Hibernation-Aware Dynamic
Scheduler (Burst-HADS) framework which uses regular on-
demand VMs, hibernation-prone spot VMs, and burstable
VMs for executing deadline constrained bag-of-task appli-
cations. The framework creates a primary scheduling plan
using an ILS based heuristic and then executes a Dynamic
Scheduling Module that monitors the execution, applying
both task migration and work-stealing techniques whenever
necessary. The objective of Burst-HADS is to minimize both
the makespan and the monetary cost of the execution,
respecting applications deadline even when spot VMs in
use hibernate.

Results show that, when compared to the exact ap-
proach, ILS also reaches the optimal solutions but faster (less
than one second on average) than the former. Furthermore,
when compared to baseline heuristics, ILS presents more
balanced solutions considering both objectives. It reduces
the average monetary cost by more than 38% with an incre-
ment of the makespan of 18% when compared to MinMin.
Finally, ILS reduces the makespan by more than 80%, with
a small increment of the monetary cost; 6.78% and 13.14%
when respectively compared to MaxMin and to the Greedy
approaches. In all cases the percentage loss in one objective
was smaller than the corresponding gain in the other one.

Burst-HADS was evaluated in a real environment us-
ing VMs of AWS EC2, considering scenarios with differ-
ent hibernation and resuming rates. When compared to
the ILS On-demand approach that uses only regular on-
demand VMs, Burst-HADS reduces the monetary cost for
all execution scenarios at the expense of slightly longer
makespans due to the migration overhead. Moreover, com-
pared to HADS, our previous proposed framework that
uses only spot and on-demand VMs, Burst-HADS reduces
the makespan by more than 25%, with an average increase
of only 1.92% in the monetary cost. Burst-HADS was also
compared to AutoBoT-like, an approach inspired by Vash-
ney and Simmhan’s work. AutoBoT-like also combines spot
and on-demand VMs but does not explore the hibernation
feature. Our results show that, in this case, Burst-HADS
reduces the average monetary cost and the makespan by
11.65% and 21.08%, respectively.

As future work, we would like to include in the migra-
tion decision of Burst-HADS some prediction of the future
state of the spot market, considering, for example, the his-
toric of VMs hibernation. A second research direction would
focus on the selection of burstable VMs, with a deeper anal-
ysis of the most suitable one, based on the tradeoff between
price and performance, in different execution scenarios. Fi-
nally, we intend to propose a more realistic scheduler which
does not require precise knowledge of the execution time of
the application as input, and that may launch or eliminate
VMs in accordance with the real application behavior.
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search,” in Handbook of metaheuristics. Springer, 2003, pp. 320–
353.

[5] J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics
for agent-based elastic cloud bag-of-tasks concurrent scheduling,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1682–1699,
2013.

[6] A. W. Services. (2018) Amazon ec2 instance types. [Online].
Available: https://aws.amazon.com/ec2/instance-types/

[7] P. Varshney and Y. Simmhan, “Autobot: Resilient and cost-
effective scheduling of a bag of tasks on spot vms,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 7, pp. 1512–1527, 2019.

[8] P. Leitner and J. Scheuner, “Bursting with possibilities–an em-
pirical study of credit-based bursting cloud instance types,” in
IEEE/ACM 8th International Conference on Utility and Cloud Comput-
ing (UCC), 2015, pp. 227–236.

[9] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Cedule: A scheduling
framework for burstable performance in cloud computing,” in
IEEE International Conference on Autonomic Computing (ICAC), 2018,
pp. 141–150.

[10] Y. Jiang, M. Shahrad, D. Wentzlaff, D. H. Tsang, and C. Joe-Wong,
“Burstable instances for clouds: Performance modeling, equilib-
rium analysis, and revenue maximization,” in IEEE INFOCOM
Conference on Computer Communications, 2019, pp. 1576–1584.

[11] A. F. Baarzi, T. Zhu, and B. Urgaonkar, “Burscale: Using burstable
instances for cost-effective autoscaling in the public cloud,” in
ACM Symposium on Cloud Computing, 2019, pp. 126–138.

[12] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang,
“Exploiting spot and burstable instances for improving the cost-
efficacy of in-memory caches on the public cloud,” in Twelfth
European Conference on Computer Systems, 2017, pp. 620–634.

[13] S. Subramanya, T. Guo, P. Sharma, D. E. Irwin, and P. J. Shenoy,
“Spoton: a batch computing service for the spot market,” in
Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC
2015, Kohala Coast, Hawaii, USA, August 27-29, 2015, 2015, pp. 329–
341.

[14] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud,”
in 11th International Conference on Autonomic Computing, ICAC ’14,
Philadelphia, PA, USA, June 18-20, 2014., 2014, pp. 177–187.

[15] P. Sharma, S. Lee, T. Guo, D. E. Irwin, and P. J. Shenoy, “Spotcheck:
designing a derivative iaas cloud on the spot market,” in Proceed-
ings of the Tenth European Conference on Computer Systems, EuroSys
2015, Bordeaux, France, April 21-24, 2015, 2015, pp. 16:1–16:15.

[16] L. Teylo, L. Arantes, P. Sens, and L. M. d. A. Drummond, “A
bag-of-tasks scheduler tolerant to temporal failures in clouds,”
in 31st International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2019, pp. 144–151.

[17] T.-P. Pham and T. Fahringer, “Evolutionary multi-objective work-
flow scheduling for volatile resources in the cloud,” IEEE Transac-
tions on Cloud Computing, 2020.

[18] J. Fabra, J. Ezpeleta, and P. Álvarez, “Reducing the price of
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Lúcia M. A. Drummond Lúcia M. A. Drummond
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