
HAL Id: hal-03954892
https://hal.sorbonne-universite.fr/hal-03954892v1

Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ARMISTICE: Microarchitectural Leakage Modeling for
Masked Software Formal Verification

Arnaud De Grandmaison, Karine Heydemann, Quentin L. Meunier

To cite this version:
Arnaud De Grandmaison, Karine Heydemann, Quentin L. Meunier. ARMISTICE: Microar-
chitectural Leakage Modeling for Masked Software Formal Verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41 (11), pp.3733-3744.
�10.1109/TCAD.2022.3197507�. �hal-03954892�

https://hal.sorbonne-universite.fr/hal-03954892v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

ARMISTICE: Micro-Architectural Leakage
Modelling for Masked Software Formal Verification

Arnaud de Grandmaison, Karine Heydemann, Quentin L. Meunier

Abstract—Side channel attacks are powerful attacks for re-
trieving secret data by exploiting physical measurements such as
power consumption or electromagnetic emissions. Masking is a
popular countermeasure as it can be proven secure against an
attacker model. In practice, software masked implementations
suffer from a security reduction due to a mismatch between
the considered leakage sources in the security proof and the
real ones, which depend on the micro-architecture. We propose
ARMISTICE, a framework for formally verifying the absence
of leakage in first-order masked implementations taking into
account modelled micro-architectural sources of leakage. As a
proof of concept, we present the modelling of an Arm Cortex-
M3 core from its RTL description and leakage test vectors, as
well as the modelling of the memory of a STM32F1 board,
exclusively using leakage test vectors. We show that, with these
models, ARMISTICE pinpoints vulnerable instructions in real
world masked implementations and helps the design of masked
software implementations which are practically secure.

Index Terms—Side Channel Attacks, Masking, Verification,
Micro-architectural Leakage

I. INTRODUCTION

Side Channel Attacks (SCA) exploit physical measure-
ments, like power consumption or electromagnetic (EM) emis-
sions, during the execution of an application to recover secret
data. They constitute a powerful class of attacks, allowing
to break software and hardware implementations of crypto-
graphic algorithms otherwise proven secure at the algorithmic
level.

Introduced in the early 2000s [1], masking countermeasures
at order d aim at encoding a secret data into d+1 parts called
shares, such that any combination of less than d + 1 shares
is statistically independent from the secret. This theoretically
prevents SCA, as the power consumption and EM emissions
are directly linked to the values manipulated by the program.
A masking countermeasure can be proven secure against an
attacker model, e.g. an attacker able to probe t measurements
per execution, which leads to the notion of t-probing security
(or probing security at order t) [1], [2]. Proofs are conducted
at a given abstraction level, most often at algorithmic or source
code level, and are based on a given leakage model. The latter
is typically either the value-based leakage model, in which
the leakages are the values of intermediate computations; or
the transition-based leakage model, in which the leakages
are combinations between two consecutive values in some

A. de Grandmaison was with ARM, Paris, France (email: ar-
naud.degrandmaison@arm.com)

K. Heydemann and Quentin L. Meunier were with Sorbonne Univer-
sity, CNRS, LIP6, FR-75005 France (emails: karine.heydemann@lip6.fr,
quentin.meunier@lip6.fr)

elements, such as variables at algorithmic level or registers
at assembly level.

Implementing a masking scheme at software level without
unmasking secrets and detecting such unmasking by hand are
far from trivial tasks. Consequently, some verification tech-
niques and tools have been recently proposed to help designers
detect flaws in their implementations [2]–[4]. We argue that
verification should be carried out on the compiled code for
two main reasons. To start with, compilers perform code
transformations, from simplifications of the expressions to the
reordering or removal of some instructions, possibly harming
or deconstructing the carefully added masking scheme along
the way. Then, proofs require the knowledge of the sources
of leakage, and are then limited to what is visible at the
chosen abstraction level. The lowering of the source code into
assembly code introduces data transfers between memory and
CPU registers manipulated by instructions, and the leakage
relative to successive writes into the same architectural register
and consecutive memory accesses are most often not related
to the same source-level variable. Some recent work propose
some compilation approaches for removing such issues [5],
[6]. There also exist some tools for verifying masked assembly
code [7], [8]. However, analysis at the ISA level is still not
sufficient: masked software implementations suffer from a
security reduction due to the mismatch between the considered
sources of leakage and the real ones, which depend on the
target micro-architecture and may not be visible at the ISA
level [9], [10]. For example, some remnant effects may appear,
or some internal resources, like pipeline registers or buses, can
lead to unmasking.

Yet higher-order masking is supposed to be effective against
more powerful attackers, with a major impact on performances
and code size. However, using it in an attempt to shield from
the architecture implementation details is not a solution [11]. A
promising approach is to take into account leakage at processor
design time [12], [13], but no such leakage-free architecture
is available yet. Accurate modelling of leakage sources for an
actionable verification of masked software running on generic
off-the-shelf processors is still an open research question.

An actionable verification needs to be conducted with much
more details in the processor micro-architecture, in order to
accurately detect all possible data combinations in a processor
implementation and pinpoint to the precise location and root
cause of a leakage. Existing approaches [14]–[16] all have
limitations regarding the considered sources of leakage. In this
article, we propose the ARMISTICE framework to fill the gap
between formal verification approaches and real sources of
leakage. From an application running on a processor model,



2

ARMISTICE extracts all intermediate values computations as
symbolic masked expressions and formally verifies the absence
of leakage in them. As proof of concept, we build a model of
the Cortex-M3, by studying the RTL available through the Arm
Academic Access1 (AAA) program. The white-box modelling
enabled by analysing the micro-architecture RTL description
is experimentally verified with specifically designed leakage
test vectors, to both confirm the model correctness and rank
the leakage sources according to their impacts. Some areas of
the model, related to the memory subsystem, require a black-
box approach only based on dedicated leakage test vectors.
We show that ARMISTICE is able to recover where and what
leaks on two different masked AES implementations as well as
on 5 other benchmarks. We also show experimentally on two
of these masked implementations the accuracy of the found
leakages on a real hardware target and how ARMISTICE can
help designers remove them.

This paper makes the following contributions:
• ARMISTICE, a framework for formally verifying first-order

masked implementations at binary level, and precisely
pinpointing where and why secret data leak; this makes
ARMISTICE an invaluable and actionable tool for designers
to verify masked implementations and fix them if need be.

• A model of the Cortex-M3 with meaningful and additional
details to some recent papers (e.g. [17], [18]) that studied
the same processor.

• A qualitative and quantitative analysis conducted with dedi-
cated leakage test vectors of the Cortex-M3 leakage sources,
including an in-depth study of the memory subsystem.
The paper is organized as follows: Sec. II gives some back-

ground and experimentally motivates this paper; the modelling
of the Arm Cortex-M3 processor core and memory subsystem
is detailed in Sec. III; Sec. IV and Sec. V present respectively
the ARMISTICE framework and experimental results before
discussing the closest related work in Sec. VI and concluding
in Sec. VII.

II. BACKGROUND AND MOTIVATING EXAMPLE

While real attacks can be attempted on a device, this is
not so practical when assessing the device’s immunity to side
channel leakages. Practitioners have thus proposed several
leakage assessment methods: some based on formal meth-
ods, some based on statistical analysis. Formal verification
approaches of either a masked algorithm or a masked software
or hardware implementation are all based on a symbolic
representation of the variables or input data, which are tagged
either secret, public or mask [2], [3], [7], [19]. The verifica-
tion consists in checking that a set of symbolic expressions,
built upon these symbolic variables and representing internal
values in the program or circuit, has a distribution which is
independent from all the secret variables. Such a check can
be performed using either a type inference [7], or an iterative
substitution process trying to soundly remove secrets from the
expressions [3], [19]. Regarding statistical approaches, Test

1The Arm Academic Access (AAA) is a free-of-charge program that
provides access to an expanding range of Arm IP for academic purposes
only: https://www.arm.com/academicaccess

Value Leakage Assessment [20] (TVLA) is probably the most
popular one. It has two variants: specific and non-specific.
For both variants, two sets of traces are compared. In the
non-specific case, one set is generated with a fixed (secret)
data, and the other with random (secret) data. A t-test analysis
on these sets allows to detect any possible leakage without
any assumption on the leakage model, i.e. which part of the
computation is leaking in which part of the implementation.
The non-specific t-test requires using a specific randomly-
interleaved procedure in order to avoid false-positive results
[21]. In the specific t-test, the traces are split into two sets
according to the leakage model (e.g. hamming weight) of a
known intermediate value. Other statistical tools are available
to practitioners, like the Pearson correlation [22] which is often
used in place of the specific t-test.

Let us now consider the proven first-order probing secure
masking scheme from Ishai, Sahai and Wagner (ISW) [1] and
apply it to a software boolean AND computation. isw_and,
shown in C language in Lst. 1, takes as inputs two secret values
a and b, each split across two shares a0 and a1 (resp. b0 and
b1). It produces as a result a secret value c, which corresponds
to a & b, split across 2 shares c0 and c1, without ever
exposing any secret value. As pointed out in the introduction,
compilation can harm the carefully designed masking scheme.
In this case, GCC does simplify the expressions, breaking the
ISW scheme altogether. Some intermediate computations are
thus protected with the enforce macro which forces GCC to
materialize the intermediate value in a register rather than
leaving the expression open to optimisations.

Listing 1. ISW AND
1 // Inputs: - Secrets a = a0 ^ a1 , b = b0 ^ b1
2 // - Mask m
3 // Output: - Secret c = c0 ^ c1
4

5 #define enforce(r) __asm__ __volatile__ \
6 ("@enforce\n\t" : "+r" (r) ::)
7

8 aux0 = m ^ enforce(a0 & b1);
9 aux1 = aux0 ^ enforce(a1 & b0);

10 c0 = (a0 & b0) ^ m;
11 c1 = (a1 & b1) ^ aux1;

Listing 2. ISW AND (GCC assembly output)
1 ; r0:a0 , r1:b0 , r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4 , r0 , r3 ; a0 & b1
3 eors r4 , r7 ; aux0 = (a0 & b1) ^ m
4 and.w r5 , r2 , r1 ; a1 & b0
5 ands r0 , r1 ; a0 & b0
6 ands r3 , r2 ; b1 & a1
7 eors r4 , r5 ; aux1 = aux0 ^ (a1 & b0)
8 eors r0 , r7 ; c0 = (a0 & b0) ^ m
9 eors r4 , r3 ; c1 = aux1 ^(a1 & b1)

10 str r0, [r6 , #0]
11 str r4, [r6 , #4]

Lst. 1 is compiled, with size optimisations for example,
for the Arm Cortex-M3 processor, a common processor in
embedded devices. As our implementation is masked using
the ISW scheme, and protected from compiler optimisations,
one can check for himself that the secret values a, b and c

do not appear in Lst. 2. Moreover, formal verification with our
own ARMISTICE framework confirms the absence of leakage
at the ISA level, in the value- and transition-based models.

With power traces captured on a STM32F1 target board



3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 90 100 110 120 130 140

C
or

re
la

tio
n 

(5
00

00
 tr

a
ce

s)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

Fig. 1. Pearson correlation results for Lst. 1.

using the experimental setup from Sec. III-B1, a Pearson
correlation [22] using a (a.k.a a0^a1), b (a.k.a b0^b1) and c

(a.k.a a&b) as intermediate values reveals, as shown in Fig. 1,
that all secret values are leaked during the execution of the
isw_and function. Some of the peaks can be explained, e.g.
the two consecutive str instructions (lines 10-11) are likely
to leak the transition of the data written to memory [17], [23],
explaining partly the peak on the blue curve at samples 120 -
128 in Fig. 1. One can note that leakages are increasing again
after sample 132, although the ISW AND sequence is over:
this illustrates the fact that despite being no longer explicitly
used by the source code, the secrets a, b and c continue to leak
due to some remnant effect. The Pearson correlation metric
is used in this example because it makes the leakage on c

more visible than with a t-test, which is affected by the low
probability of having more than 16 bits set in c due to the
underlying boolean AND operation.

Despite the apparent simplicity of Lst. 1, most other peaks
do not have a clear explanation from the literature, motivating
the work described in this article: understanding the Cortex-
M3 micro-architecture in enough details so that it can be
modelled and used with a formal analysis tool to provide clear
explanations for these leakages.

III. CORTEX-M3 MODELLING

In this section, we present the modelling of the Arm Cortex-
M3 data path. We also discuss the leakage profile from off-core
components, i.e. memory related components.

A. Abstract Model

As we have access to the Cortex-M3 RTL description
through AAA, we go for a white-box approach to model the
processor micro-architecture, which involves Verilog source
files eye-ball analysis and Verilog simulations.

1) Under the Processor’s Hood: The Cortex-M3 imple-
ments the ARMv7-M ISA composed of 32-bit and 16-bit
instructions. It is a 3-stage pipeline processor comprising a
Fetch, a Decode and one or two Execute stages depending on
the instruction. As the Fetch stage does not manipulate data,
we do not consider it further in the context of this paper.

The main components found in the Cortex-M3 core, de-
picted in Fig. 2, are:

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn 

E
x
tr

a
ct

io
n
 

Fo
rm

a
tt

in
g

 

Port D

Port A

Port B

ALU

LSU

AGU

Fig. 2. Data path of the Cortex-M3 processor core

• A register file (RegFile), containing the general purpose
registers (GPR), that has two read ports, named port A and
port B, and one write port, named port D.
• An arithmetic logic unit (ALU), to perform actual compu-

tations on data stored in micro-architectural registers RegA,
RegB and RegImm. As most ALU instructions allow shifting
the second operand, a barrel shifter (BS) can optionally be
used on RegB’s output to the ALU.
• An address generation unit (AGU), with a dedicated adder

(named Addr Adder in Fig. 2), to compute the address
used for accessing memory, from two micro-architectural
registers RegAddr1 and RegAddr2, containing the base
address and the offset respectively.

• A load / store unit (LSU), to deal with data sent to or
received from memory, like extracting the relevant part of
the received data. The memory is accessed over the AHB-
Lite bus, which is pipelined with an address-phase followed
by a data-phase one cycle later.
2) How Instructions Use the Micro-architecture: We only

consider in this description simple instructions typically used
in cryptographic implementations: simple ALU instructions
and memory accesses. We also assume that there is a single
execution path regardless of the secret input values. This
requirement is usually met to avoid timing side channel
attacks and is recommended by all secure coding rules. As a
consequence, no jump nor branch can depend on secret data.

After being fetched, an instruction goes through the decode
stage, which prepares the data subsequently processed by the
execute stage. It retrieves operands in the register file or the
instruction itself and updates RegA, RegB, RegImm, RegAddr1
and RegAddr2. Depending on RTL-implementation choices,
read ports and internal registers that are not used by the current
instruction can either keep their previous values, be reset to
some default value, or get a value related to a bit field of the
instruction which is not semantically relevant. For example,
the decoding of the instruction mov.w Rd,#imm, which has
only an immediate as source operand, selects PC on port A
and Rimm[3:0] on port B. RegA is written, while RegB is not.
The choice of updating or not an unused register or read port,



4

and in which way, takes into account 1) the requirement of
maintaining an understandable code by the RTL developers
and 2) some performance, cost or area trade-offs. In the
next section, we illustrate the consequences of these choices
regarding potential leakage.

Simple ALU instructions (e.g. add, eor, mov, sign extension
or bit selection) are executed in one cycle during the execute
stage. For most ALU operations, port A and RegA receive
the first register operand, and port B and RegB the second
one. This is not the case for pure shift operations for which
port B/RegB receives the operand to shift (first operand) while
port A/RegA receives the shift amount (second operand) — a
necessary twist because the BS is located on RegB’s output
to support the optional shift of the second operand on ALU
instructions. At the end of the execution cycle, the destination
register is written into the RegFile through port D.

A single load or store instruction requires two execution
cycles: during the first cycle (EXE1) the address is computed,
while in the second cycle (EXE2), the data to write (resp.
read) is sent to (resp. received from) memory. Two addressing
modes are available for memory accesses: an immediate-offset
addressing mode and a register-based one. In both cases,
the offset is added to a base register (a GPR). The base
register is read through port A and written both in RegA and
RegAddr1. In case of a register offset, it is read through port B

and written both in RegB and RegAddr2. Depending on the
addressing mode for write memory accesses, the data sent to
memory either goes to RegB and DataReg (immediate offset)
or only goes to RegA (register offset). Moreover, a store with a
register offset prevents any following instruction from passing
the decode stage.

In case of data dependencies, forwarding mechanisms exist
in order to avoid pipeline stalls. The ALU result or the data
read from memory can be forwarded to RegA, RegB, RegAddr1
and RegAddr2 registers. In case of a data dependency between
a load and a pipelined store with immediate offset (for instance
ldr Rx, [Ry, Rz], str Rx, [Ry’, #imm]), the read value is
forwarded to DataReg.

B. Sources of Leakage

In this section, we present the leakage test vectors, or
test vectors for short, designed in order to 1) confirm or
disprove with experimental measurements our findings from
the RTL analysis regarding the data path components involved
in the execution of an instruction 2) quantitatively evaluate the
leakage due to the different components and 3) analyse and
model the memory subsystem using a black-box approach.

1) Experimental Setup: All measurements are performed
on NewAE’s ChipWhisperer Pro (CW1200) with a STM32F1
target board [24] embedding a Cortex-M3 configured to run
at 7.37MHz. The CW1200 acquires four samples per CPU
cycle. Depending on the test vector, we acquire from 10,000
up to 500,000 power consumption traces, each with different
random inputs generated with a Mersenne Twister RNG.

2) Anatomy of a Test Vector: A test vector has several
random inputs, named Opi and starts (resp. ends) with a
preamble (resp. postamble). The actual payload of a test

-10

0

10

20

30

40

50

60

70

0 5 10 15 20 25

T-
Te

st
 V

al
ue

Time (sample)

Op0 ^ Op1 ^ Op2 ^ Op3

Op0 ^ Op1

Op0 ^ Op2

Op0 ^ Op3

Op1 ^ Op2

Op1 ^ Op3

Op2 ^ Op3

Fig. 3. Specific t-test results using the test vector of Lst. 3 using 20,000 traces.

vector consists in a small assembly instruction sequence that
manipulates some random input values. The preamble achieves
three goals: the loading of random input values into GPRs,
their optional preparation (e.g. extracting a specific byte or
masking some parts), and the reset to a specific state, zero or
random, of all elements along a data path. The postamble’s role
is to ensure some form of quietness for a few cycles, in order
to ease the experimental measurements and their subsequent
analysis.

For each test vector, several specific t-tests are performed
using the Hamming Weight of expressions composed of logical
or arithmetic operations on the test vector’s random input val-
ues (32-bit or less). A concluding specific t-test (i.e. with a t-
value higher than 4.5) on the exclusive-or between expressions
(e.g., input values) shows that there is a transition leakage
induced by a micro-architectural component between these
expressions.

An example is given in Lst. 3: it is composed of two
exclusive-OR instructions (eor), each with different source
GPR operands holding different random input values. The
destination GPR operands are also distinct.

Listing 3. Test vector example
1 @ preamble
2 eor rDst1 , rOp0 , rOp1
3 eor rDst2 , rOp2 , rOp3
4 @ postamble

We perform a specific t-test on the traces resulting from
the execution of the code given in Lst. 3 to measure the
interaction between the consecutive values of the first (resp.
second) operand of both instructions using the expression
HW(Op0^Op2) (resp. HW(Op1^Op3)), where HW denotes the
Hamming Weight of an expression. The value of this expres-
sion is directly linked to the power consumption of the port A

and RegA (resp. port B and RegB). Thus, a high t-test value
for this specific expression indicates a leakage in at least one
of these two components. Similarly, we also measured the
interaction between two consecutive values at the ALU output
(or BusD) using the expression HW((Op0^Op1)^(Op2^Op3)).

The result of the specific t-test for the previous example is
plotted in Fig. 3. In this figure, we clearly see the interaction
between operands on the paths from the RegFile to RegA/RegB
(curves named Op0^Op2 and Op1^Op3, samples 5-9) and once



5

-50

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45

T-
Te

st
 V

al
ue

Time (sample)

Op0 ^ Op1
Op0 ^ Op2
Op0 ^ Op3
Op1 ^ Op2
Op1 ^ Op3
Op2 ^ Op3

-50

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45

T-
Te

st
 V

al
ue

Time (sample)

Op0 ^ Op1
Op0 ^ Op2
Op0 ^ Op3
Op1 ^ Op2
Op1 ^ Op3
Op2 ^ Op3

Fig. 4. Specific t-test results when placing a ldr ROp2, [Raddr, #imm]
between two eor Rdst, ROp0, ROp1. On the left, ldr is 16-bit encoded; on
the right it is 32-bit encoded. 200,000 traces were used.

latched in RegA/RegB (curves named Op0^Op2 and Op1^Op3,
samples 10-13). We can also see the interaction between the
results of both instructions (curve named Op0^Op1^Op2^Op3,
samples 10-13). As the preceding and following instructions
manipulate constant values, the results of both instruction leak
(curve Op0^Op1, samples 5-9 and curve named Op2^Op3 at
samples 14-18).

3) Invisible Source of Leakage at ISA Level: One major
outcome of the RTL analysis is the discovery of some potential
sources of leakage without any explicit link with data manip-
ulated by instructions. In this section, we give some examples
of such invisible leakage at ISA level.

We first illustrate the consequence of the choices of the
decoding stage regarding read ports. As previously mentioned,
the decode stage of a mov.w Rd,#imm instruction selects
Rimm[3:0] on port B without writing it in RegB. Using a
dedicated test vector and a specific t-test with 50,000 traces, an
interaction between the data previously read on port B and the
content of the register Rimm[3:0] is visible (max t-value of 9.1).
This behaviour can reveal secret data, e.g., when the register
Rimm[3:0] contains one share of a first-order masked data and
the second share has been read on port B in the previous
cycle.

The encoding used for an instruction is also of critical
importance, as the RegA and RegB write enable signals may
depend on the instruction encoding. For example, the decoding
of the instruction ldr ROp2, [Raddr, #imm] writes ROp2 into
RegB if and only if the instruction uses a 32-bit encoding.
Fig. 4 shows specific t-test results when running a 16-bit
or a 32-bit encoded load instruction. We can see that a
32-bit encoding leads to a write of the destination register
content into RegB as there is an interaction between Op1

and Op2 visible at samples 13-18 and 25-31. Considering
that RegB is always written with the destination register of
a load instruction with immediate offset may lead to miss
potential interactions between the values written into RegB

before and after the load if the load is actually 16-bit encoded;
alternatively, considering it is never written may lead to miss
potential interactions between Op2 and the values written into
RegB before and after the ldr when it is 32-bit encoded.

Another important knowledge gained from the RTL is
related to the forwarding mechanisms and internal registers.
As an example, DataReg contains the value to be sent to
the memory in case of a store with an immediate offset. If
there is a dependence on this value with the preceding load
instruction, the loaded value is forwarded to the DataReg. The

RegB register is however still written with the content of the
register supposed to contain the value to be sent, but which
is in this case the old value held in this register. This may
be a source of leakage which can only be determined with
the knowledge of both the issue time of instructions and the
implemented forwarding mechanisms in the processor.

4) Leakage Test Vector Suite: We have carefully designed
77 test vectors: 31 devoted to the analysis of the data path
components involved in each class of instructions, 5 devoted
to forwarding mechanisms, 7 devoted to writing back into
the register file and 34 devoted to the analysis of the LSU
and memory. Test vectors enable us to assess and confirm the
potential leakage on the different buses and internal registers as
well as leakage due to memory transfers in the Cortex-M3 core
of our STM32F1 target. Contrary to the ARM processor core
whose RTL must not be modified (apart from selecting some
configurable options), the memory subsystem implementation
varies between targets with an identical core [17]: the (off-
core) memory subsystem on our STM32F1 target is thus a
black box. Test vectors dedicated to the memory and LSU
enable us to model the memory subsystem.

Unsurprisingly, a small subset of our test vectors are similar
to those from MIRACLE [17]. The RTL availability allows
us to have an exact knowledge of the data manipulated by
instructions. As a consequence, we design more specific test
vectors in order to profile the leakage induced by the micro-
architectural components and to explain where in-core leakage
stems from. We cannot describe all the test vectors here but
they are available online with their results [25]. We summarize
the main results in the next section.

5) Leaking Components: Our analysis reveals that the RTL
version of the Cortex-M3 we have access to is more recent
than the one used for the implementation of the Cortex-M3
core in the STM32F1. For example, shifted operands are sent
to RegA and not RegB. Each time a 32-bit instruction does
not have a source register operand, R0 is read in the register
file on the corresponding read port (note that it is the default
behaviour for the 16-bit instructions decoding). Moreover,
some crossed leakages between RegA and RegB appear in
case of consecutive ALU instructions with different operations.
The abstract processor model used for the ARMISTICE tool,
presented in the next section, reflects our findings.

Due to the CMOS technology, any component (bus, register,
...) is a source of transition leakage and can lead to the reveal
of secret data. However the number of traces needed to see
a transition leakage depends on the components. The more
combinatorial logic the component is connected to, the less the
number of traces. The table below gives the number of traces
(starting with 10,000 traces) required to see, using a specific
t-test, a transition leakage into a specific component. These
values correspond to experiments with 32-bit manipulated
data. More traces are needed when data have a smaller bit-
width: e.g. 500,000 traces are needed to see a transition
leakage due to consecutive writes of 8-bit values in a given
GPR.



6

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

Fig. 5. Model of the memory subsystem of our STM32F1 target

#Traces Leaking Components
10,000+ RegA, RegB, RegAddr1, RegAddr2, AluOut,

Addr Bus, Data Out, Data In
50,000+ Port A, Port B, DataReg

200,000+ Bus D, GPR

From the RTL of the Cortex-M3 core, we know that memory
is byte-addressed and the width of the data bus is 32 bits. Also,
an aligned word is always loaded from the memory: when
reading a byte (resp. half-word), the containing 32-bit word is
sent to the CPU and then the LSU extracts the requested byte
(resp. half-word). Regarding data writes into memory, a data
whose width is less than a word is duplicated to form a 32-bit
value to be sent to the memory. Our test vectors devoted to
the analysis of the LSU and the black-box memory subsystem
reveal several interactions from which we build a model of
the memory subsystem, as depicted in Fig. 5:
• Read Side: There is a transition leakage between bytes at the

same index in words loaded consecutively, be they separated
or not by other non-memory instructions. Moreover, when
bytes or half-words are requested, some leakage is visible
between them with enough traces, even when they are not
at the same word index. The data extraction in the LSU
induces intra-word leakage when two load instructions are
pipelined in the LSU: the data extraction is performed as
soon as the extraction pattern is known, but the data arrival
is at the end of the cycle. As a consequence, the extraction
is performed during a small amount of time on the data
read in the previous cycle. This provokes some intra-word
leakage in the first loaded data.

• Write Side: Due to the duplication of data in case of byte
(resp. half-word) write in the memory, a stored byte can
interact with all other bytes (resp. aligned half-word) of the
data sent to the memory in the previous cycle. When two
store instructions are not issued in consecutive cycles, the
stored bytes only interact with the ones at the same index
in the previously read or written data. On our STM32F1
target, the DataOut bus seems to be reset between writes
and there is, seemingly in the off-core memory, a one-word
buffer which contains the last piece of data read or written,
as explained next.

• Read Write Interaction: Consecutive memory instructions
(load-store, store-load), even separated by non-memory in-
structions, do interact. As there are two data buses (DataIn
and DataOut), the interaction takes place in the memory
subsystem. Our test vectors enable us to confirm that there
is a one-word buffer containing either the last read word

or the result of the last written word. When storing a byte
or half word, the targeted aligned word is retrieved in the
memory and the word resulting from the write (i.e. with
one or two changed bytes) is written in this buffer. This
behaviour is consistent with all the interactions we described
before between two consecutive load or store instructions
separated by non-memory instructions. Fig. 5 illustrates the
inferred memory model and the one-word buffer.
This section has shown that each micro-architectural ele-

ment can leak, some more obviously than others, i.e. requiring
more or less traces. This is by no means specific to the Cortex-
M3 though, and all processors are plagued with similar leakage
sources. Despite the Cortex-M3 being a simple processor,
manually checking all possibilities for securing a piece of code
against side channels quickly becomes a daunting task for a
developer, thus motivating the need for tooling to automate
the task and manage the complexity.

IV. FORMAL VERIFICATION WITH A
MICRO-ARCHITECTURAL MODEL

This section introduces ARMISTICE, a framework designed
for formally proving the absence of leakage in a masked
program when executing it on a specific processor core.

Overview: ARMISTICE implements different symbolic
ARMv7-M instruction set simulators, denoted processor mod-
els in the remainder, targeting different abstraction levels such
as ISA level or micro-architectural level. Such a symbolic
simulator builds symbolic expressions representing the values
passing through the hardware components of the processor
when executing a masked program. The symbolic variables
in expressions are typed as masks, secrets or public variables
(e.g. plaintext). Other variables, whose values do not depend
on the inputs (such as loop counters), have concrete values.
These expressions provide an accurate model of the leakage
due to the manipulated data, and proving that these expres-
sions, or some combinations of expressions, are statistically
independent from secret values gives a valuable guarantee
regarding secret independence on a real execution. ARMISTICE

leverages an external formal analysis tool to prove the absence
of leakage in a given leakage model, and allows to avoid a
statistical analysis or interpretation as would happen with a
leakage trace simulator.

The verification process is depicted in Fig. 6. First, from
a binary code, an entry point of the program to analyse and
information on symbolic variables with their type, an execution
trace is generated using an external symbolic execution engine.
This step enables one to retrieve 1) the sequence of instructions
executed by the program (we assume a single execution path
i.e. no jump depends on a symbolic input) and 2) the symbolic
content of relevant memory locations for the program just
before its beginning. Then, the execution trace is simulated
using the user-specified processor model which computes the
symbolic expressions in hardware elements at each execu-
tion cycle and performs all formal checks according to the
user-specified leakage model, either value-based or transition-
based. In the value-based model, the verified expression is the
new content of each modelled hardware component. In the



7

 Arm Cortex-M3

 Arm ISA 

BS

+

+
<<

Input
File
.exe

Execution Trace
Processor
Model

...
eor r6, r4, r5
eor r8, r6, r7
...

Port A:
m1 ⊕ 0

Port B:
m0 ⊕ (k ⊕ m0)
...

Expression
Leakage
Analyzer

Results

Symbolic
Execution
Engine

Execution 
Trace
Generator

Expressions
To Verify:

Port A:
No Leakage 
Port B:
Leakage
...

MemorySymbolic 
Variables
(Secret, 
Mask, 
Public)

Leakage 
Model

Entry 
Point

Port B

Port A m1 0

m0 k⊕m0

Cycle 10

Leakage
in transition
on Port B

Subset of the Cortex-M3 Model

r7

r6

r8

m1

m0

k⊕m0

m0⊕m1
k⊕m1

Initial

Final

r6

r8

0

0Secret
Leakage
List

ISA Model

r4

r5

r7

r6

r8

r5

r4 m1

m0

k⊕m0
0

0

2

m1

m0

k⊕m0
0

0

-

-

3

m1

m0

k⊕m0
0

m1

m0

k⊕m0
m0⊕m1

0

0

Symbolic Expressions in Hardware Components

4

m1

m0

k⊕m0
m0⊕m1

k⊕m1
...

...

...

...

Fig. 6. ARMISTICE framework and example of symbolic expressions construction

transition-based model, it is the exclusive-or between the old
and new expressions of each modelled hardware component.
ARMISTICE retrieves the verification results from the external
verification tool and eventually outputs a synthesis of all the
results. It can also give, for each detected leakage, the involved
assembly instruction(s), the leaking expression as well as the
leaking hardware element. The user can leverage these precise
sources of leakage to remove them. For example, he can then
reorder instructions or insert specific instructions, and check
that the new code is leakage-free.

Implementation: The different parts of ARMISTICE are
implemented in Python. Currently, there are two proces-
sor models for the Armv7-m ISA: one at ISA level and
one at micro-architecture level, denoted Arm ISA and Arm

Cortex-M3 respectively. However, ARMISTICE offers an easy
way to add new models by implementing a specified interface,
comprising a few functions called by a common simulation
engine core. In the Arm ISA model, each instruction executes
in one cycle and only modifies the content of the destination
registers or the memory according to its semantics. The Arm

Cortex-M3 model implements a cycle-accurate description of
the abstract model presented in Sec. III with a 3-stage pipeline
(DEC, EXE1, EXE2). Modelled hardware components com-
prise GPR, internal CPU and memory registers, data memory
as well as multiplexers and buses. At each simulation cycle,
each modelled hardware component is updated according to
the instruction processed in the corresponding pipeline stage.
Note that the Arm ISA is a subset of the Arm Cortex-M3 one.
Currently, the execution trace is generated using the symbolic
engine angr [26]. For the formal verification of symbolic
expressions, we selected LeakageVerif which has been shown
to be the most efficient, accurate and appropriate for verifying
first-order probing security of expressions representing inter-
mediate computations of masked software [19].

Example: The example in Fig. 6 illustrates how symbolic
expressions are constructed in both models, focusing on Port

A and Port B for the Arm Cortex-M3 model. We consider a
sequence of two instructions, namely eor r6, r4, r5 and eor

r8, r6, r7, performing a remasking of a secret k from the
mask m0 to the mask m1. The ’initial’ column in the ISA

model (’cycle 0’ column in the Arm Cortex-M3 model) gives
the content of the relevant GPR just before the sequence:
e.g. r4 contains the symbolic variable m1, r6 contains the
concrete value 0. In the Arm ISA model, the registers are

updated after the execution of each instruction: r6 contains
the symbolic values m0 ⊕ m1 then r8 contains k ⊕ m1. In this
model, ARMISTICE guarantees the absence of leakage both in
value and transition. In the Arm Cortex-M3 model, in cycle
1, the instruction eor r6, r4, r5 is in the decode stage, and
so Port A and Port B contain respectively the expressions m1

and m0. In cycle 2, this instruction advances in the execute
stage and the instruction eor r8, r6, r7 goes into the decode
stage, what updates Port A with value 0 (as r6 has not been
updated yet) and Port B with value k ⊕ m0. Focusing on the
components Port A and Port B, this creates the following
two transitions: m1 → 0 and m0 → k ⊕ m0. The resulting
expressions, respectively m1 and k, show that there is no secret
leakage on Port A, but that a secret leakage in transition is
present on Port B. The subsequent writes in r6 and r8 do not
result in a secret leakage, as for the Arm ISA model.

Back to the motivating example: Let us now consider
again our software implementation of the ISW AND algo-
rithm, with a C code implementation shown in Lst. 1, and
its compiler-emitted assembly code from Lst. 2. The results
of the ARMISTICE analysis on Cortex-M3 in the transition
leakage model are reported in the tables from Fig. 7. The upper
table displays, for each instruction, which micro-architectural
elements are leaking, together with a link to the expression
and the secret values (a, b, c) leaked by that expression in
the lower table. The correlation plot is the one from Fig. 1,
with annotations to explain the leakage origins using the
expressions from the tables. It is worth reminding here that
due to the nature of the operation performed by the ISW AND,
a bitwise and, a leakage on a or b implies a leakage on c.

As made obvious in Fig. 7, no processor cycle is leakage-
free and all secrets are leaking in the transition leakage model
most of the time. The leakages found by ARMISTICE match
perfectly those found experimentally on the STM32F1. Next
section will dive deeper in the details of the ARMISTICE results
with real benchmarks.

V. EXPERIMENTAL EVALUATION

We show that our framework ARMISTICE modelling the
Cortex-M3 allows us to find theoretical secret leakages in
the micro-architecture, even when the masking scheme has
been shown to be secure in their considered leakage model.
Finally, we show on examples that the secret leakages found
are experimentally visible.



8

Instructions Leaks: expr. name
I1 and.w r5, r2, r1 MuxRegA, RegA: e0

RegB: e1
I2 ands r0, r1 PortA, RegA: e2

AluOut: e3
I3 ands r3, r2 AluOut: e4
I4 eors r4, r5 RegB: e5
I5 eors r0, r7 AluOut: e6
I6 eors r4, r3 AluOut: e7
I7 str r0, [r6, #0] -
I8 str r4, [r6, #4] PortB, RegB, DataReg,

DataOut, BufferMem: e7

Name Expression Leaks
e0 a0 · b1 ⊕ a1 a, c
e1 a0 · b1 ⊕ b0 b, c
e2 a0 ⊕ a1 a, c
e3 a0 · b0 ⊕ a1 · b0 a, c
e4 a0 · b0 ⊕ a1 · b1 a, b, c
e5 a1 · b0 ⊕ b1 b, c
e6 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 a, b, c
e7 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 ⊕ a1 · b1 a, b, c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

80 90 100 110 120 130 140

C
or

re
la

tio
n 

(5
00

00
 tr

ac
es

)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

e0 e0, e1 e2, e3 e5 e6 e7 e7 e7 e7 e7e4
e2

Pi
pe

lin
e

 s
ta

ge
s DEC I1 I2 I3 I4 I5 I6 I7 I8

EXE1 I1 I2 I3 I4 I5 I6 I7 I8
EXE2 I7 I8
MEM I7 I8

Expressions

Fig. 7. Detailed analysis of ISW AND in the transition leakage model. The tables display the ARMISTICE results. The Pearson correlation plot from Fig. 1
is annotated with vertical bars to show the processor cycles, the leaking expressions and the instructions that are in the different pipeline stages at each cycle.

A. Benchmarks

In order to illustrate the relevance of ARMISTICE, we con-
sider 4 C-source implementations masked in the first-order
value-based probing security model: Secmult, the popular
secure Galois field multiplication [27]; AES-Herbst and AES-KS

a masked version of AES and its key schedule, following
the masking scheme proposed by Herbst et al. [28]; AES-Yao
another masked version of AES [29]. The main difference in
AES-Yao, compared to AES-Herbst, is the multiplication by
constants 2 and 3 in the MixColumns step that is performed via
table lookups. As the key schedule in AES-Yao is not masked,
it is not considered in the evaluation. C-source benchmarks
were compiled using GCC 10.2, at optimisation level O2. These
benchmarks are first-order value-based masked, hence they are
not secure in the transition-based leakage model. ARMISTICE is
likely to detect leakages at ISA and micro-architectural level.

We also select 4 Arm assembly-level masked implementa-
tions. Arm-Add and Arm-Add-opt are two masked implemen-
tations of an addition of two secrets split in two shares [30].
They are provided as Arm assembly code and are, to the best
of our understanding, designed to be masked in the first-order
transition-based probing security considering GPR. ARMISTICE

should then not detect leakages due to writes in the RegFile.
Dil-And is a 32-bit masked logical AND and Dil-A2B is a 32-
bit conversion from arithmetic to boolean masking. These two
functions are provided as part of a masking scheme of the
Dilithium algorithm for the Cortex-M3 [31]. Both versions
have been implemented using an enhanced version of the
MAPS simulator. As they are supposed to take into account
the Cortex-M3 micro-architecture, it is interesting to know if
ARMISTICE can find remaining secret leakages or not at micro-
architectural level.

B. Leakage Analysis

For each benchmark, a verification is performed on both the
Arm ISA and Arm Cortex-M3 processor models.

Tab. 8 presents a synthesis of the analysis results for the
Cortex-M3 processor model per benchmark. Namely, it gives
for each modelled component of the Cortex-M3 the number
of secret data leakages in the value-based leakage model (#VL
column) and in the transition-based one (#TL column). As
expected, the results for the GPR (line “R0 to R14”) are the
same, and so stand for both this model and the Arm ISA

processor model, in which only the GPR are considered as
sources of leakage. This also comprises values read from and
written to memory as they necessarily pass through a GPR.

At ISA level, for Secmult, AES-KS, AES-Herbst and AES-Yao,
the analysis in the value-based leakage model confirms there
is no leakage in the GPR, hence nor in memory, as claimed
by their authors.

For the Arm Cortex-M3 processor model, for the same
benchmarks, we can first notice that as expected there is
no leakage in the value-based leakage model, except for
the memory related components (DataOut, DataIn and
ReadWriteBuffer). This is because when a masked byte of
the AES state is read, the whole memory word is actually
read in memory and transferred, containing four state bytes.
As there is a single mask byte for masking each of these four
bytes, this constitutes a leakage. We can also notice that there
is an enormous amount of leakages in transition on micro-
architectural components for these benchmarks. In fact, all
of the components except MuxRegAddr2, RegAddr2, MuxBS,
MuxDataAdder and 5 GPR have at least a transition revealing
secret information. While a verification in the value-based
leakage model at the ISA level is a required first step towards
leakage-free implementations, it leaves many secret leakages
on the table.

The Arm-Add and Arm-Add-Opt benchmarks both contain
secret leakages in GPR in the value-based and transition-based
leakage models. This suggests that there may be a flaw in the
design of these programs contrary to the claim of the authors.
Unsurprisingly, there are many other secret leakages in other
hardware elements of the core, as those were not taken into



9

BENCHMARK Secmult AES-KS AES-Herbst AES-Yao Arm-Add Arm-Add-Opt Dil-And Dil-A2B
NB OF ANALYSED INSTR. 365 3001 5409 4527 122 106 79 443
COMPONENT #VL #TL #VL #TL #VL #TL #VL #TL #VL #TL #VL #TL #VL #TL #VL #TL

GPR R0 to R14 0 0 0 99 0 190 0 155 71 83 66 72 0 0 0 0

DECODE
STAGE

Port A 0 1 0 144 0 10 0 46 44 68 50 58 0 0 0 0
Mux Reg A 0 1 0 144 0 19 0 36 44 68 51 60 0 0 0 0
Reg A 0 0 0 144 0 0 0 36 43 67 51 60 0 0 0 0
Port B 0 16 0 541 0 226 0 244 61 78 35 44 0 0 0 0
Mux Reg B 0 16 0 553 0 226 0 243 64 78 45 44 0 0 0 0
Reg B 0 23 0 283 0 137 0 145 59 72 41 50 0 0 0 0
Mux Reg Addr 1 0 0 0 18 0 0 0 0 1 2 0 0 0 0 0 0
Reg Addr 1 - - 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Mux Reg Addr 2 / Reg Addr2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ALU DATA
PATH

Mux BS / Mux Data Adder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Barrel Shifter 0 0 0 246 0 70 0 92 55 81 61 69 0 0 0 0
Data Adder 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
ALU / Mux ALU Out 0 0 0 27 0 0 0 0 71 87 66 75 0 0 0 14

AGU & LSU
DATA PATH

Addr Adder 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Mux Data Reg 0 0 0 18 0 70 0 47 2 2 0 0 0 0 0 0
Data Reg 0 2 0 32 0 378 0 438 2 2 0 1 0 1 0 1
Mux Data Write / Data Out 0 0 0 18 0 70 0 47 2 2 0 0 0 0 0 0
Data In 7 7 122 577 1444 1444 1136 1199 2 4 0 0 0 0 0 0
Data Extract. 0 0 0 99 0 70 0 191 0 0 0 0 0 0 0 0

MEMORY
Addr Buffer 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0
Read Write Buffer 7 10 122 864 1444 1838 1136 1259 2 4 0 0 0 1 0 1

WB TO RF Mux Bus D 0 0 0 153 0 70 0 191 71 87 66 75 0 0 0 14

Fig. 8. ARMISTICE analysis results for the 8 benchmarks. Columns #VL (resp. #TL) gives the number of value (resp. transition) leakages found.

consideration in the masking scheme design.

Finally, for the Dil-And and Dil-A2B benchmarks, almost
all the secret leakages in value and transition have been
eliminated. Yet, a few secret leakages in transition remain:
they occur on the path from the ALU to the RegFile, in the
DataReg, and in the ReadWriteBuffer. We first looked at
leakages in the path from the ALU to the RegFile in Dil-A2B,
as it should have been taken into consideration in the design
of these programs. Unfortunately, the leaking expressions are
too big for a manual analysis (more than 800 KB per leaking
expression). Therefore, we rather performed a manual analysis
of the leaking expressions reported for the Dil-And program.
Both leakages on DataReg and ReadWriteBuffer happen
when writing back in memory the two shares of the result.
If the two stores have been separated by a logical instruction
to clean the data path, this instruction does neither erase the
content of the Data Reg, nor the one of the ReadWriteBuffer.
Consequently, the two stores of the two shares reveal the secret
results in these two hardware elements. We show in the next
section that this secret leakage can be experimentally observed
at the ARMISTICE’s reported time in the power trace.

These results show that the ISA level or the value-based
leakage model are not good abstractions of the real power
consumption. Instead, there is a need to take into account a
more detailed description of the device executing the program.
The RTL level combined with the transition-based leakage
model is a better abstraction for leakage analysis, as together
they are much closer to the hardware transitions, responsible
for most of the power consumption. Besides, the Dil-And

and Dil-A2B results show that it is difficult to take into
account micro-architectural details without a formal approach,
as manual approaches will fail to take into account every
aspect, even with detailed knowledge. These results thus show
the relevance of the proposed approach, by being able to
pinpoint the instructions, the moments and hardware elements
in the core responsible for secret leakages, even for codes
designed to be secure for the Cortex-M3 core.

C. Accuracy and Exploitability

In order to illustrate the accuracy of the approach, we run
three experiments. First, in order to show that the leakages
found on the Dil-And benchmark are real, we capture 500,000
traces with the setup described in Sec. III-B1. We run a
specific t-test on the leaking expression and look at the t-test
value for the samples corresponding to the cycles at which
ARMISTICE detected the leakages: the results, shown in Fig. 10,
demonstrate a perfect match.

In a second experiment, we repeat the same process for all
of the simple secret leaking expressions in the first round of
the Key Schedule in the transition leakage model. By simple,
we mean expressions with at most one binary operator. There
are height such expressions. In Fig. 9, we can see that all
the secret leakages experimentally observed are detected by
ARMISTICE at the expected location in the trace. However,
four secret leakages detected by ARMISTICE do not translate
into concluding t-tests, making them seemingly false positives.
However, after further investigations:

• Two of these leakages result from writing a byte in R0 (ex6
and ex7). As shown in section III-B5, transitions in R0 on
a single byte can hardly be observed with 500,000 traces.
Here, in both cases, as there is still a remnant effect from
a big previous leakage, these leakages on R0 cannot be
distinguished on the trace.
• One of these leakages results from the transition between

two register values put on the Bus B, but not written into
Reg B (ex5). In fact, the two corresponding instructions do
not read the registers, but the latter are selected because
of the immediate values contained in the instructions. We
designed a specific test vector for this case which confirmed
that no leakage can be observed in this case, at least with
our experimental setup.
• The last leakage corresponds to an already observed leakage

situation, since it occurs on ALU out (ex2). After investi-
gation, it appears that in some cases, the processor stalls
for one cycle, which is not taken into account in our
model. While we have not yet found out the reason why



10

-50

0

50

100

150

200

250

300

350

200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

4

5

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500

-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250 300 350 400 450 500 550 600
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500

Key[12] ^ Key[15] (ex0) Key[12] ^ Key[14] (ex1) Key[14] ^ Key[15] (ex2) SBox[Key[12]] (ex3)

SBox[Key[14]] (ex4) SBox[Key[15]] (ex5) SBox[Key[12]] ^ SBox[Key[15]] (ex6) SBox[Key[14]] ^ SBox[Key[15]] (ex7)

Fig. 9. Comparison between the secret leakages found by ARMISTICE in the first round of AES-KS, and the corresponding specific t-tests. The pink
rectangles indicate the cycles at which a leakage was found in ARMISTICE for the corresponding expression.

such stall cycles occur, we suspect they come from the
fetch of some instructions in the Flash memory. Adding an
extra instruction to shift the two non leaking consecutive
instructions makes the stall cycle disappear and the leakage
found by ARMISTICE visible.
In order to deal with the non-visible leakages, one can

decide to deactivate leakage analysis in some hardware ele-
ments for a given data size if the leakages in these elements
are experimentally too small to be observable. Regarding the
unexplained stall cycles, not modelling them only results in
false positives as the stall resets some signal values. Yet, future
work includes understanding why such stall cycles occur.

For the third experiment, we modify the assembly code
of the previous experiment to remove all the possible secret
leakages detected by ARMISTICE. Some of them, occurring in
the memory, were not taken into consideration as they require
modifying the memory data layout of the program. For each
detected secret leakage, we add one or several instructions in
order to clean the parts of the data path involved in the leaking
transition. The added instructions can have three different
kinds: for transitions happening in the arithmetic and logic data
path, we use a orr lr, lr, lr instruction, not a nop neither a
mov instruction, in order to be sure to clean regA and regB;
for transitions happening in the AGU, LSU or memory, we
use either a load or a store by making sure that the address
is secret independent and that the value read or written is a
constant; finally, for transitions happening in a GPR, we use
a orr rX, lr, lr to erase the content of the register with a
constant value before the new one. Once all instructions are
added, the new code is run again on ARMISTICE to ensure that
no more leakage is found.

Fig. 11 shows the t-test values obtained for all the expres-
sions after patching the code: all leakages have disappeared.
This second experiment shows how ARMISTICE can help
designers remove all the potential secret leakages in a code,

-4

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

T-
Te

st
 V

al
ue

 (
50

00
00

 tr
ac

es
)

Time (sample)

c = a & b

Fig. 10. Comparison between the se-
cret leakages found by ARMISTICE
in the Dil-And benchmark, and the
corresponding specific t-test. The pink
rectangle indicates the cycles at which
a leakage was found in ARMISTICE.

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000

T-
Te

st
 V

al
ue

 (
50

00
00

 tr
ac

es
)

Time (sample)

ex0
ex1
ex2
ex3

ex4
ex5
ex6
ex7

Fig. 11. t-test values of the eight
originally leaking expressions (ex0 to
ex7) in AES-KS, after patching the
assembly code. No more expression is
leaking.

by exhibiting the specific leakages, along with where and
when they happen. This information allows ones to write the
minimal code patch to remove such leaking transitions. The
patched code can eventually be analysed by ARMISTICE in
order to verify the absence of leakage.

To conclude, ARMISTICE is a valuable tool that detects
secret leakages happening during the execution of a masked
software on a processor. It can also help patch a code to
suppress leakages, and verify a patched code. These results
show that a RTL description is a relevant abstraction level to
perform a formal leakage analysis. Although some modelled
transitions may not translate into visible leakages, removing all
RTL transitions leaking a secret provides a valuable security
guarantee.

Currently, glitches are not taken into consideration in
ARMISTICE. While nothing theoretically prevents considering
them, we believe that considering them “as such” will result
in a lot of detected leakages that are unlikely to be observed
on a real target device. A more detailed analysis of the circuit



11

is required in order to select existing glitches, which is left
for future work.

VI. RELATED WORK

Power or electromagnetic trace simulators using a model
inferred from experimental measurements intrinsically take
into account micro-architectural leakage [32], [33]. ELMO
[32] pioneered such trace simulators with a power model of the
Arm Cortex-M0 for a subset of the ISA composed of the most
frequent instructions in cryptographic implementations. The
accuracy of such simulators depends on the set of experiments
used to learn the model. Recently, ELMO has been extended
into ELMO* in order to better model register or memory reuse
as well as interaction between non consecutive instructions
[23]. As for MAPS [14], it has been built using the RTL
description of the Arm Cortex-M3. It focuses on the potential
leakage due to internal registers at the entrance of the ALU:
our experiments show that ARMISTICE outperforms MAPS
regarding the modelling of the processor core in addition to
help remove the found leakage by pinpointing the leaking
instructions and the leaking hardware elements.

MIRACLE [17] is an infrastructure proposing several test
vectors for highlighting micro-architectural leakages due to
interactions between operands of instructions or memory
accesses, or due to speculative execution. While this work
shows that the leakage varies between architectures and even
implementations of the same processor core, it does not
explain how to use test vectors to understand or describe
the micro-architecture to model the leakage sources. Gao
et al. [18] go one step further by reverse-engineering some
micro-architectural leakage features of an Arm Cortex-M3
processor running 16-bit instructions only. Using test vectors
and their recently so-called collapsed models [34], they deduce
a model of the different components of the Arm Cortex-
M3. Barenghi et al. explore how to infer the structure of
different Arm Cortex-A and Cortex-M pipelines, using a
framework of microbenchmarks and the CPI metric (Clock
cycles Per Instruction) [35], [36]. They highlight the potential
side channel leakages resulting from the pipeline structures
and some architectural choices. As we have access to the RTL
of the Cortex-M3 processor, we can use a white-box approach
for the processor core; we go deeper in the modelling of the
leakage sources, like considering both the 16-bit and 32-bit
variants of the instruction set. We give clear explanations of
the leakages found on the Cortex-M3 and reported by those
related work. However, as previous work, we resort to a black-
box approach based on leakage test vectors for modelling the
memory subsystem but we go one step further as this model
is used by ARMISTICE for detecting leakages due to interaction
in the memory subsystem.

In order to remove the micro-architectural leakage, the
ROSITA tool [23] automates leaking pattern replacement de-
tected by using ELMO* and non specific t-tests. The iterative
process is able to remove most leakages from three imple-
mentations but fails for one implementation. The modelling
may be incomplete, or, as ELMO* cannot help pinpointing
the source of leakage, the replacement patterns may not be

fully secure. In addition, these patterns may not be as small
as they could be with a better leakage source understanding.
Also, when the patching fails, developers are left clueless with
the leakage, advocating for a solution able to explain it. On
the hardware side, the usage of dedicated logic or design tools
can help reduce the sources of potential leakage [12], [13].
Such design-time solutions do not help for existing processors.
FENL [37] extends the ISA with additional instructions for
cleaning off in-core resources that may be the source of
leakage. This is an appealing solution as it offers developers
means to avoid in-core leakage at a lower cost than using
tediously designed cleaning gadgets, but it still does not help
for existing processors. Moreover, automated solutions such
as ARMISTICE are required to help determine how and where
to use such dedicated instructions.

Finally, two recent works target the verification of masked
software on a low-level processor description.

Barthe et al. propose a Domain Specific Language for
modelling assembly implementations and for specifying fine-
grained leakage models [16]. The semantics of assembly
instructions can then be enriched with the leakage effects of
the instruction. In particular, different leakage effects due to
some internal registers or some buffers in memory can be
made explicit. They propose the scVerif tool as a front end of
MaskVerif [2], [3] for formally verifying masked assembly
gadgets and implementations. scVerif allows one to build
micro-architectural leakage aware gadgets, be they masking
gadgets or cleaning gadgets. Such gadgets can then be used
in an automatic composition in order to reduce the time
required to implement secure solutions [38]. The proposed
approach enables one to take into account the interactions
inside the pipeline or due to memory access during the formal
verification. However, it relies on the knowledge of the micro-
architectural source of leakage and requires the explicit mod-
elling of leaking components (e.g. internal registers or memory
buffers). These papers do not explain how the modelling of the
Arm Cortex-M0+ targeted in the experiments was carried out.
As shown in our paper, the decoding stage of the Arm Cortex-
M3 processor induces different leakage effects depending
on the binary encoding of the instruction, thus requiring as
many instruction specifications as the number of encodings
per instruction. Moreover, the user would have to explicit the
instruction encoding in his implementation expressed in the
scVerif’s input language. A verification using the binary code
as we propose seems more appropriate for avoiding putting the
burden on the user. Finally, as scVerif executes sequentially
the instructions, it cannot model the effects of the forwarding
mechanism.

Coco [15] is an approach for formally verifying if a masked
software would securely be executed on a CPU. Leakages are
searched for at gate-level, comprising glitches. Authors show
several weaknesses in the RISC-V IBEX core related to the
register file, ALU and LSU units that can be removed with
small changes. Coco requires the analysed masked implemen-
tation to satisfy two constraints: 1) shares related to a same
secret must not be processed by consecutive instructions 2)
registers and memory locations which contain a share must not
be overwritten with the second share. If these constraints may



12

be sufficient for the IBEX core simple micro-architecture, they
are not sufficient for the Cortex-M3 in which non consecutive
instructions may write into a same micro-architectural register.
The first constraint is not necessary either as consecutive
instructions do not lead to a secret leakage when the explicitly
or implicitly manipulated shares are not combined inside
the processor. Moreover, meeting such constraints requires
dedicated tools, such as formal verification tools at ISA
level. ARMISTICE has no constraint on the analysed masked
implementation, it is able to find leakage due to any modelled
hardware element: GPR, internal register, bus, memory buffer
or memory location. In addition, it helps designers to remove
such interactions thanks to its outputs.

This comparison shows that ARMISTICE outperforms the
existing approaches as it automates formal verification taking
into account all the micro-architectural details of a processor,
and makes a link between the secret leakages found, the
hardware, and the executed software.

VII. CONCLUSION

We presented ARMISTICE, a framework for formally verify-
ing the absence of leakage considering first-order value-based
or transition-based probing security in masked software imple-
mentations. Using an accurate model of a target core and mem-
ory subsystem, ARMISTICE allows to take into account micro-
architectural leakages in the verification process. We presented
the modelling of an Arm Cortex-M3 based STM32F1 board
based both on a white-box analysis of the core and on a black-
box analysis of the memory subsystem via leakage test vectors.
We experimentally showed that our modelling is relevant for
detecting micro-architectural leakages as well as for manually
removing them thanks to the ARMISTICE’s output, comprising
leaking instructions and hardware components where leakages
stem from. Future work will consider higher order leakage
verification, the automation of model extraction from a RTL
design and automatic code patching from an analysis result.

REFERENCES

[1] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in CRYPTO, 2003.

[2] G. Barthe, S. Belaı̈d, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X.
Standaert, “maskverif: Automated verification of higher-order masking
in presence of physical defaults,” in ESORICS, 2019.

[3] G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y.
Strub, “Verified proofs of higher-order masking,” in CHES, 2015.

[4] G. Pengfei, X. Hongyi, P. Sun, J. Zhang, F. Song, and T. Chen, “Formal
verification of masking countermeasures for arithmetic programs,” IEEE
Trans. on Soft. Eng., 2020.

[5] J. Wang, C. Sung, and C. Wang, “Mitigating power side channels during
compilation,” in ACM ESEC/FSE, 2019.

[6] H. Seuschek, F. De Santis, and O. M. Guillen, “Side-channel leakage
aware instruction scheduling,” in CS2, 2017.

[7] I. B. El Ouahma, Q. L. Meunier, K. Heydemann, and E. Encrenaz, “Side-
channel robustness analysis of masked assembly codes using a symbolic
approach,” J. Cryptographic Engineering, vol. 9, no. 3, 2019.

[8] Q. L. Meunier, I. B. El Ouahma, and K. Heydemann, “SELA: a Symbolic
Expression Leakage Analyzer,” in PROOFS, 2020.

[9] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert, “On
the cost of lazy engineering for masked software implementations,” in
CARDIS, 2015.

[10] K. Papagiannopoulos and N. Veshchikov, “Mind the gap: Towards secure
1st-order masking in software,” in COSADE, 2017.

[11] T. Moos and A. Moradi, “On the easiness of turning higher-order
leakages into first-order,” in COSADE, 2017.

[12] P. Slpsk, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna: A gate-
sizing based security aware eda flow for improved power side-channel
attack protection,” in IEEE/ACM ICCAD, 2019.

[13] D. ijai, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede, “Towards
efficient and automated side-channel evaluations at design time,” J. of
Cryptographic Engineering, vol. 10, 11 2020.

[14] Y. Le Corre, J. Großschädl, and D. Dinu, “Micro-architectural power
simulator for leakage assessment of cryptographic software on arm
cortex-m3 processors,” in COSADE, 2018.

[15] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem, “Coco:
Co-Design and Co-Verification of Masked Software Implementations
on CPUs,” in USENIX Security, Aug. 2021.

[16] G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and
L. Porth, “Masking in fine-grained leakage models: Construction, im-
plementation and verification,” IACR Trans. on Crypt. Hard. and Emb.
Syst., 2021.

[17] B. Marshall, D. Page, and J. Webb, “Miracle: Micro-architectural
leakage evaluation,” 2021, cryptology ePrint Archive, Report 2021/261.

[18] S. Gao, E. Oswald, and D. Page, “Reverse engineering the micro-
architectural leakage features of a commercial processor,” 2021, cryp-
tology ePrint Archive, Report 2021/794.

[19] Q. L. Meunier, E. Pons, and K. Heydemann, “LeakageVerif: Scalable
and Efficient Leakage Verification in Symbolic Expressions,” cryptology
ePrint Archive, report 2021/1468.

[20] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A Testing Methodology
for Side-Channel Resistance Validation,” in NIST NIAT, 2011.

[21] T. Schneider and A. Moradi, “Leakage assessment methodology - a clear
roadmap for side-channel evaluations,” 2015, cryptology ePrint Archive,
Report 2015/207.

[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics, 2001.

[23] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and
Y. Yarom, “Rosita: Towards automatic elimination of power-analysis
leakage in ciphers,” in NDSS, 2021.

[24] C. OFlynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in COSADE, 2014.

[25] “ARMISTICE: Micro-Architectural Leakage Modelling for Masked
Software Formal Verification.” [Online]. Available: https://www-soc.
lip6.fr/armistice

[26] “angr: a platform-agnostic binary analysis framework.” [Online].
Available: https://github.com/angr/angr

[27] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in CHES, 2010.

[28] C. Herbst, E. Oswald, and S. Mangard, “An AES smart card implemen-
tation resistant to power analysis attacks,” in ACNS, vol. 3989, 2006.

[29] Y. Yao, M. Yang, C. Patrick, B. Yuce, and P. Schaumont, “Fault-
assisted side-channel analysis of masked implementations,” in IEEE
HOST, 2018.

[30] B. Jungk, R. Petri, and M. Stöttinger, “Efficient side-channel protections
of ARX ciphers,” IACR Trans. on Crypt. Hard. and Emb. Syst., 2018.

[31] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
dilithium,” in ACNS, 2019, pp. 344–362.

[32] D. McCann, E. Oswald, and C. Whitnall, “Towards practical tools
for side channel aware software engineering: ’grey box’ modelling for
instruction leakages,” in USENIX Security, 2017.

[33] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “EMSim: A
Microarchitecture-Level Simulation Tool for Modeling Electromagnetic
Side-Channel Signals,” in IEEE/ACM HPCA, 2020.

[34] S. Gao and E. Oswald, “A novel completeness test and its application to
side channel attacks and simulators,” 2021, cryptology ePrint Archive,
Report 2021/756.

[35] A. Barenghi and G. Pelosi, “Side-channel security of superscalar CPUs:
Evaluating the Impact of Micro-Architectural Features,” in DAC, 2018.

[36] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Exploring cortex-
m microarchitectural side channel information leakage,” IEEE Access,
2021.

[37] S. Gao, B. Marshall, D. Page, and T. Pham, “FENL: an ISE to mitigate
analogue micro-architectural leakage,” IACR Trans. on Crypt. Hard. and
Emb. Syst., Mar. 2020.

[38] A. Abromeit, F. Bach, L. A. Becker, M. Gourjon, T. Güneysu, S. Jorn,
A. Moradi, M. Orlt, and F. Schellenberg, “Automated masking of
software implementations on industrial microcontrollers,” in DATE,
2021.


