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Tracer dynamics in the Symmetric Exclusion Process, where hardcore particles diffuse on an infi-
nite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium
situation has received a lot of attention, the case where the tracer is driven by an external force,
which provides a minimal model of nonequilibrium transport in confined crowded environments, re-
mains largely unexplored. Indeed, the only available analytical results concern the means of both the
position of the tracer and the lattice occupation numbers in its frame of reference, and higher-order
moments but only in the high-density limit. Here, we provide a general hydrodynamic framework
that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer’s
position in function of the driving force, up to quadratic order (beyond linear response). This result
constitutes the first determination of the bias-dependence of the variance of a driven tracer in the
SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to
more general configurations of a driven tracer in interaction with obstacles in one dimension.

Introduction.— Single-file transport, corresponding to
the diffusion of particles in narrow channels, so that they
cannot bypass each other, is observed in various physical,
chemical or biological systems, such as zeolites, colloidal
suspensions, or carbon nanotubes [1–4]. In this confined
geometry, a tracer displays an anomalous subdiffusive be-
haviour, which has been observed by passive microrheol-
ogy [1–3]. The Symmetric Exclusion Process (SEP) is
a paradigmatic model of such single-file diffusion [5, 6],
which has been the object of several recent and impor-
tant developments [7–10]. In this model, particles per-
form symmetric random walks in continuous time on an
infinite one-dimensional lattice, with the constraint that
there can only be one particle per site. Characterising the
anomalous dynamics of a tracer in this many-body prob-
lem has been the subject of a number of theoretical works
[7–9, 11–16]. These results are part of a context of in-
tense activity around exact solutions for one-dimensional
interacting particle systems [10, 17–20].

An important extension of tracer diffusion in the SEP
concerns the case where the tracer is submitted to an
external driving force [21] (see Fig. 1). This situation is
encountered for instance in active microrheology, which
is a technique used to probe the properties of living or
colloidal systems by forcing the displacement of a tracer
through the medium [22, 23]. More generally, it consti-
tutes a minimal one-dimensional model for nonequilib-
rium transport in confined crowded environments, which
has received a growing attention [24, 25] (see also [26–30]
for related models combining tracer driving and bath-
induced crowding). This model allows to go beyond the
usual Gaussian approximation and characterize the non
Gaussian fluctuations, as well as the nonlinear effects of
the driving force on the tracer. The only analytical re-
sults at arbitrary density concern the means of both the
position of the tracer and the lattice occupation numbers

FIG. 1. The Symmetric Exclusion Process (SEP) with a
driven tracer (blue) at position Xt (see section Model).

in its frame of reference (i.e. the density profiles) [31–
33], which have recently been determined also on finite
periodic systems [34, 35]. Since the seminal works [31–
33] that date back to almost three decades, the results
concerning higher-order cumulants have been limited to
the high-density limit [12, 36], and to specific situations
[37][38]. At arbitrary density, even the determination of
the variance of the position of the tracer, which is crucial
to quantify its fluctuations, remains a fully open problem.

In this Letter, we fill this gap and provide a general
hydrodynamic framework that allows us to determine at
long time bath-tracer density profiles and cumulants of
the tracer position at linear order in the driving force
and at arbitrary density. We also go beyond linear re-
sponse by determining the second cumulant of the tracer
position and the corresponding density profile at second
order in the driving force. We thus provide the first non-
trivial contribution of the driving force to the variance of
the tracer position at arbitrary density.

Model.— Each site of an infinite 1d lattice is initially
occupied by a particle with probability ρ. Particles per-
form symmetric continuous-time random walks with half
unit jump rate onto each nearest neighbor, and with the
hard-core constraint that there is at most one particle
per site. A tracer, of position Xt at time t, is initially
at the origin, and is the only particle to experience a
driving force, which results in asymmetric jump rates,
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namely (1 + s)/2 to the right and (1 − s)/2 to the left.
The parameter s quantifies the asymmetry and will be
called the bias. The bath particles are described by the
set of occupation numbers ηr(t) of each site r ∈ Z of the
lattice at time t, with ηr(t) = 1 if the site is occupied
and ηr(t) = 0 otherwise.
We first derive the hydrodynamic limit of the problem,

by extending to the case of a driven tracer the approach
we developed to study a symmetric tracer in [8, 9]. We
consider the cumulant generating function (CGF) of the
position of the tracer: ψ(λ, t) = ln

〈

eλXt

〉

=
∑∞

n=0
λn

n! κn,
where the κn are the cumulants of the position of the
tracer. Its time evolution is deduced from the master
equation given in the Supplementary Material [39], and
reads

dψ

dt
=

1

2

∑

ν=±1

[

(1 + νs)(eνλ − 1)(1 − wν)
]

, (1)

where we have denoted wr(t) =
〈

ηXt+re
λXt

〉

/
〈

eλXt

〉

. We
call wr the generalised density profile generating func-
tion, since by expanding it in powers of λ it generates
all correlation functions between the displacement of the
tracer and the density of bath particles at a distance
r from the tracer (represented by the occupation num-
ber ηXt+r): wr(t) =

∑

n≥0
λn

n! 〈ηXt+rX
n
t 〉c with 〈· · ·〉c

the joint cumulants. For instance, at order 1 in λ,
〈ηXt+rXt〉c = 〈ηXt+rXt〉 − 〈ηXt+r〉 〈Xt〉. Beyond con-
trolling the displacement of the tracer [Eq. (1)] and mea-
suring the response of the bath of particles, these profiles
wr are key quantities in the SEP since, in the symmetric
case s = 0, they satisfy a strikingly simple closed equa-
tion [9].
In the hydrodynamic limit of large time and large dis-

tances, the different observables have the scalings,

ψ(λ, t) ≃
t→∞

ψ̂(λ)
√
2t , wr(t) ≃

t→∞
Φ

(

v =
r√
2t

)

(2)

where we have omitted the dependency in λ of Φ for sim-
plicity. These scalings have been shown to hold in the
symmetric case [7, 9, 10], and in the biased case [33] at
lowest orders in λ for arbitrary density and at all orders
in the high density limit. Here, based on numerical ob-
servations, we extend Eq. (2) to all orders in λ. From
Eq. (1), these scalings imply the boundary condition

∑

ν=±1

(1 + νs)(eνλ − 1)(1 − Φ(0ν)) = 0 . (3)

Another key boundary condition is obtained from the
time evolution of w±1 deduced from the master equa-
tion [39],

Φ′(0±) ± 2ψ̂

e±λ − 1
Φ(0±) = 0 . (4)

Remarkably, Eq.(4) is closed and does not involve higher-
order correlation functions.

In contrast, the bulk equation satisfied by Φ(v) is not
closed. Thus, to compute this profile, we design another
approach [40] based on a fluctuating hydrodynamic de-
scription.
Macroscopic fluctuation theory (MFT) for a driven

tracer.— This approach relies on MFT, which is a power-
ful tool to treat the stochastic dynamics of diffusive sys-
tems at large scale [41], and to determine the statistics
of observables in single-file systems such as the current
[10, 19] or the position of a symmetric tracer [14, 15]. The
MFT expresses the probability of observing a fluctuation
of the macroscopic profile q(x, t), representing the den-
sity of particles, in terms of a diffusion coefficient D(ρ)
and a mobility σ(ρ) characterising the system at large
scales [42]. Below, we mainly focus on the SEP for which
D(ρ) = 1/2 and σ(ρ) = ρ(1 − ρ), but the methodology
is general. The case of a driven tracer introduces tech-
nical difficulties: (i) the driving force experienced by the
tracer creates a discontinuity in the MFT fields at the lo-
cation of the tracer; (ii) the location of this discontinuity
is moving with time.
We circumvent these difficulties by mapping the orig-

inal problem onto a dual problem where the position of
the tracer Xt is translated into a flux at the origin Qt,
therefore transforming the moving boundary condition
into a static one located at zero [43, 44]. A similar ap-
proach was used in [45] for a different model. The dual
system is described by new MFT fields p̃ and q̃, where
q̃(k, t) represents the distance between the particles la-
belled by the index k, which becomes a continuous vari-
able at the hydrodynamic level considered here. These
fields obey the following MFT equations (see SM [39] or
[44] for derivation):

∂tq̃ = ∂k(D̃(q̃)∂k q̃) − ∂k(σ̃(q̃)∂kp̃) , (5a)

∂tp̃ = −D̃(q̃)∂2k p̃− 1

2
σ̃′(q̃)(∂kp̃)

2 , (5b)

which involve the transport coefficients of the dual sys-
tem D̃(ρ̃) = D(1/ρ̃)/ρ̃2 and σ̃(ρ̃) = ρ̃σ(1/ρ̃). The initial
and final conditions are

p̃(k, 0) =

∫ q̃(k,0)

ρ̃

2D̃(z)

σ̃(z)
dz−λΘ(k) , p̃(k, 1) = −λΘ(k) ,

(6)
where ρ̃ = 1/ρ, and Θ is the Heaviside function. Equa-
tions (5,6) are the usual MFT equations, completed here
by matching conditions at the origin (reminiscent of the
position of the tracer in the original system) which im-
plement the bias [46]:

p̃(0+, t) = p̃(0−, t) , (7)

(1 − s)∂kp̃(0
+, t) = (1 + s)∂kp̃(0

−, t) , (8)
[

−D̃(q̃)∂k q̃ + σ̃(q̃)∂kp̃
]0+

0−

= 0 . (9)

The first two equations originate from the optimization
of the MFT action, and the third one comes from the
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FIG. 2. Profiles Φ1 and Φ2 obtained by the numerical res-
olution of the MFT equations (5a) and (5b) (orange dashed
lines), compared to Monte Carlo simulations (blue solid lines),
final time 6000, 107 simulations for (a), (b) and (c) and 9 ·107

for (d), of the SEP with a driven tracer, for various values
of the bias and the density. (a) Φ1 for ρ = 0.5 and s = 0.7.
(b) Φ1 for ρ = 0.5 and s = −0.7. (c) Φ1 for a step density
with ρ− = 0.6, ρ− = 0.4 and s = 0.4. (d) Φ2 for ρ = 0.6
and s = 0.4. The discrepancy at v = 0 on panel (d) comes
from the numerical errors on Φ1 near the discontinuity at the
origin, which are amplified at the second order Φ2.

continuity of the current at the origin. The last matching
condition is a consequence of Eq. (3) (see [39] for details):

(1 + s)

(

1 − 1

q̃(0+, t)

)

= (1 − s)

(

1 − 1

q̃(0−, t)

)

. (10)

Equations (5a)–(10) fully determine the dual MFT fields.
Finally, the generalized density profiles of the original
tracer problem are obtained from these solutions by

Φ

(

v =
y(k)√

2

)

=
1

q̃(k, 1)
, y(k) =

∫ k

0

q̃(k′, 1)dk′ . (11)

This completely sets the problem of a driven tracer in
the SEP. However, since there is a priori no explicit solu-
tion for arbitrary density and arbitrary bias, this remains
formal at this stage. We now go further and propose two
lines of investigation of these equations: (i) a numerical
resolution for arbitrary sets of parameters; (ii) and a per-
turbative expansion, which yields explicit results valid at
arbitrary density for the first coefficients Φn(v) defined
by the expansion of the hydrodynamic limit of the gen-
eralized density profiles: Φ(v) =

∑∞

n=0
λn

n! Φn(v).

Numerical resolution.— We show in Fig. 2 the profiles
at order 1 and 2 in λ obtained by the numerical resolution
of the MFT equations (see SM [39] for details), which are
in perfect agreement with results from microscopic Monte
Carlo simulations (see SM [39]), for a broad range of pa-
rameters. In particular, we consider strong biases, and
densities which are far from the extreme low- and high-
density limits. Note that the approach can be extended
to the paradigmatic case where the initial density of par-
ticles is step-like (ρ = ρ+ in front of the tracer and ρ = ρ−

behind the tracer) [7, 20]. Finally, the plots show that
our MFT procedure captures non-trivial dependencies of
the correlation profiles on the rescaled distance.

Linear order in s.— We first note that, for any bias,
at zeroth order in λ, we retrieve the exact results pre-
viously obtained for the mean occupation profiles in the
frame of reference of the driven tracer [31, 33]. However,
for the next orders (Φn with n ≥ 1), no explicit analyti-
cal solution of the MFT problem at arbitrary density is
available. We then resort to an expansion in powers of
the bias s, and define for each order n:

Φn(v) =
s→0

Φ(0)
n (v) + sΦ(1)

n (v) + s2Φ(2)
n (v) + . . . (12)

where Φ
(0)
n corresponds to the known symmetric case [8,

9]. At linear order in the bias s, we find [47][39]

Φ
(1)
1 (v) =

1 − ρ

2ρ

(

(2 − 3ρ) erfc(v) − (1 − ρ)
6

π
e−v2

)

(13)

Φ
(1)
2 (v) =

(1 − ρ)(1 − 2ρ(1 − ρ))

2ρ2
erfc(v) +

(1 − ρ)2(4 − 3ρ)

πρ2
erfc(v) − (1 − ρ)2

ρ
erfc

(

v√
2

)2

− (1 − ρ)2

2ρ2
G(

√
2 v) +

8(1 − ρ)3

π3/2ρ2
v e−v2 − 4(1 − ρ)2(1 − 2ρ)

πρ2
e−v2 − (1 − ρ)2

π3/2ρ2
v e− v

2

2 K0

(

v2

2

)

, (14)

where G(x) = 1
π

√

2
π

∫ ∞

x
e−z2/4K0

(

z2

4

)

dz, and K0 is a

modified Bessel function of zeroth order. A key point

is that, contrary to the first order in λ, Φ
(1)
2 is a non-

analytic function of the rescaled distance v, displaying a

logarithmic singularity at the origin. This appears to be a
specificity of the driven case, since, in the symmetric case,
all Φn are analytical functions of the rescaled distance [9].

The functions Φ
(1)
1 (v) and Φ

(1)
2 (v) are plotted in Fig. 3
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FIG. 3. Generalised density profiles Φ
(1)
n (v) at first order in

the bias s, at density ρ = 0.6, obtained from the numerical
resolution of the MFT equations (5a) and (5b) (dashed red
lined), compared to the analytical expressions (13) and (14)

(solid blue). Left: profile Φ
(1)
1 . Right: profile Φ

(1)
2 .
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FIG. 4. Left: Profile Φ
(2)
1 (v) at ρ = 0.6 (18) (solid blue),

compared to the numerical resolution of the MFT equations
(5a) and (5b) (dashed red). Right: rescaled cumulant κ̂2 as a
function of the bias s, obtained from the numerical resolution
of the MFT equations (5a) and (5b) (solid blue), compared to
the small bias expansion (19) (solid green line). The points
are obtained from Monte Carlo simulations (15.8 million sim-
ulations, final time 100000). Note that the correction in s2 to
κ̂2 is always positive, for all the values of the density ρ.

and display perfect agreement with the numerical resolu-
tion of the MFT equations. The profile Φ1(v) measures
the correlation between the density at a rescaled distance
v from the tracer, and the position of the tracer [8]. When

there is no driving force, Φ
(0)
1 (v > 0) > 0, therefore a

fluctuation of Xt towards the right is correlated with an
increase of the density in front of the tracer, indicating an
accumulation of particles in front of the tracer. Here, we
find that the linear correction to these correlations due to
the presence of the drive, Φ

(1)
1 (v), is negative, indicating

that a positive driving force reduces these correlations,
while a negative drive increases them.
In addition to fully characterize the bath-tracer corre-

lations, the generalized density profiles Φn also lead to
the cumulants of the tracer’s position. This is made pos-
sible by the key relation derived above [Eq. (4)]. We get,
for κ̂n ≡ limt→∞[κn/

√
2t],

κ̂1 = s
1 − ρ

ρ
√
π

+ O(s2), κ̂2 =
1 − ρ

ρ
√
π

+ O(s2), (15)

κ̂3 =
s

π3/2ρ3

[

(1 − ρ)
(

12(1 − ρ)2 − π
((

8 − 3
√
2
)

ρ2

−3
(

4 −
√
2
)

ρ+ 3
))]

+ O(s2) . (16)

We notice that, up to order n = 3, κ̂n = s κ̂
(s=0)
n+1 +O(s2),

which implies that

ψ(λ, t) ∼
t→∞

ψ(s=0)(λ, t) + s
dψ

dλ

(s=0)

+ O(s2, λ4) . (17)

On top of that, we checked from the high-density solution
obtained in [12, 36] that, when ρ → 1, Eq. (17) holds
at any order in λ, and at arbitrary time. This points
towards the generality of this relation.
Beyond linear response.— We next show that explicit

analytical results can be obtained beyond linear response
which, as we proceed to show, can be quantitatively and
even qualitatively significant. In addition, even if our pre-
vious expressions provide the leading order in the bias s,
they do not bring non-trivial information for even cumu-
lants, since the first non-zero correction to the unbiased
case is actually of order s2 for symmetry reasons. We
thus compute the profile Φ1 at quadratic order in the
bias, and get [39]

Φ
(2)
1 (v) =

(1 − 2ρ)(1 − ρ)2

2ρ2
erfc(v) +

(3 − ρ)(1 − ρ)2

πρ2
erfc(v) − (1 − ρ)2

2ρ
erfc

(

v√
2

)2

− (1 − ρ)2

2ρ2
G(

√
2 v) +

5(1 − ρ)3

π3/2ρ2
v e−v2 − (3 − 5ρ)(1 − ρ)2

πρ2
e−v2 − (1 − ρ)2

π3/2ρ2
v e− v

2

2 K0

(

v2

2

)

. (18)

Interestingly, we note that, even at order 1 in λ (and not
only at order 2 as in the linear response analysis discussed
above), the density profile is in fact non-analytic at the
origin. We stress that this qualitatively different feature
emerges beyond linear response.

In addition, the expression of Φ
(2)
1 yields the s2 order

of κ̂2 = κ̂2|s=0 + s2 ∆κ̂
(2)
2 + O(s3), with

∆κ̂
(2)
2 =

(1 − ρ)2(7 − 5ρ− π((
√
2 − 3)ρ+ 2))

π3/2ρ3
. (19)

This result constitutes the first determination of the bias-
dependence of the variance of a driven tracer in the SEP
for an arbitrary density, a problem which has remained
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open for more than 25 years.

The function Φ
(2)
1 (v) is plotted in Fig. 3 and displays

very good agreement with the results obtained from the
numerical procedure described above. We also display
the dependence of the second cumulant as a function of
the bias for a given value of the density ρ = 0.2, which
shows good agreement with both microscopic Monte
Carlo simulations and the numerical resolution as long
as the bias is small enough. This cumulant displays an
important variation with the bias (∼ 30%), emphasis-
ing the quantitative importance of studying the problem
beyond linear response (which gives zero variation).
Conclusion.— In this Letter, starting from microscopic

considerations, we built a hydrodynamic framework to
study both the dynamics of a driven tracer in the SEP
and the response of its environment. This allowed us to
determine the first cumulants of bath-tracer correlations
and of the tracer position at linear order in the bias and
at arbitrary density – a regime of parameters that was
left aside so far. We also went beyond linear response by
determining the second cumulant and the corresponding
correlation profile, therefore unveiling for the first time
the dependence of the variance of the tracer’s position on
the bias. Importantly, this approach is general and can be
extended to study other models of single-file transport,
by replacing in Eqs. (5a)-(9) the transport coefficients
D and σ by those of the system under consideration,
and adapting the matching condition (10) which can be
derived from microscopic considerations, as done here for
the SEP.
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[49] T. Bodineau and B. Derrida, Phys. Rev. Lett. 92, 180601
(2004).

[50] M. R. Evans, Braz. J. Phys. 30, 42 (2000).
[51] D. B. Owen, Commun. Stat. Simul. Comput. 9, 389

(1980).
[52] T. P. Schulze, J. Comput. Phys 227, 2455 (2008).
[53] R. Dandekar and K. Mallick, arXiv:2207.11242 (2022).

https://doi.org/10.1103/RevModPhys.87.593
https://arxiv.org/abs/1404.6466
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
http://arxiv.org/abs/2207.07549
https://doi.org/10.1209/0295-5075/115/54003
https://doi.org/10.1209/0295-5075/115/54003
https://arxiv.org/abs/1609.05453
https://doi.org/10.1103/PhysRevLett.92.180601
https://doi.org/10.1103/PhysRevLett.92.180601
https://doi.org/10.1590/S0103-97332000000100005
https://doi.org/10.1080/03610918008812164
https://doi.org/10.1080/03610918008812164
https://doi.org/10.1016/j.jcp.2007.10.021
http://arxiv.org/abs/2207.11242


Supplementary Material for Driven tracer in the Symmetric Exclusion Process:

Linear Response and Beyond
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I. MICROSCOPIC EQUATIONS AND HYDRODYNAMIC LIMIT

We briefly recall the derivation of the microscopic equations presented in Refs. [S1, S2], but for the case of a biased
tracer [S3]. Our starting point is the master equation of the SEP, which reads

∂tP (X, η, t) =
1

2

∑

r 6=X,X−1

[

P (X, ηr,+, t) − P (X, η, t)
]

+
∑

µ=±1

1 + µs

2

{

(1 − ηX)P (X − µ, η, t) − (1 − ηX+µ)P (X, η, t)
}

, (S1)

where P (X, η, t) is the probability to observe at time t the bath particles in a configuration described by the occupations
of the sites η = {ηr = 0, 1}, and with the tracer at position X. The first term corresponds to the motion of the bath

particles, while the second one describes the motion of the tracer, which can hop to the right with rate 1+s
2 and to

the left with rate 1−s
2 , with s the bias on the dynamics of the tracer.

We consider the cumulant generating function of the position of the tracer

ψ(λ, t) = ln
〈

eλXt

〉

. (S2)

Its time evolution is deduced from the master equation (S1), and reads [S3]

∂tψ =
1 + s

2
(eλ − 1)(1 − w1) +

1 − s

2
(e−λ − 1)(1 − w−1) , (S3)

where we have denoted

wr(t) =

〈

ηXt+re
λXt

〉

〈eλXt〉 . (S4)



2

We call wr the generalised density profile generating function, since by expanding it in powers of λ it generates all
correlation functions between the displacement of the tracer and the density of bath particles at a distance r from
the tracer (represented by the occupation number ηXt+r):

wr(t) =
∑

n≥0

λn

n!
〈ηXt+rX

n
t 〉c , (S5)

with 〈· · ·〉c the joint cumulants. For instance, 〈ηXt+rXt〉c = 〈ηXt+rXt〉 − 〈ηXt+r〉 〈Xt〉.
Similarly, we can also write from the master equation the time evolution of wr. We will only need the time evolution

of the profiles just in front and behind the tracer [S3]:

∂tw±1 =
1

2
∇±w±1 +

∂tψ

e±λ − 1
w±1 +

1 ± s

2
e±λf±1,±2 − 1 ∓ s

2
f∓1,±1 , (S6)

where we have introduced the higher order correlation functions

fµ,r(λ, t) ≡
〈

(1 − ηXt+µ)ηXt+re
λXt

〉

〈eλXt〉 −
{

(1 − wµ)wr−µ if µr > 0 ,

(1 − wµ)wr if µr < 0 .
(S7)

In the hydrodynamic limit of large time and large distances, the different observables have the scaling [S1, S2],

ψ(λ, t) ≃
t→∞

ψ̂(λ)
√
2t , wr(t) ≃

t→∞
Φ

(

v =
r√
2t

)

, fµ,r ≃
t→∞

1√
2t
Fµ

(

v =
r√
2t

)

, (S8)

where we have omitted the dependency on λ of Φ and Fµ for simplicity. Plugging these scaling forms into the evolution
equations (S3,S6), we obtain

(1 + s)(eλ − 1)(1 − Φ(0+)) + (1 − s)(eλ − 1)(1 − Φ(0−)) = 0 , Φ′(0±) ± 2ψ̂

e±λ − 1
Φ(0±) = 0 . (S9)

Remarkably, in the evolution equation for w±1 (S6), the contributions of the functions Fµ, which involve higher order
correlations, vanish. This would not be the case for general wr with r 6= 1, as this would yield an equation which is
not closed. In the unbiased case, where the tracer has the same dynamics as the other particles, a closure relation was
found that allows the determination of Φ [S2]. Here, such closure is not available, therefore we will rely on another
approach.

II. MACROSCOPIC FLUCTUATION THEORY FOR THE PROFILES

At large scale and large distances, the SEP (with no biased tracer) can by described in the framework of fluctuating
hydrodynamics [S4]. The bath particles are described by a continuous density ρ(x, t), which satisfies a conservation
relation

∂tρ+ ∂xj = 0 , (S10)

with a stochastic current j, assumed to be Gaussian, with,

j(x, t) = −D(ρ(x, t))∂xρ(x, t) +
√

σ(ρ(x, t)) η(x, t) , (S11)

with η a Gaussian white noise, uncorrelated in space and time,

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′) . (S12)

In this formalism, all the microscopic details of the system are encoded in the two transport coefficients, which, for
the SEP, read [S5, S6]

D(ρ) =
1

2
, σ(ρ) = ρ(1 − ρ) . (S13)

This formalism is however difficult to manipulate in practice due to the Gaussian white noise η(x, t). A more
convenient formulation of fluctuating hydrodynamics, which is deterministic, is available: the Macroscopic Fluctuation
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Theory (MFT). For details on the construction of the MFT from the equations of fluctuating hydrodynamics (S10,S11),
see Ref. [S6] (it is also reproduced in the Appendix of Ref. [S7]). The MFT gives the probability to observe an evolution
ρ(x, t) of the density, between time t = 0 and t = T , as a functional integral,

P [{ρ(x, t)}] ∝
∫

DH e−S[ρ,H] , S[ρ,H] =

∫ T

0

dt

∫ ∞

−∞
dx

[

H∂tρ+D(ρ)∂xρ∂xH − σ(ρ)

2
(∂xH)2

]

. (S14)

The field H(x, t) is a conjugate field that has been introduced to handle the constraint (S10) on j and ρ. It is related
to the current j by

j = −D(ρ)∂xρ+ σ(ρ)∂xH . (S15)

At t = 0, the initial density profile ρ(x, 0) is picked from the equilibrium distribution of the SEP, which reads

P [{ρ(x, 0)}] ∝ e−F [ρ(x,0)] , F [ρ(x, 0)] =

∫

dx

∫ ρ(x,0)

ρ

dz
2D(z)

σ(z)
(ρ(x, 0) − z) , (S16)

where ρ is the probability that each site is initially occupied. In this formalism, the position of the tracer can be
obtained from the density ρ(x, t) by writing that the number of particles on the right of the tracer is conserved [S8]:

∫ Xt[ρ]

0

ρ(x, t)dx =

∫ ∞

0

(ρ(x, t) − ρ(x, 0))dx . (S17)

This allows to obtain the statistical properties of observables by computing their moment generating functions, for
instance,

〈

eλXT

〉

=

∫

Dρ(x, 0)
∫

Dρ(x, t)DH(x, t)e−S[ρ,H]−F [ρ(x,0)]+λXT . (S18)

One can rescale the time by T and the positions by
√
T to extract the T dependence of the fields. This yields that

the argument of the exponential is proportional to
√
T . Hence for large T , the integral in (S18) is dominated by a

single configuration (q, p) of (ρ,H), obtained by minimising the action. This yields the MFT equations [S6]

∂tq = ∂x(D(q)∂xq) − ∂x(σ(q)∂xp) , ∂tp = −D(q)∂2xp− σ′(q)

2
(∂xp)

2 , (S19)

with the terminal condition on p [S8],

p(x, T ) =
λ

q(Y, T )
Θ(x− Y ) , Y = XT [q] , (S20)

and initial condition on q,

p(x, 0) =
λ

q(Y, T )
Θ(x) +

∫ q(x,0)

ρ

dr
2D(r)

σ(r)
. (S21)

These equations have been solved perturbatively in [S8] for the lowest orders in λ. One difficulty is that the final profile
q(x, T ) is discontinuous at x = Y , and so one must find a way to make sense of q(Y, T ). Here, we will circumvent this
difficulty by using a mapping onto a different problem.

A. Computing the profiles from MFT

The formalism of MFT, which we will adapt to describe a biased tracer, can be used to compute the profile Φ(v)
which is one of our main observables. Indeed, we can write

wr(T ) =

〈

ηXT +re
λXT

〉

〈eλXT 〉 =

∫

Dρ(x, 0)
∫

Dρ(x, t)DH(x, t) ρ(XT [ρ] + r, T ) e−S[ρ,H]−F [ρ(x,0)]+λXT

∫

Dρ(x, 0)
∫

Dρ(x, t)DH(x, t)e−S[ρ,H]−F [ρ(x,0)]+λXT

≃
T →∞

q
(

XT + r
√
T , T

)

, (S22)
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by again evaluating the integrals with a saddle point method (the saddle point is identical for the numerator and the
denominator). Therefore, from the scaling (S8),

Φ(v) = q(XT + v
√
2, 1) , (S23)

where we have set T = 1 for simplicity. The MFT profile at final time q(x, 1) thus coincides with the large time
scaling function Φ of our generalised density profile.
We have here reproduced the argument presented in Refs. [S1, S2] to show that Φ can be computed from MFT. This

is still the case for a biased tracer, as we will see that the effect of a bias can be taken into account by implementing
specific boundary conditions at Xt for both ρ and H. This does not change the argument presented here.

B. Bias matching condition

Our goal is to find the matching condition that must be implemented on the density ρ(x, t) at x = Xt in order to
take into account the biased dynamics of the tracer. This can be done by inspecting the boundary condition that we
obtained microscopically (S9), which combined with (S23), yields the naive relation

1 + s

1 − s

1 − q(X+
t , t)

1 − q(X−
t , t)

= e−λ . (S24)

However, this relation cannot be correct since for an unbiased tracer (s = 0), this would imply that q(x, t) is discon-
tinuous at Xt for all times t. However, it is well-known that, for an unbiased tracer, q(x, t) is only discontinuous at
the final time t = 1 [S6, S8] (and at initial time t = 0). Therefore, we must remove this artificial discontinuity due to
λ, which only arises because Φ corresponds to the final profile due to (S23). By doing so, we obtain the bias condition

(1 + s)(1 − q(X+
t , t)) = (1 − s)(1 − q(X−

t , t)) . (S25)

We have written this relation for the optimal profile q only, which depends on the parameter λ. However, relation (S25)
does not involve explicitly λ. Furthermore, in the absence of bias (s = 0) all realisations of the fluctuating field ρ(x, t)
are continuous. The addition of the biased dynamics of the tracer is expected to create a discontinuity for all
realisations of the stochastic profile ρ(x, t) (due to the accumulation of particles in front of the tracer). Since the
external force applied on the tracer does not depend on the density of surrounding particles, we assume that the acts
in the same way for all the realisations, hence,

(1 + s)(1 − ρ(X+
t , t)) = (1 − s)(1 − ρ(X−

t , t)) . (S26)

This extends the relation written in [S9] for λ = 0 to arbitrary value of λ. A similar relation was written in [S10] for
a different model.

C. Mapping onto the dual flux problem

Implementing the bias boundary condition (S26) is difficult because the position Xt is not fixed. Additionally,
the MFT for a tracer is rather cumbersome due to the ill-defined factor q(Y, 1) that appears in the boundary condi-
tions (S20,S21). We can actually solve the two problems at once by using a well-known duality relation that maps the
SEP onto another model: the zero-range process [S11, S12]. This duality was recently discussed in details for general
systems (not only the SEP) in [S7]. The mapping is more easily written at the level of the stochastic fields ρ(x, t)
and j(x, t) of the fluctuating hydrodynamics. We define the dual fields ρ̃ and j̃ as

ρ(x, t) =
1

ρ̃(k(x, t), t)
, j(x, t) = − j̃(k(x, t), t)

ρ̃(k(x, t), t)
, k(x, t) =

∫ x

0

ρ(x′, t)dx′ −
∫ t

0

j(0, t′)dt′ (S27)

This mapping actually relies on the fact that one can equivalently describe the gaps between the particles in the SEP
(dual fields ρ̃ and j̃) or the positions of the particles (original fields ρ and j) [S7]. These new fields still obey the
equations of fluctuating hydrodynamics (S10,S11), but with D and σ replaced respectively by

D̃(ρ̃) =
1

ρ̃2
D

(

1

ρ̃

)

=
1

2ρ̃2
, σ̃(ρ̃) = ρ̃ σ

(

1

ρ̃

)

= 1 − 1

ρ̃
. (S28)
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The inverse transformation is identical, and given by

ρ̃(k, t) =
1

ρ(x(k, t), t)
, j̃(k, t) = − j(k(x, t), t)

ρ(k(x, t), t)
, x(k, t) =

∫ k

0

ρ̃(k′, t)dk′ −
∫ t

0

j̃(0, t′)dt′ . (S29)

Under this duality, the position Xt of the tracer, defined as (S17), becomes

Xt = −
∫ ∞

0

(ρ̃(k, t) − ρ̃(k, 0))dk ≡ −Q̃t , (S30)

where Q̃t is the integrated current through the origin in the dual system,

Q̃t =

∫ t

0

j̃(0+, t′)dt′ , (S31)

which is equivalent to (S30) due to the conservation relation (S10).
Note that we would have the same relation with j(0−, t) if we had used the equivalent definition

Q̃t = −
∫ 0

−∞
(ρ̃(k, t) − ρ̃(k, 0))dk =

∫ t

0

j̃(0−, t′)dt′ . (S32)

This implies that

dQ̃t

dt
= j̃(0−, t) = j̃(0+, t) , (S33)

hence the current j̃ must be continuous at the origin in order to have a coherent definition of Q̃t on both sides. With
these relations, the mapping of the positions (S29) can be written as

x(k, t) = Xt +

∫ k

0

ρ̃(k′, t)dk′ . (S34)

It is thus straightforward to see that (since the densities are positive):

{

x(0+, t) = X+
t

x(0−, t) = X−
t

⇔
{

k(X+
t , t) = 0+

k(X−
t , t) = 0− (S35)

Consequently, with this mapping, we replace the moving position Xt with the fixed origin. This gets rid of the
difficulty of tracking the tracer, and yields the new boundary condition for the dual system

(1 + s)

(

1 − 1

ρ̃(0+, t)

)

= (1 − s)

(

1 − 1

ρ̃(0−, t)

)

. (S36)

D. MFT equations for the dual flux problem

Having mapped the problem of a biased tracer onto a dual flux problem at the level of the fluctuating hydrodynamics,
we now switch to a MFT description of the field ρ̃ and a new conjugate field H̃ related to j̃ by

j̃ = −D̃(ρ̃)∂kρ̃+ σ̃(ρ̃)∂kH̃ . (S37)

These fields obey the MFT action (S14), but for the dual system,

S̃[ρ̃, H̃] =

∫ 1

0

dt

∫ ∞

−∞
dk

[

H̃∂tρ̃+ D̃(ρ̃)∂kρ̃∂kH̃ − σ̃(ρ̃)

2
(∂kH̃)2

]

, (S38)

and the initial condition given by a weight e−F̃ [ρ̃(x,0)] as in (S16), with

F̃ [ρ̃(x, 0)] =

∫

dk

∫ ρ̃(k,0)

ρ̃

dz
2D̃(z)

σ̃(z)
(ρ̃(k, 0) − z) , (S39)
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where ρ̃ = 1/ρ is the mean density of the dual system. Using that the position Xt of the tracer is directly related to
the current in the dual model (S30), we can write the moment generating function as

〈

eλXT

〉

=
〈

e−λQ̃T

〉

=

∫

Dρ̃(k, 0)
∫

Dρ̃(k, t)DH̃(k, t)e−S̃ [ρ̃,H̃] , S̃ [ρ̃, H̃] = S̃[ρ̃, H̃] + F̃ [ρ̃(k, 0)] + λQT [ρ̃] (S40)

with

QT [ρ̃] =

∫ ∞

0

(ρ̃(k, 1) − ρ̃(k, 0)) dk , (S41)

where we have again set T = 1 for convenience. This writing of the cumulant generating function of XT is similar
to the one presented in Section II above, but here it is written in terms of the fields ρ̃ and H̃ of the dual system,
instead of the original fields ρ and H. As argued in Section II, the integral over the fields is dominated by the optimal
configuration (q̃, p̃) which minimises the action S̃ [ρ̃, H̃]. The equations to determine this minimum can be obtained
by computing the variation of the action,

S̃ [q̃ + δρ̃, p̃+ δH̃] = S̃ [ρ̃, H̃] +

∫ 1

0

dt

∫ +∞

−∞
dk

{

δρ̃(k, t)

[

−∂tp̃− D̃(q̃)∂2k p̃− σ̃′(q̃)

2
(∂kp̃)

2

]

+ δH̃(k, t)
[

∂tq̃ − ∂k(D̃(q̃)∂k q̃) + ∂k(σ̃(q̃)∂kp̃)
]

}

+

∫ +∞

−∞
dk

{

δρ̃(k, 1) [p̃(k, 1) + λΘ(k)] + δρ̃(k, 0)

[

−p̃(k, 0) +
∫ ρ̃(k,0)

ρ̃

2D̃(z)

σ̃(z)
dz − λΘ(k)

]}

+

∫ 1

0

dt

{

[

−δρ̃D̃(q̃)∂kp̃
]0+

0−

+
[

δH̃(−D̃(q̃)∂k q̃ + σ̃(q̃)∂kp̃)
]0+

0−

}

, (S42)

where Θ is the Heaviside step function, [f ]0
+

0−
= f(x = 0+) − f(x = 0−), and we have used integration by parts while

taking into account the fact that the fields q̃, p̃ and their derivatives can be discontinuous at 0 due to the presence of
the bias. Imposing that the different terms vanish, we get from the first two lines the MFT equations, valid for k > 0
and k < 0,

∂tq̃ = ∂k(D̃(q̃)∂k q̃) − ∂k(σ̃(q̃)∂kp̃) , ∂tp̃ = −D̃(q̃)∂2k p̃− 1

2
σ̃′(q̃)(∂kp̃)

2 . (S43)

The second line of (S42) gives both the initial and final conditions

p̃(k, 0) =

∫ q̃(k,0)

ρ̃

2D̃(z)

σ̃(z)
dz − λΘ(k) , p̃(k, 1) = −λΘ(k) , (S44)

Up to now, these are the usual MFT equations for the problem of the flux through the origin [S6]. However, the last
line of (S42) gives two new equations, specific to the presence of a bias,

[

−δρ̃D̃(q̃)∂kp̃
]0+

0−

= 0 ,
[

δH̃(−D̃(q̃)∂k q̃ + σ̃(q̃)∂kp̃)
]0+

0−

=
[

δH̃j̃
]0+

0−

, (S45)

where we have used the relation with the current (S37). Since we have seen in Eq. (S33) that the current must be
continuous at the origin, this imposes

δH̃(0+, t) = δH̃(0−, t) . (S46)

We thus choose H̃(0+, t) = H̃(0−, t) to enforce this condition, which becomes for the typical realisation

p̃(0+, t) = p̃(0−, t) . (S47)

The variation of the bias condition (S36) imposes

(1 + s)
δρ̃(0+, t)

q̃(0+, t)2
= (1 − s)

δρ̃(0−, t)

q̃(0−, t)2
, (S48)
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which, combined with the first equation in (S45) yields a relation for the derivative of p̃,

(1 − s)∂kp̃(0
+, t) = (1 + s)∂kp̃(0

−, t) . (S49)

The MFT equations (S43), together with the initial and terminal boundary conditions (S44) and the relations at the
origin for q̃, p̃ and their derivatives (S33,S36,S47,S49) fully determine the solutions q̃(k, t) and p̃(k, t). These equations
thus allow to compute the profiles Φ from relation (S23), combined with the duality relation between the fields q and
q̃ (S29,S34). Explicitly, this gives a parametric representation, which only requires the dual profile at final time,

Φ

(

v =
y(k, 1)√

2

)

= q(XT + y(k, 1), 1) =
1

q̃(k, 1)
, y(k, t) =

∫ k

0

q̃(k′, t)dk′ . (S50)

III. NUMERICAL RESOLUTION OF THE MFT EQUATIONS

At order 0 in λ, the MFT equations (S43) simplify into a unique diffusion equation obeyed by the zeroth order q̃0
of q̃,

∂tq̃0 = ∂k(D̃(q̃0)∂k q̃0) . (S51)

We solve this equation by a finite difference method associated to an explicit Euler method in time. We compute
at each step the values at t + ∆t for all x 6= 0± using the discretized bulk diffusion equation. To ensure stability
we choose the time step ∆t and space step ∆x such that 2D∆t ≤ ∆x2 where D = maxx,t D(q̃0(x, t)) (evaluated
heuristically). Then we compute the values at 0± using the matching conditions (S33) and (S36). Once q̃0 is known,
we can compute the first order of p̃ by the same method, now with the conditions (S47) and (S49). Then, higher-order
terms follow similarly. The MFT equations are singular near t = 1 (see the behavior near 0 on Fig. 2 in the main
text), so numerically we have to restrict the resolution to one time step before t = 1.

IV. PERTURBATIVE RESOLUTION AT LOWEST ORDERS

Even in the absence of a bias, the MFT equations are difficult to solve, or even impossible in most cases. Here, the
main difficulty relies on the fact that the MFT equations (S43) involve a non-constant diffusion coefficient. We can
get rid of this difficulty by performing the transformation

q̂(x, t) =
1

q̃(k, t)
with x(k, t) =

∫ k

0

q̃(k′, t)dk′ , (S52)

which is the inverse transformation (S29,S34) but in the reference frame of the tracer. The main advantage of
proceeding this way instead of trying to apply directly the MFT for the tracer is that we avoid the difficulty coming
from the ill-defined value q(Xt, t) which arises in this case (see Eq. (S20)) for instance. We define a new conjugate
field

p̂(x, t) = p̃(k, t) . (S53)

With these definitions, the profile Φ can be straightforwardly deduced from (S50), which becomes

Φ(v) = q̂(x = v
√
2, 1) . (S54)

We map the MFT equations (S43,S44) and the boundary conditions (S33,S36,S47,S49) on these new fields by using

∂k =
∂x

∂k
∂x =

1

q̂
∂x , ∂t =

∂x

∂t
∂x + ∂t , (S55)

with

∂x

∂t
=

∫ k

0

∂tq̃(k
′, t)dk′ = −j̃(k, t) + j̃(0, t) =

[

1

q̂
D(q̂)∂xq̂ +

1

q̂2
σ(q̂)∂xp̂

]t

0

, (S56)
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with D and σ given by (S13). This gives for instance the equations

∂tq̂ − dXt

dt
∂xq̂ = ∂x(D(q̂)∂xq̂) − ∂x

(

σ(q̂)

q̂
∂xp̂

)

, (S57)

∂tp̂− dXt

dt
∂xp̂ = −D(q̂)∂2xp̂− σ(q̂) + q̂σ′(q̂)

2q̂2
(∂xp̂)

2 + 2
D(q̂)

q̂
(∂xp̂)(∂xq̂) , (S58)

with

dXt

dt
=

1

q̂
D(q̂)∂xq̂ +

1

q̂2
σ(q̂)∂xp̂

∣

∣

∣

∣

x=0

. (S59)

These equations now involve the constant diffusion coefficient (S13), but still cannot be solved explicitly. We thus
look for a perturbative solution in λ,

q̂ = q̂0 + λq̂1 + λ2q̂2 + · · · , p̂ = λp̂1 + λ2p̂2 + · · · . (S60)

A. Expressions at order 0 in λ

At order 0 in λ, our equations (S57), along with the boundary conditions deduced from (S33,S36) coincide with
those written and solved in [S9]. The solution assumes a scaling form,

q̂0(x, t) = q̂0

(

x√
t

)

. (S61)

Plugging this form into the equations allows for an explicit solution. Since, in the following, we will only need the
expansion of q̂0(x, t) for small s, we only give the first orders,

q̂0(x > 0, t) = ρ+ s(1 − ρ) erfc

(

x√
2t

)

+
(1 − ρ)2s2

ρ

(

erfc

(

x√
2t

)

− 2e− x
2

2t

π

)

+O
(

s3
)

. (S62)

The solution for x < 0 is deduced by the replacement s → −s and x → −x. This coincides with the small s expansion
of the result of [S9], as it should.

B. Expressions at order 1 in λ

We now proceed similarly at first order in λ. The equations (S57) cannot be solved analytically for any bias s. We
thus consider an expansion at small s,

q̂1 = q̂
(0)
1 + sq̂

(1)
1 + s2q̂

(2)
1 + · · · , p̂1 = p̂

(0)
1 + sp̂

(1)
1 + s2p̂

(2)
1 + · · · (S63)

Solving (S57) with the boundary conditions (S33,S36,S47,S49) yields, at order 0,

p̂
(0)
1 (x, t) = −1

2
erfc

(

− x
√

2(1 − t)

)

, q̂
(0)
1 (x, t) =

1 − ρ

2

(

erfc

(

− x
√

2(1 − t)

)

− erfc

(

− x√
2t

)

)

. (S64)

1. Expressions at order 1 in s

The MFT equations (S57) with the boundary conditions deduced from (S33,S36,S47,S49) can be solved at order 1
in s, and the solution reads,

p̂
(1)
1 (x, t) =

(1 − ρ)

2ρ



4T

(

x√
t
,

√

t

1 − t

)

+ erf

(

x√
2 − 2t

)

erf

(

x√
2
√
t

)

− 2
(√
t− 1

)

e− x
2

2(1−t)

π
√
1 − t

+ 1





+
1

2ρ
erfc

(

x√
2
√
1 − t

)

, (S65)
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q̂
(1)
1 (x, t) =

(1 − ρ)

2ρ

(

−4(1 − ρ)T

(

x√
1 − t

,

√

1

t
− 1

)

− 4(1 − ρ)T

(

x√
t
,

√

t

1 − t

)

+ (1 − ρ)erf

(

x√
2 − 2t

)

−erf

(

x√
2
√
t

)(

(3ρ− 2)erf

(

x√
2 − 2t

)

+ ρ− 1

)

+ 3ρ− 2 −
2(ρ− 1)

(

t+
√
1 − t+ 2

√

t(1 − t) − 1
)

e− x
2

2t

π
√

t(1 − t)

−2(1 − ρ)
(√
t− 1

)

e− x
2

2(1−t)

π
√
1 − t



 , (S66)

where T is Owen’s T function, defined by [S13]

T (h, a) =
1

2π

∫ a

0

e− h
2

2 (1+x2)

1 + x2
dx . (S67)

2. Expressions at order 2 in s

At second order in s, we do not have an explicit solution of the MFT equations (S57) at all times t. We will focus

on the final profile q̂
(2)
1 (x, t = 1). To determine this final profile, we actually do not need to compute p̂

(2)
1 . Indeed, by

defining

q̂
(2)
1 (x, t) = −(1 − ρ)p̂

(2)
1 (x, t) +Q(x, t) , (S68)

the contributions of p̂
(2)
1 , both from the initial condition (S44), and the source terms in the bulk equation (S57) cancel.

And since at final time, p̂
(2)
1 (x, t = 1) = 0 from the final condition (S44), we do not need to determine p̂

(2)
1 to compute

q̂
(2)
1 (x, t = 1). We obtain the conditions at the origin for Q,

∂xQ(0+, t) − ∂xQ(0−, t) =
4(1 − ρ)3

ρ2

√

2

πt
, (S69)

Q(0+, t) −Q(0−, t) =
1

ρ
− 1 +

4(ρ− 1)3t

πρ2
√

(1 − t)t
− 2(2 − ρ)(1 − ρ)2

πρ2
√
1 − t

+
4(1 − ρ)3 arctan

(√

t
1−t

)

πρ2

+
2(1 − ρ)2

(√
1 − t+ 2

√

(1 − t)t− 1
)

πρ
√

(1 − t)t
. (S70)

We also get a bulk equation of the form

∂tQ− 1

2
∂x,xQ = explicit source terms, (S71)

where the source terms involve the known functions q̂
(n)
0 , p̂

(0)
1 , p̂

(1)
1 , q̂

(0)
1 and q̂

(1)
1 . Since the equations are linear in

Q, we can add the contributions of the three different equations. We first look for a solution Qd of the homogeneous
equation

∂tQd − 1

2
∂x,xQd = 0 , (S72)

with the conditions (S69,S70). The solution can be written as an integral involving the heat kernel. After several
manipulations, the solution at final time can be simplified into

Qd(x, 1) =

(

π
(

4ρ2 − 9ρ+ 4
)

+ 4(ρ− 1)ρ
)

(ρ− 1)erfc
(

x√
2

)

2πρ2
+

(1 − ρ)3

ρ2
G(x) +

(ρ− 2)(ρ− 1)2√
2π3/2ρ2

H(x)

+
(ρ− 1)2e− x

2

2

πρ
− (ρ− 1)2

2
√
2π3/2ρ

e− x
2

4 xK0

(

x2

4

)

, (S73)
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where we have defined

G(x) =
1

π

√

2

π

∫ ∞

x

e−z2/4K0

(

z2

4

)

dz , H(x) = x

∫ ∞

x

e−y2/4

y
K1

(

y2

4

)

dy − 2
e−x2/2

x
, (S74)

with K0 and K1 modified Bessel functions. There remains now to find the solution of the bulk equation for Q. We
can write explicitly the solution as a space-time convolution of the source terms with the heat kernel. This allows to
get a very precise numerical computation of Q(x, t = 1). We expect this function to be a linear combination of the
functions

erfc

(

x√
2

)

, erfc
(x

2

)2

, e−x2/2 , x e−x2/2 , x e− x
2

4 K0

(

x2

4

)

, G(x) , H(x) , (S75)

which all appear either in the problem without bias [S2] or in the discontinuity computed above. We isolate the
dependence of the different source terms in ρ by collecting them depending on their powers of ρ, compute them
numerically with high precision (∼ 10−12) and fit the list of points with the functions given above. We obtain in this
procedure coefficients which are either very close to integers, such as 1.0000000000000002, or close to ”reasonable”

values. For instance, a prefactor of xe− x
2

4 K0

(

x2

4

)

we obtain by this procedure is −0.507949087468014. Since in (S73)

this function appears with a prefactor which involves (π
√
2π)−1, we compute

− 0.507949087468014 × (π
√
2π) = −3.99999999995343 , (S76)

which we consider is −4 up to numerical error. By doing so with all the terms that appear, and adding the contribution
of the discontinuity (S73), we get

q̂
(2)
1 (x > 0, 1) =

(1 − 2ρ)(1 − ρ)2

4ρ2
erfc

(

x√
2

)

+
(3 − ρ)(1 − ρ)2

πρ2
erfc

(

x√
2

)

− (1 − ρ)2

2ρ
erfc

(x

2

)2

− (1 − ρ)2

2ρ2
G(x) +

5
√
2(1 − ρ)3

2π3/2ρ2
x e− x

2

2 − (3 − 5ρ)(1 − ρ)2

πρ2
e− x

2

2 −
√
2(1 − ρ)2

2π3/2ρ2
x e− x

2

4 K0

(

x2

4

)

, (S77)

and we deduce the values for x < 0 by the replacement x → −x, s → −s and λ → −λ, which gives q̂
(2)
1 (−x, 1) =

−q̂(2)1 (x, 1).
From these results, the expression of Φ1 is deduced via relation (S54).

C. Expressions at order 2 in λ

We again look for a perturbative solution in s,

q̂2 = q̂
(0)
2 + sq̂

(1)
2 + · · · , p̂2 = p̂

(0)
2 + sp̂

(1)
2 + · · · . (S78)

Proceeding as for the order 1, we find the solution

p̂
(0)
2 (x, t) =

(1 − ρ)

ρ





(√
1 − t+

√
t+ 1

)

e
−x

2

2(1−t)

2π
(√
t+ 1

) − T

(

x√
1 − t

,

√

1

t
− 1

)



+
1

8

(

1 − erf

(

x√
2 − 2t

)2
)

, (S79)

q̂
(0)
2 (x, t) =

(1 − 2ρ)(1 − ρ)

4ρ

(

1 − erf

(

x√
2 − 2t

)

erf

(

x√
2
√
t

))

− (1 − ρ)2e− x
2

2t

2πρ
(

t+
√
t
)

(√
t

(

(√
1 − t+

√
t+ 1

)

e− (2t−1)x
2

2(1−t)t +
√
t+ 2

)

−
√
1 − t−

√

t(1 − t) + 1

)

. (S80)

At order 1 in λ, we encounter the same problem as for q̂
(2)
1 : we cannot get explicit solutions of the MFT equations.

Applying the same fitting technique, with the same functions, we finally obtain

q̂
(1)
2 (x, 1) =

(1 − ρ)(1 − 2ρ(1 − ρ))

4ρ2
erfc

(

x√
2

)

+
(1 − ρ)2(4 − 3ρ)

2πρ2
erfc

(

x√
2

)

− (1 − ρ)2

2ρ
erfc

(x

2

)2

− (1 − ρ)2

4ρ2
G(x) +

2
√
2(1 − ρ)3

π3/2ρ2
x e− x

2

2 − 2(1 − ρ)2(1 − 2ρ)

πρ2
e− x

2

2 − (1 − ρ)2

2
√
2π3/2ρ2

x e− x
2

4 K0

(

x2

4

)

. (S81)

From these results, the expression of Φ2 is deduced via relation (S54).
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D. Obtaining the cumulants

Using the boundary relation (S9), we can write the cumulant generating function as

ψ̂ = ∓(e±λ − 1)
Φ′(0±)

2Φ(0±)
=
∑

n≥1

κ̂n
λn

n!
. (S82)

By doing so, we first check that, using the expressions of Φ obtained above, these two equations (either with Φ′(0+)

or with Φ′(0−)) give the same expression for ψ̂. Consequently, this gives the cumulants

κ̂2 =
1 − ρ

ρ
√
π

+
(1 − ρ)2

(

7 − 5ρ− π
((√

2 − 3
)

ρ+ 2
))

π3/2ρ3
s2 +O(s3) , (S83)

κ̂3 = s
(1 − ρ)

(

12(1 − ρ)2 − π
((

8 − 3
√
2
)

ρ2 − 3
(

4 −
√
2
)

ρ+ 3
))

π3/2ρ3
+O(s2) (S84)

V. NUMERICAL SIMULATIONS

The simulations of the SEP are performed using the Kinetic Monte Carlo method [S14]. We consider a periodic
ring of size N , where initially on each site (except site 0) we place a particle with probability ρ ∈ [0, 1], the average
density. At site 0, we systematically place a particle, which will be the tracer particle. Then, we draw an integer E
from a Poisson distribution of parameter N × t where t is the time at which we want to sample our system. The
integer E is the number of jumps that will be attempted between initial time and t. Therefore we perform E times
the following procedure : we pick a particle at random ; if it is not the tracer, we pick a direction (left or right)
with probability 0.5, if the corresponding site is empty, the jump is performed, otherwise, nothing happens ; if it is
the tracer, we pick the direction right with probability 1+s

2 and left with probability 1−s
2 , if the corresponding site is

empty, the jump is performed, otherwise, nothing happens.
During the procedure, we keep track of the position of the tracer Xt, and we average Xk

t over about 107 simulations
in order to get an estimate of the k-th moment of the position of the tracer particle. To get the generalized density
profiles in the reference frame of the tracer, we average ηXt+rX

k
t . Typically we choose the number of sites N = 2000

or 3000 depending on the final time so that the values sampled does not depend on N anymore.
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