
HAL Id: hal-03958825
https://hal.sorbonne-universite.fr/hal-03958825v1

Submitted on 30 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Naive imputation implicitly regularizes high-dimensional
linear models

Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, Erwan Scornet

To cite this version:
Alexis Ayme, Claire Boyer, Aymeric Dieuleveut, Erwan Scornet. Naive imputation implicitly regular-
izes high-dimensional linear models. International Conference on Machine Learning, Jul 2023, Hawai,
USA, United States. �hal-03958825�

https://hal.sorbonne-universite.fr/hal-03958825v1
https://hal.archives-ouvertes.fr


Naive imputation implicitly regularizes high-dimensional linear

models.

Alexis Ayme, Claire Boyer, Aymeric Dieuleveut
& Erwan Scornet

Abstract

Two different approaches exist to handle missing values for prediction: either impu-
tation, prior to fitting any predictive algorithms, or dedicated methods able to natively
incorporate missing values. While imputation is widely (and easily) use, it is unfortu-
nately biased when low-capacity predictors (such as linear models) are applied afterward.
However, in practice, naive imputation exhibits good predictive performance. In this
paper, we study the impact of imputation in a high-dimensional linear model with
MCAR missing data. We prove that zero imputation performs an implicit regularization
closely related to the ridge method, often used in high-dimensional problems. Leveraging
on this connection, we establish that the imputation bias is controlled by a ridge bias,
which vanishes in high dimension. As a predictor, we argue in favor of the averaged SGD
strategy, applied to zero-imputed data. We establish an upper bound on its generaliza-
tion error, highlighting that imputation is benign in the d�

√
n regime. Experiments

illustrate our findings.

1 Introduction

Missing data has become an inherent problem in modern data science. Indeed, most real-
world data sets contain missing entries due to a variety of reasons: merging different data
sources, sensor failures, difficulty to collect/access data in sensitive fields (e.g., health), just
to name a few. The simple, yet quite extreme, solution of throwing partial observations
away can drastically reduce the data set size and thereby hinder further statistical analysis.
Specific methods should be therefore developed to handle missing values. Most of them are
dedicated to model estimation, aiming at inferring the underlying model parameters despite
missing values (see, e.g., Rubin, 1976). In this paper, we take a different route and consider
a supervised machine learning (ML) problem with missing values in the training and test
inputs, for which our aim is to build a prediction function (and not to estimate accurately
the true model parameters).

Prediction with NA A common practice to perform supervised learning with missing data
is to simply impute the data set first, and then train any predictor on the completed/imputed
data set. The imputation technique can be simple (e.g., using mean imputation) or more
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elaborate (Van Buuren and Groothuis-Oudshoorn, 2011; Yoon et al., 2018; Muzellec et al.,
2020; Ipsen et al., 2022). While such widely-used two-step strategies lack deep theoretical
foundations, they have been shown to be consistent, provided that the approximation capacity
of the chosen predictor is large enough (see Josse et al., 2019; Le Morvan et al., 2021).
When considering low-capacity predictors, such as linear models, other theoretically sound
strategies consist of decomposing the prediction task with respect to all possible missing
patterns (see Le Morvan et al., 2020b; Ayme et al., 2022) or by automatically detecting
relevant patterns to predict, thus breaking the combinatorics of such pattern-by-pattern
predictors (see the specific NeuMiss architecture in Le Morvan et al., 2020a). Proved to
be nearly optimal (Ayme et al., 2022), such approaches are likely to be robust to very
pessimistic missing data scenarios. Inherently, they do not scale with high-dimensional data
sets, as the variety of missing patterns explodes. Another direction is advocated in (Agarwal
et al., 2019) relying on principal component regression (PCR) in order to train linear models
with missing inputs. However, out-of-sample prediction in such a case requires to retrain
the predictor on the training and test sets (to perform a global PC analysis), which strongly
departs from classical ML algorithms massively used in practice.

In this paper, we focus on the high-dimensional regime of linear predictors, which will
appear to be more favorable to handling missing values via simple and cheap imputation
methods, in particular in the missing completely at random (MCAR) case.

High-dimensional linear models In supervised learning with complete inputs, when
training a parametric method (such as a linear model) in a high-dimensional framework, one
often resorts to an `2 or ridge regularization technique. On the one hand, such regularization
fastens the optimization procedure (via its convergence rate) (Dieuleveut et al., 2017); on
the other hand, it also improves the generalization capabilities of the trained predictor
(Caponnetto and De Vito, 2007; Hsu et al., 2012). In general, this second point holds
for explicit `2-regularization, but some works also emphasize the ability of optimization
algorithms to induce an implicit regularization, e.g., via early stopping (Yao et al., 2007) and
more recently via gradient strategies in interpolation regimes (Bartlett et al., 2020; Chizat
and Bach, 2020; Pesme et al., 2021).

Contributions For supervised learning purposes, we consider a zero-imputation strategy
consisting in replacing input missing entries by zero, and we formalize the induced bias on a
regression task (Section 2). When the missing values are said Missing Completely At Random
(MCAR), we prove that zero imputation, used prior to training a linear model, introduces
an implicit regularization closely related to that of ridge regression (Section 3). This bias is
exemplified to be negligible in settings commonly encountered in high-dimensional regimes,
e.g., when the inputs admit a low-rank covariance matrix. We then advocate for the choice of
an averaged stochastic gradient algorithm (SGD) applied on zero-imputed data (Section 4).
Indeed, such a predictor, being computationally efficient, remains particularly relevant for
high-dimensional learning. For such a strategy, we establish a generalization bound valid
for all d, n, in which the impact of imputation on MCAR data is soothed when d �

√
n.
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These theoretical results legitimate the widespread imputation approach, adopted by most
practitioners, and are corroborated by numerical experiments in Section 5. All proofs are to
be found in the Appendix.

2 Background and motivation

2.1 General setting and notations

In the context of supervised learning, consider n ∈ N input/output observations ((Xi, Yi))i∈[n],

i.i.d. copies of a generic pair (X,Y ) ∈ Rd × R. By some abuse of notation, we always use
Xi with i ∈ [n] to denote the i-th observation living in Rd, and Xj (or Xk) with j ∈ [d] (or
k ∈ [d]) to denote the j-th (or k-th) coordinate of the generic input X (see Section A for
notations).

Missing values In real data sets, the input covariates (Xi)i∈[n] are often only partially

observed. To code for this missing information, we introduce the random vector P ∈ {0, 1}d,
referred to as mask or missing pattern, and such that Pj = 0 if the j-th coordinate of X,
Xj , is missing and Pj = 1 otherwise. The random vectors P1, . . . , Pn are assumed to be
i.i.d. copies of a generic random variable P ∈ {0, 1}d and the missing patterns of X1, . . . , Xn.
Note that we assume that the output is always observed and only entries of the input vectors
can be missing. Missing data are usually classified into 3 types, initially introduced by
(Rubin, 1976). In this paper, we focus on the MCAR assumption where missing patterns
and (underlying) inputs are independent.

Assumption 1 (Missing Completely At Random - MCAR). The pair (X,Y ) and the
missing pattern P associated to X are independent.

For j ∈ [d], we define ρj := P(Pj = 1), i.e., 1 − ρj is the expected proportion of
missing values on the j-th feature. A particular case of MCAR data requires, not only
the independence of the mask and the data, but also the independence between all mask
components, as follows.

Assumption 1’ (Ho-MCAR: MCAR pattern with independent homogeneous components).
The pair (X,Y ) and the missing pattern P associated to X are independent, and the
distribution of P satisfies P ∼ B(ρ)⊗d for 0 < ρ ≤ 1, with 1− ρ the expected proportion of
missing values, and B the Bernoulli distribution.

Naive imputation of covariates A common way to handle missing values for any
learning task is to first impute missing data, to obtain a complete dataset, to which standard
ML algorithms can then be applied. In particular, constant imputation (using the empirical
mean or an oracle constant provided by experts) is very common among practitioners. In
this paper, we consider, even for noncentered distributions, the naive imputation by zero, so
that the imputed-by-0 observation (Ximp)i, for i ∈ [n], is given by

(Ximp)i = Pi �Xi. (1)
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Risk Let f : Rd → R be a measurable prediction function, based on a complete d-
dimensional input. Its predictive performance can be measured through its quadratic risk,

R(f) := E
[
(Y − f (X))2

]
. (2)

Accordingly, we let f?(X) = E[Y |X] be the Bayes predictor for the complete case and R?

the associated risk.
In the presence of missing data, one can still use the predictor function f , applied to the

imputed-by-0 input Ximp, resulting in the prediction f(Ximp). In such a setting, the risk of
f , acting on the imputed data, is defined by

Rimp(f) := E
[
(Y − f(Ximp))2

]
. (3)

For the class F of linear prediction functions from Rd to R, we respectively define

R?(F) = inf
f∈F

R(f), (4)

and
R?imp(F) = inf

f∈F
Rimp(f), (5)

as the infimum over the class F with respectively complete and imputed-by-0 input data.
For any linear prediction function defined by fθ(x) = θ>x for any x ∈ Rd and a fixed

θ ∈ Rd, as fθ is completely determined by the parameter θ, we make the abuse of notation
of R(θ) to designate R(fθ) (and Rimp(θ) for Rimp(fθ)). We also let θ? ∈ Rd (resp. θ?imp)
be a parameter achieving the best risk on the class of linear functions, i.e., such that
R?(F) = R(θ?) (resp. R?imp(F) = Rimp(θ?imp)).

Imputation bias Even if the prepocessing step consisting of imputing the missing data by
0 is often used in practice, this imputation technique can introduce a bias in the prediction.
We formalize this imputation bias as

Bimp(F) := R?imp(F)−R?(F). (6)

This quantity represents the difference in predictive performance between the best predictor
on complete data and that on imputed-by-0 inputs. In particular, if this quantity is small,
the risk of the best predictor on imputed data is close to that of the best predictor when all
data are available. Note that, in presence of missing values, one might be interested in the
Bayes predictor

f?mis(Ximp, P ) = E[Y |Ximp, P ]. (7)

and its associated risk R?mis.

Lemma 2.1. Assume that regression model Y = f?(X) + ε is such that ε and P are
independent, then R? ≤ R?mis.
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Intuitively, under the classical assumption ε ⊥⊥ P (see Josse et al., 2019), which is a
verified under Assumption 1, missing data ineluctably deteriorates the original prediction
problem. As a direct consequence, for a well-specified linear model on the complete case
f? ∈ F ,

Rimp(F)−R?mis ≤ Bimp(F). (8)

Consequently, in this paper, we focus our analysis on the bias (and excess risk) associated
to impute-then-regress strategies with respect to the complete-case problem (right-hand side
term of (8)) thus controlling the excess risk of imputation with respect to the missing data
scenario (left-hand side term of (8)).

In a nutshell, the quantity Bimp(F) thus represents how missing values, handled with
zero imputation, increase the difficulty of the learning problem. This effect can be tempered
in a high-dimensional regime, as rigorously studied in Section 3. To give some intuition, let
us now study the following toy example.

Example 2.2. Assume an extremely redundant setting in which all covariates are equal,
that is, for all j ∈ [d], Xj = X1 with E

[
X2

1

]
= 1. Also assume that the output is such

that Y = X1 and that Assumption 1’ holds with ρ = 1/2. In this scenario, due to the
input redundancy, all θ satisfying

∑d
j=1 θj = 1 minimize θ 7→ R(θ). Letting, for example,

θ1 = (1, 0, ..., 0)>, we have R? = R(θ1) = 0 but

Rimp(θ1) = E
[
(X1 − P1X1)2

]
=

1

2
.

This choice of θ1 introduces an irreducible discrepancy between the risk computed on the
imputed data and the Bayes risk R? = 0. Another choice of parameter could actually
help to close this gap. Indeed, by exploiting the redundancy in covariates, the parameter
θ2 = (2/d, 2/d, ..., 2/d)> (which is not a minimizer of the initial risk anymore) gives

Rimp(θ2) = E
[(
X1 −

2

d

d∑
j=1

PjXj

)2
]

=
1

d
,

so that the imputation bias Bimp(F) is bounded by 1/d, tending to zero as the dimension
increases. Two other important observations on this example follow. First, this bound is
still valid if EX1 6= 0, thus the imputation by 0 is still relevant even for non-centered data.
Second, we remark that ‖θ2‖22 = 4/d, thus good candidates to predict with imputation seem
to be of small norm in high dimension. This will be proved for more general settings, in
Section 4.

The purpose of this paper is to generalize the phenomenon described in Example 2.2 to
less stringent settings. In light of this example, we focus our analysis on scenarios for which
some information is shared across input variables: for linear models, correlation plays such a
role.
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Covariance matrix For a generic complete input X ∈ Rd, call Σ := E
[
XX>

]
the

associated covariance matrix, admitting the following singular value decomposition

Σ =

d∑
j=1

λjvjv
>
j , (9)

where λj (resp. vj) are singular values (resp. singular vectors) of Σ and such that λ1 ≥ ... ≥ λd.
The associated pseudo-norm is given by, for all θ ∈ Rd,

‖θ‖2Σ := θ>Σθ =
d∑
j=1

λj(v
>
j θ)

2.

For the best linear prediction, Y = X>θ? + ε, and the noise satisfies E[εX] = 0 (first order
condition). Denoting E[ε2] = σ2, we have

EY 2 = ‖θ?‖2Σ + σ2 =

d∑
j=1

λj(v
>
j θ

?)2 + σ2. (10)

The quantity λj(v
>
j θ

?)2 can be therefore interpreted as the part of the variance explained
by the singular direction vj .

Remark 2.3. Note that, in the setting of Example 2.2, Σ has a unique positive singular
values λ1 = d, that is to say, all of the variance is concentrated on the first singular direction.
Actually, our analysis will stress out that a proper decay of singular values leads to low
imputation biases.

Furthermore, for the rest of our analysis, we need the following assumptions on the
second-order moments of X.

Assumption 2. ∃L <∞ such that, ∀j ∈ [d], E[X2
j ] ≤ L2.

Assumption 3. ∃` > 0 such that, ∀j ∈ [d], E[X2
j ] ≥ `2.

For example, Assumption 2 and 3 hold with L2 = `2 = 1 with normalized data.

3 Imputation bias for linear models

3.1 Implicit regularization of imputation

Ridge regression, widely used in high-dimensional settings, and notably for its computational
purposes, amounts to form an `2-penalized version of the least square estimator:

θ̂λ ∈ arg min
θ∈Rd

{
1

n

n∑
i=1

(Yi − fθ(Xi))
2 + λ ‖θ‖22

}
,
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where λ > 0 is the penalization parameter. The associated generalization risk can be written
as

Rλ(θ) := R(θ) + λ ‖θ‖22 .

Proposition 3.1 establishes a link between imputation and ridge penalization.

Proposition 3.1. Under Assumption 1, let V be the covariance matrix of P (Vij =
Cov(Pi, Pj)) and H = diag(ρ1, . . . , ρd), with ρj = P(Pj = 1). Then, for all θ,

Rimp(θ) = R (Hθ) + ‖θ‖2V�Σ .

In particular, under Assumptions 1’, 2 and 3 when L2 = `2,

Rimp(θ) = R (ρθ) + L2ρ(1− ρ) ‖θ‖22 . (11)

This result highlights the implicit `2-regularization at work: performing standard re-
gression on zero-imputed ho-MCAR data can be seen as performing a ridge regression on
complete data, whose strength λ depends on the missing values proportion. More precisely,
using Equation (11), the optimal predictor θ?imp working with imputed samples verifies

θ?imp =
1

L2ρ
arg min
θ∈Rd

{
R (θ) + λimp ‖θ‖22

}
,

with λimp := L2
(

1−ρ
ρ

)
. We exploit this correspondence in Section 3.2 and 3.3 to control the

imputation bias.

3.2 Imputation bias for linear models with ho-MCAR missing inputs

When the inputs admit ho-MCAR missing patterns (Assumption 1’), the zero-imputation
bias Bimp(F) induced in the linear model is controlled by a particular instance of the ridge
regression bias (see, e.g., Hsu et al., 2012; Dieuleveut et al., 2017; Mourtada, 2019), defined
in general by

Bridge,λ(F) := inf
θ∈Rd
{Rλ(θ)−R?(F)} (12)

= λ ‖θ?‖2Σ(Σ+λI)−1 . (13)

Theorem 3.2. Under Assumption 1’, 2, and 3, one has

Bridge,λ′imp
(F) ≤ Bimp(F) ≤ Bridge,λimp

(F),

with λ′imp := `2
(

1−ρ
ρ

)
and λimp = L2

(
1−ρ
ρ

)
.
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As could be expected from Proposition 3.1, the zero-imputation bias is lower and upper-
bounded by the ridge bias, with a penalization constant depending on the fraction of missing
values. In the specific case where `2 = L2 (same second-order moment), the imputation bias
exactly equals a ridge bias with a constant L2(1− ρ)/ρ. Besides, in the extreme case where
there is no missing data (ρ = 1) then λimp = 0, and the bias vanishes. On the contrary, if
there is a large percentage of missing values (ρ→ 0) then λ′imp → +∞ and the imputation
bias amounts to the excess risk of the naive predictor, i.e., Bimp(F) = R(0Rd)−R?(F). For
the intermediate case where half of the data is likely to be missing (ρ = 1/2), we obtain
λimp = L2.

Thus, in terms of statistical guarantees, performing linear regression on imputed inputs
suffers from a bias comparable to that of a ridge penalization, but with a fixed hyperparameter
λimp. Note that, when performing standard ridge regression in a high-dimensional setting,
the best theoretical choice of the penalization parameter usually scales as d/n (see Sridharan
et al., 2008; Hsu et al., 2012; Mourtada and Rosasco, 2022, for details). If ρ & L2 n

d+n

(which is equivalent to λimp . d
n), the imputation bias remains smaller than that of the

ridge regression with the optimal hyperparameter λ = d/n (which is commonly accepted
in applications). In this context, performing zero-imputation prior to applying a ridge
regression allows handling easily missing data without drastically increasing the overall bias.

In turns out that the bias of the ridge regression in random designs, and thus the
imputation bias, can be controlled, under classical assumptions about low-rank covariance
structures (Caponnetto and De Vito, 2007; Hsu et al., 2012; Dieuleveut et al., 2017). In all
following examples, we consider that Tr(Σ) = d, which holds in particular for normalized
data.

Example 3.3 (Low-rank covariance matrix with equal singular values). Consider a covariance
matrix with a low rank r � d and constant eigenvalues (λ1 = · · · = λr = d

r ). Then
Σ(Σ + λimpI)−1 � λ−1

r Σ = r
dΣ and Theorem 3.2 leads to

Bimp(F) ≤ λimp
r

d
‖θ?‖2Σ .

Hence, the imputation bias is small when r � d (low-rank setting). Indeed, for a fixed
dimension, when the covariance is low-rank, there is a lot of redundancy across variables,
which helps counterbalancing missing information in the input variables, thereby reducing
the prediction bias.

Note that Example 3.3 (r � d) is a generalization of Example 2.2 (in which r = 1), and
is rotation-invariant contrary to the latter.

Remark 3.4. A first order condition (see equation (29)) implies that ‖θ?‖2Σ + σ2 = EY 2 =
R (0Rd), which is independent of the dimension d. Thus, in all our upper bounds, ‖θ?‖2Σ can
be replaced by EY 2, which is dimension-free. Consequently, we can interpret Example 3.3
(and the following examples) upper bound as follows: if r � d, then the risk of the naive
predictor is divided by d/r � 1. As a consequence, Bimp tends to zero when the dimension
increases and the rank is fixed.
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Example 3.5 (Low-rank covariance matrix compatible with θ? ). Consider a covariance
matrix with a low rank r � d and assume that 〈θ?, v1〉2 ≥ · · · ≥ 〈θ?, vd〉2 (meaning that θ?

is well represented with the first eigendirections of Σ), Theorem 3.2 leads to

Bimp(F) . λimp
r(log(r) + 1)

d
‖θ?‖2Σ .

This result is similar to Example 3.3 (up to a log factor), except that assumptions on
the eigenvalues of Σ have been replaced by a condition on the compatibility between the
covariance structure and θ?. If θ? is well explained by the largest eigenvalues then the
imputation bias remains low. This underlines that imputation bias does not only depend on
the spectral structure of Σ but also on θ?.

Example 3.6 (Spiked model, Johnstone (2001)). In this model, the covariance matrix can be
decomposed as Σ = Σ≤r + Σ>r where Σ≤r corresponds to the low-rank part of the data with
large eigenvalues and Σ>r to the residual high-dimensional data. Suppose that Σ>r � ηI
(small operator norm) and that all non-zero eigenvalues of Σ≤r are equal, then Theorem 3.2
gives

Bimp(F) ≤ λimp

1− η
r

d
‖θ?‖2Σ + η ‖θ?>r‖

2
2 ,

where θ?>r is the projection of θ? on the range of Σ>r. Contrary to Example 3.3, Σ is only
approximately low rank, and one can refer to r as the “effective rank” of Σ (see Bartlett
et al., 2020). The above upper bound admits a term in O(r/d) (as in Example 3.3), but also
suffers from a non-compressible part η ‖θ?>r‖

2
2, due to the presence of residual (potentially

noisy) high-dimensional data. Note that, if θ?>r = 0 (only the low-dimensional part of the
data is informative) then we retrieve the same rate as in Example 3.3.

3.3 Imputation bias for linear models and general MCAR settings

Theorem 3.2 holds only for Ho-MCAR settings, which excludes the case of dependence
between mask components. To cover the case of dependent variables P1, . . . , Pd under
Assumption 1, recall ρj := P(Pj = 1) the probability that the component j is not missing,
and define the matrix C ∈ Rd×d associated to P , given by:

Ckj :=
Vk,j
ρkρj

, (k, j) ∈ [d]× [d]. (14)

Furthermore, under Assumption 2, define

Λimp := L2λmax(C). (15)

The following result establishes an upper bound on the imputation bias for general MCAR
settings.

Proposition 3.7. Under Assumption 1 and 2, we have

Bimp(F) ≤ Bridge,Λimp
(F).
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The bound on the bias is similar to the one of Theorem 3.2 but appeals to λ = Λimp which
takes into account the correlations between the components of missing patterns. Remark
that, under Assumption 1’, there are no correlation and Λimp = L2 1−ρ

ρ , thus matching
the result in Theorem 3.2. The following examples highlight generic scenarios in which an
explicit control on Λimp is obtained.

Example 3.8 (Limited number of correlations). If each missing pattern component is corre-

lated with at most k − 1 other components then Λimp ≤ L2kmaxj∈[d]

{
1−ρj
ρj

}
.

Example 3.9 (Sampling without replacement). Missing pattern components are sampled as
k components without replacement in [d], then Λimp = L2 k+1

d−k . In particular, if one half of

data is missing (k = d
2) then Λimp ≤ 3L2.

In conclusion, we proved that the imputation bias is controlled by the ridge bias, with a
penalization constant Λimp, under any MCAR settings. More precisely, all examples of the
previous section (Examples 3.3, 3.5 and 3.6), relying on a specific structure of the covariance
matrix Σ and the best predictor θ?, are still valid, replacing λimp by Λimp. Additionally,
specifying the missing data generation (as in Examples 3.8 and 3.9) allows us to control
the imputation bias, which is then proved to be small in high dimension, for all the above
examples.

4 SGD on zero-imputed data

Since the imputation bias is only a part of the story, we need to propose a proper estimation
strategy for θ?imp. To this aim, we choose to train a linear predictor on imputed samples,
using an averaged stochastic gradient algorithm (Polyak and Juditsky, 1992), described
below. We then establish generalization bounds on the excess risk of this estimation strategy.

4.1 Algorithm

Given an initialization θ0 ∈ Rd and a constant learning rate γ > 0, the iterates of the
averaged SGD algorithm are given at iteration t by

θimp,t =
[
I − γXimp,tX

>
imp,t

]
θimp,t−1 + γYtXimp,t, (16)

so that after one pass over the data (early stopping), the final estimator θ̄imp,n is given by
the Polyak-Ruppert average θ̄imp,n = 1

n+1

∑n
t=1 θimp,t. Such recursive procedures are suitable

for high-dimensional settings, and indicated for model miss-specification (induced here by
missing entries), as studied in Bach and Moulines (2013). Besides, they are very competitive
for large-scale datasets, since one pass over the data requires O(dn) operations.

4.2 Generalization bound

Our aim is to derive a generalization bound on the predictive performance of the above algo-
rithm, trained on zero-imputed data. To do this, we require the following extra assumptions
on the complete data.
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Assumption 4. There exist σ > 0 and κ > 0 such that E[XX> ‖X‖22] � κTr(Σ)Σ and
E[ε2 ‖X‖22] ≤ σ2κTr(Σ), where ε = Y −X>θ?.

Assumption 4 is a classical fourth-moment assumption in stochastic optimization (see
Bach and Moulines, 2013; Dieuleveut et al., 2017, for details). Indeed, the first statement in
Assumption 4 holds, for example, if X is a Gaussian vector (with κ = 3) or when X satisfies
‖X‖2 ≤ κTr(Σ) almost surely. The second statement in Assumption 4 holds, for example, if
the model is well specified or when the noise ε is almost surely bounded. Note that if the
first part holds then the second part holds with σ2 ≤ 2E[Y 2] + 2E[Y 4]1/2.

Our main result, establishing an upper bound on the risk of SGD applied to zero-imputed
data, follows.

Theorem 4.1. Under Assumption 4, choosing a constant learning rate γ = 1
κTr(Σ)

√
n

leads
to

E
[
Rimp

(
θ̄imp,n

)]
−R?(F) .

κTr(Σ)√
n

∥∥θ?imp − θ0

∥∥2

2
+
σ2 + ‖θ?‖2Σ√

n
+Bimp(F),

where θ? (resp. θ?imp) is the best linear predictor for complete (resp. with imputed missing
values) case.

Theorem 4.1 gives an upper bound on the difference between the averaged risk E[Rimp

(
θ̄imp,n

)
]

of the estimated linear predictor with imputed missing values (in both train and test
samples) and R?(F), the risk of the best linear predictor on the complete case. Inter-
estingly, by Lemma 2.1 and under a well-specified linear model, the latter also holds for
E
[
Rimp

(
θ̄imp,n

)]
−R?mis. The generalization bound in Theorem 4.1 takes into account the

statistical error of the method as well as the optimization error. More precisely, the upper
bound can be decomposed into (i) a bias associated to the initial condition, (ii) a variance
term of the considered method, and (iii) the aforementioned imputation bias.

The variance term (ii) depends on the second moment of Y (as ‖θ?‖2Σ ≤ EY 2) and
decreases with a slow rate 1/

√
n. As seen in Section 3, the imputation bias is upper-bounded

by the ridge bias with penalization parameter λimp, which is controlled in high dimension
for low-rank data (see examples in Section 3.2).

The bias (i) due to the initial condition is the most critical. Indeed, Tr(Σ) = E[‖X‖22] is
likely to increase with d, e.g., under Assumption 2, Tr(Σ) ≤ dL2. Besides, the starting point
θ0 may be far from θ?imp. Fortunately, Lemma 4.2 establishes some properties of θ?imp.

Lemma 4.2. Under Assumptions 1 and 3, let V be the covariance matrix of P defined in
Proposition 3.1. If V is invertible, then∥∥θ?imp

∥∥2

2
≤ Bimp(F)

`2λmin(V )
. (17)

In particular, under Assumption 1’,∥∥θ?imp

∥∥2

2
≤ Bimp(F)

`2ρ(1− ρ)
. (18)
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Lemma 4.2 controls the norm of the optimal predictor θ?imp by the imputation bias: if
the imputation bias is small, then the optimal predictor on zero-imputed data is of low
norm. According to Section 3, this holds in particular for high-dimensional settings. Thus,
choosing θ0 = 0 permits us to exploit the upper bound provided by Lemma 4.2 in Theorem
4.1. With such an initialization, the bias due to this initial condition is upper bounded by
κTr(Σ)√

n
‖θ?imp‖22. Intuitively, as θ?imp is in an `2-ball of small radius, choosing θ0 within that

ball, e.g. θ0 = 0 is a good choice.
Taking into account Lemma 4.2, Proposition 4.3 establishes our final upper bound on

SGD on zero-imputed data.

Proposition 4.3. Under Assumptions 1’, 2, 3 and 4, the predictor θ̄imp,n resulting from the
SGD strategy, defined in Section 4.1, with starting point θ0 = 0 and learning rate γ = 1

dκL2
√
n

,

satisfies

E
[
Rimp

(
θ̄imp,n

)]
−R?(F) .

(
L2

`2
κd

ρ(1− ρ)
√
n

+ 1

)
Bimp(F) +

σ2 + ‖θ?‖2Σ√
n

.

In this upper bound, the first term encapsulates the imputation bias and the one due
to the initial condition, whilst the second one corresponds to the variance of the training

procedure. As soon as d� `2

L2
ρ(1−ρ)

√
n

κ then the imputation bias is negligible compared to
that of the initial condition.

4.3 Examples

According to Examples 3.3 and 3.6, Bimp(F) decreases with the dimension, provided that
Σ or β are structured. Strikingly, Corollary 4.4 highlights cases where the upper bound of
Proposition 4.3 is actually dimension-free.

Corollary 4.4. Suppose that assumptions of Proposition 4.3 hold. Recall that λ1 ≥ . . . ≥ λd
are the eigenvalues of Σ associated with the eigenvectors v1, . . . , vd.

(i) (Example 3.3 - Low-rank Σ). If Σ has a low rank r � d and equal non-zero singular
values, then

E
[
Rimp

(
θ̄imp,n

)]
−R?(F) .

L2

`2

(
L2

`2
κ

ρ
√
n

+
1− ρ
d

)
r ‖θ?‖2Σ

ρ
+

σ2

√
n
.

(ii) (Example 3.6 - Spiked model). If Σ = Σ≤r + Σ>r with Σ>r � `2ηI, Σ≤r has a low rank
r � d with equal non-zero singular values, and the projection of θ? on the range of Σ>r

satisfies θ?>r = 0, then

E
[
Rimp

(
θ̄imp,n

)]
−R?(F) .

L2

`2

(
L2

`2
κ

ρ
√
n

+
1− ρ
d

)
r ‖θ?‖2Σ
ρ(1− η)

+
σ2

√
n
.
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Corollary 4.4 establishes upper bounds on the risk of SGD applied on zero-imputed data,
for some particular structures on Σ and θ?. These bounds take into account the statistical
error as well as the optimization one, and are expressed as function of d and n. Since ‖θ?‖2Σ
is upper bounded by EY 2 (a dimension-free term), the risks in Corollary 4.4 can also be

upper bounded by dimension-free quantities, provided d > `2

L2
ρ(1−ρ)

√
n

κ .

Besides, Corollary 4.4 shows that, for d� `2

L2
ρ(1−ρ)

√
n

κ , the imputation bias is negligible
with respect to the stochastic error of SGD. Therefore, for structured problems in high-

dimensional settings for which d� `2

L2
ρ(1−ρ)

√
n

κ , the zero-imputation strategy is consistent,
with a slow rate of order 1/

√
n.

Remark 4.5 (Discussion about slow rates). An important limitation of coupling naive
imputation with SGD is that fast convergence rates cannot be reached. Indeed, in large
dimensions, the classical fast rate is given by Tr(Σ(Σ + λI)−1)/n with λ the penalization
hyper-parameter. The quantity Tr(Σ(Σ + λI)−1), often called degrees of freedom, can
be negligible w.r.t. d (for instance when Σ has a fast eigenvalue decay). However, when
working with an imputed dataset, the covariance matrix of the data is not Σ anymore, but
Σimp = EXimpX

>
imp. Therefore, in the case of Assumption 1’ (Ho-MCAR), all the eigenvalues

of Σimp are larger than ρ(1− ρ) (preventing the eigenvalues decay obtained when working
with complete inputs). By concavity of the degrees of freedom (on positive semi-definite

matrix), we can show that Tr(Σimp(Σimp + λI)−1) ≥ dρ(1−ρ)
1+λ , hindering traditional fast rates.

Link with dropout Dropout is a classical regularization technique used in deep learning,
consisting in randomly discarding some neurons at each SGD iteration (Srivastava et al.,
2014). Regularization properties of dropout have attracted a lot of attention (e.g., Gal and
Ghahramani, 2016). Interestingly, setting a neuron to 0 on the input layer is equivalent
to masking the corresponding feature. Running SGD (as in Section 4) on a stream of
zero-imputed data is thus equivalent to training a neural network with no hidden layer, a
single output neuron, and dropout on the input layer. Our theoretical analysis describes the
implicit regularization impact of dropout in that very particular case. Interestingly, this can
also be applied to the fine-tuning of the last layer of any regression network structure.

5 Numerical experiments

Data simulation We generate n = 500 complete input data according to a normal
distribution with two different covariance structures. First, in the low-rank setting (Ex. 3.3
and 3.5), the output is formed as Y = β>Z + ε, with β ∈ Rr, Z ∼ N (0, Ir) and ε ∼ N (0, 2),
and the inputs are given by X = AZ + µ, with a full rank matrix A ∈ Rd×r and a mean
vector µ ∈ Rd. Note that the dimension d varies in the experiments, while r = 5 is kept
fixed. Besides, the full model can be rewritten as Y = X>θ? + ε with θ? = (A†)>β where A†

is the Moore-Penrose inverse of A. Secondly, in the spiked model (Ex. 3.6), the input and
the output are decomposed as X = (X1, X2) ∈ Rd/2×Rd/2 and Y = Y1 + Y2, where (X1, Y1)
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is generated according to the low-rank model above and (X2, Y2) is given by a linear model
Y2 = θ>2 X2 and X2 ∼ N (0, Id/2), choosing ‖θ2‖ = 0.2.

Two missing data scenarios, with a proportion ρ of observed entries equal to 50%, are
simulated according to (i) the Ho-MCAR setting (Assumption 1’); and to (ii) the self-masking
MNAR setting, which departs significantly from the MCAR case as the presence of missing
data depends on the underlying value itself. More precisely, set α ∈ Rd such that, for all
j ∈ [d], P(Pj = 1|X) = (1 + e−αjXj )−1 and E[Pj ] = 0.5 (50% of missing data on average per
components).

Regressors For two-step strategies, different imputers are combined with different regres-
sors. The considered imputers are: the zero imputation method (0-imp) complying with
the theoretical analysis developed in this paper, the optimal imputation by a constant for
each input variable (Opti-imp), obtained by training a linear model on the augmented
data (P �X,P ) (see Le Morvan et al., 2020b, Proposition 3.1), and single imputation by
chained equations (ICE, (Van Buuren and Groothuis-Oudshoorn, 2011))1. The subsequent
regressors, implemented in scikit-learn (Pedregosa et al., 2011), are either the averaged
SGD (SGD, package SGDRegressor) with θ0 = 0 and γ = (d

√
n)−1 (see Proposition 4.3,

or the ridge regressor (with a leave-one-out cross-validation, package ridge). Two specific
methods that do not resort to prior imputation are also assessed: a pattern-by-pattern
regressor (Le Morvan et al., 2020b; Ayme et al., 2022) (Pat-by-Pat) and a neural network
architecture (NeuMiss) (Le Morvan et al., 2020a) specifically designed to handle missing
data in linear prediction.

Numerical results In Figure 1 (a) and (b), we consider Ho-MCAR patterns with Gaussian
inputs with resp. a low-rank and spiked covariance matrix. The 2-step strategies perform
remarkably well, with the ICE imputer on the top of the podium, highly appropriate to
the type of data (MCAR Gaussian) in play. Nonetheless, the naive imputation by zero
remains competitive in terms of predictive performance and is computationally efficient,
with a complexity of O(nd), especially compared to ICE, whose complexity is of order n2d3.
Regarding Figure 1 (b), we note that ridge regression outperforms SGD for large d. Note
that, in the regime where d ≥

√
n, the imputation bias is negligible w.r.t. to the method

bias, the latter being lower in the case of ridge regression. This highlights the benefit of
explicit ridge regularization (with a tuned hyperparameter) over the implicit regularization
induced by the imputation.

In practice, missing data are not always of the Ho-MCAR type, we compare therefore
the different algorithms on self-masked data. In Figure 1 (c), we note that specific methods
remain competitive for larger d compared to MCAR settings. This was to be expected
since those methods were designed to handle complex missing not at random (MNAR) data.
However, they still suffer from the curse of dimensionality and turns out to be inefficient in
large dimension, compared to all two-step strategies.

1IterativeImputer in scikit-learn (Pedregosa et al., 2011).
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(a) Ho-MCAR (b) Ho-MCAR (c) Self-Masked
+ Low-rank model + Spiked model + Low-rank model

Figure 1: Risk w.r.t. the input dimension (evaluated on 104 test samples) when 50% of the

input data is missing. The y-axis corresponds to Rmis(f)−R? = E
[
(Y − f(Ximp, P ))2

]
−σ2.

The averaged risk is depicted over 10 repetitions within a 95% confidence interval.

6 Discussion and conclusion

In this paper, we study the impact of zero imputation in high-dimensional linear models.
We demystify this widespread technique, by exposing its implicit regularization mechanism
when dealing with MCAR data. We prove that, in high-dimensional regimes, the induced
bias is similar to that of ridge regression, commonly accepted by practitioners. By providing
generalization bounds on SGD trained on zero-imputed data, we establish that such two-step
procedures are statistically sound, while being computationally appealing.

Theoretical results remain to be established beyond the MCAR case, to properly analyze
and compare the different strategies for dealing with missing data in MNAR settings (see
Figure 1 (c)). Extending our results to a broader class of functions (escaping linear functions)
or even in a classification framework, would be valuable to fully understand the properties
of imputation.
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A Notations

For two vectors (or matrices) a, b, we denote by a� b the Hadamard product (or component-
wise product). [n] = {1, 2, ..., n}. For two symmetric matrices A and B, A � B means that
B − A is positive semi-definite. The symbol . denotes the inequality up to a universal
constant. Table 1 summarizes the notations used throughout the paper.

Table 1: Notations

P Mask
F Set of linear functions
Bimp Imputation bias
Σ EXX>
λj eigenvalues of Σ
vj eigendirections of Σ
ΣP EPP>
L2 the largest second moments maxjEX2

j (Assumption 2)

`2 the smallest second moments minjEX2
j (Assumption 3)

θ? Best linear predictor on complete data
θ?imp Best linear predictor on imputed data

r Rank of Σ
ρj Theoretical proportion of observed entries

for the j-th variable in a MCAR setting
V Covariance matrix associated to the missing patterns
C Covariance matrix V renormalized by (ρj)j defined in (14)
κ Kurtosis of the input X

B Proof of the main results

B.1 Proof of Lemma 2.1

The proof is based on the definition of the conditional expectation, and given that

R? = E
[
(Y − E [Y |X])2

]
.
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Note that E [Y |X,P ] = E [f?(X) + ε|X,P ] = E [f?(X)|X,P ] = f?(X) (by independence of
ε and P ). Therefore,

R? = E
[
(Y − f?(X))2

]
≤ E

[
(Y − E [Y |X,P ])2

]
≤ E

[
(Y − E [Y |Ximp, P ])2

]
≤ R?mis,

using that E [Y |Ximp, P ] is a measurable function of (X,P ).

B.2 Preliminary lemmas

Notation Let Xa be a random variable of law La (a modified version of the law of the
underlying input X) on Rd, and for f ∈ F define

Ra(f) = E
[
(Y − f(Xa))

2
]
,

the associate risk. The Bayes risk is given by

R?a(F) = inf
f∈F

E
[
(Y − f(Xa))

2
]
,

if the infimum is reached, we denote by f?a ∈ arg minf∈F Ra(f). The discrepancy between
both risks, involving either the modified input Xa or the initial input X, can be measured
through the following bias:

Ba = R?a(F)−R?(F).

General decomposition The idea of the next lemma is to compare Ra(f) with the true
risk R(f).

Lemma B.1. If (Xa ⊥⊥ Y )|X, then, for all θ ∈ Rd,

Ra (fθ) = R (gθ) + ‖θ‖2Γ ,

where gθ(X) = θ>E [Xa|X] and Γ = E
[
(Xa − E [Xa|X])(Xa − E [Xa|X])>

]
the integrated

conditional covariance matrix. In consequence, if there exists an invertible linear application
H such that, E [Xa|X] = H−1X, then

• For all θ ∈ Rd, gθ is a linear function and

R?a(F) = inf
θ∈Rd

{
R (fθ) + ‖θ‖2H>ΓH

}
. (19)
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• If λmax(HΓH>) ≤ Λ, then

Ba(F) ≤ inf
θ∈Rd

{
R(fθ) + Λ ‖θ‖22

}
= Bridge,Λ. (20)

• If λmin(Γ) ≥ µ > 0, then

‖θ?a‖
2
2 ≤

Ba(F)

µ
. (21)

Remark B.2. Equation (21) is crucial because a bound on the bias Ba(F) actually gives a
bound for ‖θ?a‖

2
2 too. This will be of particular interest for Theorem 4.1.

Proof.

Ra (fθ) = E
[(
Y − θ>Xa

)2
]

= E
[
E
[(
Y − E

[
θ>Xa|X

]
+ E

[
θ>Xa|X

]
− θ>Xa

)2 ∣∣∣X]]
= E

[(
Y − E

[
θ>Xa|X

])2
]

+ E
[
E
[(

E
[
θ>Xa|X

]
− θ>Xa

)2 ∣∣∣X]]
= E

[
(Y − gθ(X))2

]
+ E

[
E
[(

E
[
θ>Xa|X

]
− θ>Xa

)2 ∣∣∣X]]
= R(gθ) + E

[
E
[(

E
[
θ>Xa|X

]
− θ>Xa

)2 ∣∣∣X]] .
since E

[
E
[
θ>Xa|X

]
− θ>Xa|X

]
= 0. Furthermore,

E
[
E
[(

E
[
θ>Xa|Z

]
− θ>Xa

)2
|X
]]

= θ>E
[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

>
]
θ

= E
[
θ>E

[
(E [Xa|X]−Xa) (E [Xa|X]−Xa)

> |X
]
θ
]

= E
[
‖θ‖2E[(E[Xa|X]−Xa)(E[Xa|X]−Xa)>|X]

]
= E

[
‖θ‖2Γ

]
.

Finally,

Ra (fθ) = R(gθ) + ‖θ‖2Γ.

Assume that an invertible matrix H exists such that gθ(X) = θ>H−1X, thus gθ is a linear
function. Equation (19) is then obtained by using a change of variable: θ′ = (H−1)>θ =
(H>)−1θ and θ = H>θ′. Thus, we have gθ′(X) = θ>X = fθ(X) and

Ra (fθ′) = R(fθ) + ‖H>θ′‖2Γ
= R(fθ) + ‖θ′‖2HΓH> .
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Then using HΓH> � ΛI proves (20). Note that, without resorting to the previous
change of variable, the bias can be written as

Ba(F) = R
(
gθ?a
)
−R (fθ?) + ‖θ?a‖

2
Γ . (22)

By linearity of gθ?a , R
(
gθ?a
)
≥ R (fθ?) = R?(F) (because gθ?a ∈ F).

Thus, ‖θ?a‖
2
Γ ≤ Ba(F). Assuming µI � Γ gives (21), as

µ ‖θ?a‖
2 ≤ ‖θ?a‖

2
Γ ≤ Ba(F).

B.3 Proof of Section 3

We consider the case of imputed-by-0 data, i.e.,

Ximp = P �X.

Under the MCAR setting (Assumption 1),

E [Ximp|X] = H−1X,

with H = diag(ρ−1
1 , ..., ρ−1

d ) (variables always missing are discarded) and (ρj)j∈[d] the
observation rates associated to each input variable.

Proof of Proposition 3.1. For i, j ∈ [d],

Γij = E
[(

(Ximp)i − E
[
(Ximp)i |X

]) (
(Ximp)j − E

[
(Ximp)j |X

])]
= E [XiXj(Pi − EPi)(Pj − EPj)]
= E [XiXj ] Cov(Pi, Pj),

= ΣijVij (23)

since P and X are independent and with V defined in Proposition 3.1. Therefore, applying
Lemma B.1 with Γ = Σ� V proves the first part of Proposition 3.1. Regarding the second
part, under the Ho-MCAR assumption, one has V = ρ(1− ρ)I, thus Γ = ρ(1− ρ)diag(Σ).
Furthermore, if L2 = `2, then diag(Σ) = L2I which gives Γ = L2ρ(1− ρ)I.

Proof of Theorem 3.2 and Proposition 3.7. Under Assumption 1, since H is a diagonal ma-
trix,

H>ΓH = Σ� C,

where C is defined in Equation (14).
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• Under Assumption 1’, the matrix C satisfies C = 1−ρ
ρ I. Moreover, under Assumption 2

(resp. Assumption 3), one has Σ�C � 1−ρ
ρ L2I = λimp (resp. Σ�C � 1−ρ

ρ `2I = λ′imp)
using (19), we obtain

inf
θ∈Rd

{
R (θ) + λ′imp ‖θ‖

2
2

}
≤ R?imp ≤ inf

θ∈Rd

{
R (θ) + λimp ‖θ‖22

}
.

Subtracting R?(F), one has

Bridge,λ′imp
≤ Bimp ≤ Bridge,λimp

,

which concludes the proof of Theorem 3.2.

• Under Assumption 1, we have HΓH> = Σ�C. Using Lemma E.2, we obtain for all θ,

‖θ‖2HΓH> = ‖θ‖2Σ�C ≤ λmax(C) ‖θ‖2diag(Σ) .

Under Assumption 2, we have diag(Σ) � L2I, thus

‖θ‖2HΓH> ≤ L
2λmax(C) ‖θ‖22 .

This shows that λmax(HΓH>) ≤ L2λmax(C) = Λimp We conclude on Proposition 3.7
using Equation (19).

B.4 Proof of Lemma 4.2

Proof. Using (23), we have Γ = V �Σ. Using that λmin(V )I � V , by Lemma E.1, we obtain

λmin(V )I � Σ � Γ,

and equivalently λmin(V )� diag(Σ) � Γ. Under Assumption 3, we have `2I � diag(Σ), thus

`2λmin(V )I � Γ.

Therefore, λmin(Γ) ≥ `2λmin(V ). Thus, using (21), we obtain the first part of Lemma 4.2:

`2λmin(V )
∥∥θ?imp

∥∥2

2
≤ Bimp(F). (24)

Under Assumption 1’, λmin(V ) = ρ(1− ρ), so that

`2ρ(1− ρ)
∥∥θ?imp

∥∥2

2
≤ Bimp(F), (25)

which proves the second part of Lemma 4.2.
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C Stochastic gradient descent

C.1 Proof of Theorem 4.1

Lemma C.1. Assume (xn, ξn) ∈ H × H are Fn-measurable for a sequence of increas-

ing σ-fields (Fn), n > 1. Assume that E [ξn | Fn−1] = 0,E
[
‖ξn‖2 | Fn−1

]
is finite and

E
[(
‖xn‖2 xn ⊗ xn

)
| Fn−1

]
4 R2H, with E [xn ⊗ xn | Fn−1] = H for all n > 1, for some

R > 0 and invertible operator H. Consider the recursion αn = (I − γxn ⊗ xn)αn−1 + γξn,
with γR2 6 1. Then:

(
1− γR2

)
E [〈ᾱn−1, Hᾱn−1〉] +

1

2nγ
E ‖αn‖2 6

1

2nγ
‖α0‖2 +

γ

n

n∑
k=1

E ‖ξk‖2 .

Proof. The idea is to use Lemma C.1 with

• xk = Ximp,k, yk = Yk

• H = Σimp = E
[
Ximp,kX

>
imp,k

]
= ΣP � Σ where ΣP = E

[
PP>

]
• αk = θimp,k − θ?imp

• ξk = Ximp,k(Yk −X>imp,kθ
?
imp)

• γ = 1
2R2
√
n

• R2 = κTr(Σ)

We can show, with these notations, that recursion (16) leads to recursion αn = (I − γxn ⊗ xn)αn−1+
γξn with α0 = θ0 − θ?imp. Now, let’s check the assumption of Lemma C.1.

• Let show that E
[
XimpX

>
imp ‖Ximp‖22

]
� R2Σimp. Indeed,

E
[
XimpX

>
imp ‖Ximp‖22

]
� E

[
XimpX

>
imp ‖X‖

2
2

]
,

using that ‖Ximp‖22 ≤ ‖X‖
2
2, and 0 4 XimpX

>
imp. Then,

E
[
XimpX

>
imp ‖X‖

2
2

]
= EE

[
XimpX

>
imp ‖X‖

2
2 |P

]
= EE

[
PP> �XX> ‖X‖22 |P

]
= E

[
ΣP �XX> ‖X‖22

]
= ΣP �

(
E
[
XX> ‖X‖22

])
.
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According to Assumption 4, E
[
XX> ‖X‖22

]
� R2Σ, and Lemma E.1 lead to

E
[
XimpX

>
imp ‖Ximp‖22

]
� R2ΣP � Σ = R2Σimp.

• Define εimp = Y − X>impθ
?
imp = X>θ? + ε − X>impθ

?
imp . First, we have ε2imp ≤

3

((
X>θ?

)2
+ ε2 +

(
X>impθ

?
imp

)2
)

, then

E
[
‖ξ‖22

]
= E

[
ε2imp ‖Ximp‖22

]
≤ 3E

[((
X>θ?

)2
+ ε2 +

(
X>impθ

?
imp

)2
)
‖Ximp‖22

]
≤ 3

(
E
[(
X>θ?

)2
‖X‖22

]
+ E

[
ε2 ‖X‖22

]
+E

[(
X>impθ

?
imp

)2
‖Ximp‖22

])
.

Let remark that, using Assumption 4

E
[(
X>θ?

)2
‖X‖22

]
= E

[
θ?>

(
XX> ‖X‖22

)
θ?
]
‖θ?‖2Σ

≤ R2θ?>Σθ

= R2 ‖θ?‖2Σ .

Using the first point, by the same way, E
[(
X>impθ

?
imp

)2
‖Ximp‖22

]
≤
∥∥∥θ?imp

∥∥∥2

Σimp

. By

Assumption 4, we have also than E
[
ε2 ‖X‖22

]
≤ σ2R2. Thus,

E
[
‖ξ‖22

]
≤ 3R2

(
σ2 + ‖θ?‖2Σ +

∥∥θ?imp

∥∥2

Σimp

)
≤ 3R2

(
σ2 + 2 ‖θ?‖2Σ

)
,

because ‖θ?‖2Σ = R (θ?) ≤ Rimp

(
θ?imp

)
=
∥∥∥θ?imp

∥∥∥2

Σimp

.

Consequently we can apply Lemma C.1, to obtain(
1− 1

2
√
n

)
E
[〈
θ̄imp,n − θ?imp,Σimp(θ̄imp,n − θ?imp)

〉]
+

1

2nγ
E
∥∥θimp,n − θ?imp

∥∥2

6
1

2nγ

∥∥θ?imp − θ0

∥∥2
+
γ

n

n∑
k=1

E ‖ξk‖2 .
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The choice γ = 1
2R2
√
n

leads to

E
∥∥θ̄imp,n − θ?imp

∥∥2

Σimp
6

2R2

√
n

∥∥θ?imp − θ0

∥∥2
+ 4

σ2 + 2 ‖θ?‖2Σ√
n

.

We conclude on Theorem 4.1 using that,

E
[
Rimp

(
θ̄imp

)]
−R? = E

[
Rimp

(
θ̄imp

)]
−R?imp +R?imp −R?

= E
∥∥θ̄imp,n − θ?imp

∥∥2

Σimp
+Bimp.

C.2 Proof of Proposition 4.3 and Corollary 4.4

Proof of Proposition 4.3. First, under Assumption 2, Tr(Σ) ≤ dL2. Then, initial conditions
term with θ0 = 0,

κTr(Σ)√
n

∥∥θ?imp

∥∥2

2
≤ κL2d√

n`2ρ(1− ρ)
Bimp(F), (26)

using Lemma 4.2. We obtain Proposition 4.3 using inequality above in Theorem 4.1.

proof of Corollary 4.4. We obtain the upper bounds considered that: according to Theo-
rem 3.2, Bimp ≤ Bridge,λimp

; under Assumption 3, Tr(Σ) ≥ d`2. Then, we put together
Proposition 4.3 and ridge bias bound (see Appendix D).

C.3 Miscellaneous

Proposition C.2. If X statisfies E
[
XX> ‖X‖22

]
� κTr(Σ)Σ, then E

[
ε2 ‖X‖22

]
≤ σ2κTr(Σ)

with σ2 ≤ 2E[Y 2] + 2E[Y 4]1/2.

Proof.

E
[
ε2 ‖X‖22

]
= E

[(
Y −X>θ?

)2
‖X‖22

]
≤ 2E

[((
X>θ?

)2
+ Y 2

)
‖X‖22

]
≤ 2E

[
Y 2 ‖X‖22

]
+ 2E

[(
X>θ?

)2
‖X‖22

]
.

Regarding the first term, by Cauchy Schwarz,

E
[
Y 2 ‖X‖22

]2
≤ E

[
Y 4
]
E
[
‖X‖42

]
≤ E

[
Y 4
]
E
[
Tr
(
XX> ‖X‖22

)]
≤ E

[
Y 4
]
κTr(Σ)2.
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As for the second term,

E
[(
X>θ?

)2
‖X‖22

]
= E

[
(θ?)>XX> ‖X‖22 θ

?
]

≤ κTr(Σ)E
[
(θ?)>Σθ?

]
≤ κTr(Σ) ‖θ?‖22 .

E
[
ε2 ‖X‖22

]
≤ E

[
Y 4
] 1
2 κTr(Σ) + κTr(Σ) ‖θ?‖2Σ ≤ σ

2κTr(Σ) ‖θ?‖2Σ .

D Details on examples

Recall that

Bridge,λ(F) = λ ‖θ?‖2Σ(Σ+λI)−1 (27)

= λ

d∑
j=1

λj
λj + λ

(v>j θ
?)2. (28)

D.1 Low-rank covariance matrix (Example 3.3)

Proposition D.1 (Low-rank covariance matrix with equal singular values). Consider a
covariance matrix with a low rank r � d and constant eigenvalues (λ1 = λ2 = ... = λr).
Then,

Bridge,λ(F) = λ
r

Tr(Σ)
‖θ?‖2Σ .

Proof. Using that λ1 = · · · = λr and
∑r

j=1 λj = Tr(Σ), we have λ1 = · · · = λr = Tr(Σ)
r .

Then Σ(Σ + λI)−1 � λ−1
r Σ = r

Tr(Σ)Σ. Thus,

Bridge,λ(F) = λ ‖θ?‖2Σ(Σ+λI)−1 = λ
r

Tr(Σ)
‖θ?‖2Σ .

D.2 Low-rank covariance matrix compatible with θ? (Example 3.5)

Proposition D.2 (Low-rank covariance matrix compatible with θ?). Consider a covariance
matrix with a low rank r � d and assume that 〈θ?, v1〉2 ≥ · · · ≥ 〈θ?, vd〉2, then

Bridge,λ(F) . λ
r(log(r) + 1)

Tr(Σ)
‖θ?‖2Σ .
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Proof. Recall that

‖θ?‖2Σ =

d∑
j=1

λj(v
>
j θ

?)2. (29)

Under the assumptions of Example 3.5, using that (λj)j and
(

(v>j θ
?)2
)
j

are decreasing,

then for all k ∈ [r],
k∑
j=1

λj(v
>
k θ

?)2 ≤ ‖θ?‖2Σ.

Thus, for all k ∈ [r],

(v>k θ
?)2 ≤

‖θ?‖2Σ∑k
j=1 λj

.

Using that
∑r

j=1 λj = Tr(Σ) and that eigenvalues are decreasing, we have
∑k

j=1 λj ≥
k
rTr(Σ)

using Lemma E.3. Then

Bridge,λ(F) = λ
r∑

k=1

λk
λk + λ

(v>k θ
?)2

≤ λ
r∑

k=1

(v>k θ
?)2

≤ λ‖θ?‖2Σ
r∑

k=1

1∑k
j=1 λj

≤ λ
r∑

k=1

r

kTr(Σ)

≤ λ r

Tr(Σ)

r∑
k=1

1

k

. λ
r

Tr(Σ)
(log(r) + 1),

by upper-bounding the Euler-Maclaurin formula.

D.3 Spiked covariance matrix (Example 3.6)

Proposition D.3 (Spiked model). Assume that the covariance matrix is decomposed as
Σ = Σ≤r + Σ>r. Suppose that Σ>r � ηI (small operator norm) and that all non-zero
eigenvalues of Σ≤r are equal, then

Bridge,λ(F) ≤ r

Tr(Σ)− dη
‖θ?‖2Σ + η ‖θ?>‖

2
2 .

where θ?>r is the projection of θ? on the range of Σ>r.
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Proof. One has

Σ(Σ + λI)−1 = Σ≤(Σ + λI)−1 + Σ>(Σ + λI)−1

� Σ≤(Σ≤ + λI)−1 + Σ>(Σ> + λI)−1

� 1

µ
Σ≤ +

1

λ
Σ>

where µ is the non-zero eigenvalue of Σ≤. Thus,

Bridge,λ(F) = ‖θ?‖2λΣ(Σ+λI)−1

≤ ‖θ?‖2λ
µ

Σ≤+Σ>

≤ λ

µ
‖θ?‖2Σ + ‖θ?‖2Σ> .

Using that λmax(Σ>) ≤ η, we have

Bridge,λ(F) ≤ λ

µ
‖θ?‖2Σ + η ‖θ?>‖

2
2 .

Using Weyl’s inequality, for all j ∈ [d], λj(Σ≤+Σ>) ≤ λj(Σ≤)+η. Summing the previous
inequalities, we get

Tr(Σ) ≤ rµ+ dη.

Thus,

µ ≥ Tr(Σ)− dη
r

.

In consequence,

Bridge,λ(F) ≤ r

Tr(Σ)− dη
‖θ?‖2Σ + η ‖θ?>‖

2
2 .

E Technical lemmas

Lemma E.1. Let A,B, V be three symmetric non-negative matrix, if A � B then A� V �
B � V .

Proof. Let X ∼ N (0, V ) and θ ∈ Rd,
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‖θ‖2A�V = θ>A� V θ

= θ>
((

EXX>
)
�A

)
θ

= E
[
θ>
((
XX>

)
�A

)
θ
]

= E

∑
i,j

θi

((
XX>

)
�A

)
ij
θj


= E

∑
i,j

θiXiXjAijθj


= E

∑
i,j

(θiXi) (θjXj)Aij


= E

[
‖X � θ‖2A

]
≤ E

[
‖X � θ‖2B

]
= ‖θ‖2B�V

Lemma E.2. Let A,B be two non-negative symmetric matrices, then A�B is non-negative
symmetric and, for all θ ∈ Rd:

‖θ‖2A�B ≤ λmax(B) ‖θ‖2diag(A) ,

where diag(A) is the diagonal matrix containing the diagonal terms of A.

Proof. Let X ∼ N (0, A), thus A = E
[
XX>

]
, then for θ ∈ Rd
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‖θ‖2A�B = θ>A�Bθ

= θ>
((

EXX>
)
�B

)
θ

= E
[
θ>
((
XX>

)
�B

)
θ
]

= E

∑
i,j

θi

((
XX>

)
�B

)
ij
θj


= E

∑
i,j

θiXiXjBijθj


= E

∑
i,j

(θiXi) (θjXj)Bij


= E

[
(X � θ)>B (X � θ)

]
≥ 0,

using that B is positive. Thus A�B is positive. Furthermore,

‖θ‖2A�B = E
[
(X � θ)>B (X � θ)

]
≤ λmax(B)E

[
(X � θ)> (X � θ)

]
= λmax(B)E

[∑
i

θ2
iX

2
i

]
= λmax(B)

∑
i

θ2
iE
[
X2
i

]
= λmax(B)

∑
i

θ2
iAii

= λmax(B) ‖θ‖2diag(A) .

Lemma E.3. Let (vj)j∈[d]a non-decreasing sequence of positive number, and S =
∑d

j=1 vj,
for all k ∈ [d],

k∑
j=1

vj ≥
k

d
S.

Proof. We use a absurd m, if
∑k

j=1 vj <
k
dS. Then, using that (vj)j∈[d]are non-decreasing,

kvk <
k

d
S.
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Thus vk+1 <
1
dS, summing last elements,

d∑
j=r+1

vj <
d− r
d

S.

Then,

S =

k∑
j=1

vj =

r∑
j=1

vj +

d∑
j=r+1

vj <
k

d
S +

d− r
d

S = S.

Thus, this is absurd.
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