
HAL Id: hal-03959746
https://hal.sorbonne-universite.fr/hal-03959746

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast verification and public key storage optimization for
unstructured lattice-based signatures

Jean-Claude Bajard, Kazuhide Fukushima, Thomas Plantard, Arnaud
Sipasseuth

To cite this version:
Jean-Claude Bajard, Kazuhide Fukushima, Thomas Plantard, Arnaud Sipasseuth. Fast verification
and public key storage optimization for unstructured lattice-based signatures. Journal of Crypto-
graphic Engineering, 2023, Journal of Cryptographic Engineering (2023), �10.1007/s13389-023-00309-
1�. �hal-03959746�

https://hal.sorbonne-universite.fr/hal-03959746
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Fast Verification and Public-Key storage optimisation for

Unstructured Lattice based Signatures

Jean-Claude Bajard1, Kazuhide Fukushima2, Thomas Plantard3 and Arnaud
Sipasseuth2

1IMJ-Paris Rive Gauche, Sorbonne Université-CNRS-INRIA, Paris, France.
2Information Security Laboratory, KDDI Research, Inc, Fujimino, Saitama, Japan.

3Nokia Bell Labs, Murray Hill, New Jersey, United States.

Contributing authors: jean.bajard@inria.fr; ka-fukushima@kddi-research.jp;
thomas.plantard@gmail.com; ar-sipasseuth@kddi-research.jp;

Abstract

A recent work of Sipasseuth, Plantard and Susilo proposed to accelerate lattice-based signature ver-
ifications and compress public key storage at the cost of a precomputation on a public key. This
first approach, which focused on a restricted type of key, did not include most NIST candidates, or
most lattice representations in general. In this work, we first present a way to improve even fur-
ther both their verification speed and their public key compression capability by using a generator
of numbers that better suit the method needs. We then also generalize their framework to apply to
q-ary lattice schemes as well as classical lattices using Hermite Normal Form, improving their secu-
rity and applicable scope, thus exhibiting potential trade-offs to accelerate lattice-based signature
verification in general and compression of the public key on the verifier side for unstructured lattices.

Keywords: Lattice-Based Cryptography, Digital Signature, Residue Number Systems, Probabilistic
Verification

1 Introduction

The National Institute of Standards and Tech-
nology (NIST) Post-Quantum Cryptography
Standardization process is still going on [37]
to determine security standards for the next
few decades, whether for encryption schemes or
signature schemes. In the case of the NIST stan-
dardization, there is a security requirement of
leakage resilience over 264 signatures. Thus, the
option to be able to reuse keys is implicitly chosen.
If one opts in the option to reuse the same key to
save key setup time, or to lower communication
costs when several signatures are needed for a

single user, then a solution is to not store the
key but a footprint of the key, which still allows
for the verification procedure to go through with
a comparable efficiency, or maybe even better.
Theoretically, replacing a deterministic verifica-
tion procedure by a probabilistic one should pose
no problem in the complexity hardness of the
initial computational problems[13, 16] for which
the security assumptions are most often heuris-
tic. For lattice-based signature schemes, a lot of
work has been done to promote leakage resilience
even in the usage of an exponential amount of
signatures[23].

1



Springer Nature 2021 LATEX template

2 Prob. Verif.

Very recently, NIST reiterated their desire for
new signature schemes that would not be based
on structured lattices [34, 38]. It is important to
notice that in their announcement, NIST asked
for possible new signature schemes, making the
distinction between structured and unstructured
lattice based schemes, as quoted “NIST is primar-
ily looking to diversify its signature portfolio, so
signature schemes that are not based on structured
lattices are of greatest interest. NIST would like
submissions for signature schemes that have short
signatures and fast verification”, thus unstructured
lattices should still be of interest. This is proba-
bly because the remaining lattice-based signature
candidates [14, 18] heavily rely on cyclotomic rings
structure which have yet to prove itself to be as
secure as unstructured lattices. It also seems that
the structure allows some computational problems
to be easier to solve [11, 39]. However, ideal lat-
tices allowed to gain a linear factor on both the
size of the public key and the verification speed
by the use of specialized algorithms on polynomial
multiplication [28, 33, 41].

Other ways exist to add structure to a lattice
therefore minimizing its representation; it is often
based on adding polynomial structure. Conse-
quently, the Hermite Normal Form (HNF) basis
of a structured lattice can be compressed and
therefore a more compact representation can be
used. This more compact version allows to divide
the size of the representation by up to a factor
equivalent to the dimension (in the case of ideal
lattice for example). Obviouly, this extra struc-
ture opens the door to new attack and therefore
further weakness of the cryptographic scheme. By
opposition, one will call an unstructured lattice
a lattice which HNF basis is hard to distinguish
from a random lattice basis picked uniformly
from the set of all possible HNF given a fixed
dimension and determinant, i.e respecting [25]
distribution. Accelerating computations and com-
pressing keys without introducing serious security
flaws has always been a challenge, but some
trade-offs which heuristically do not significantly
reduce the security have been recently proposed
for unstructured lattices.

A probabilistic verification trade-off technique
was recently proposed [44] based on Freivalds’
probabilistic verification algorithm [19]. Their
work consisted of taking any classic signature

scheme, and in that scheme replace only the ver-
ifier’s means of verification computations, includ-
ing a precomputation. Let the classic signature
protocol be as follows:
1. Bob sends to Alice a public key A
2. Alice sends to Bob a message m
3. Bob signs m with his secret, outputting his

signature s
4. Alice verifies that s is valid for A,m

In the case where a same A is reused for mul-
tiple different messages m, [44] propose that
step 4 is computationally modified to acceler-
ate all subsequent verifications at the cost of a
precomputation. They based its security on the
security of the initial scheme as it was globally
left unchanged, and measured the security of the
new verifier with the probability of recovering a
“hidden” set of prime numbers by random tries.
Their work effectively transforms a quadratic
complexity (in the lattice dimension) for both the
public key storage and the verification speed into
a linear one for the verifier. However, [44] applied
only to lattice-based signature schemes such as
[40] that were not using a HNF as a public key. In
particular, [44] required some lattice information
from the signature of [40] to enable probabilistic
verification. This information is missing from the
signatures from all other lattice-based candidates,
as such information is unnecessary when using a
HNF for verification. Thus, their work did not
apply to the lattice-based signature schemes that
passed the NIST selection process, which exclu-
sively used structured q-ary lattices that have
HNF as public keys.

Our contributions

In this work, we propose two results to improve
unstructured lattice-based signatures:

• We improve their precomputation for efficient
probabilistic lattice-based signature verifica-
tion. The result also allows for a stronger key
compression and verification speed for similar
security parameters.

• We generalize the work of [44] to apply to
the case of public keys using HNF, which also
includes the majority of lattice-based signa-
tures in the NIST competition, although our
work mainly focuses on unstructured lattices.

More precisely,



Springer Nature 2021 LATEX template

Prob. Verif. 3

1. We improve precomputation for efficient
probabilistic lattice-based signature verifica-
tion. Our modification, just like [44], projects
the computation over Z over multiple small
rings Z/ωZ using the Chinese remainder
theorem (CRT). The security of our modifi-
cation follows the same security model as [44]
and thus rely on the amount of possible com-
binations of such ω. We provide an efficient
generator of such combinations of values ω,
which can be considered fast as times are in
the order of µs (see table 3). This generator
is also lightweight: on λ = 256 bits security
(i.e 2λ possible moduli combinations for an
attacker to guess from) example, at most 21
integers of 33-bits or less are required to be
stored in the ω generator (see appendix table
7 for (d, k) = (8, 10) i.e 8 moduli coprime
to 10 first primes), which in returns offers
the possibility to replace the storage of each
public key by a storage of 10 vectors of n
entries of size ω (regardless of the dimension
n). For structureless public keys in lattice-
based cryptosystems, this can save memory
by a factor up to n. We show that after gen-
erating enough values ω to meet the required
security requirements, those ω have a high-
chance to be pairwise coprime. The generator
is fairly simple and rely on simple tricks that
were used in [17, 27].

2. We generalize the work of [44] to apply to the
case of public keys using a Hermite Normal
Form which includes the majority of lattice-
based signatures in the NIST competition
with an extra cost for the signatory and the
signature size.
In particular, we show our technique very

well applies to lattice-based signature frame-
works with proven leakage resilience such as
[23] or [31]. We show linear complexity for our
verifications, showing that for a dimension n
a O(n2) complexity for structureless verifica-
tion (often replaced by O(n log(n)) by using
polynomial structures) becomes O(n), but at
the cost of a precomputation which can be as
costly as a matrix-vector product.
This is also the case for the public key

storage for the verifier, transforming a O(n2)
storage into a O(n) storage for unstructured
q-ary lattices.

Since lattice cryptosystems typically have
n > 500 for minimal security requirements
λ = 128 bits, this consequently exhibits
several options to accelerate the verification
speed, leaving the original security unaffected
but at the cost of increasing the signature
size.

While the extra cost in signature length
can appear as a drawback, the fact that our
number generator is lightweight and that the
key storage is heavily compressed open pos-
sibilities in the case of unstructured lattices:
for low-memory devices that are only allowed
extensive communications with a few other
devices (home devices, internet of things,
etc) or maybe even low-memory devices that
still have to store several different public
keys (one might imagine novel public key
infrastructures with dedicated low-memory
verifiers). The extra cost on the signature size
is at most linear in the dimension in the case
of q-ary lattices and at best a single integer
of no more than 11 bits for most of the high-
est existing security parameters in the case
of co-cyclic lattices, which is acceptable in
some specific communication scenarios such
as when a signature request does not occur
immediately after a setup.

Note that our work does not make unstructured
lattices as efficient as structured lattices: our
work mostly helps the verifier, the signatory still
has to manage the full size of his public key. We
do not know how the communication architecture
is going to look like in 40 years or more, and
it is possible that in a future where structured
lattices are severely weakened, such techniques
might not be necessary. However, this should help
researching ways to lessen the cost of deploying
unstructured lattices in some cases if the need
arises. If the NIST is indeed looking for “short
signatures and fast verification” [38], we believe
our framework gives an interesting trade-off on
the signature size to accelerate verification speed.

Organization of the paper

In section 2, we reintroduce the concept of lattice-
based signatures, and the work of [44]. In section
3, we present how to improve the work of [44]
using a random number generator, which has very



Springer Nature 2021 LATEX template

4 Prob. Verif.

useful properties to enhance both its memory
and computational cost for a given security. In
section 4, we present how to generalize the work
of [44] for both q-ary lattices and more generic
lattices, where the aforementioned generator is
also applied. In section 5, we conclude with open
questions and propose future research directions.

2 Background

We will denote vectors in bold v, matrices in cap-
ital bold M, and integers as non-bold minuscules
i. We denote vi the i-th coefficient of a vector v
and pi the i-th element of a set P .

2.1 Lattices-based signatures

Definition 1 (Lattice).
We call lattice a discrete subgroup of Rn where n
is a positive integer. We say a lattice is an integral
lattice when it is a subgroup of Zn. A basis of the
lattice is a basis as a Z−module. If A is a matrix,
we define L(A) the lattice generated by the rows
of A.

A specific subclass of lattices have been very
popular in lattice-based cryptography: q-ary lat-
tices.

Definition 2 (q-ary lattices). We say a lattice
L ⊆ Zn is a q-ary lattice if there exists q < det(L)
such that for all v ∈ Zn, we have qv ∈ L.

The q-ary lattices in cryptography have deter-
minants over Z that are typically a power of q
and can be seen as subgroups of Zn

q , so we often
represent their basis as matrices over Zq. A core
argument for their popularity is their average to
worst-case reduction [2].

Another subclass of lattices, representing
approximately 85% of all lattices [36] and also ben-
efiting from average-case to worst-case hardness
reduction [20]: “co-cyclic lattices”. We reuse the
definitions used by [20, 36] to define those lattices:

Definition 3 (co-cyclic lattices). We say a lattice
is co-cyclic if Zn/L is cyclic.

Because of their proportion in the set of all
lattices, it is not unreasonable to assume co-cyclic

lattices represent the average case of all lattices,
structured or not. For simplicity we will only
consider full-rank lattices, and in the case of co-
cyclic lattices we will consider only the lattices
that admit a specific shape as a basis.

Definition 4 (Hermite Normal Form). We say
a non-singular matrix A ∈ Zm×n is in Hermite
Normal Form when:

• There exists 1 ≤ i1 < ... < ih = m such that
ai,j ̸= 0 =⇒ (j < h) ∧ (i ≥ ij)

• For all k > j, 0 ≤ aij ,k < aij ,j.

Note that while a lattice has an infinity of
basis, only one unique HNF basis exists. The HNF
is a basis form that easily allows to test whether
any v ∈ Zn verifies v ∈ L [9]. For simplification,
we will consider in the case of co-cyclic lattices
only full-rank lower-triangular basis where only
the first column differ from the identity matrix
Idn ∈ Zn×n. In fact, if a full-rank lattice admits
such a basis, then it is likely to be co-cyclic. Note
that q-ary lattices cannot be co-cyclic.

Definition 5 (γ-Guaranteed Distance Decoding
(GDDγ)).
Given a basis A of a lattice L, and a bound γ >
λ1(L)/2 where λ1(L) is the size of a shortest vec-
tor of L, for any point m find a lattice vector s ∈ L
such that ∥s−m∥ < γ.

Most lattice-based signature schemes are based
on the above problem, which is a stronger ver-
sion of the Bounded Distance Decoding (BDD)
problem[30, 32]. The public key is generally a basis
A of the lattice, and the message is a target vector
m. In our above description in the introduction,
Alice at step 4, i.e the verification step to check
if the signature s is valid for key A and message
m, verifies whether or not Bob solved the GDDγ

instance associated to lattice L(A) with target m.
The problem is known to be NP-hard for some
values of γ and easy for some others, depending of
the norm chosen [30, 32]. Note that in most appli-
cations, the target vector is not the message itself:
the message m is a parameter of a hash function
h which outputs target points h(m) ∈ Zn, allow-
ing m to be of any shape (thus, m might not be
a vector but h(m) is). The security assumptions



Springer Nature 2021 LATEX template

Prob. Verif. 5

often work on those arguments: the problem is
easy to solve for the one who created A (i.e Bob,
often by means of a trapdoor), but should not be
for any other person: thus, only Bob should be
able to produce valid signatures for Alice. In our
work, we assume the initial cryptosystem is hard
and present no obvious security flaws, and we will
show on our paper that our modifications should
not affect the initial security.

2.2 Freivalds’ algorithm and
application to lattice-based
signatures

In [44], it was shown that the seminal work of
Freivalds [19] could be adapted for verification of
lattice-based signatures. Freivalds’ seminal algo-
rithm is often considered as the first algorithm to
demonstrate the superiority of non-deterministic
algorithms over deterministic ones in certain cases.
It allowed to quickly verify if the result of the
product of two real matrices was correct without
computing the product itself. To summarize [44]’s
adaptation of Freivalds’ algorithm, for a lattice
with public key A ∈ Zr,c (with r = c in their
case) and a signature soriginal = (sA, s) for a tar-
get point h(m) where h is a public hash function
and m the message, the following equation used
for verification

sAA− s = h(m) with sA, s ∈ Zr

can be transformed, using a large integer Ω being
the product of randomly picked primes ω (i.e
Ω = ω1ω2...ωk), to a much cheaper probabilistic
verification involving

sAv
⊤
(A,ω1)

− sv⊤
ω1

= h(m)v⊤
ω1

mod ω1

...

sAv
⊤
(A,ωd)

− sv⊤
ωd

= h(m)v⊤
ωd

mod ωd

where v ∈ Zc
ωi

are randomly picked and kept
secret by Alice, and v⊤

(A,ωi)
= Av⊤

ωi
. In such a

modification, [44] proved that the probability that
Alice can be cheated by an invalid signature, i.e
the probability that Alice accepts a signature as
correct where it would have been proven incorrect
in the original scheme, is strictly inferior to Ω−1,
assuming Ω and v are hidden and unrecoverable

by external parties.

Revealing Ω alone allows an external party to
mount an attack where the underlying GDDγ

problem is changed. Instead of attacking the
GDDγ challenge on the original lattice L(A), an
attack could be mounted on L(AΩ) which can
often prove to be a much easier challenge heuris-
tically. The attack would not break Bob’s original
keyA, but would make it computationally feasible
to forge wrong signatures sfalse that Alice accepts
but would otherwise be rejected in the original
scheme.

On the other hand, it seems difficult for an
attacker to forge invalid signatures while having
no knowledge of Ω and v. It is even an open ques-
tion if being able to give valid signatures allow
to construct invalid signatures that would pass
the test: however this scenario while interesting
in theory has no practical interest as one might
have to assume that the original cryptosystem is
insecure in the first place (by assuming forgeabil-
ity on the original scheme).

Thus, [44] put emphasis on setting and hid-
ing Ω rather than vωi

as the amount of available
vωi

is ωc
i thus it is already naturally hard to guess

if Ω is large, and the efficiency of this approach
also depends on Ω. Naturally, they observe that
for λ-bits of heuristic security, we must require
log2(Ω) > λ, but they show that for efficiency pur-
poses Ω must be split into prime factors ω of a
preferably much inferior size to Alice’s machine
word size. The rest of [44]’s work then focused
on describing a methodology on how to choose
the distinct prime factors ω1ω2...ωd = Ω that are
both optimal for efficiency given a fixed machine
word size and that kept the initial security of the
original scheme prior to the modification intact.
In particular, they state that log2(Ω) > λ is not
enough. They take inspiration of [4] where ran-
dom combinations of d numbers randomly selected
among 2d pairwise coprime numbers gave

(
2d
d

)
possible combinations as a layer of security against
several forms of side-channel attacks. To this day,
this approach is still secure. Thus, [44] follows [4]’s
approach and state that given Sω the set of all pos-
sible values ω the minimum bound of security is
rather

(|Sω|
d

)
> 2λ, which also consequently forces

log2(Ω) > λ.



Springer Nature 2021 LATEX template

6 Prob. Verif.

[44]’s modified signature protocol then pro-
ceeds as follows:

* (new offline step) Alice compute the couples
(ωi,vωi

).
1 Bob sends to Alice a public key A
* (new offline step) Alice compute v⊤

(A,ωi)
.

2 Alice sends to Bob a message m
3 Bob signs m with his secret, outputting his
signature soriginal

4 (modified step) Alice verifies that soriginal is
valid for m,A,vωi

, ωi for all i.

3 Improving
Sipasseuth-Plantard-Susilo’s
public key precomputation

We present how to improve [44] in the general case
with a random number generator. First, explain-
ing the properties we need from such a generator.
Then we explain the basic idea behind this gen-
erator and how to construct it. We then explain
how to customize it for specific integral forms
if it is ever needed, provide experimental data
on its efficiency and finish this part by provid-
ing justifications and tables for setting generator
parameters to match security requirements. Note
that for some readers, this whole section is pos-
sibly trivial: we do need, however, to exhibit the
exact values given by this generator as they are
necessary to set security parameters and optimize
the gain in speed and memory on unstructured lat-
tice signature schemes thus “just” giving intuitive
parameters are not enough.

3.1 Constructing the number
generator

Required properties

A simple observation which was left as an open
question in [44] allow to improve their original
work: we do not need prime numbers, coprimes
are sufficient. In fact, we can as far as to say
randomly picked ω do not need to be pairwise
coprime: for every x ∈ Z projected over

∏
Zωi ,

we have an information redundancy for every
pair of integers that are not coprime. In fact our
approach depends on the size of the least com-
mon multiple of these ωi i.e. lcm({ωi}) close to Ω.

When some ωi are not coprime, we have a redun-
dancy of the information that can be evaluated by

log2

( ∏
ωi

lcm(ωi)

)
.

Note that picking pairwise coprime numbers
also means picking prime numbers, so let us
reclarify why [44] proposed to search for coprime
numbers as an open question: for a matter of
efficiency and combination security. In the cur-
rent hardware today, machines have a certain
bit-size. To increase the efficiency of the compu-
tations, [44] enforced every moduli picked to be
within a certain size that would allow to reduce
as much as possible the amount of modular oper-
ations needed to avoid overflows. Their work only
considered primes as it was easy to count them
for security purposes, and did not have a way to
randomly generate pairwise coprime sets and let
alone count them: opening the path to pairwise
coprime sets, which includes sets of prime num-
bers, would allow them to keep a similar level
of security with smaller sets or smaller moduli
as the number of possible combinations increases.
The approach of using large combination sets to
enhance the security is not new: it has been used
to increase the amount of possible number repre-
sentations possible to thwart side-channels attacks
[4, 10, 35].

In [4], random combinations of precomputed
pairwise coprime numbers were used for efficiency
and security against side-channel attacks. 2k pair-
wise coprime numbers were precomputed and the
security was based on

(
2k
k

)
, where guessing the k

numbers used for the computations among the 2k
would break. In our case, we need k to be as low
as possible to optimize computational costs, so
maximizing the size of Sω the set of all possible
values ω to minimize the required value k to reach(|Sω|

k

)
> 2λ is still a valid approach. We then need

to populate the set Sω with as many efficient
pairwise coprime numbers. Making Sω as large
as possible can be seen as obtaining a Residue
Number System (RNS) base [1, 22] of maximal
size given some constraints: the very recent work
of [5] give us very efficient algorithms to do so.
However, [44] already listed the minimal size has
to reach Sω in function of k to meet the minimal
security requirements for each λ, and it seems a
few millions are always necessary. In particular,
for k = 7, Sω must at least contain 610573333
pairwise coprime integers to achieve λ = 192-bits



Springer Nature 2021 LATEX template

Prob. Verif. 7

of security, and this independently of the bit size
of the ω picked. Maybe this option is plausible
for servers with large amounts of fast accessible
memory, but for relatively small devices (maybe
for IoT applications) this does not seem a feasible
option.

Thus, generating numbers on the fly seem to
be a more reasonable option. We wish to generate
numbers to avoid any form of storage, from an
original set as large as possible. We also know our
approach depends of the lcm, thus we require a
few things: generation must be reasonably fast,
lightweight, and produce numbers such that their
lcm is as close as possible to their product Ω.

It would also be desirable to have larger Sω

to lower the amount d of moduli required, smaller
ωi to reduce the number of potential overflows
thus increasing efficiency per moduli, and both
would allow for a lower space requirement for
storing v(A,ωi),vωi

on top of accelerating further
computations by lowering the arithmetic cost.

In this section, we propose such a generator
with all of the aforementioned qualities, using
fairly simple tricks.

Main Idea

The basic idea is fairly simple and was at least pre-
viously used in prime number generation [17, 27],
although unlike previous works we do not plan to
generate large prime numbers but rather multiple
integers of similar and small size that are pairwise
coprime. Let us take two random numbers. It was
proven by Euler [26] (Theorem 332, p. 269 in the
4th edition for proof) that the chance of two inte-
gers being coprime is ζ(2)−1 = 6/π2 where ζ is
the Riemann Zeta function1. Now, if the two of
them are odd, the chances increases slightly. We
can extend the idea to several numbers: while it is
known that a set of d integers have 1 as a gcd with
probability ζ(d)−1, it is a bit less known that the
probability for such a set to consist exclusively of
pairwise coprime numbers is:

P (d) =
∏

p prime
(d+p−1)(p−1)d−1

pd

which is the sum for each existing prime of
the probability of being all coprime to p (i.e
(p − 1)d/pd) and the probability that only

1this is known as the Basel’s problem

Fig. 1 Experimental approximation of Pk(d) for k ∈
[0, 64]

one of the d numbers is a multiple of p (i.e
d(p− 1)d−1/pd).

We know that giving assumptions about
the integers being not purely random, but
being coprime to the first successive primes,
increase the odds of the resulting set being
composed of pairwise coprimes: in a different
context and objective, this observation helped
generating large primes [17, 27]. Let us denote

Pk(d) =
∏

i≤k
(pi−1)d

pd
i

∏
i>k

(d+pi−1)(pi−1)d−1

pd
i

the

probability of d integers being pairwise coprime
given that all d integers are coprime with the
first successive k primes. We provide a simple
experiment to measure the probability of success
to obtain d pairwise coprimes by randomly sam-
pling d numbers coprime with the first k prime
numbers millions of times for each pair (k, d), and
show the results in figure 1. As we need to gen-
erate as little as possible moduli wi for as little
as possible d while maintaining some security, we
do not need to study Pk(d)’s asymptotical case,
but computations on relevant parameters would
at least show that our approach is valid and help
to properly set parameters. Furthermore, in our
approach, Pk(d) corresponds to a best case when
the lcm(omegai) = Ω.

Those results give us a method to sample such
integers: we exploit the set Mk = {p1, ..., pk}
composed of the first consecutive k primes and
use the CRT to build the actual numbers that



Springer Nature 2021 LATEX template

8 Prob. Verif.

would be part of a set of size d of probably pair-
wise coprime. Let us note xMk

=< x1, ..., xk >
the residues of x for each moduli of Mk. If for
all k, xi ̸= 0, then we know the CRT recon-
struction would give x lower than Mk = p1...pk
such that it is coprime to the first k primes. To
simplify algorithms descriptions, introduce the
Rand function, which takes into entry a set and
outputs a random element of the set. This gives
us the sampling algorithm basic coprime algo-
rithm (BaseCop) (Algorithm 1).

Algorithm 1 Basic Coprime Algorithm

Input: Mk = {p1, ..., pk}
Output: an integer x < Mk, with gcd(x,Mk) = 1
1: < x >M←< 0 >M ▷ (Allocate memory)
2: for i ∈ [1, k] do
3: xi ← Rand([1, pi − 1]) ▷ (pi ∤ x)
4: end for
5: x← CRT(< x >Mk

)
6: return x

In particular, let x, y be outputs of
BaseCop(Mk), then gcd(x, y) = 1 or
gcd(x, y) > pk. Experimentally, gcd(x, y) = 1
becomes more common as k grows. Note that by
removing numbers divisible by small primes, we
are thinning the amount of numbers to sample
from. We previously roughly measured Pk(d),
but if we aim for guaranteed pairwise coprimality
instead of probable coprimality, we might not
want to discard d integers and generate d new
samples. In that regard, we will now present our
tests on how successful we would be to discard
a “bad” integer and reinsert a “good” one as
we generate integers successively. Our testing
method is the following:

• Generation: We fix k and sample D integers
by successive calls to BaseCop(B).

• Verification: We go through the samples in
incremental order. If it is coprime with the
previously saved samples, we save it, other-
wise we discard it.

The first generated is always counted as coprime
and saved, and Basel’s theorem states the second
one has roughly 61% chances to be coprime to the
first one if sampled without our method. However,
this value is an asymptotical value. Experimen-
tally, we obtain a discard rate above 79.2%

when simply using random bounded numbers.
BaseCop(B) yields better results: for k = 10 and
100 samples, we only discard less than 20% of the
samples. More detailed experimental results can
be found in table 1 below.

Table 1 Average discards after 104 calls to
TestGen(BaseCop(Mk), D)

k 5 6 7 8 9 10
D = 100 36.0 28.4 25.1 22.3 20.01 18.3
D = 200 93.5 72.1 65.0 59.3 54.7 51.0
D = 300 161.2 121.1 109.6 101.3 94.2 88.6

Remark: to increase the chances of generat-
ing successive coprimes, a first improvement is to
allow integers to be divisible by any prime possi-
ble in the basis composingMk, and every time we
sample an integer divisible by primes composing
Mk, we start excluding integers that are multi-
ples of said primes. The improvement was however
not significant in our experiments, in particular it
has almost no impact on later security parameters
while complexifying the algorithms, thus we will
not document the numbers in this paper.

Coprimes of Pseudo-Mersenne,
Montgomery-friendly and customization

Here we present a specialization of our previous
algorithm to generate integers of the shape K− c.
The main application for this specialization is
that we could create pseudo-Mersenne numbers
[12] by setting K as being a large power of 2,
or just take any K to control the bit size of the
output and output integers of the shape K − c.

Instead of sampling c such that residues ci
are non-zero, this generalization samples c such
that K − ci have non-zero residues. Which leads
to algorithm 2 we denote Mersenne coprime
algorithm (MersCop). We also repeat the pre-
vious test procedure by replacing BaseCop by
MersCop our experimental results show simi-
lar coprimality probability and rejection rates.
Detailed results can be found below in table 2 :
we can see the difference with 1 is negligible.

Algorithm 2 is slightly slower than 1, as 2 it
involves the same operations plus extra operations
to deal with K ̸= 0. However, this small extra



Springer Nature 2021 LATEX template

Prob. Verif. 9

Algorithm 2 Pseudo-Mersenne Coprime Algo-
rithm
Input: K ∈ N,Mk

Output: c ∈]0,
∏

pi] such that gcd(K−c, pi) = 1
1: for i ∈ [1, k] do
2: ci ← Rand({ci ∈ [0, pi − 1],K ̸≡ ci [pi]})
3: end for
4: c← CRT(< c >Mk)

5: return c

Table 2 Average discards after 104 calls to
TestGen(MersCop(2n,Mk), 100)

k 5 6 7 8 9 10
n = 32 36.50 28.52 25.12 22.29 20.01 -
n = 64 36.59 28.41 25.14 22.38 20.05 18.40

cost during precomputation allows to use Pseudo-
Mersenne which offers significant gain during
modular reductions. A simple way to make the
Rand function in algorithm 2 almost as sim-
ple as in algorithm 1 is to use Rand([0, pi − 2])
and then add 1 if ci ≥ K mod pi (that ensures
the same probability for all values in [0, pi −
1]\{K mod pi}). In the C language the output of
“x >= y” is 0 or 1, thus we can directly add
the result of the comparison and keep the same
distribution. In practice, we want our random
component to be of a certain bit size or to have
specific arithmetic properties. Further customiza-
tion/optimization for the algorithms can be done
for all forms of first order equations: for example,
if K1,K2, e are constants (e can be as small as c),
and we want to generate probably coprime num-
bers of the form x = K1(K2− c)− e, we just need
to make sure c ̸= K2−e×K−1

1 modulo the pi. This
includes Montgomery-friendly numbers [3]), but
for our purposes simpler integer shapes are suf-
ficient. Experimental results on different integer
shapes also show the same results as in algorithm
1 for the basic case, thus we are not listing the
results there.

3.2 Experimental efficiency and
application to Sipasseuth et al’s
work

Experimental results

We conducted experiments on a machine using
an Intel(R) Xeon(R) E-2246G CPU @ 3.60GHz
processor with a simple C program using GMP

and compiling with the optimization option -O3.
Unsurprisingly our generator take around 1µs for
(k, d) = (5, 6) and up to 7µs for (k, d) = (15, 16).
Timings can be found below in table 3.

Table 3 Average time in µs for extracting d samples
from M∗

k

d
k

5 6 7 8 9 10 11 12 13

6 1.25 1.31 1.38 1.44 1.49 1.57 1.64 1.70 1.77
9 1.44 1.53 1.62 1.76 1.81 1.94 2.02 2.12 2.21
12 1.62 1.76 1.87 2.00 2.12 2.31 2.41 2.54 2.68
15 1.82 1.97 2.13 2.28 2.43 2.66 2.80 2.97 3.13

In comparison, the fastest structured lattice-
based signature schemes can verify up to 27933
signatures per second [18] so approximately 36µs
per verification. Although their testing processor
(i5-8259U clocked at 2.3 GHz with “TurboBoost”
disabled) runs at a lower frequency as reported
in 2022, it is still not in the same order as our
proposition. Furthermore, their code includes
optimized assembly code, while we use purely
unoptimized C code. We also conducted experi-
ments with checking pairwise coprimality at each
generation and retry until we get a set of pair-
wise coprime: the generation time is multiplied
by between 2 or 3 in average. The point of those
timings is purely informative: as far as we know
there is no pertinent comparison we can make,
but we can at least exhibit its low cost compared
to a typical public key lattice-based signature
scheme setup (see [37]). Since the generation time
is already low and can be achieved offline (before
receiving the public key), check-and-retry is still
a reasonable approach.

More importantly, we measured the average
redundancy size, its median size, its worst-case
size and its lowest size when it is non-zero.
Unsurprisingly most sample groups end up being
pairwise coprime, the median value for redun-
dancy is automatically zero: thus, we make the
minimum redundancy we measure is the minimal
non-zero redundancy measured. Our experimen-
tal results show that the redundancy is usually
low with our generator: more often than not the
redundancy is zero, and when it is not zero it is
often less than 10% of the total size and and after
220 tests the redundancy does not peak at more
than a third of the total size, while using random



Springer Nature 2021 LATEX template

10 Prob. Verif.

numbers provide high redundancy. Tables can
be found below, namely table 4 with randomly
picking numbers in table 5.

Table 4 bit size redundancy when using BaseCop(Mk)

log2

( ∏
ωi

lcm(ωi)

)
on 220 tests

d k Average Median min ̸= 0 max
6 5 1.756275 0 4 32
6 6 1.344412 0 5 33
6 7 1.110809 0 5 31
6 8 0.913920 0 5 29
9 5 3.993797 0 4 49
9 6 3.083662 0 5 45
9 7 2.560968 0 5 44
9 8 2.140330 0 5 40
12 5 6.969599 5 4 54
12 6 5.417657 5 5 50
12 7 4.531733 5 5 51
12 8 3.815385 0 5 55
15 5 10.589952 10 4 65
15 6 8.284572 7 5 63
15 7 6.971303 6 5 66
15 8 5.905113 5 5 59

Table 5 bit size redundancy when using random
numbers mod Mk

log2

( ∏
ωi

lcm(ωi)

)
on 220 tests

d k Average Median min ̸= 0 max
6 5 9.328667 9 1 55
6 6 9.285503 9 2 69
6 7 9.288168 9 2 89
6 8 9.286525 9 2 111
9 5 18.060690 17 1 86
9 6 17.975490 17 2 110
9 7 17.961327 17 2 139
9 8 17.964048 17 2 176
12 5 28.312817 27 1 117
12 6 28.151557 27 2 150
12 7 28.125704 27 2 191
12 8 28.135508 27 2 242
15 5 39.670601 39 1 148
15 6 39.435517 39 3 189
15 7 39.389500 39 4 243
15 8 39.394647 39 2 308

While the end result of the generator is more
efficient than the previous precomputations of
[44], a cost comparison is seemingly hard as [44]
did not list any particular method to uniformly
pick random primes within a fixed set. However
we believe the generator we exhibited, which costs
a CRT reconstruction from small size moduli with
operations that fit within a machine word-size,

should be hopefully more efficient in implemen-
tation space and speed than any possibly known
prime picking technique. Figure 2 presents the
result of our experiment made to compare dif-
ferent methods by counting how many clock
cycles it would take to generate random pairwise
coprime integers, sampling integers one by one
and rejecting every integer that is not pairwise
coprime with the others. To do so, we calculate
the product of every pairwise coprime, memo-
rize the product and compute its gcd with every
newly generated number we need to add. If the
number is coprime with the product, we update
the product and continue. To generate primes, we
used the GMP function mpz probab prime p to
discard non-prime numbers and to generate ran-
dom numbers we just used the rand() function
in C (we do not believe another random number
generator such as mpz urandomb would yield sig-
nificant differences in our experimentations). All
experimentations are done on a machine using
an Intel(R) Xeon(R) E-2246G CPU @ 3.60GHz
processor with a simple C program using GMP
and compiling with the optimization option -O3.

0

2× 106

4× 106

6× 106

8× 106

1× 107

1.2× 107

200 400 600 800 1000

cl
o
ck

cy
cl
es

number d of sampled pairwise coprime numbers

Generating primes
Random numbers

Our generator

0

20000

40000

60000

80000

100000

120000

140000

2 4 6 8 10 12

cl
o
ck

cy
cl
es

number d of sampled pairwise coprime numbers

Generating primes
Random numbers

Our generator

Fig. 2 Cycles to create d 28-bits pairwise coprime integers



Springer Nature 2021 LATEX template

Prob. Verif. 11

One can remark that the prime number gener-
ation grows quasi linearly because we do not check
the gcd but rather the equality with other pre-
viously sampled numbers, while the k-th number
generated need to check if it is coprime with the
k− 1 previously stored integers, and gets rejected
if not. Thus, prime numbers might become more
efficient for (an unknown) large amount d of pair-
wise coprime numbers: no gcd computations are
needed to check the results, unlike other methods.
However, since we do not usually need more than
d = 12 numbers for the largest security parame-
ters λ = 256, our method proves more effective,
especially since our tests up to d = 1024 shows
our approach remains more effective.

Practical parameters and application to
[44]

As we stressed out earlier, one of the main security
requirement was to have Sω as large as possible.
Our new method indeed gives a large set Sω but
they are no longer pairwise guaranteed coprime.
Of course, we can generate more integers to com-
pensate which is what we measured in the previous
subsection, but as the generation of a pairwise
coprime set is fast itself (the amount of resam-
pling was proven to be low) the option to use
strictly pairwise coprime sets can be a security
choice. Thus, enforcing pairwise coprime sets only
give a fraction of

(
Sω

k

)
as possibilities. Typically,

given d integers sampled from a RNS basis Mk

(hence couples (d, k)), we estimate the bit security
parameter λ by the amount of valid combinations⌊

log2

((
M∗

k

d

)
× α

)⌋
= λ

where α is the amount of valid sets where d sam-
ples of M∗

k are coprime. Tables 7 and 6 should
help setting parameters.

In setting parameters, we also need to be care-
ful not to create any form of overflows that would
reject otherwise valid signatures. Thus, we are also
giving in table 8 below the size of our outputs.

Notice that our generator parameters scale
very well when we aim to increase combination
security: jumping from λ = 128-bits of security
to λ = 256 often requires less than doubling
the amount d of vectors. In practice, recom-
mended lattice dimensions tend to change with λ
so a reevaluation of optimal parameters (d, k) is

Table 6 Amount of sets of d pairwise coprime out of
10000 calls to (BaseCop(Mk))

d

d
k

5 6 7 8 9 10 11

4 8792 9144 9243 9469 9480 9602 9640
5 8078 8626 8779 9105 9171 9338 9435
6 7327 8035 8303 8679 8838 9035 9144
7 6506 7357 7767 8234 8449 8707 8844
8 5725 6652 7214 7727 8016 8293 8482
9 4980 5964 6604 7180 7551 7884 8094
10 4243 5298 6036 6668 7089 7439 7712
11 3618 4636 5423 6096 6617 6998 7266
12 3025 4066 4795 5575 6117 6509 6833
13 2491 3497 4243 5086 5644 6078 6394

Table 7 Value of ⌊log2
((M∗

k
d

))
⌋

d
k

5 6 7 8 9 10 11

4 46 62 79 96 116 135 156
5 56 76 97 119 143 168 194
6 66 90 115 142 171 200 231
7 76 104 133 164 198 232 268
8 85 117 150 186 225 264 305
9 94 130 168 208 251 296 342
10 104 144 185 230 278 327 379
11 113 157 203 252 304 358 415
12 122 170 220 273 331 390 452
13 130 182 237 295 357 421 488

Table 8 Size of Mk in bits (lowest upper-bound of the
size of ωi), using k consecutive primes

k 1 2 3 4 5 6 7 8
k-th prime 2 3 5 7 11 13 17 19
⌈log2 Mk⌉ 2 3 5 8 12 15 19 24

k 9 10 11 12 13 14 15 16
k-th prime 23 29 31 37 41 43 47 53
⌈log2 Mk⌉ 28 33 38 43 49 54 60 65

almost always necessary. Nevertheless, our results
allow to use smaller (d, k) compared to the prime
approach of [44] for [43], leading to smaller mem-
ory requirements for [43], less precomputations
and faster verification:

• For λ = 128, [44] proposes d = 6 with 28-bits
primes: with our generator, d = 6 with k = 8
(24-bits integers) is enough and so is d = 5
with k = 9 (28-bits integers).

• For λ = 192, [44] proposes d = 9 with 27/28-
bits primes: with our generator, d = 7 and
k = 9 is enough and so is d = 9 and k = 8.

• For λ = 256, [44] proposes d = 12 with 24
to 28-bits primes: with our generator, d = 10



Springer Nature 2021 LATEX template

12 Prob. Verif.

and k = 9 is enough, and so is d = 12 and
k = 8.

Using Barrett’s algorithm [6] for modular
reduction (thus consider it as equivalent to a
multiply-and add), we can estimate the arithmetic
operation cost of a verification process using our
procedure. Note that a linear increase on a secu-
rity parameter λ does not continuously increase
the number of required operations: the number of
operations is based on finding the combination
(d, k) with the lowest computational cost such
that the security is above λ bits. Hence it is nat-
ural that whole intervals of security parameters
share the same minimal choice (d, k) for 64-bits
processor using a process call “lazy reduction”:
we only proceed to a modular reduction to avoid
overflows. Figure 3 fixed the security parameter at
some of the security levels requested by the NIST
(λ = 128, 192, 256) and shows we perform less
operations for verifications than [44]’s approach
from dimensions 512 to 1024 which are also the
lowest and highest lattice dimensions proposed
by [18]. The gain is not so noticeable for λ = 128,
but the gap tends to widen as security parameters
increase: our approach scales better.

3000

4000

5000

6000

7000

8000

9000

10000

11000

600 700 800 900 1000

m
u
lt
ip
ly
-a
n
d
-a
d
d
s

lattice dimension

[44] λ = 256
This work λ = 256

[44] λ = 192
This work λ = 192

[44] λ = 128
This work λ = 128

Fig. 3 Approximate number of multiply-and-adds
between this paper and [44] during a verification

Once the parameters are set, we can also some-
how approximate the memory needed for this
generator to run. While it is impossible to pre-
dict the program size or the size of the random
bit generator as those can be implemented at the
hardware level, we can determine the memory
needed for the variables and intermediate com-
putations: it is roughly the memory needed for
a CRT. Assuming sequential operations, so first

we need the combined bit size of all k moduli,
plus the size of the largest one to manage the
random bits, and given s the bit size of their
product, we need an extra (k + 2)s (for the mod-
ular inverse constants, the moduli product, and
the size of intermediate results including the final
value). So for λ = 128 with k = 8 and thus
s = 24 (see table 8), the random moduli genera-
tor theoretically needs no more than 272-bits. For
a parallel operation (i.e treating all components
at the same time), twice this memory might be
needed at most, as most intermediate results can
be bounded by the moduli or their products.

4 Application to unstructured
lattices

We extend in this section this work by applying
the compression to schemes that would rely on
a non-algebraically structured lattice signature
scheme. Ignoring the process of both key gen-
eration and signature, we focus on the storage
of the public key and the efficacy of verification
algorithm, in which we recall the structure and
the computations. We will first deal with the
case of co-cyclic lattices, and then deal with the
case of q-ary lattices. We will show that our
adaptation is not straight-forward: while it was
possible to improve the work of [44] without much
drawbacks with a simple number generator, it is
not the case for the following generalizations to
other unstructured lattices. In both q-ary lattice
and co-cyclic lattice cases, we will show that
requesting extra information from the signatory
is necessary. Thankfully, there should not be any
loss of security as this extra information was
easily computable from any party in the original
scheme. The size of this overhead however, is
large and further work will be needed to reduce
its size, especially in the q-ary case.

Without going into details of computational
lattice theory, the heuristic security of unstruc-
tured lattice-based schemes is often based on two
parameters: the dimension and the determinant.
Thus, if we wish to compare both q-ary lattices
and co-cyclic lattices of equal dimension n over Z
with the same security parameters, we could fix
both determinants to be ql some power of q (and
l < n). For the representation of a q-ary lattice



Springer Nature 2021 LATEX template

Prob. Verif. 13

over Zn×n, it follows that if the determinant is ql,
the “interesting block” has size (n−l)×l. For sim-
plification, we would note D the determinant for
a co-cyclic lattice.

4.1 Co-cyclic lattices with perfect
Hermite Normal Form

In a hash-and-sign approach of signature schemes
with a lattice generated by a perfect HNF A,
the validity for a message m, a signature s and
a hash function h is determined by verifying the
following:

α = s− h(m) ∈ L(A)

and s “small enough”. As q-ary lattices make
up for the large majority of recent lattice-based
cryptography publications (and thus computa-
tions over Zq rather than Z), we believe it might be
worthwhile to give some reminder and graphic rep-
resentation of how traditional membership tests
are done for classical lattices. We show below an
example of checking whether α ∈ L:

Example 1. Is α = [1 − 1 1 1] ∈ L?
17 0 0 0
10 1 0 0
15 0 1 0
13 0 0 1
1 −1 1 1

→


17 0 0 0
10 1 0 0
15 0 1 0
13 0 0 1
−12 −1 1 0

→


17 0 0 0
10 1 0 0
15 0 1 0
13 0 0 1
−27 −1 0 0

→


17 0 0 0
10 1 0 0
15 0 1 0
13 0 0 1
−17 0 0 0


The final step is easy to guess (reduce to 0) so the
answer is yes.

In the above example the determinant is 17 for
easy manual verification but it is easy to see that
in the parameters we described, the verification is
done with n−1 additions and n−1 multiplications
over ZD. If we denote α = [α1, ..., αn], we can
denote β = [0,−α2, ...,−αn] and notice the above
computations can be represented by verifying

βA+ α = x with x = [x1, 0, ..., 0] ∈ Zn

x1 ≡ 0 mod D i.e x1 = δ ×D

If we wish to apply the work of [44] the transfor-
mation gives

βv⊤
(A,ω1)

+ αv⊤
ω1

= [δD, 0, ..., 0]v⊤
ω1

mod ω1

...

βv⊤
(A,ωd)

+ αv⊤
ωd

= [δD, 0, ..., 0]v⊤
ωd

mod ωd

Note on the acceleration of the verifi-
cation At first sight this might look worse as
it performs 2 scalar products per moduli ω (the
right hand side of the equations are actually
just a multiplication between 3 integers) and
the original verification was already somewhat
efficient with a complexity close to a single scalar
product. However Ω = ω1...ωd is in fact much
lower than the determinant D, and this allows
parallelization while D might need multipreci-
sion arithmetic. Without our modifications, the
verification computations are done modulo the
determinant D which is typically in the order of
several thousands of bits, while in our modifica-
tion Ω is typically less than 300 bits and allows
to use the CRT to parallelize the operations 2.

As one of the main point of this paper is to
avoid the storage of the public key A, it is not
possible to compute δ without A. We need the
signatory to provide δ to the verifier: this is a
change compared to [44] that did not require extra
information. However, δ was available to all par-
ties in the original schemes: thus there should not
be any loss of security. If the old signature had
the form sold = {s}, the new signature has the
form snew = {δ, s}, where δ is an integer of size
log2(n) supposing h(m) is already reduced to a
single non-zero coefficient. A tighter upper-bound
for the extra integer’s size is log2(∥s∥1) but we
prefer to avoid mixing norms. Other approaches
than hash-and-sign exist, but as unstructured co-
cyclic lattices have not seen a practical use since
the work of [20], we do not feel the need to present
how the generalization would apply in other signa-
ture constructions. In particular, there is no round
1 candidates in the NIST competition that rely
on co-cyclic lattices. As its core, we believe the
verification of the equality is easily adaptable.

2see values of q, l for [14, 18] compared to matching security
values d, ωi in tables 8,6,7



Springer Nature 2021 LATEX template

14 Prob. Verif.

4.2 Application to q-ary signature
schemes

In the case of q-ary lattices, it would be tempting
to not use random moduli and keep the opera-
tions over q, as q is typically chosen for efficiency
purposes (as a power of 2 for example). However,
according to [44], that drastically decreases the
security: an attacker would have a probability
of 1/q to output a valid signature in the eyes of
the verifier’ side. Since typically q ≤ 264, that
is a major security concern. Thus, we still need
to carry operations over Z, and extend the sig-
nature by a number of bits of the order of the
dimension where we request from the signatory to
give us the amount of modular reduction modulo
q that a regular verifier would do. To the best
of our knowledge, there is currently two main
frameworks for the verification algorithm con-
cerning q-ary lattices: one is the famous upgraded
hash-and-sign from [23], the other one is the Fiat-
Shamir application of [31]. In both cases, we can
consider that the public key is a full-rank matrix
A over Zq, and that all computations are over Zq

and h is a secure hash function.

The respective verification processes are as
follows:

• In [23], given a signature s from a message m,
the verification process check that s is short
and that sA = h(m).

• In [31], given a signature s = (s1, s2, s3) from
a message m, the verification process check
that s3 is small with s3 = h(s1A + s2 −
s3T,m) where T is another public matrix.

Both verifications involve a multiplication of vec-
tor and a matrix, thus at first sight, Freivalds’
algorithm can apply. Thus, we will attempt
to apply our techniques to the hash-and-sign
approach of [23]. For the Fiat-Shamir approach
of [31], we refer the readers to the appendix. Of
course, our technique mostly applies if verifiers
do not have to reconstruct the short vectors from
the public key, or hash parameters, as the goal is
to not store the public key.

Let us denote AZ the representative of A over
Z. Let us denote sq the vector representing the
amount of reduction modulo q per coordinate that
are done during a classic verification over Zq. The
previous verification over Zq whether or not s ×

A = h(m) becomes

s×AZ − qsq = h(m) over Z

thus increasing the size of the signature by the
size of sq. Thus, to apply our modification the sig-
nature has to change shape from sold = (s) to
snew = (sq, s). This does not reduce the security
as sq could be computed in polynomial time in
the original scheme by any party from a public
perspective. We then need to precompute vA,ωi

=
AZ × v⊤

ωi
mod ωi and vq,ωi

= q × v⊤
ωi

mod ωi,
and the new verification process becomes

s× vA,ω1
− sq × vq,ω1

= h(m)× v⊤
ω1

mod ω1

...

s× vA,ωd
− sq × vq,ωd

= h(m)× v⊤
ωd

mod ωd

The main drawback to this approach is the size
of k: while reducing the storage from a quadratic
requirement to a linear requirement is attractive,
we impose on the signatory to adds an extra com-
putation step that produce an extra information
(which do not reduce the security) potentially
larger than the initial signature itself. Compared
to the co-cyclic case, the extension of the signature
is not limited to a single integer but is repre-
sented by a whole vector sq which has size (n −
l)2 log2(∥s∥∞)(there is also a tighter upper-bound
using the taxicab norm) for [23]. For [31], this is
even worse (see appendix). Decreasing the size of
this extra information seems to be a challenging
task and we leave it as an open question.

4.3 Extended framework

In both applications to the q-ary case and the
co-cyclic case, the framework of [44] is slightly
changed by requiring the signatory to add some
extra information sextra to the signature to ensure
the verification is valid. In both cases, sextra was
easily computable in the original scheme thus
there is no apparent loss of security. The new
framework is then

* (new offline step) Alice compute the couples
(ωi,vωi).

1 Bob sends to Alice a public key A
* (new offline step) Alice compute v⊤

(A,ωi)
(and

vq if needed).
2 Alice sends to Bob a message m



Springer Nature 2021 LATEX template

Prob. Verif. 15

3 (modified step) Bob signs m with his signa-
ture snew = (sextra, soriginal)

4 (modified step) Alice verifies that snew is valid
for m,A,vωi

, ωi for all i.

4.4 Comparisons

We evaluate in this section the size of the different
storages of information on the public key and the
size of the signatures of the concerned schemes.

For security reasons, we know that
∥s∥∞ ∼ D1/n (where D is the lattice determi-
nant) to guarantee that the corresponding lattice
problem is hard to break. Consequently, we obtain
O(log(D)) = n log(∥s∥∞). As the public key is in
O(n log(D)), we instead store an information of
the public key in size n2 log(∥s∥∞).

For the case of q − ary lattices, the deter-
minant is given by D = ql and the public key
size is in O((n − l) log(D)), we instead store
an information on the public key in the size of
O((n− l)n log(∥s∥∞).

Furthermore, in the Freivalds’ version, recall
that Πd

i=1ωi ∼ 2λ, therefore we can estimate that
d log(ωi) = O(λ). We also recall that for secu-
rity reason, we have λ << n. and that generally
log(∥s∥∞) = O(n).

We present the different magnitudes in terms
of storage (or number of integral operations
required) for the verifier as well as the size of
signatures in table 9 below.

4.5 Discussion on comparisons

In this subsection we briefly discuss the downsides
given to the signatory and eventual scenarios
where such a trade-off would be relevant. Sig-
nature verification speed, before our work, was
already believed to be fast compared to the setup
and signing methods used in several lattice-based
signature schemes. Thus, it is legitimate to won-
der in which scenarios is the extra cost on the
signatory negligible.

First, the extra cost on the signatory on our
proposed trade-off is roughly equivalent to the
cost of an original verification. Thus, if the origi-
nal verification was already fast and lightweight,
then so is the extra computation required on the

signatory. Furthermore, our work is focused on
unstructured lattice schemes: managing keys on
unstructured lattices was already deemed to be
heavy, thus we have to suppose that the signa-
tory must have significant capabilities in both
storage and computational capability to handle
unstructured lattices (unless new research on
unstructured lattices prove it otherwise). In this
case, adding a small extra cost on the signatory is
seemingly acceptable as we can then allow the use
of unstructured lattices on low capability verifiers.

Second, this can also be a gain in a multi-user
scenario where every user generate privately their
own large unstructured key. Supposing there is a
large amount of users k where n is the dimension
of the lattice, then managing your own key has
a memory cost of n2, while managing the public
key of the other users you communicate with then
has a cost of kn2. With our proposed modifica-
tion, verifying other users’ signatures only require
a cost of kcn (where c is the number of moduli ωi

determined by the security parameter λ, and not
directly linked to n). While this does not remove
the fact that each user has to deal with his own
unstructured key, at least the storage requirement
on other users’ keys is comparable to one of a
structured lattice.

Practical comparisons done with experimental
implementations of lattice-based schemes is cur-
rently hard to achieve: the main reason being the
lack of recent unstructured lattice-based signature
schemes. The work of [44] provided experimen-
tal time and memory space comparisons, using
an open source implementation of preexisting
scheme. In our case, there is no open source
implementation of a HNF based unstructured
lattice-based signature scheme available online.
Nevertheless,

• Coprime generation is experimentally faster
than prime generation and require way less
memory, this is an improvement to [44].

• Smaller parameters than [44], given at the
end of section 3, automatically implies less
operations, thus faster operations and better
trade-off for subsequent operations.

• If an unstructured co-cyclic lattice has
dimension n, the signature only carries
log2(n) as an extra size-cost: this is relatively



Springer Nature 2021 LATEX template

16 Prob. Verif.

Table 9 Verifier Public key and Signature size

Classic Freivalds’ version
Key Shape Public Key Signature Public Key Signature
Co-cyclic n2 log(∥s∥∞) n log(∥s∥∞) nλ n log(∥s∥∞)
q-ary [23] (n− l)n log(∥s∥∞) (n− l) log(∥s∥∞) (n− l)λ (n− l) log(∥s∥∞) + l log(n− l)
NTT-based n log(∥s∥∞) n log(∥s∥∞) - -

small compared to the original size of classi-
cally n log2(n) of lattice-based signatures.

Whenever an open-source implementation of an
unstructured lattice-based signature scheme is
published, a practical comparison using our mod-
ification can be easily implemented; the setup of
the key is unchanged, and the signature process
only requires to store the amount of modular
reduction and concatenate it with the signature
instead of discarding it.

5 Open questions

We end this paper by remarks on the security
model of [44] where they assume that guessing
moduli is sufficient to break the system. As this
assumption is “paranoiac” in their own words to
ensure security against a yet-to-be-known attack,
we can choose to shift the security requirements
to a looser requirement. We want to stress that
as this point, the security is unknown: the “pub-
lic lattice” problem might have changed and its
theoretical security would need to be studied.
However, we explain here how those changes
would apply if no security concerns are raised.
We also mention other relevant topics as alterna-
tive probabilistic and deterministic verifications,
structured lattices, and side-channel attacks.

Freivalds’ technique to co-cyclic signatures
without hidden vωi

As shown previously, the original verification on
perfect HNF of co-cyclic lattices already seemed
fast enough. If the security is based on Ω = ω1...ωd

anyway, we can transfer the verification over ql

to a verification over Ω using the exact same
operations. δ the amount of reductions modulo ql

is still necessary, however this allows to cut the
amount of operations and the amount of memory
required by half. It is unclear how much this
modification decreases the actual security.

Freivalds’ technique to q-ary signatures
without hidden ω

We choose here that the requirement be only the
probability of setting false positives and keeping
the same moduli q of the original lattice. This
would allow to discard the heavy vectors sq. Like
above, it is unclear how much this decreases the
actual security. Suppose that instead of multiply-
ing by a vector v, we multiply by α distinct vectors
(i.e a matrix), and keep the computations mod-
ulo q as per the original system. This sets the
probability of getting a false positive to qα, and
if we assume that the dimension is large enough
and the vectors random enough to be secure this
leads to a new construction, where the original
signature is left unchanged. Given A ∈ Zn×c

q the
public key, note B ∈ Zc×α

q a random matrix. A
new verification process we use for [23] is

s×BA = h(m)×B mod q

where B and BA = A × B are precomputed
at verifier’s setup. It is very important that the
moduli q is kept the same in this case, as replac-
ing by a divisor makes the problem easier for
an attacker: it opens a way for an attacker to
guess a false positive by solving a lattice problem
over a lattice which determinant is lower than
the original determinant (a divisor of the orig-
inal determinant). Here, the acceleration only
makes sense if it is guaranteed that B is much
smaller than the public key A, as their coeffi-
cients and arithmetical properties are basically
similar (assuming A is structureless). In this new
case, we just need to sample α vectors such that
qα > 2λ for λ-bits of security.

Finer analysis of the generated set

As shown in table 6, the set of lists of pairwise
coprimes is slighty smaller (a fraction). Crypto-
graphicly, this difference is consequently neglige-
able (few bits of security).



Springer Nature 2021 LATEX template

Prob. Verif. 17

However, to obtain a complete security evalua-
tion, one could further study the distribution of
the co-primes used. At this stage, we cannot antic-
ipate any futher weakness; as long as the cost of
guessing correctly a moduli randomly by forging
a signature on a “weaker” lattice is higher than
the security parameter, this will ensure safety;
every potential attempt on guessing the set of
moduli in the current heuristic security model is
assumed to be made by submitting a valid signa-
ture for the secret moduli that would be incorrect
for the original scheme without our modification.
Nervertheless, the study of the distribution of gen-
erated co-primes remains an interresting question
especially if one will use this technique for other
applications that cryptographic ones.

Side-channel attacks

Adding a secret to a verifier can sound counter-
intuitive and it is natural to ponder the question
of whether or not additional countermeasures
against side-channel attacks for verifiers would
make the verifier slower than originally. Some
points come to mind. First, depending on the
use-case, if high-speed is not a necessity but
memory storage is, our technique is still useful
for unstructured lattices. It seems unlikely that
potential countermeasures will offset the linear
factor gained both in key compression and veri-
fication speed. Second, if novel knowledge shows
that coprimality is not required and that some
redundancy is tolerable, generators and all opera-
tions can be made in constant-time. In particular,
we can generate random pseudo-mersenne, thus
it is possible that there is no need for looping
inversion algorithms (and conditionals) as long as
proper targeted reductions to avoid overflows are
done. Third, random draws of moduli is a tech-
nique used in RNS to protect against side-channel
attacks [4]. As we do not require modular inverses
or base extensions, we could also use redundant
arithmetic or random draws of moduli without
resorting on coprimality. Like in [4, 10, 35], a high
number of possible combinations is at the core of
the security, and our generator provide it. The
issue is the lack of guaranteed coprimality and
maybe the computation of modular inverses in
constant time without branching, but this could
be a (very difficult) further research direction.
If this last point is solved, the generator could

prove to be a direct side-grade to [4] using [7] for
modular inversion, with the extra cost of rejecting
and resampling the non-coprime numbers. There
might be other concerns, but setting secrets on
verifiers seems relatively uncommon and can be
interesting to study.

Other open questions

Many q-ary lattice schemes nowadays rely on poly-
nomial structures[8, 15, 18, 21]: matrices A are
stored in two polynomials (or group of polynomi-
als) (f, g) where f ∈ Zq[X]/g (ring version) or
(Zq[X]/g)b (module version). g is often a param-
eter of the cryptosystem, leaving f as the only
variable public key. Each row of A is of the
form X × f mod g. Verification of equalities and
computations are done over Zq[X]/g, which leads
to compressed key sizes and accelerations. On
those particular cases, it is possible that our stor-
age requirement becomes larger than the original
scheme: the public key can be seen as a single
vector (i.e a single polynomial), while our precom-
puted vectors over multiple moduli can be seen
as many. However, our efficiency for verification
should remain faster: whether the cryptosystem
uses Karatsuba’s algorithm [28], the Number The-
oretic Transform (NTT) [41] or a combination
of both [33] to verify equations, it should not
be asymptotically faster than a constant number
of scalar products. Furthermore, NTT operations
often require the precomputation and storage of
roots of unity, thus store more than just the key:
for a lattice of dimension n, a full NTT requires
operations in the order of n log2(n) (a multiple of
n for each level of the “butterfly” step, and there
is exactly log2(n) steps). Our approach requires
cn, where c does not depends on n but on the
property of the number generator and the required
security level λ. Overall, at this current state of
research the trade-off is not interesting for struc-
tured lattices for now. In fact, it is possible that
those structures can be exploited to accelerate
the verifier setup and the extra signature infor-
mation required for our work to apply. For now
we keep our work generic as its core application is
unstructured lattices. Note that there have been
some attempts to use a probabilistic verification
for polynomial structures that could apply for



Springer Nature 2021 LATEX template

18 Prob. Verif.

cryptography: [24] adapted the probabilistic eval-
uation of polynomials to middle products [42]. It
is unclear if their technique actually outperforms
ours or how to evaluate its security when modify-
ing the verifier. Another direction is to pursue the
generic approach of probabilistic or deterministic
verification [29].

6 Conclusion

We exhibited a random number generator that
has good properties to almost qualify as a random
RNS base generator, i.e generates sets of pair-
wise coprimes with high probability. This directly
allows us to improve [44]’s original work. We also
generalize [44]’s work to apply to q-ary lattices
which includes all lattice-based NIST candidates
since round 1 although most are structured lat-
tices, and showcase interesting performance trade-
offs for faster verification and lower public key
storage for unstructured lattice signature schemes
when a key is reused at the cost of a precompu-
tation. Overall, we show that unstructured lattice
can be, larger initial communications aside, almost
as efficient as structured lattices for the verifi-
cation processes of lattice-based signatures. This
can help the engineering challenge of designing a
public key infrastructure with low-capacity ver-
ifiers. As we stated in the introduction, there
is currently no unstructured lattice-based signa-
ture scheme selected in the round 3 of NIST.
If another lattice-based signature has to be sub-
mitted for the round 4, then according to their
most recent announcement it has to be unstruc-
tured [38]: in this case, this work can apply and
further improvements can be done.

Appendix A Adapt to [31]

For [31], we reuse the same notations, sq represent-
ing the modular reductions, TZ the representative
of T over Z, and the verification over Zq of s3 =
h(s1A+ s2 − s3T,m) becomes:

s3 = h(sh,m) and sh = s1AZ+s2−s3TZ−qsq over Z

We prefer not to alter the hash function or its out-
put as it is a core security part of the original con-
struction, thus we only change the computation
of the parameter within the hash function. sold =
(s1, s2, s3) changes to snew = (s1, s2, s3, sh, sq)

where sh = s1A + s2 − s3T. Since A,T are pub-
lic and s1, s2, s3 are the components of sold, there
is no loss of security. Noting vT,ωi

= TZ × v⊤
ωi

mod ωi we obtain

s3 = h(sh,m)

sh = s1vA,ωi
+s2v

⊤
ω1
−s3vT,ω1

−sqvq,ω1
mod ω1

...

sh = s1vA,ωi
+s2v

⊤
ωd
−s3vT,ωd

−sqvq,ωd
mod ωd

References

[1] Aiken H, Semon W (1959) Advanced digital
computer logic. Comput Lab, Harvard Univ,
Cambridge, Mass, Rep WADC TR-59-472

[2] Ajtai M (1996) Generating hard instances of
lattice problems. In: STOC ’96: the twenty-
eighth annual ACM symposium on Theory of
Computing, pp 99–108

[3] Bajard JC, Duquesne S (2021) Montgomery-
friendly primes and applications to cryptog-
raphy. Journal of Cryptographic Engineering
11:399–415

[4] Bajard JC, Imbert L, Liardet P, et al (2004)
Leak resistant arithmetic. In: Cryptographic
Hardware and Embedded Systems - CHES
2004, LNCS, vol 3156. Springer, pp 62–75

[5] Bajard JC, Fukushima K, Kiyomoto S, et al
(2021) Generating residue number system
bases. In: 28th IEEE Symposium on Com-
puter Arithmetic

[6] Barrett P (1986) Implementing the rivest
shamir and adleman public key encryption
algorithm on a standard digital signal pro-
cessor. In: Conference on the Theory and
Application of Cryptographic Techniques,
Springer, pp 311–323

[7] Bernstein DJ, Yang BY (2019) Fast constant-
time gcd computation and modular inversion.
IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 3:340–398

[8] Bernstein DJ, Chuengsatiansup C, Lange
T, et al (2018) NTRU prime. NIST
Post-Quantum Cryptography Standardiza-
tion, URL https://ntruprime.cr.yp.to/

https://ntruprime.cr.yp.to/


Springer Nature 2021 LATEX template

Prob. Verif. 19

[9] Cohen H (1993) A Course in Computational
Algebraic Number Theory, vol 138 of Gradu-
ate Texts in Mathematics. Springer-Verlag

[10] Courtois J, Abbas-Turki L, Bajard JC (2019)
Resilience of randomized rns arithmetic with
respect to side-channel leaks of cryptographic
computation. IEEE Transactions on Comput-
ers 68(12):1720–1730

[11] Cramer R, Ducas L, Wesolowski B (2021)
Mildly short vectors in cyclotomic ideal lat-
tices in quantum polynomial time. Journal of
the ACM 68(2):1–26

[12] Crandall R (1992) Method and apparatus for
public key exchange in a cryptographic sys-
tem. US Patent 5,159,632. US Patent and
Trade Office (Oct 1992)

[13] Dinur I (2007) The PCP theorem by gap
amplification. Journal of the ACM 54(3):12–
es

[14] Ducas L, Kiltz E, Lepoint T, et al
(2021) Crystals-dilithium algorithm specifi-
cations and supporting documentation. NIST
Post-Quantum Cryptography Standardiza-
tion, URL https://pq-crystals.org/

[15] Erdem A, Roberto A, Joppe B, et al
(2018) NewHope Algorithm Specifica-
tions and Supporting Documentation. 1st
edn., https://newhopecrypto.org/data/
NewHope 2018 06 14.pdf

[16] Feige U, Goldwasser S, Lovász L, et al (1991)
Approximating clique is almost NP-complete.
In: 32nd Annual Symposium of Foundations
of Computer Science, pp 2–12

[17] Fouque PA, Tibouchi M (2019) Close to uni-
form prime number generation with fewer
random bits. IEEE Transactions on Informa-
tion Theory 65(2):1307–1317

[18] Fouque PA, Hoffstein J, Kirchner P, et al
(2018) Falcon: Fast-fourier lattice-based com-
pact signatures over NTRU (specification
v1.2). NIST Post-Quantum Cryptography
Standardization, URL https://falcon-sign.
info/(asof2022)

[19] Freivalds R (1979) Fast probabilistic algo-
rithms. In: Mathematical Foundations of
Computer Science, LNCS, vol 74. Springer,
pp 57–69

[20] Gama N, Izabachene M, Nguyen PQ, et al
(2016) Structural lattice reduction: gen-
eralized worst-case to average-case reduc-
tions and homomorphic cryptosystems. In:

Advances in Cryptology – EUROCRYPT,
LNCS, vol 9666. Springer, pp 528–558

[21] Garcia-Morchon O, Zhang Z, Bhattacharya
S, et al (2018) Round5: merger of hila5
and round2. Post-Quantum Cryptography
Standardization, URL https://github.com/
round5/

[22] Garner HL (1959) The residue number sys-
tem. In: Western Joint Computer Conference,
ACM, pp 146–153

[23] Gentry C, Peikert C, Vaikuntanathan V
(2008) Trapdoors for hard lattices and new
cryptographic constructions. In: STOC ’08:
the fortieth annual ACM symposium on The-
ory of computing, pp 197–206

[24] Giorgi P (2018) A probabilistic algorithm for
verifying polynomial middle product in linear
time. Information Processing Letters 139:30–
34

[25] Goldstein D, Mayer A (2003) On the equidis-
tribution of Hecke points. Forum Mathe-
maticum 15(2):165–189

[26] Hardy G, Wright E (First Edition 1938)
An Introduction to the theory of numbers.
Oxford University Press, London

[27] Joye M, Paillier P (2006) Fast generation
of prime numbers on portable devices: An
update. In: Cryptographic Hardware and
Embedded Systems - CHES 2006, LNCS, vol
4249. Springer, pp 160–173

[28] Karatsuba AA, Ofman YP (1963) Multipli-
cation of multidigit numbers on automata.
Soviet physics doklady 7:595–596

[29] Korec I, Wiedermann J (2014) Deterministic
verification of integer matrix multiplication
in quadratic time. In: SOFSEM 2014: Theory
and Practice of Computer Science, pp 375–
382

[30] Liu YK, Lyubashevsky V, Micciancio D
(2006) On bounded distance decoding for
general lattices. In: Approximation, Ran-
domization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, LNCS, vol
4110. Springer, pp 450–461

[31] Lyubashevsky V (2009) Fiat-Shamir with
aborts: Applications to lattice and factoring-
based signatures. In: Advances in Cryptol-
ogy – ASIACRYPT 2009, LNCS, vol 5912.
Springer, pp 598–616

[32] Lyubashevsky V, Micciancio D (2009) On
bounded distance decoding, unique shortest

https://pq-crystals.org/
https://newhopecrypto.org/data/NewHope_2018_06_14.pdf
https://newhopecrypto.org/data/NewHope_2018_06_14.pdf
https://falcon-sign.info/ (as of 2022)
https://falcon-sign.info/ (as of 2022)
https://github.com/round5/
https://github.com/round5/


Springer Nature 2021 LATEX template

20 Prob. Verif.

vectors, and the minimum distance problem.
In: Advances in Cryptology - CRYPTO 2009,
LNCS, vol 5677. Springer, pp 577–594

[33] Moenck RT (1976) Practical fast polynomial
multiplication. In: SYMSAC ’76: the third
ACM symposium on Symbolic and algebraic
computation, ACM, pp 136–148

[34] Moody D (2021) Status update on the 3rd
round. Third PQC Standardization Con-
ference, https://csrc.nist.gov/Presentations/
2021/status-update-on-the-3rd-round

[35] Negre C, Perin G (2015) Trade-off approaches
for leak resistant modular arithmetic in rns.
In: Information Security and Privacy. ACISP
2015, LNCS, vol 9144. Springer, pp 107–124

[36] Nguyen PQ, Shparlinski IE (2016) Counting
co-cyclic lattices. SIAM Journal on Discrete
Mathematics 30(3):1358–1370

[37] NIST (2018) Post-quantum cryptography
standardization. URL https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography

[38] NIST (2022) Post-Quantum Cryp-
tography Standardization. URL
https://csrc.nist.gov/news/2022/
pqc-candidates-to-be-standardized-and-round-4

[39] Pellet-Mary A, Hanrot G, Stehlé D (2019)
Approx-SVP in ideal lattices with pre-
processing. In: Advances in Cryptology
– EUROCRYPT 2019, LNCS, vol 11477.
Springer, pp 685–716

[40] Plantard T, Sipasseuth A, Dumondelle C,
et al (2018) DRS : Diagonal dominant
reduction for lattice-based signature. NIST
Post-Quantum Cryptography Standardiza-
tion, URL https://thomas-plantard.github.
io/drs/

[41] Pollard JM (1971) The fast fourier transform
in a finite field. Mathematics of computation
25(114):365–374

[42] Roşca M, Sakzad A, Stehlé D, et al (2017)
Middle-product learning with errors. In:
Advances in Cryptology – CRYPTO 2017,
LNCS, vol 10403. Springer, pp 283–297

[43] Sipasseuth A, Plantard T, Susilo W (2019)
Improving the security of the DRS scheme
with uniformly chosen random noise. In:
Jang-Jaccard J, Guo F (eds) Information
Security and Privacy. Springer International
Publishing, Cham, pp 119–137

[44] Sipasseuth A, Plantard T, Susilo W (2019)
Using freivalds’ algorithm to accelerate

lattice-based signature verifications. In: Infor-
mation Security Practice and Experience,
LNCS, vol 11879. Springer, pp 401–412

https://csrc.nist.gov/Presentations/2021/status-update-on-the-3rd-round
https://csrc.nist.gov/Presentations/2021/status-update-on-the-3rd-round
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://thomas-plantard.github.io/drs/
https://thomas-plantard.github.io/drs/

	Introduction
	Background
	Lattices-based signatures
	Freivalds' algorithm and application to lattice-based signatures

	Improving Sipasseuth-Plantard-Susilo's public key precomputation
	Constructing the number generator
	Experimental efficiency and application to Sipasseuth et al's work

	Application to unstructured lattices
	Co-cyclic lattices with perfect Hermite Normal Form
	Application to q-ary signature schemes
	Extended framework
	Comparisons
	Discussion on comparisons

	Open questions
	Conclusion
	Adapt to lyubashevsky2009fiat

