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A recent work of Sipasseuth, Plantard and Susilo proposed to accelerate lattice-based signature verifications and compress public key storage at the cost of a precomputation on a public key. This first approach, which focused on a restricted type of key, did not include most NIST candidates, or most lattice representations in general. In this work, we first present a way to improve even further both their verification speed and their public key compression capability by using a generator of numbers that better suit the method needs. We then also generalize their framework to apply to q-ary lattice schemes as well as classical lattices using Hermite Normal Form, improving their security and applicable scope, thus exhibiting potential trade-offs to accelerate lattice-based signature verification in general and compression of the public key on the verifier side for unstructured lattices.

Introduction

The National Institute of Standards and Technology (NIST) Post-Quantum Cryptography Standardization process is still going on [START_REF]Post-quantum cryptography standardization[END_REF] to determine security standards for the next few decades, whether for encryption schemes or signature schemes. In the case of the NIST standardization, there is a security requirement of leakage resilience over 2 64 signatures. Thus, the option to be able to reuse keys is implicitly chosen. If one opts in the option to reuse the same key to save key setup time, or to lower communication costs when several signatures are needed for a single user, then a solution is to not store the key but a footprint of the key, which still allows for the verification procedure to go through with a comparable efficiency, or maybe even better. Theoretically, replacing a deterministic verification procedure by a probabilistic one should pose no problem in the complexity hardness of the initial computational problems [START_REF] Dinur | The PCP theorem by gap amplification[END_REF][START_REF] Feige | Approximating clique is almost NP-complete[END_REF] for which the security assumptions are most often heuristic. For lattice-based signature schemes, a lot of work has been done to promote leakage resilience even in the usage of an exponential amount of signatures [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF].

Very recently, NIST reiterated their desire for new signature schemes that would not be based on structured lattices [START_REF] Moody | Status update on the 3rd round. Third PQC Standardization Conference[END_REF][START_REF]Post-Quantum Cryptography Standardization[END_REF]. It is important to notice that in their announcement, NIST asked for possible new signature schemes, making the distinction between structured and unstructured lattice based schemes, as quoted "NIST is primarily looking to diversify its signature portfolio, so signature schemes that are not based on structured lattices are of greatest interest. NIST would like submissions for signature schemes that have short signatures and fast verification", thus unstructured lattices should still be of interest. This is probably because the remaining lattice-based signature candidates [START_REF] Ducas | Crystals-dilithium algorithm specifications and supporting documentation[END_REF][START_REF] Fouque | Falcon: Fast-fourier lattice-based compact signatures over NTRU (specification v1.2)[END_REF] heavily rely on cyclotomic rings structure which have yet to prove itself to be as secure as unstructured lattices. It also seems that the structure allows some computational problems to be easier to solve [START_REF] Cramer | Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time[END_REF][START_REF] Pellet-Mary | Approx-SVP in ideal lattices with preprocessing[END_REF]. However, ideal lattices allowed to gain a linear factor on both the size of the public key and the verification speed by the use of specialized algorithms on polynomial multiplication [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF][START_REF] Moenck | Practical fast polynomial multiplication[END_REF][START_REF] Pollard | The fast fourier transform in a finite field[END_REF].

Other ways exist to add structure to a lattice therefore minimizing its representation; it is often based on adding polynomial structure. Consequently, the Hermite Normal Form (HNF) basis of a structured lattice can be compressed and therefore a more compact representation can be used. This more compact version allows to divide the size of the representation by up to a factor equivalent to the dimension (in the case of ideal lattice for example). Obviouly, this extra structure opens the door to new attack and therefore further weakness of the cryptographic scheme. By opposition, one will call an unstructured lattice a lattice which HNF basis is hard to distinguish from a random lattice basis picked uniformly from the set of all possible HNF given a fixed dimension and determinant, i.e respecting [START_REF] Goldstein | On the equidistribution of Hecke points[END_REF] distribution. Accelerating computations and compressing keys without introducing serious security flaws has always been a challenge, but some trade-offs which heuristically do not significantly reduce the security have been recently proposed for unstructured lattices.

A probabilistic verification trade-off technique was recently proposed [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] based on Freivalds' probabilistic verification algorithm [START_REF] Freivalds | Fast probabilistic algorithms[END_REF]. Their work consisted of taking any classic signature scheme, and in that scheme replace only the verifier's means of verification computations, including a precomputation. Let the classic signature protocol be as follows:

1. Bob sends to Alice a public key A 2. Alice sends to Bob a message m 3. Bob signs m with his secret, outputting his signature s 4. Alice verifies that s is valid for A, m In the case where a same A is reused for multiple different messages m, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] propose that step 4 is computationally modified to accelerate all subsequent verifications at the cost of a precomputation. They based its security on the security of the initial scheme as it was globally left unchanged, and measured the security of the new verifier with the probability of recovering a "hidden" set of prime numbers by random tries. Their work effectively transforms a quadratic complexity (in the lattice dimension) for both the public key storage and the verification speed into a linear one for the verifier. However, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] applied only to lattice-based signature schemes such as [START_REF] Plantard | DRS : Diagonal dominant reduction for lattice-based signature[END_REF] that were not using a HNF as a public key. In particular, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] required some lattice information from the signature of [START_REF] Plantard | DRS : Diagonal dominant reduction for lattice-based signature[END_REF] to enable probabilistic verification. This information is missing from the signatures from all other lattice-based candidates, as such information is unnecessary when using a HNF for verification. Thus, their work did not apply to the lattice-based signature schemes that passed the NIST selection process, which exclusively used structured q-ary lattices that have HNF as public keys.

Our contributions

In this work, we propose two results to improve unstructured lattice-based signatures:

• We improve their precomputation for efficient probabilistic lattice-based signature verification. The result also allows for a stronger key compression and verification speed for similar security parameters. • We generalize the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] to apply to the case of public keys using HNF, which also includes the majority of lattice-based signatures in the NIST competition, although our work mainly focuses on unstructured lattices. More precisely, 1. We improve precomputation for efficient probabilistic lattice-based signature verification. Our modification, just like [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF], projects the computation over Z over multiple small rings Z/ωZ using the Chinese remainder theorem (CRT). The security of our modification follows the same security model as [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] and thus rely on the amount of possible combinations of such ω. We provide an efficient generator of such combinations of values ω, which can be considered fast as times are in the order of µs (see table 3). This generator is also lightweight: on λ = 256 bits security (i.e 2 λ possible moduli combinations for an attacker to guess from) example, at most 21 integers of 33-bits or less are required to be stored in the ω generator (see appendix table 7 for (d, k) = (8, 10) i.e 8 moduli coprime to 10 first primes), which in returns offers the possibility to replace the storage of each public key by a storage of 10 vectors of n entries of size ω (regardless of the dimension n). For structureless public keys in latticebased cryptosystems, this can save memory by a factor up to n. We show that after generating enough values ω to meet the required security requirements, those ω have a highchance to be pairwise coprime. The generator is fairly simple and rely on simple tricks that were used in [START_REF] Fouque | Close to uniform prime number generation with fewer random bits[END_REF][START_REF] Joye | Fast generation of prime numbers on portable devices: An update[END_REF]. 2. We generalize the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] to apply to the case of public keys using a Hermite Normal Form which includes the majority of latticebased signatures in the NIST competition with an extra cost for the signatory and the signature size.

In particular, we show our technique very well applies to lattice-based signature frameworks with proven leakage resilience such as [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] or [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF]. We show linear complexity for our verifications, showing that for a dimension n a O(n 2 ) complexity for structureless verification (often replaced by O(n log(n)) by using polynomial structures) becomes O(n), but at the cost of a precomputation which can be as costly as a matrix-vector product. This is also the case for the public key storage for the verifier, transforming a O(n 2 ) storage into a O(n) storage for unstructured q-ary lattices.

Since lattice cryptosystems typically have n > 500 for minimal security requirements λ = 128 bits, this consequently exhibits several options to accelerate the verification speed, leaving the original security unaffected but at the cost of increasing the signature size.

While the extra cost in signature length can appear as a drawback, the fact that our number generator is lightweight and that the key storage is heavily compressed open possibilities in the case of unstructured lattices: for low-memory devices that are only allowed extensive communications with a few other devices (home devices, internet of things, etc) or maybe even low-memory devices that still have to store several different public keys (one might imagine novel public key infrastructures with dedicated low-memory verifiers). The extra cost on the signature size is at most linear in the dimension in the case of q-ary lattices and at best a single integer of no more than 11 bits for most of the highest existing security parameters in the case of co-cyclic lattices, which is acceptable in some specific communication scenarios such as when a signature request does not occur immediately after a setup. Note that our work does not make unstructured lattices as efficient as structured lattices: our work mostly helps the verifier, the signatory still has to manage the full size of his public key. We do not know how the communication architecture is going to look like in 40 years or more, and it is possible that in a future where structured lattices are severely weakened, such techniques might not be necessary. However, this should help researching ways to lessen the cost of deploying unstructured lattices in some cases if the need arises. If the NIST is indeed looking for "short signatures and fast verification" [START_REF]Post-Quantum Cryptography Standardization[END_REF], we believe our framework gives an interesting trade-off on the signature size to accelerate verification speed.

Organization of the paper

In section 2, we reintroduce the concept of latticebased signatures, and the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]. In section 3, we present how to improve the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] using a random number generator, which has very useful properties to enhance both its memory and computational cost for a given security. In section 4, we present how to generalize the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] for both q-ary lattices and more generic lattices, where the aforementioned generator is also applied. In section 5, we conclude with open questions and propose future research directions.

Background

We will denote vectors in bold v, matrices in capital bold M, and integers as non-bold minuscules i. We denote v i the i-th coefficient of a vector v and p i the i-th element of a set P .

Lattices-based signatures

Definition 1 (Lattice). We call lattice a discrete subgroup of R n where n is a positive integer. We say a lattice is an integral lattice when it is a subgroup of Z n . A basis of the lattice is a basis as a Z-module. If A is a matrix, we define L(A) the lattice generated by the rows of A.

A specific subclass of lattices have been very popular in lattice-based cryptography: q-ary lattices.

Definition 2 (q-ary lattices). We say a lattice L ⊆ Z n is a q-ary lattice if there exists q < det(L) such that for all v ∈ Z n , we have qv ∈ L.

The q-ary lattices in cryptography have determinants over Z that are typically a power of q and can be seen as subgroups of Z n q , so we often represent their basis as matrices over Z q . A core argument for their popularity is their average to worst-case reduction [START_REF] Ajtai | Generating hard instances of lattice problems[END_REF].

Another subclass of lattices, representing approximately 85% of all lattices [START_REF] Nguyen | Counting co-cyclic lattices[END_REF] and also benefiting from average-case to worst-case hardness reduction [START_REF] Gama | Structural lattice reduction: generalized worst-case to average-case reductions and homomorphic cryptosystems[END_REF]: "co-cyclic lattices". We reuse the definitions used by [START_REF] Gama | Structural lattice reduction: generalized worst-case to average-case reductions and homomorphic cryptosystems[END_REF][START_REF] Nguyen | Counting co-cyclic lattices[END_REF] to define those lattices: Definition 3 (co-cyclic lattices). We say a lattice is co-cyclic if Z n /L is cyclic.

Because of their proportion in the set of all lattices, it is not unreasonable to assume co-cyclic lattices represent the average case of all lattices, structured or not. For simplicity we will only consider full-rank lattices, and in the case of cocyclic lattices we will consider only the lattices that admit a specific shape as a basis.

Definition 4 (Hermite Normal Form). We say a non-singular matrix A ∈ Z m×n is in Hermite Normal Form when:

• There exists

1 ≤ i 1 < ... < i h = m such that a i,j ̸ = 0 =⇒ (j < h) ∧ (i ≥ i j ) • For all k > j, 0 ≤ a ij ,k < a ij ,j .
Note that while a lattice has an infinity of basis, only one unique HNF basis exists. The HNF is a basis form that easily allows to test whether any v ∈ Z n verifies v ∈ L [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF]. For simplification, we will consider in the case of co-cyclic lattices only full-rank lower-triangular basis where only the first column differ from the identity matrix Id n ∈ Z n×n . In fact, if a full-rank lattice admits such a basis, then it is likely to be co-cyclic. Note that q-ary lattices cannot be co-cyclic.

Definition 5 (γ-Guaranteed Distance Decoding (GDD γ )). Given a basis A of a lattice L, and a bound γ > λ 1 (L)/2 where λ 1 (L) is the size of a shortest vector of L, for any point m find a lattice vector s ∈ L such that ∥s -m∥ < γ.

Most lattice-based signature schemes are based on the above problem, which is a stronger version of the Bounded Distance Decoding (BDD) problem [START_REF] Liu | On bounded distance decoding for general lattices[END_REF][START_REF] Lyubashevsky | On bounded distance decoding, unique shortest vectors, and the minimum distance problem[END_REF]. The public key is generally a basis A of the lattice, and the message is a target vector m. In our above description in the introduction, Alice at step 4, i.e the verification step to check if the signature s is valid for key A and message m, verifies whether or not Bob solved the GDD γ instance associated to lattice L(A) with target m. The problem is known to be NP-hard for some values of γ and easy for some others, depending of the norm chosen [START_REF] Liu | On bounded distance decoding for general lattices[END_REF][START_REF] Lyubashevsky | On bounded distance decoding, unique shortest vectors, and the minimum distance problem[END_REF]. Note that in most applications, the target vector is not the message itself: the message m is a parameter of a hash function h which outputs target points h(m) ∈ Z n , allowing m to be of any shape (thus, m might not be a vector but h(m) is). The security assumptions often work on those arguments: the problem is easy to solve for the one who created A (i.e Bob, often by means of a trapdoor), but should not be for any other person: thus, only Bob should be able to produce valid signatures for Alice. In our work, we assume the initial cryptosystem is hard and present no obvious security flaws, and we will show on our paper that our modifications should not affect the initial security.

Freivalds' algorithm and application to lattice-based signatures

In [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF], it was shown that the seminal work of Freivalds [START_REF] Freivalds | Fast probabilistic algorithms[END_REF] could be adapted for verification of lattice-based signatures. Freivalds' seminal algorithm is often considered as the first algorithm to demonstrate the superiority of non-deterministic algorithms over deterministic ones in certain cases.

It allowed to quickly verify if the result of the product of two real matrices was correct without computing the product itself. To summarize [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]'s adaptation of Freivalds' algorithm, for a lattice with public key A ∈ Z r,c (with r = c in their case) and a signature s original = (s A , s) for a target point h(m) where h is a public hash function and m the message, the following equation used for verification

s A A -s = h(m) with s A , s ∈ Z r
can be transformed, using a large integer Ω being the product of randomly picked primes ω (i.e Ω = ω 1 ω 2 ...ω k ), to a much cheaper probabilistic verification involving

s A v ⊤ (A,ω1) -sv ⊤ ω1 = h(m)v ⊤ ω1 mod ω 1 . . . s A v ⊤ (A,ω d ) -sv ⊤ ω d = h(m)v ⊤ ω d mod ω d
where v ∈ Z c ωi are randomly picked and kept secret by Alice, and v ⊤ (A,ωi) = Av ⊤ ωi . In such a modification, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] proved that the probability that Alice can be cheated by an invalid signature, i.e the probability that Alice accepts a signature as correct where it would have been proven incorrect in the original scheme, is strictly inferior to Ω -1 , assuming Ω and v are hidden and unrecoverable by external parties.

Revealing Ω alone allows an external party to mount an attack where the underlying GDD γ problem is changed. Instead of attacking the GDD γ challenge on the original lattice L(A), an attack could be mounted on L(A Ω ) which can often prove to be a much easier challenge heuristically. The attack would not break Bob's original key A, but would make it computationally feasible to forge wrong signatures s f alse that Alice accepts but would otherwise be rejected in the original scheme.

On the other hand, it seems difficult for an attacker to forge invalid signatures while having no knowledge of Ω and v. It is even an open question if being able to give valid signatures allow to construct invalid signatures that would pass the test: however this scenario while interesting in theory has no practical interest as one might have to assume that the original cryptosystem is insecure in the first place (by assuming forgeability on the original scheme).

Thus, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] put emphasis on setting and hiding Ω rather than v ωi as the amount of available v ωi is ω c i thus it is already naturally hard to guess if Ω is large, and the efficiency of this approach also depends on Ω. Naturally, they observe that for λ-bits of heuristic security, we must require log 2 (Ω) > λ, but they show that for efficiency purposes Ω must be split into prime factors ω of a preferably much inferior size to Alice's machine word size. The rest of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]'s work then focused on describing a methodology on how to choose the distinct prime factors ω 1 ω 2 ...ω d = Ω that are both optimal for efficiency given a fixed machine word size and that kept the initial security of the original scheme prior to the modification intact. In particular, they state that log 2 (Ω) > λ is not enough. They take inspiration of [START_REF] Bajard | Leak resistant arithmetic[END_REF] where random combinations of d numbers randomly selected among 2d pairwise coprime numbers gave 2d d possible combinations as a layer of security against several forms of side-channel attacks. To this day, this approach is still secure. Thus, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] follows [START_REF] Bajard | Leak resistant arithmetic[END_REF]'s approach and state that given S ω the set of all possible values ω the minimum bound of security is rather |Sω| d > 2 λ , which also consequently forces log 2 (Ω) > λ.

[44]'s modified signature protocol then proceeds as follows:

* (new offline step) Alice compute the couples (ω i , v ωi ). 1 Bob sends to Alice a public key A * (new offline step) Alice compute v ⊤ (A,ωi) . 2 Alice sends to Bob a message m 3 Bob signs m with his secret, outputting his signature s original 4 (modified step) Alice verifies that s original is valid for m, A, v ωi , ω i for all i.

3 Improving Sipasseuth-Plantard-Susilo's public key precomputation

We present how to improve [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] in the general case with a random number generator. First, explaining the properties we need from such a generator. Then we explain the basic idea behind this generator and how to construct it. We then explain how to customize it for specific integral forms if it is ever needed, provide experimental data on its efficiency and finish this part by providing justifications and tables for setting generator parameters to match security requirements. Note that for some readers, this whole section is possibly trivial: we do need, however, to exhibit the exact values given by this generator as they are necessary to set security parameters and optimize the gain in speed and memory on unstructured lattice signature schemes thus "just" giving intuitive parameters are not enough.

Constructing the number generator

Required properties

A simple observation which was left as an open question in [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] allow to improve their original work: we do not need prime numbers, coprimes are sufficient. In fact, we can as far as to say randomly picked ω do not need to be pairwise coprime: for every x ∈ Z projected over Z ωi , we have an information redundancy for every pair of integers that are not coprime. In fact our approach depends on the size of the least common multiple of these ω i i.e. lcm({ω i }) close to Ω.

When some ω i are not coprime, we have a redundancy of the information that can be evaluated by log 2 ωi lcm(ωi) . Note that picking pairwise coprime numbers also means picking prime numbers, so let us reclarify why [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] proposed to search for coprime numbers as an open question: for a matter of efficiency and combination security. In the current hardware today, machines have a certain bit-size. To increase the efficiency of the computations, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] enforced every moduli picked to be within a certain size that would allow to reduce as much as possible the amount of modular operations needed to avoid overflows. Their work only considered primes as it was easy to count them for security purposes, and did not have a way to randomly generate pairwise coprime sets and let alone count them: opening the path to pairwise coprime sets, which includes sets of prime numbers, would allow them to keep a similar level of security with smaller sets or smaller moduli as the number of possible combinations increases. The approach of using large combination sets to enhance the security is not new: it has been used to increase the amount of possible number representations possible to thwart side-channels attacks [START_REF] Bajard | Leak resistant arithmetic[END_REF][START_REF] Courtois | Resilience of randomized rns arithmetic with respect to side-channel leaks of cryptographic computation[END_REF][START_REF] Negre | Trade-off approaches for leak resistant modular arithmetic in rns[END_REF].

In [START_REF] Bajard | Leak resistant arithmetic[END_REF], random combinations of precomputed pairwise coprime numbers were used for efficiency and security against side-channel attacks. 2k pairwise coprime numbers were precomputed and the security was based on 2k k , where guessing the k numbers used for the computations among the 2k would break. In our case, we need k to be as low as possible to optimize computational costs, so maximizing the size of S ω the set of all possible values ω to minimize the required value k to reach |Sω| k > 2 λ is still a valid approach. We then need to populate the set S ω with as many efficient pairwise coprime numbers. Making S ω as large as possible can be seen as obtaining a Residue Number System (RNS) base [START_REF] Aiken | Advanced digital computer logic[END_REF][START_REF] Garner | The residue number system[END_REF] of maximal size given some constraints: the very recent work of [START_REF] Bajard | Generating residue number system bases[END_REF] give us very efficient algorithms to do so. However, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] already listed the minimal size has to reach S ω in function of k to meet the minimal security requirements for each λ, and it seems a few millions are always necessary. In particular, for k = 7, S ω must at least contain 610573333 pairwise coprime integers to achieve λ = 192-bits of security, and this independently of the bit size of the ω picked. Maybe this option is plausible for servers with large amounts of fast accessible memory, but for relatively small devices (maybe for IoT applications) this does not seem a feasible option.

Thus, generating numbers on the fly seem to be a more reasonable option. We wish to generate numbers to avoid any form of storage, from an original set as large as possible. We also know our approach depends of the lcm, thus we require a few things: generation must be reasonably fast, lightweight, and produce numbers such that their lcm is as close as possible to their product Ω.

It would also be desirable to have larger S ω to lower the amount d of moduli required, smaller ω i to reduce the number of potential overflows thus increasing efficiency per moduli, and both would allow for a lower space requirement for storing v (A,ωi) , v ωi on top of accelerating further computations by lowering the arithmetic cost.

In this section, we propose such a generator with all of the aforementioned qualities, using fairly simple tricks.

Main Idea

The basic idea is fairly simple and was at least previously used in prime number generation [START_REF] Fouque | Close to uniform prime number generation with fewer random bits[END_REF][START_REF] Joye | Fast generation of prime numbers on portable devices: An update[END_REF], although unlike previous works we do not plan to generate large prime numbers but rather multiple integers of similar and small size that are pairwise coprime. Let us take two random numbers. It was proven by Euler [START_REF] Hardy | First Edition[END_REF] (Theorem 332, p. 269 in the 4th edition for proof) that the chance of two integers being coprime is ζ(2) -1 = 6/π 2 where ζ is the Riemann Zeta function 1 . Now, if the two of them are odd, the chances increases slightly. We can extend the idea to several numbers: while it is known that a set of d integers have 1 as a gcd with probability ζ(d) -1 , it is a bit less known that the probability for such a set to consist exclusively of pairwise coprime numbers is:

P (d) = p prime (d+p-1)(p-1) d-1 p d
which is the sum for each existing prime of the probability of being all coprime to p (i.e (p -1) d /p d ) and the probability that only 1 this is known as the Basel's problem We know that giving assumptions about the integers being not purely random, but being coprime to the first successive primes, increase the odds of the resulting set being composed of pairwise coprimes: in a different context and objective, this observation helped generating large primes [START_REF] Fouque | Close to uniform prime number generation with fewer random bits[END_REF][START_REF] Joye | Fast generation of prime numbers on portable devices: An update[END_REF]. Let us denote

P k (d) = i≤k (pi-1) d p d i i>k (d+pi-1)(pi-1) d-1 p d i
the probability of d integers being pairwise coprime given that all d integers are coprime with the first successive k primes. We provide a simple experiment to measure the probability of success to obtain d pairwise coprimes by randomly sampling d numbers coprime with the first k prime numbers millions of times for each pair (k, d), and show the results in figure 1. As we need to generate as little as possible moduli w i for as little as possible d while maintaining some security, we do not need to study P k (d)'s asymptotical case, but computations on relevant parameters would at least show that our approach is valid and help to properly set parameters. Furthermore, in our approach, P k (d) corresponds to a best case when the lcm(omega i ) = Ω.

Those results give us a method to sample such integers: we exploit the set M k = {p 1 , ..., p k } composed of the first consecutive k primes and use the CRT to build the actual numbers that would be part of a set of size d of probably pairwise coprime. Let us note x M k =< x 1 , ..., x k > the residues of x for each moduli of M k . If for all k, x i ̸ = 0, then we know the CRT reconstruction would give x lower than M k = p 1 ...p k such that it is coprime to the first k primes. To simplify algorithms descriptions, introduce the Rand function, which takes into entry a set and outputs a random element of the set. This gives us the sampling algorithm basic coprime algorithm (BaseCop) (Algorithm 1).

Algorithm 1 Basic Coprime Algorithm

Input: M k = {p 1 , ..., p k } Output: an integer x < M k , with gcd(x, M k ) = 1 1: < x > M ←< 0 > M ▷ (Allocate memory) 2: for i ∈ [1, k] do 3: x i ← Rand([1, p i -1]) ▷ (p i ∤ x) 4: end for 5: x ← CRT(< x > M k ) 6: return x
In particular, let x, y be outputs of BaseCop(M k ), then gcd(x, y) = 1 or gcd(x, y) > p k . Experimentally, gcd(x, y) = 1 becomes more common as k grows. Note that by removing numbers divisible by small primes, we are thinning the amount of numbers to sample from. We previously roughly measured P k (d), but if we aim for guaranteed pairwise coprimality instead of probable coprimality, we might not want to discard d integers and generate d new samples. In that regard, we will now present our tests on how successful we would be to discard a "bad" integer and reinsert a "good" one as we generate integers successively. Our testing method is the following:

• Generation: We fix k and sample D integers by successive calls to BaseCop(B). • Verification: We go through the samples in incremental order. If it is coprime with the previously saved samples, we save it, otherwise we discard it. The first generated is always counted as coprime and saved, and Basel's theorem states the second one has roughly 61% chances to be coprime to the first one if sampled without our method. However, this value is an asymptotical value. Experimentally, we obtain a discard rate above 79.2% when simply using random bounded numbers. BaseCop(B) yields better results: for k = 10 and 100 samples, we only discard less than 20% of the samples. More detailed experimental results can be found in table 1 below. Remark: to increase the chances of generating successive coprimes, a first improvement is to allow integers to be divisible by any prime possible in the basis composing M k , and every time we sample an integer divisible by primes composing M k , we start excluding integers that are multiples of said primes. The improvement was however not significant in our experiments, in particular it has almost no impact on later security parameters while complexifying the algorithms, thus we will not document the numbers in this paper.

Coprimes of Pseudo-Mersenne, Montgomery-friendly and customization

Here we present a specialization of our previous algorithm to generate integers of the shape K -c. The main application for this specialization is that we could create pseudo-Mersenne numbers [START_REF] Crandall | Method and apparatus for public key exchange in a cryptographic system[END_REF] by setting K as being a large power of 2, or just take any K to control the bit size of the output and output integers of the shape K -c.

Instead of sampling c such that residues c i are non-zero, this generalization samples c such that K -c i have non-zero residues. Which leads to algorithm 2 we denote Mersenne coprime algorithm (MersCop). We also repeat the previous test procedure by replacing BaseCop by MersCop our experimental results show similar coprimality probability and rejection rates. Detailed results can be found below in table 2 : we can see the difference with 1 is negligible. Algorithm 2 is slightly slower than 1, as 2 it involves the same operations plus extra operations to deal with K ̸ = 0. However, this small extra and then add 1 if c i ≥ K mod p i (that ensures the same probability for all values in [0, p i -1]\{K mod p i }). In the C language the output of "x >= y" is 0 or 1, thus we can directly add the result of the comparison and keep the same distribution. In practice, we want our random component to be of a certain bit size or to have specific arithmetic properties. Further customization/optimization for the algorithms can be done for all forms of first order equations: for example, if K 1 , K 2 , e are constants (e can be as small as c), and we want to generate probably coprime numbers of the form x = K 1 (K 2 -c) -e, we just need to make sure c ̸ = K 2 -e×K -1 1 modulo the p i . This includes Montgomery-friendly numbers [START_REF] Bajard | Montgomeryfriendly primes and applications to cryptography[END_REF]), but for our purposes simpler integer shapes are sufficient. Experimental results on different integer shapes also show the same results as in algorithm 1 for the basic case, thus we are not listing the results there.

Algorithm 2 Pseudo-Mersenne Coprime Algo- rithm Input: K ∈ N, M k Output: c ∈]0, p i ] such that gcd(K -c, p i ) = 1 1: for i ∈ [1, k] do 2: c i ← Rand({c i ∈ [0, p i -1], K ̸ ≡ c i [p i ]}) 3: end for 4: c ← CRT(< c > M k ) 5: return c

Experimental efficiency and application to Sipasseuth et al's work

Experimental results

We conducted experiments on a machine using an Intel(R) Xeon(R) E-2246G CPU @ 3.60GHz processor with a simple C program using GMP and compiling with the optimization option -O3. Unsurprisingly our generator take around 1µs for (k, d) = (5, 6) and up to 7µs for (k, d) = [START_REF] Erdem | NewHope Algorithm Specifications and Supporting Documentation[END_REF][START_REF] Feige | Approximating clique is almost NP-complete[END_REF]. Timings can be found below in table 3. In comparison, the fastest structured latticebased signature schemes can verify up to 27933 signatures per second [START_REF] Fouque | Falcon: Fast-fourier lattice-based compact signatures over NTRU (specification v1.2)[END_REF] so approximately 36µs per verification. Although their testing processor (i5-8259U clocked at 2.3 GHz with "TurboBoost" disabled) runs at a lower frequency as reported in 2022, it is still not in the same order as our proposition. Furthermore, their code includes optimized assembly code, while we use purely unoptimized C code. We also conducted experiments with checking pairwise coprimality at each generation and retry until we get a set of pairwise coprime: the generation time is multiplied by between 2 or 3 in average. The point of those timings is purely informative: as far as we know there is no pertinent comparison we can make, but we can at least exhibit its low cost compared to a typical public key lattice-based signature scheme setup (see [START_REF]Post-quantum cryptography standardization[END_REF]). Since the generation time is already low and can be achieved offline (before receiving the public key), check-and-retry is still a reasonable approach.

More importantly, we measured the average redundancy size, its median size, its worst-case size and its lowest size when it is non-zero. Unsurprisingly most sample groups end up being pairwise coprime, the median value for redundancy is automatically zero: thus, we make the minimum redundancy we measure is the minimal non-zero redundancy measured. Our experimental results show that the redundancy is usually low with our generator: more often than not the redundancy is zero, and when it is not zero it is often less than 10% of the total size and and after 2 20 tests the redundancy does not peak at more than a third of the total size, while using random numbers provide high redundancy. Tables can be found below, namely table 4 with randomly picking numbers in table 5. While the end result of the generator is more efficient than the previous precomputations of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF], a cost comparison is seemingly hard as [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] did not list any particular method to uniformly pick random primes within a fixed set. However we believe the generator we exhibited, which costs a CRT reconstruction from small size moduli with operations that fit within a machine word-size, should be hopefully more efficient in implementation space and speed than any possibly known prime picking technique. Figure 2 presents the result of our experiment made to compare different methods by counting how many clock cycles it would take to generate random pairwise coprime integers, sampling integers one by one and rejecting every integer that is not pairwise coprime with the others. To do so, we calculate the product of every pairwise coprime, memorize the product and compute its gcd with every newly generated number we need to add. If the number is coprime with the product, we update the product and continue. To generate primes, we used the GMP function mpz probab prime p to discard non-prime numbers and to generate random numbers we just used the rand() function in C (we do not believe another random number generator such as mpz urandomb would yield significant differences in our experimentations). All experimentations are done on a machine using an Intel(R) Xeon(R) E-2246G CPU @ 3.60GHz processor with a simple C program using GMP and compiling with the optimization option -O3. One can remark that the prime number generation grows quasi linearly because we do not check the gcd but rather the equality with other previously sampled numbers, while the k-th number generated need to check if it is coprime with the k -1 previously stored integers, and gets rejected if not. Thus, prime numbers might become more efficient for (an unknown) large amount d of pairwise coprime numbers: no gcd computations are needed to check the results, unlike other methods. However, since we do not usually need more than d = 12 numbers for the largest security parameters λ = 256, our method proves more effective, especially since our tests up to d = 1024 shows our approach remains more effective.

Practical parameters and application to [44]

As we stressed out earlier, one of the main security requirement was to have S ω as large as possible. Our new method indeed gives a large set S ω but they are no longer pairwise guaranteed coprime. Of course, we can generate more integers to compensate which is what we measured in the previous subsection, but as the generation of a pairwise coprime set is fast itself (the amount of resampling was proven to be low) the option to use strictly pairwise coprime sets can be a security choice. Thus, enforcing pairwise coprime sets only give a fraction of Sω k as possibilities. Typically, given d integers sampled from a RNS basis M k (hence couples (d, k)), we estimate the bit security parameter λ by the amount of valid combinations

log 2 M * k d × α = λ
where α is the amount of valid sets where d samples of M * k are coprime. Tables 7 and6 should help setting parameters.

In setting parameters, we also need to be careful not to create any form of overflows that would reject otherwise valid signatures. Thus, we are also giving in table 8 below the size of our outputs.

Notice that our generator parameters scale very well when we aim to increase combination security: jumping from λ = 128-bits of security to λ = 256 often requires less than doubling the amount d of vectors. In practice, recommended lattice dimensions tend to change with λ so a reevaluation of optimal parameters (d, k) is d,k) compared to the prime approach of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] for [START_REF] Sipasseuth | Improving the security of the DRS scheme with uniformly chosen random noise[END_REF], leading to smaller memory requirements for [START_REF] Sipasseuth | Improving the security of the DRS scheme with uniformly chosen random noise[END_REF], less precomputations and faster verification:

• For λ = 128, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] proposes d = 6 with 28-bits primes: with our generator, d = 6 with k = 8 (24-bits integers) is enough and so is d = 5 with k = 9 (28-bits integers). • For λ = 192, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] proposes d = 9 with 27/28bits primes: with our generator, d = 7 and k = 9 is enough and so is d = 9 and k = 8. • For λ = 256, [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] proposes d = 12 with 24 to 28-bits primes: with our generator, d = 10

and k = 9 is enough, and so is d = 12 and k = 8. Using Barrett's algorithm [START_REF] Barrett | Implementing the rivest shamir and adleman public key encryption algorithm on a standard digital signal processor[END_REF] for modular reduction (thus consider it as equivalent to a multiply-and add), we can estimate the arithmetic operation cost of a verification process using our procedure. Note that a linear increase on a security parameter λ does not continuously increase the number of required operations: the number of operations is based on finding the combination (d, k) with the lowest computational cost such that the security is above λ bits. Hence it is natural that whole intervals of security parameters share the same minimal choice (d, k) for 64-bits processor using a process call "lazy reduction": we only proceed to a modular reduction to avoid overflows. Figure 3 fixed the security parameter at some of the security levels requested by the NIST (λ = 128, 192, 256) and shows we perform less operations for verifications than [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]'s approach from dimensions 512 to 1024 which are also the lowest and highest lattice dimensions proposed by [START_REF] Fouque | Falcon: Fast-fourier lattice-based compact signatures over NTRU (specification v1.2)[END_REF]. The gain is not so noticeable for λ = 128, but the gap tends to widen as security parameters increase: our approach scales better. Fig. 3 Approximate number of multiply-and-adds between this paper and [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] during a verification Once the parameters are set, we can also somehow approximate the memory needed for this generator to run. While it is impossible to predict the program size or the size of the random bit generator as those can be implemented at the hardware level, we can determine the memory needed for the variables and intermediate computations: it is roughly the memory needed for a CRT. Assuming sequential operations, so first we need the combined bit size of all k moduli, plus the size of the largest one to manage the random bits, and given s the bit size of their product, we need an extra (k + 2)s (for the modular inverse constants, the moduli product, and the size of intermediate results including the final value). So for λ = 128 with k = 8 and thus s = 24 (see table 8), the random moduli generator theoretically needs no more than 272-bits. For a parallel operation (i.e treating all components at the same time), twice this memory might be needed at most, as most intermediate results can be bounded by the moduli or their products.

Application to unstructured lattices

We extend in this section this work by applying the compression to schemes that would rely on a non-algebraically structured lattice signature scheme. Ignoring the process of both key generation and signature, we focus on the storage of the public key and the efficacy of verification algorithm, in which we recall the structure and the computations. We will first deal with the case of co-cyclic lattices, and then deal with the case of q-ary lattices. We will show that our adaptation is not straight-forward: while it was possible to improve the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] without much drawbacks with a simple number generator, it is not the case for the following generalizations to other unstructured lattices. In both q-ary lattice and co-cyclic lattice cases, we will show that requesting extra information from the signatory is necessary. Thankfully, there should not be any loss of security as this extra information was easily computable from any party in the original scheme. The size of this overhead however, is large and further work will be needed to reduce its size, especially in the q-ary case.

Without going into details of computational lattice theory, the heuristic security of unstructured lattice-based schemes is often based on two parameters: the dimension and the determinant. Thus, if we wish to compare both q-ary lattices and co-cyclic lattices of equal dimension n over Z with the same security parameters, we could fix both determinants to be q l some power of q (and l < n). For the representation of a q-ary lattice over Z n×n , it follows that if the determinant is q l , the "interesting block" has size (n-l)×l. For simplification, we would note D the determinant for a co-cyclic lattice.

Co-cyclic lattices with perfect Hermite Normal Form

In a hash-and-sign approach of signature schemes with a lattice generated by a perfect HNF A, the validity for a message m, a signature s and a hash function h is determined by verifying the following:

α = s -h(m) ∈ L(A)
and s "small enough". As q-ary lattices make up for the large majority of recent lattice-based cryptography publications (and thus computations over Z q rather than Z), we believe it might be worthwhile to give some reminder and graphic representation of how traditional membership tests are done for classical lattices. We show below an example of checking whether α ∈ L:

Example 1. Is α = [1 -1 1 1] ∈ L?       17 0 0 0 10 1 0 0 15 0 1 0 13 0 0 1 1 -1 1 1       →       17 0 0 0 10 1 0 0 15 0 1 0 13 0 0 1 -12 -1 1 0       →       17 0 0 0 10 1 0 0 15 0 1 0 13 0 0 1 -27 -1 0 0       →       17 0 0 0 10 1 0 0 15 0 1 0 13 0 0 1 -17 0 0 0      
The final step is easy to guess (reduce to 0) so the answer is yes.

In the above example the determinant is 17 for easy manual verification but it is easy to see that in the parameters we described, the verification is done with n-1 additions and n-1 multiplications over Z D . If we denote α = [α 1 , ..., α n ], we can denote β = [0, -α 2 , ..., -α n ] and notice the above computations can be represented by verifying

βA + α = x with x = [x 1 , 0, ..., 0] ∈ Z n x 1 ≡ 0 mod D i.e x 1 = δ × D
If we wish to apply the work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] the transformation gives

βv ⊤ (A,ω1) + αv ⊤ ω1 = [δD, 0, ..., 0]v ⊤ ω1 mod ω 1 . . . βv ⊤ (A,ω d ) + αv ⊤ ω d = [δD, 0, ..., 0]v ⊤ ω d mod ω d
Note on the acceleration of the verification At first sight this might look worse as it performs 2 scalar products per moduli ω (the right hand side of the equations are actually just a multiplication between 3 integers) and the original verification was already somewhat efficient with a complexity close to a single scalar product. However Ω = ω 1 ...ω d is in fact much lower than the determinant D, and this allows parallelization while D might need multiprecision arithmetic. Without our modifications, the verification computations are done modulo the determinant D which is typically in the order of several thousands of bits, while in our modification Ω is typically less than 300 bits and allows to use the CRT to parallelize the operations2 .

As one of the main point of this paper is to avoid the storage of the public key A, it is not possible to compute δ without A. We need the signatory to provide δ to the verifier: this is a change compared to [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] that did not require extra information. However, δ was available to all parties in the original schemes: thus there should not be any loss of security. If the old signature had the form s old = {s}, the new signature has the form s new = {δ, s}, where δ is an integer of size log 2 (n) supposing h(m) is already reduced to a single non-zero coefficient. A tighter upper-bound for the extra integer's size is log 2 (∥s∥ 1 ) but we prefer to avoid mixing norms. Other approaches than hash-and-sign exist, but as unstructured cocyclic lattices have not seen a practical use since the work of [START_REF] Gama | Structural lattice reduction: generalized worst-case to average-case reductions and homomorphic cryptosystems[END_REF], we do not feel the need to present how the generalization would apply in other signature constructions. In particular, there is no round 1 candidates in the NIST competition that rely on co-cyclic lattices. As its core, we believe the verification of the equality is easily adaptable.

Application to q -ary signature schemes

In the case of q-ary lattices, it would be tempting to not use random moduli and keep the operations over q, as q is typically chosen for efficiency purposes (as a power of 2 for example). However, according to [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF], that drastically decreases the security: an attacker would have a probability of 1/q to output a valid signature in the eyes of the verifier' side. Since typically q ≤ 2 64 , that is a major security concern. Thus, we still need to carry operations over Z, and extend the signature by a number of bits of the order of the dimension where we request from the signatory to give us the amount of modular reduction modulo q that a regular verifier would do. To the best of our knowledge, there is currently two main frameworks for the verification algorithm concerning q-ary lattices: one is the famous upgraded hash-and-sign from [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF], the other one is the Fiat-Shamir application of [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF]. In both cases, we can consider that the public key is a full-rank matrix A over Z q , and that all computations are over Z q and h is a secure hash function.

The respective verification processes are as follows:

• In [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF], given a signature s from a message m, the verification process check that s is short and that sA = h(m).

• In [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF], given a signature s = (s 1 , s 2 , s 3 ) from a message m, the verification process check that s 3 is small with

s 3 = h(s 1 A + s 2 - s 3 T, m)
where T is another public matrix. Both verifications involve a multiplication of vector and a matrix, thus at first sight, Freivalds' algorithm can apply. Thus, we will attempt to apply our techniques to the hash-and-sign approach of [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF]. For the Fiat-Shamir approach of [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF], we refer the readers to the appendix. Of course, our technique mostly applies if verifiers do not have to reconstruct the short vectors from the public key, or hash parameters, as the goal is to not store the public key.

Let us denote A Z the representative of A over Z. Let us denote s q the vector representing the amount of reduction modulo q per coordinate that are done during a classic verification over Z q . The previous verification over Z q whether or not s × A = h(m) becomes s × A Z -qs q = h(m) over Z thus increasing the size of the signature by the size of s q . Thus, to apply our modification the signature has to change shape from s old = (s) to s new = (s q , s). This does not reduce the security as s q could be computed in polynomial time in the original scheme by any party from a public perspective. We then need to precompute v A,ωi = A Z × v ⊤ ωi mod ω i and v q,ωi = q × v ⊤ ωi mod ω i , and the new verification process becomes

s × v A,ω1 -s q × v q,ω1 = h(m) × v ⊤ ω1 mod ω 1 . . . s × v A,ω d -s q × v q,ω d = h(m) × v ⊤ ω d mod ω d
The main drawback to this approach is the size of k: while reducing the storage from a quadratic requirement to a linear requirement is attractive, we impose on the signatory to adds an extra computation step that produce an extra information (which do not reduce the security) potentially larger than the initial signature itself. Compared to the co-cyclic case, the extension of the signature is not limited to a single integer but is represented by a whole vector s q which has size (nl) 2 log 2 (∥s∥ ∞ )(there is also a tighter upper-bound using the taxicab norm) for [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF]. For [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF], this is even worse (see appendix). Decreasing the size of this extra information seems to be a challenging task and we leave it as an open question.

Extended framework

In both applications to the q-ary case and the co-cyclic case, the framework of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] is slightly changed by requiring the signatory to add some extra information s extra to the signature to ensure the verification is valid. In both cases, s extra was easily computable in the original scheme thus there is no apparent loss of security. The new framework is then * (new offline step) Alice compute the couples (ω i , v ωi ). 1 Bob sends to Alice a public key A * (new offline step) Alice compute v ⊤ (A,ωi) (and v q if needed). 2 Alice sends to Bob a message m 3 (modified step) Bob signs m with his signature s new = (s extra , s original ) 4 (modified step) Alice verifies that s new is valid for m, A, v ωi , ω i for all i.

Comparisons

We evaluate in this section the size of the different storages of information on the public key and the size of the signatures of the concerned schemes.

For security reasons, we know that ∥s∥ ∞ ∼ D 1/n (where D is the lattice determinant) to guarantee that the corresponding lattice problem is hard to break. Consequently, we obtain O(log(D)) = n log(∥s∥ ∞ ). As the public key is in O(n log(D)), we instead store an information of the public key in size n 2 log(∥s∥ ∞ ).

For the case of q -ary lattices, the determinant is given by D = q l and the public key size is in O((n -l) log(D)), we instead store an information on the public key in the size of O((n -l)n log(∥s∥ ∞ ). Furthermore, in the Freivalds' version, recall that Π d i=1 ω i ∼ 2 λ , therefore we can estimate that d log(ω i ) = O(λ). We also recall that for security reason, we have λ << n. and that generally log(∥s∥ ∞ ) = O(n).

We present the different magnitudes in terms of storage (or number of integral operations required) for the verifier as well as the size of signatures in table 9 below.

Discussion on comparisons

In this subsection we briefly discuss the downsides given to the signatory and eventual scenarios where such a trade-off would be relevant. Signature verification speed, before our work, was already believed to be fast compared to the setup and signing methods used in several lattice-based signature schemes. Thus, it is legitimate to wonder in which scenarios is the extra cost on the signatory negligible.

First, the extra cost on the signatory on our proposed trade-off is roughly equivalent to the cost of an original verification. Thus, if the original verification was already fast and lightweight, then so is the extra computation required on the signatory. Furthermore, our work is focused on unstructured lattice schemes: managing keys on unstructured lattices was already deemed to be heavy, thus we have to suppose that the signatory must have significant capabilities in both storage and computational capability to handle unstructured lattices (unless new research on unstructured lattices prove it otherwise). In this case, adding a small extra cost on the signatory is seemingly acceptable as we can then allow the use of unstructured lattices on low capability verifiers.

Second, this can also be a gain in a multi-user scenario where every user generate privately their own large unstructured key. Supposing there is a large amount of users k where n is the dimension of the lattice, then managing your own key has a memory cost of n 2 , while managing the public key of the other users you communicate with then has a cost of kn 2 . With our proposed modification, verifying other users' signatures only require a cost of kcn (where c is the number of moduli ω i determined by the security parameter λ, and not directly linked to n). While this does not remove the fact that each user has to deal with his own unstructured key, at least the storage requirement on other users' keys is comparable to one of a structured lattice.

Practical comparisons done with experimental implementations of lattice-based schemes is currently hard to achieve: the main reason being the lack of recent unstructured lattice-based signature schemes. The work of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] provided experimental time and memory space comparisons, using an open source implementation of preexisting scheme. In our case, there is no open source implementation of a HNF based unstructured lattice-based signature scheme available online. Nevertheless,

• Coprime generation is experimentally faster than prime generation and require way less memory, this is an improvement to [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]. • Smaller parameters than [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF], given at the end of section 3, automatically implies less operations, thus faster operations and better trade-off for subsequent operations. 

) n log(∥s∥ ∞ ) nλ n log(∥s∥ ∞ ) q-ary [23] (n -l)n log(∥s∥ ∞ ) (n -l) log(∥s∥ ∞ ) (n -l)λ (n -l) log(∥s∥ ∞ ) + l log(n -l) NTT-based n log(∥s∥ ∞ ) n log(∥s∥ ∞ ) - -
small compared to the original size of classically n log 2 (n) of lattice-based signatures. Whenever an open-source implementation of an unstructured lattice-based signature scheme is published, a practical comparison using our modification can be easily implemented; the setup of the key is unchanged, and the signature process only requires to store the amount of modular reduction and concatenate it with the signature instead of discarding it.

Open questions

We end this paper by remarks on the security model of [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF] where they assume that guessing moduli is sufficient to break the system. As this assumption is "paranoiac" in their own words to ensure security against a yet-to-be-known attack, we can choose to shift the security requirements to a looser requirement. We want to stress that as this point, the security is unknown: the "public lattice" problem might have changed and its theoretical security would need to be studied. However, we explain here how those changes would apply if no security concerns are raised. We also mention other relevant topics as alternative probabilistic and deterministic verifications, structured lattices, and side-channel attacks.

Freivalds' technique to co-cyclic signatures without hidden v ωi

As shown previously, the original verification on perfect HNF of co-cyclic lattices already seemed fast enough. If the security is based on Ω = ω 1 ...ω d anyway, we can transfer the verification over q l to a verification over Ω using the exact same operations. δ the amount of reductions modulo q l is still necessary, however this allows to cut the amount of operations and the amount of memory required by half. It is unclear how much this modification decreases the actual security.

Freivalds' technique to q-ary signatures without hidden ω

We choose here that the requirement be only the probability of setting false positives and keeping the same moduli q of the original lattice. This would allow to discard the heavy vectors s q . Like above, it is unclear how much this decreases the actual security. Suppose that instead of multiplying by a vector v, we multiply by α distinct vectors (i.e a matrix), and keep the computations modulo q as per the original system. This sets the probability of getting a false positive to q α , and if we assume that the dimension is large enough and the vectors random enough to be secure this leads to a new construction, where the original signature is left unchanged. Given A ∈ Z n×c q the public key, note B ∈ Z c×α q a random matrix. A new verification process we use for [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF] is

s × B A = h(m) × B mod q
where B and B A = A × B are precomputed at verifier's setup. It is very important that the moduli q is kept the same in this case, as replacing by a divisor makes the problem easier for an attacker: it opens a way for an attacker to guess a false positive by solving a lattice problem over a lattice which determinant is lower than the original determinant (a divisor of the original determinant). Here, the acceleration only makes sense if it is guaranteed that B is much smaller than the public key A, as their coefficients and arithmetical properties are basically similar (assuming A is structureless). In this new case, we just need to sample α vectors such that q α > 2 λ for λ-bits of security.

Finer analysis of the generated set

As shown in table 6, the set of lists of pairwise coprimes is slighty smaller (a fraction). Cryptographicly, this difference is consequently negligeable (few bits of security).

However, to obtain a complete security evaluation, one could further study the distribution of the co-primes used. At this stage, we cannot anticipate any futher weakness; as long as the cost of guessing correctly a moduli randomly by forging a signature on a "weaker" lattice is higher than the security parameter, this will ensure safety; every potential attempt on guessing the set of moduli in the current heuristic security model is assumed to be made by submitting a valid signature for the secret moduli that would be incorrect for the original scheme without our modification. Nervertheless, the study of the distribution of generated co-primes remains an interresting question especially if one will use this technique for other applications that cryptographic ones.

Side-channel attacks

Adding a secret to a verifier can sound counterintuitive and it is natural to ponder the question of whether or not additional countermeasures against side-channel attacks for verifiers would make the verifier slower than originally. Some points come to mind. First, depending on the use-case, if high-speed is not a necessity but memory storage is, our technique is still useful for unstructured lattices. It seems unlikely that potential countermeasures will offset the linear factor gained both in key compression and verification speed. Second, if novel knowledge shows that coprimality is not required and that some redundancy is tolerable, generators and all operations can be made in constant-time. In particular, we can generate random pseudo-mersenne, thus it is possible that there is no need for looping inversion algorithms (and conditionals) as long as proper targeted reductions to avoid overflows are done. Third, random draws of moduli is a technique used in RNS to protect against side-channel attacks [START_REF] Bajard | Leak resistant arithmetic[END_REF]. As we do not require modular inverses or base extensions, we could also use redundant arithmetic or random draws of moduli without resorting on coprimality. Like in [START_REF] Bajard | Leak resistant arithmetic[END_REF][START_REF] Courtois | Resilience of randomized rns arithmetic with respect to side-channel leaks of cryptographic computation[END_REF][START_REF] Negre | Trade-off approaches for leak resistant modular arithmetic in rns[END_REF], a high number of possible combinations is at the core of the security, and our generator provide it. The issue is the lack of guaranteed coprimality and maybe the computation of modular inverses in constant time without branching, but this could be a (very difficult) further research direction. If this last point is solved, the generator could prove to be a direct side-grade to [START_REF] Bajard | Leak resistant arithmetic[END_REF] using [START_REF] Bernstein | Fast constanttime gcd computation and modular inversion[END_REF] for modular inversion, with the extra cost of rejecting and resampling the non-coprime numbers. There might be other concerns, but setting secrets on verifiers seems relatively uncommon and can be interesting to study.

Other open questions

Many q-ary lattice schemes nowadays rely on polynomial structures [START_REF] Bernstein | NTRU prime. NIST Post-Quantum Cryptography Standardization[END_REF][START_REF] Erdem | NewHope Algorithm Specifications and Supporting Documentation[END_REF][START_REF] Fouque | Falcon: Fast-fourier lattice-based compact signatures over NTRU (specification v1.2)[END_REF][START_REF] Garcia-Morchon | Round5: merger of hila5 and round2. Post-Quantum Cryptography Standardization[END_REF]: matrices A are stored in two polynomials (or group of polynomials) (f, g) where f ∈ Z q [X]/g (ring version) or (Z q [X]/g) b (module version). g is often a parameter of the cryptosystem, leaving f as the only variable public key. Each row of A is of the form X × f mod g. Verification of equalities and computations are done over Z q [X]/g, which leads to compressed key sizes and accelerations. On those particular cases, it is possible that our storage requirement becomes larger than the original scheme: the public key can be seen as a single vector (i.e a single polynomial), while our precomputed vectors over multiple moduli can be seen as many. However, our efficiency for verification should remain faster: whether the cryptosystem uses Karatsuba's algorithm [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF], the Number Theoretic Transform (NTT) [START_REF] Pollard | The fast fourier transform in a finite field[END_REF] or a combination of both [START_REF] Moenck | Practical fast polynomial multiplication[END_REF] to verify equations, it should not be asymptotically faster than a constant number of scalar products. Furthermore, NTT operations often require the precomputation and storage of roots of unity, thus store more than just the key: for a lattice of dimension n, a full NTT requires operations in the order of n log 2 (n) (a multiple of n for each level of the "butterfly" step, and there is exactly log 2 (n) steps). Our approach requires cn, where c does not depends on n but on the property of the number generator and the required security level λ. Overall, at this current state of research the trade-off is not interesting for structured lattices for now. In fact, it is possible that those structures can be exploited to accelerate the verifier setup and the extra signature information required for our work to apply. For now we keep our work generic as its core application is unstructured lattices. Note that there have been some attempts to use a probabilistic verification for polynomial structures that could apply for cryptography: [START_REF] Giorgi | A probabilistic algorithm for verifying polynomial middle product in linear time[END_REF] adapted the probabilistic evaluation of polynomials to middle products [START_REF] Roşca | Middle-product learning with errors[END_REF]. It is unclear if their technique actually outperforms ours or how to evaluate its security when modifying the verifier. Another direction is to pursue the generic approach of probabilistic or deterministic verification [START_REF] Korec | Deterministic verification of integer matrix multiplication in quadratic time[END_REF].

Conclusion

We exhibited a random number generator that has good properties to almost qualify as a random RNS base generator, i.e generates sets of pairwise coprimes with high probability. This directly allows us to improve [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]'s original work. We also generalize [START_REF] Sipasseuth | Using freivalds' algorithm to accelerate lattice-based signature verifications[END_REF]'s work to apply to q-ary lattices which includes all lattice-based NIST candidates since round 1 although most are structured lattices, and showcase interesting performance tradeoffs for faster verification and lower public key storage for unstructured lattice signature schemes when a key is reused at the cost of a precomputation. Overall, we show that unstructured lattice can be, larger initial communications aside, almost as efficient as structured lattices for the verification processes of lattice-based signatures. This can help the engineering challenge of designing a public key infrastructure with low-capacity verifiers. As we stated in the introduction, there is currently no unstructured lattice-based signature scheme selected in the round 3 of NIST. If another lattice-based signature has to be submitted for the round 4, then according to their most recent announcement it has to be unstructured [START_REF]Post-Quantum Cryptography Standardization[END_REF]: in this case, this work can apply and further improvements can be done.

Appendix A Adapt to [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF] For [START_REF] Lyubashevsky | Fiat-Shamir with aborts: Applications to lattice and factoringbased signatures[END_REF], we reuse the same notations, s q representing the modular reductions, T Z the representative of T over Z, and the verification over Z q of s 3 = h(s 1 A + s 2 -s 3 T, m) becomes: s 3 = h(s h , m) and s h = s 1 A Z +s 2 -s 3 T Z -qs q over Z We prefer not to alter the hash function or its output as it is a core security part of the original construction, thus we only change the computation of the parameter within the hash function. s old = (s 1 , s 2 , s 3 ) changes to s new = (s 1 , s 2 , s 3 , s h , s q ) where s h = s 1 A + s 2 -s 3 T. Since A, T are public and s 1 , s 2 , s 3 are the components of s old , there is no loss of security. Noting v T,ωi = T Z × v ⊤ ωi mod ω i we obtain s 3 = h(s h , m)

s h = s 1 v A,ωi + s 2 v ⊤
ω1 -s 3 v T,ω1 -s q v q,ω1 mod ω 1 . . .

s h = s 1 v A,ωi +s 2 v ⊤ ω d -s 3 v T,ω d -s q v q,ω d mod ω d
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Table 1

 1 Average discards after 10 4 calls to TestGen(BaseCop(M k ), D)

	k	5	6	7	8	9	10
	D = 100	36.0	28.4	25.1	22.3	20.01	18.3
	D = 200	93.5	72.1	65.0	59.3	54.7	51.0
	D = 300	161.2	121.1	109.6	101.3	94.2	88.6

Table 2

 2 Average discards after 10 4 calls to TestGen(MersCop(2 n , M k ), 100)

	k	5	6	7	8	9	10
	n = 32	36.50	28.52	25.12	22.29	20.01	-
	n = 64	36.59	28.41	25.14	22.38	20.05	18.40
	cost during precomputation allows to use Pseudo-
	Mersenne which offers significant gain during
	modular reductions. A simple way to make the
	Rand function in algorithm 2 almost as sim-
	ple as in algorithm 1 is to use Rand([0, p	

i -2])

Table 3

 3 Average time in µs for extracting d samples from M *

			k								
	d	k	5	6	7	8	9	10	11	12	13
	6		1.25 1.31 1.38 1.44 1.49 1.57 1.64 1.70 1.77
	9		1.44 1.53 1.62 1.76 1.81 1.94 2.02 2.12 2.21
	12 1.62 1.76 1.87 2.00 2.12 2.31 2.41 2.54 2.68
	15 1.82 1.97 2.13 2.28 2.43 2.66 2.80 2.97 3.13

Table 4

 4 bit size redundancy when using BaseCop(M k )

	log 2	ω i lcm(ω i )	on 2 20 tests	
		d k Average Median min ̸ = 0 max
		6 5 1.756275	0	4	32
		6 6 1.344412	0	5	33
		6 7 1.110809	0	5	31
		6 8 0.913920	0	5	29
		9 5 3.993797	0	4	49
		9 6 3.083662	0	5	45
		9 7 2.560968	0	5	44
		9 8 2.140330	0	5	40
		12 5 6.969599	5	4	54
		12 6 5.417657	5	5	50
		12 7 4.531733	5	5	51
		12 8 3.815385	0	5	55
		15 5 10.589952	10	4	65
		15 6 8.284572	7	5	63
		15 7 6.971303	6	5	66
		15 8 5.905113	5	5	59
	Table 5 bit size redundancy when using random
	numbers mod M k	
	log 2	ω i lcm(ω i )	on 2 20 tests	
		d k Average Median min ̸ = 0 max
		6 5 9.328667	9	1	55
		6 6 9.285503	9	2	69
		6 7 9.288168	9	2	89
		6 8 9.286525	9	2	111
		9 5 18.060690	17	1	86
		9 6 17.975490	17	2	110
		9 7 17.961327	17	2	139
		9 8 17.964048	17	2	176
		12 5 28.312817	27	1	117
		12 6 28.151557	27	2	150
		12 7 28.125704	27	2	191
		12 8 28.135508	27	2	242
		15 5 39.670601	39	1	148
		15 6 39.435517	39	3	189
		15 7 39.389500	39	4	243
		15 8 39.394647	39	2	308

Table 6

 6 Amount of sets of d pairwise coprime out of 10000 calls to (BaseCop(M k )) d

	d	k	5	6	7	8	9	10	11
	4		8792 9144 9243 9469 9480 9602 9640
	5		8078 8626 8779 9105 9171 9338 9435
	6		7327 8035 8303 8679 8838 9035 9144
	7		6506 7357 7767 8234 8449 8707 8844
	8		5725 6652 7214 7727 8016 8293 8482
	9		4980 5964 6604 7180 7551 7884 8094
	10 4243 5298 6036 6668 7089 7439 7712
	11 3618 4636 5423 6096 6617 6998 7266
	12 3025 4066 4795 5575 6117 6509 6833
	13 2491 3497 4243 5086 5644 6078 6394

Table 7

 7 Value of ⌊log 2

					M * k d	⌋			
	d	k	5	6	7	8	9	10	11
	4		46	62	79	96 116 135 156
	5		56	76	97 119 143 168 194
	6		66	90 115 142 171 200 231
	7		76 104 133 164 198 232 268
	8		85 117 150 186 225 264 305
	9		94 130 168 208 251 296 342
	10	104 144 185 230 278 327 379
	11	113 157 203 252 304 358 415
	12	122 170 220 273 331 390 452
	13	130 182 237 295 357 421 488

Table 8

 8 Size of M k in bits (lowest upper-bound of the size of ω i ), using k consecutive primes

	k	1	2	3	4	5	6	7	8
	k-th prime	2	3	5	7	11	13	17	19
	⌈log 2 M k ⌉	2	3	5	8	12	15	19	24
	k	9	10	11	12	13	14	15	16
	k-th prime	23	29	31	37	41	43	47	53
	⌈log 2 M k ⌉	28	33	38	43	49	54	60	65
	almost always necessary. Nevertheless, our results
	allow to use smaller (						

Table 9

 9 Verifier Public key and Signature size

		Classic			Freivalds' version
	Key Shape	Public Key	Signature	Public Key	Signature
	Co-cyclic	n 2 log(∥s∥ ∞			

see values of q, l for[START_REF] Ducas | Crystals-dilithium algorithm specifications and supporting documentation[END_REF][START_REF] Fouque | Falcon: Fast-fourier lattice-based compact signatures over NTRU (specification v1.2)[END_REF] compared to matching security values d, ωi in tables 8,6,7