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Obesity and its metabolic complications are characterized by subclinical systemic and tissue 

inflammation. In rodent models of obesity, inflammation and metabolic impairments are 

linked with intestinal barrier damage. However, whether intestinal permeability is altered in 

human obesity remains to be investigated. In a cohort of 122 severely obese and non-obese 

patients, we analyzed intestinal barrier function combining in vivo and ex vivo investigations. 

We found tight junction impairments in the jejunal epithelium of obese patients, evidenced by 

a reduction of occludin and tricellulin.  Serum levels of zonulin and LPS-Binding Protein, two 

markers usually associated with intestinal barrier alterations, were also increased in obese 

patients. Intestinal permeability per se was assessed in vivo by quantification of urinary 

lactitol/mannitol (L/M) and measured directly ex vivo on jejunal samples in Ussing chambers. 

In the fasting condition, L/M ratio and jejunal permeability were not significantly different 

between obese and non-obese patients, but high jejunal permeability to small molecules (0.4 

kDa) was associated with systemic inflammation within the obese cohort. Altogether, these 

results suggest that intestinal barrier function is subtly compromised in obese patients. We 

thus tested whether this barrier impairment could be exacerbated by dietary lipids.  To this 

end, we challenged jejunal samples with lipid micelles and showed that a single exposure 

increased permeability to macromolecules (4 kDa). Jejunal permeability after the lipid load 

was two-fold higher in obese patients compared to non-obese controls and correlated with 

systemic and intestinal inflammation. Moreover, lipid-induced permeability was an 

explicative variable of type 2 diabetes.  In conclusion, intestinal barrier defects are present in 

human severe obesity and exacerbated by a lipid challenge. This paves the way to the 

development of novel therapeutic approaches to modulate intestinal barrier function or 

personalize nutrition therapy to decrease lipid-induced jejunal leakage in metabolic diseases.  
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INTRODUCTION  

 Intestinal barrier impairment is associated with local and systemic inflammation in 

inflammatory bowel diseases [1, 2]. Barrier defects, including increased epithelial 

permeability, may promote the transfer of dietary and bacterial antigens across the intestinal 

mucosa, thereby contributing to imbalanced responses of mucosal immune cells and induction 

of inflammation [3]. In return, pro-inflammatory cytokines are able to induce dysregulation of 

tight junctions involved in the control of paracellular flux, leading to a local vicious cycle of 

inflammation [2, 4]. In Crohn’s disease, healthy first-degree relatives of patients display 

higher intestinal permeability than unrelated controls, suggesting that intestinal barrier defects 

could be early events contributing to disease pathogenesis [3]. This “leaky gut” concept has 

been extended to extra-digestive diseases also associated with perturbed inflammatory 

responses, such as HIV/AIDS and type 1 diabetes [1, 2].  

 Obesity and associated metabolic disorders, such as type 2 diabetes, are also 

characterized by systemic inflammation but at subclinical levels [5, 6]. These metabolic 

diseases are associated with tissue inflammation in the liver [7], adipose tissue [8, 9] as well 

as small intestine, for which we recently demonstrated a link between activated intestinal T 

cells and impaired insulin signaling in enterocytes [10]. These results denote the importance 

of intestinal inflammation in the pathogenesis of obesity-related metabolic alterations. In this 

context, relationships with intestinal barrier dysfunction must be addressed in depth. 

 In mice, increased gut permeability has been linked to inflammation and metabolic 

alterations by the pioneering work of P. Cani [11]. These results were confirmed in multiple 

studies using rodent models of high-fat diet-induced obesity [12]. It has been proposed that 

endotoxemia, i.e. the passage of bacterial LPS into the systemic circulation, is a consequence 

of an altered intestinal barrier and plays a crucial role in the low-grade inflammation that is 
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triggered by diet-induced obesity [13]. By contrast, only few studies to date have investigated 

gut permeability in human obese patients. Based on the lactitol-mannitol intestinal 

permeability test performed in small cohorts, two studies showed an association between 

increased gut permeability and metabolic alterations such as insulin-resistance and hepatic 

steatosis [14, 15], while another one failed to show any disturbance of intestinal barrier 

function [16]. Similarly, analysis of endotoxemia gave rise to discordant results [17, 18]. 

Thus, the impairment of intestinal barrier function in human obesity remains an open 

question, especially in severe obesity.   

 Excessive consumption of energy dense foods has undoubtedly contributed to the 

obesity epidemic. In rodents, high-fat feeding is associated with changes in the gut microbial 

profile and decreased bacterial diversity [12], with similar findings described in human 

obesity [12, 19]. In mice, changes in gut microbiota have been involved in the increase of 

intestinal permeability after 4 weeks of high-fat diet (HFD) since effects were alleviated upon 

antibiotic treatments [11]. However, recent studies show that increased intestinal permeability 

is an early response to  HFD and precedes weight gain and the onset of type 2 diabetes [20-

22]. Eventhough microbiota modifications could partly mediate barrier alterations [11], direct 

effects of dietary lipids on the intestinal epithelium must be considered. The hypothesis of 

short-term deleterious effects of lipids on the intestinal barrier is also supported by the 

observation that a single lipid bolus can trigger a post-prandial endotoxemia in mice [23] and 

in humans [18, 24, 25]. It is currently admitted that endotoxemia reflects an increased 

intestinal permeability since LPS can cross an epithelial monolayer by the paracellular route 

[26]. However, post-prandial endotoxemia can also result from the transcellular passage of 

LPS and its secretion in association with chylomicrons [23, 25]. Therefore, a post-prandial 

endotoxemia does not necessarily reflect an increased intestinal permeability and effects of 

lipids on the intestinal barrier remain to be elucidated.   

This article is protected by copyright. All rights reserved.
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 The current study addresses in humans the relationships between obesity, alterations of 

intestinal permeability, endotoxemia, systemic and intestinal inflammation as well as  

metabolic alterations, in the fasting state and after a lipid challenge. 
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METHODS  

 

Study population 

 A total of 78 severely obese candidates for Roux-en-Y gastric bypass (RYGB) surgery 

were prospectively recruited at the Nutrition department of Pitié-Salpêtrière University 

Hospital, Paris, France. Forty-two patients (54%) had type 2 diabetes, defined according to 

ADA criteria [27]. Among them, 29 (69%) were treated with metformin, 16 (38%) with 

sulfonylureas, 12 (29%) with GLP-1 agonists and 14 (33%) with insulin. Jejunum samples 

were collected during RYGB. Jejunum characteristics (permeability and tight junction 

analysis) were compared to 14 non-obese controls C1 which consisted of patients who 

underwent pancreaticoduodenectomy or gastrectomy allowing access to proximal jejunal 

samples. Most importantly, we excluded non-obese patients with diabetes, renal- cardiac- or 

hepatic failure or patients with personal or familial history of inflammatory bowel disease or 

under treatment that could interfere with intestinal permeability (i.e. antibiotics, anti-

inflammatory drugs, and chemotherapy). Their levels of white blood count were under 

10.109/mm3 and of CRP below 5 mg/l.  

 For in vivo assays (i.e. Lactitol/Mannitol test, LPS-transporters and zonulin), an 

independent control group of 30 healthy patients C2 and 28 obese patients were investigated. 

This subgroup of obese patients was not different from the rest of the cohort according  to 

age and BMI (ANOVA statistical test with p=0.98 and p=0.07 for age and BMI respectively).  

 The study was conducted in accordance with the declaration of Helsinki, received 

approval from the local ethics Committee (CPP Ile de France I), and was registered in the 

ClinicalTrials.gov Web site (https://clinicaltrials.gov/ct2/show/NCT02292121). Informed 

written consent was obtained from all patients prior to study inclusion. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

Clinical, anthropological and biological characteristics 

 Medical history and clinical variables were recorded for the two groups of controls 

(C1 and C2) and for obese patients before surgery. The percentage of total fat mass was 

evaluated by dual energy X-ray absorptiometry (Discovery DXA Hologic, Hologic Discovery 

W, Bedford, MA, USA) in obese patients as described [28] and by bioimpedance in C2 

patients. The percentage of visceral fat mass was measured in obese patients at the L4 spinal 

segment level using computed tomography. Venous blood samples were collected after a 12-

hour fast for routine assessment of biological metabolic and inflammatory variables as 

described [5]. Calprotectin is a cytoplasmic protein released from activated neutrophil 

granulocytes; in feces, it is considered as a marker of intestinal inflammation. Fecal 

calprotectin was quantified using ELISA (Calprest®, Eurospital, Trieste, Italy). The 

quantification limit of the assay is 15 μg/g stool. Insulin resistance was assessed using the 

HOMA-IR index (insulinemia (mUI/L) × fasting blood glucose (mmol/L)/22.5). Insulin and 

HOMA-IR were not considered for patients treated by insulin, GLP-1 agonists or 

sulphonylureas.  

 Serum levels of LPS-binding protein (LBP), soluble CD14 (sCD14)  and zonulin were 

measured using ELISA kits (respectively: R&D systems, BioTechne, Lille, France; Hycult 

Biotechnology, Uden, The Netherlands; Immundiagnostik, ) as described [18].  

In vivo Lactitol/ Mannitol urinary excretion ratio test  

 The Lactitol/Mannitol (L/M) urinary excretion test was performed during the month 

preceding the surgery. Patients were given a mannitol (M) and lactitol (L) mix in aqueous 

solution (4 g of each sugar in 40 mL water) after a 12-hour fast. Urine concentration of both 
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sugars was determined as described in supplementary material, Supplementary materials and 

methods and expressed as L/M ratio. 

 

Tight junction analysis and ex vivo permeability assays in Ussing chambers  

 Proximal jejunum samples from obese and non-obese C1 patients were collected 

during surgery, conditioned and transported as described [10].  

 Tight junction proteins occludin (Invitrogen™,  ThermoFisher Scientific, Illkirch, 

France, catalog number #71-1500, dilution 1:200) and tricellulin (Invitrogen™, #700191, 

dilution 1:200) and NaK ATPase (Abcam, Paris, France, #ab2871, dilution 1:500) were 

analyzed by immunofluorescence in paraffin embedded jejunum from obese and non-obese 

C1 patients,  as described in supplementary material, Supplementary material and methods. 

Occludin and tricellulin total levels  were determined in jejunum samples using a WES 

capillary electrophoresis system (ProteinSimple, San Jose, CA, USA) as described in 

supplementary material, Supplementary material and methods. 

 For jejunal permeability assays in Ussing chambers, mucosa was dissected from the 

submucosa-muscle plane. Explants were mounted on inserts exposing 0.5 cm² of mucosa 

between Ussing chambers (World Precision Instruments, Hitchin, UK). Luminal and serosal 

chambers were filled with 2 mL of Dulbecco’s Modified Eagle’s Medium at 37 °C and 

saturated with 95% oxygen and 5% CO2 gas flow. After equilibration for 30 min, fluorescein 

isothiocyanate (FITC)-labeled sulfonic acid (FITC-SA, 0.4 kDa, 500 µM; Invitrogen) or 

FITC-Dextran (4 kDa, 500 µM or 10 kDa, 200 µM; TdB consultancy, Uppsala, Sweden) was 

added to the luminal chamber. Intestinal permeability was derived from serosal-chamber 

fluorescence values, measured at 15 min intervals from 60 to 105 min following addition of 

the fluorescent molecule, using a microplate fluorometer (BMG Labtech®, Champigny s/ 
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Marne, France). Baseline permeability (i.e. measured in jejunum samples of fasting patients) 

was determined by the slope obtained by plotting the increase in fluorescence intensity over 

time, using a linear regression fit model (Microsoft Excel, Microsoft Office). The slope value 

was adjusted to initial fluorescence intensity in each corresponding luminal reservoir. 

Permeability was calculated as the average values of at least three Ussing chambers per 

subject.  

 The impact of lipids on jejunal permeability was assessed by measuring permeability 

to FITC-Dextran 4 kDa  in the same jejunal samples before and after addition of lipid micelles 

prepared as described in supplementary material, Supplementary material and methods. After 

measuring baseline permeability up to 105 min, lipid micelles were added to luminal 

chambers and fluorescence was monitored every 15 min until time point 180 min. 

Permeability measurements in Caco-2/TC7 cells treated with lipid micelles 

 We used the TC7 clone of the human intestinal epithelial cell line Caco-2 as a 

recognized model of well-differentiated enterocytes [29]. Caco-2/TC7 cells were cultured on 

Transwell® filters (Corning, VWR International, Strasbourg, France). Lipid micelles, 

prepared as described in supplementary material, Supplementary material and methods, were 

added to the apical medium on the last day of culture.   

 To assess paracellular permeability, FITC-labeled Sulfonic Acid (400 Da) or Dextran 

tracers (4 or 10 kDa) were added to the apical medium. Samples of basal medium were 

collected at indicated times and fluorescence was determined (BMG Labtech®). 

Transepithelial electrical resistance (TEER) was measured using a Millicell-ERS apparatus 

(MilliporeTM, Molsheim, France). 

 Immunofluorescence analysis of tricellulin was performed as described in 

supplementary material, Supplementary material and methods. 

This article is protected by copyright. All rights reserved.
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Statistics 

 Data are displayed as means ± standard error of the mean (SEM) unless otherwise 

indicated. We used a generalized linear model (GLM) with binomial family classification for 

categorical variables and Gaussian family classification for quantitative variables, adjusting 

for age, sex and BMI (age and sex only when comparing obese and non-obese patients). The 

relevant p-values were obtained using ANOVA on the full models. Partial correlation 

(Pearson's family) including correction for age, sex and BMI was used to determine 

correlation of in and ex vivo intestinal parameters with clinical data and biological parameters. 

GLM and partial correlation were computed using R software (R Foundation for Statistical 

Computing, Vienna, Austria) using glm and ANOVA functions in package car for GLM and 

pcor.test in package RVAideMemoire for partial correlation. For inflammation parameters, 

Principal Component Analysis (PCA) was performed to avoid multiple testing and to detect 

relevant variables. Kinetics experiments in Caco-2/TC7 cells were analyzed using 2-way 

ANOVA followed by Tukey's post hoc test. Figures were created with Graphpad® Prism 6.0 

(Ritme Informatique, Paris, France). P< 0.05 was considered as statistically significance. 
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RESULTS  

Tight junctions are altered in the jejunum of severely obese patients  

 The characteristics of 122 patients included in the study are provided in Table 1. As 

expected, severely obese patients showed a high prevalence of comorbidities. They exhibited 

impaired metabolic parameters such as increased fasting glycemia, insulinemia, triglycerides, 

and decreased HDL-c values.  

 We evaluated the organization of tight junctions in the jejunum epithelium collected in 

the fasted state (supplementary material, Figure S1). Fluorescence intensity of occludin and 

tricellulin labelling in the respective bicellular and tricellular tight junctions were significantly 

decreased in obese patients as compared with non-obese patients (Figure 1, occludin: -43%, 

P<0.0001, tricellulin: -27%, P<0.0001), without modification in the total amount of these 

proteins (supplementary material, Figure S2). Contrariwise, ZO-1 was unchanged (data not 

shown).  

Intestinal permeability is not increased in fasting obese patients but permeability to 

small molecules is linked to subclinical inflammation  

 To assess whether these tight junction impairments were associated with intestine 

barrier dysfunction, we performed an ex vivo measure of intestinal permeability in Ussing 

chambers using tracers of different molecular weights: 0.4 kDa (representative of 

disaccharides) and 4 or 10 kDa (representative of larger size components such as dietary or 

bacterial molecules) [30]. For the three tracers, the distributions of the jejunal permeability 

values were more heterogeneous in obese patients than in non-obese control group, but no 

significant difference was found (Figure 2A-C). In agreement with these ex vivo data, urinary 

lactitol/Mannitol (L/M) ratios were not statistically different between obese and non-obese 
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patients (Figure 3A).  

 We examined a series of serum markers that have been shown to be associated with 

impaired barrier function. Fasting serum levels of zonulin and lipopolysaccharide-binding 

protein (LBP) were increased in obese patients (+13%, P=0.03 and +25%, P<0.0001 

respectively, Figure 3B-C). Soluble CD14 (sCD14), another LPS co-receptor,  was 

comparable between obese and non-obese groups (Figure 3D).  

 No difference between diabetic and non-diabetic obese patients was observed, 

regardless of the method of intestinal barrier evaluation considered (Figures 1, 2 and 3). We 

did not find any relevant relationship between the permeability parameters and anti-diabetic 

treatments (supplementary material, Table S1). Moreover, none of the in vivo markers of 

intestinal permeability or altered barrier function was correlated with the values obtained by 

direct measurement of jejunal permeability in Ussing chambers (supplementary material, 

Table S2). 

 Taking advantage of the heterogeneous distribution in jejunal permability to FITC-SA 

0.4 kDa and FITC-Dextran 4 kDa within the obese group, we analyzed whether links could be 

found between intestinal permeability and subclinical inflammation. Indeed, patients with 

severe obesity displayed varying levels of systemic low-grade inflammation markers  (Table 

2) and of fecal calprotectin, a surrogate marker of the  intestinal micro-inflammation (Figure 

3E). Using partial correlation analysis, we examined the relationships between different 

parameters of barrier function and a large set of clinical and biological markers 

(supplementary material, Table S3). Several positive correlations were found between 

permeability values measured in Ussing chamber and inflammation markers. Permeability to 

0.4 kDa tracer was positively correlated with haptoglobin (rho=0.65; P<0.001) and CRP 

(rho=0.47; P=0.009) (Figure 4A). The distribution of the jejunal permeability values allowed 

delination of two groups with low or high permeability to 0.4 kDa tracer (Figure 2A). To 
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assess further the link between inflammation and permeability, we performed Principal 

Component Analysis (PCA) including 6 different serum markers of inflammation (Table 2) 

and fecal calprotectin. The first two principal components suggest an important impact of 

only three markers -CRP, haptoglobin and fibrinogen- which drive the clustering of patients 

as a function of their jejunal permeability (Figure 4B). Taking into account each marker 

individually, we confirmed higher levels of haptoglobin and CRP in the high permeability 

group (P<0.001 and P=0.002 respectively, Figure 4C) but no statistical difference was 

observed for fibrinogen levels (P=0.12). No link was observed between inflammation and 

permeability to large molecules (FITC-Dextran 4 kDa) or  L/M ratio. Regarding serum 

biomarkers of altered barrier function, the only correlation with inflammation was found for 

LBP, whose level was positively correlated with fibrinogen level (Figure 4A and 

supplementary material, Table S3).  

 To summarize, no statistical difference was found between fasted obese and non-obese 

patients concerning their intestinal permeability measured either in vivo by the 

Lactitol/Mannitol test or directly in Ussing chambers. However, altered tight junctions, 

increased serum levels of two potential markers of altered barrier function (zonulin and LBP), 

as well as association between jejunal permeability and inflammation suggested that the 

intestinal barrier function is weakened in severe obesity.  

 

Increased jejunal permeability to large molecules is revealed by a lipid challenge and 

linked with inflammation and type 2 diabetes  

 We hypothesized that the subtle impairment of the intestinal barrier observed in the 

fasting state could be exacerbated by a lipid challenge mimicking a meal.  

This article is protected by copyright. All rights reserved.
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In a first step, we aimed to test wether dietary lipids exert direct effects on intestinal 

permeability. For this purpose, we exposed the Caco-2/TC7 human intestinal cells to lipid 

micelles with a composition reflecting that of micelles in the intestinal lumen after a lipid-rich 

meal [31]. Whereas transepithelial electrical resistance (TEER) was not modified 

(supplementary material, Figure S3A), lipid micelles significantly increased Caco-2/TC7 

permeability to different tracers, with a stronger effect on permeability to large-size molecules 

(≥4 kDa), compared to small size molecules (0.4 kDa) (Figure 5A). This increased 

permeability was associated with a decreased intensity of tricellulin staining (Figure 5B). 

Micelles containing digestion products of triglycerides (“postprandial micelles”) significantly 

increased paracellular permeability, but micelles containing only biliary products 

(“interprandial micelles”) had no effect (Figure 5A), nor did taurocholic acid or a combination 

of taurocholic and oleic acid (supplementary material, Figure S3B).  

 We then evaluated the effect of such an ex vivo lipid challenge on the permeability of 

human jejunum samples. As lipids impacted mostly permeability to macromolecules in Caco-

2/TC7 cells, we focused on passage of FITC-dextran 4 kDa, which was measured before and 

after the addition of postprandial micelles in the luminal reservoir of Ussing chambers. When 

considering all patients, including non-obese and obese, lipid micelles significantly increased 

the passage of  FITC-Dextran 4 kDa (Figure 6A; P<0.001). However, postprandial micelles 

had a potent effect in obese patients (89.9±9.4 AU at baseline versus 151.2±15.9 AU with 

micelles; mean fold increase +68%, P<0.0001) and a lower impact in non-obese patients 

(54.1±16.6 AU at baseline versus 78.5±17.2 AU with micelles; mean fold increase +45%, 

P<0.001). Strikingly, the permeability to FITC-Dextran 4 kDa after the lipid challenge was 

1.9-fold higher in obese than in non-obese patients (Figure 6B; P=0.03). Exposing obese 

patients’ jejunal explants to lipid micelles resulted in a significant decrease in tricellulin 

fluorescence intensity (-17%), as compared to control explants without micelles (Figure 6C; 
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P=0.012).  

 In the obese patients, ex vivo jejunal permeability to FITC-Dextran 4 kDa after the 

micelle challenge showed a positive correlation with markers of systemic (CRP rho=0.44; 

P=0.010) and intestinal inflammation, (fecal calprotectin rho=0.53; p=0.007) (Figure 4A and 

supplementary material, Table S3). We used a generalized linear model to explain diabetic 

status taking into account age, sex, BMI, permeability to FITC-Dextran 4 kDa at baseline and 

after lipid challenge. We found that age and jejunal permeability after lipid challenge were the 

only independent variables explaining diabetic status (P=0.008 and P=0.013 for age and 

permeability, respectively). When corrected for age, BMI, sex and baseline permeability, 

permeability after micelles was significantly higher in diabetic obese than in non-diabetic-

obese patients (Figure 6D; P=0.012). Thus an increased permeability to large molecules after 

a lipid challenge was linked to the diabetic status.   
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DISCUSSION  

 Combining ex vivo and in vivo approaches, we demonstrate an alteration of the 

intestinal barrier function in human obesity evidenced by impaired tight junctions and 

increased levels of seric zonulin and LBP. Increased jejunal permeability was not detected in 

fasted obese patients but unveiled after a challenge with dietary lipids and linked with 

inflammation and metabolic alteration.   

 Intestinal permeability is controlled by tight junctions, which are impaired in 

inflammatory bowel disease (IBD) [32, 33]. Among the large repertoire of tight junction 

proteins, our study focused on tricellulin and occludin, two proteins involved in the barrier to 

macromolecules [34, 35], the latter being found decreased in rodent models of genetic- or 

diet-induced obesity [11, 36, 37]. In our obese patients, total jejunal occludin and tricellulin 

were unchanged. However, their levels were decreased in tight junctions, demonstrating for 

the first time a mislocalization of both proteins in human obesity, as described in other 

inflammatory conditions [38, 39]. This suggests that human obesity is associated with altered 

intestinal barrier properties. Contrary to IBD [40], we did not observe any epithelial lesions 

(data not shown) and we assessed whether the modification of tight junctions in obese 

patients were sufficient to lead to increased permeability.  Considered as the gold standard, 

the Ussing chamber method allows for direct assessment of permeability in specific intestinal 

segments, regardless of confounding factors (i.e. intestinal transit time and surface area, tracer 

degradation, renal function, etc) and has been used to characterize barrier alterations in 

several animal models [41]. Measured during the fasting state in obese individuals being 

operated for bariatric surgery, jejunal permeability to small and large molecules was not 

significantly increased compared to non-obese patients. This result contrasts with obese mice 

fed a HFD, in which 2 to 10-fold increase in intestinal permeability to macromolecules was 

reported [11, 20, 21, 42]. However, in our cohort, accurate analysis of phenotypes linked to 
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obesity revealed associations between jejunal permeability to small molecules and 

inflammation status. Thus, despite much more modest barrier defects compared to rodent 

models of obesity, our results demontraste in humans the links between jejunal permeability 

and obesity-associated low-grade inflammation.  

 When evaluated in the fasting state, alterations of the intestinal barrier of obese 

patients were probably too subtle to be clearly evidenced in comparison to non-obese patients. 

The major finding of our study is that an acute ex vivo exposure to dietary lipids mimicking a 

meal is sufficient to unmask jejunal hyperpermeability to large molecules in severe obesity. 

Our results in Caco-2/TC7 cells indicate that lipids per se are able to increase paracellular 

permeability through direct effects on tight junctions, and especially tricellular tight junctions, 

which were recently identified as a pathway for macromolecules [34]. As we previously 

demonstrated, complex lipid micelles used in the current study preserved cell viability and 

epithelial integrity [31]. Therefore, increased permeability to macromolecules cannot be 

attributed to cellular damage. Among lipid micelle components, some bile acids have been 

shown to alter intestinal barrier function [37, 43]. However, in our conditions, taurocholic 

acid, the most abundant conjugated primary bile acid, alone or mixed with the other main bile 

components (cholesterol and L-α-lysophosphatidylcholine), did not change epithelial 

permeability. Altogether, our results suggest that tight junctions could be modified through 

the rapid activation of signalling pathways triggered specifically by micelles containing 

triglyceride hydrolysis products, as previously shown for dietary lipid sensing through the 

scavenger receptor SR-B1/CLA-1 [44]. Such acute effects of lipid micelles on permeability 

were replicated in human jejunal samples, with more prominent effects in obese patients, 

supporting the hypothesis that acute lipid consumption may impair intestinal barrier function 

with an impact on host response. By promoting the trans-epithelial passage of 

macromolecules, lipid-mediated alterations of tight junctions could exacerbate local immune 
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responses with systemic consequences [30]. This is in accordance with our results showing a 

correlation between gut permeability upon lipid exposure and systemic inflammation assessed 

by CRP. Furthermore, fecal calprotectin, a surrogate marker of intestinal inflammation in 

inflammatory bowel disease [45], was correlated with permeability after lipid challenge and 

thereby could constitute a reliable marker of postprandial-induced barrier alteration in obesity. 

Our results support the hypothesis that deleterious effects of acute lipid loads on intestinal 

barrier properties add up to those due to the chronic lipid consumption already described in 

several previous studies [12]. In obese patients, a weakened barrier during fasting would be 

more sensitive to nutrient/luminal challenges. To go further in this way, the links between 

daily food intake and gut permeability remains to be explored in detail. While lipids are a 

representative nutrient challenge, other molecules known to alter the intestinal barrier 

including alcohol or non-steroidal anti-inflammatory drugs [2, 46], would be of interest to test 

in future studies.   

 Another important result is the observation of an independent link between lipid-

induced jejunal hyperpermeability and metabolic conditions of obese patients. Indeed, lipid-

induced permeability was a significant explicative variable of type 2 diabetes, independently 

of age, sex, BMI or baseline jejunal permeability, whereas intestinal permeability measured at 

the fasting state, regardless of the method, was comparable between diabetic and non-diabetic 

obese patients. Various tissue and systemic alterations associated with diabetes may increase 

jejunal sensitivity to lipid-mediated barrier impairment. This includes proinflammatory 

cytokines, which have been shown to trigger intestinal barrier dysfunction through mecanisms 

initiated at the basal side of epithelial cells [3]. Importantly, we previously showed immune 

cell accumulation and local cytokine expression in the jejunum of obese patients according to 

their metabolic status [10]. Recently, Thaiss et al demonstrated a hyperglycemia-mediated 

barrier disruption through a mechanism initiated at the basal membrane [47]. Interestingly, 
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hyperglycemia is associated with decreased bacterial-epithelial distance in the colon, which 

may contribute to barrier dysfunction [48]. Therefore, the integration of the different signals 

originating from both luminal and basolateral environments and the interaction  between the 

microbiota and the mucus layer are important factors to investigate in future studies.  

 In order to establish a reliable clinical measure easily applicable to obese patients, 

we examined in vivo markers of intestinal barrier dysfunction. Urinary L/M ratio has been 

commonly used to investigate permeability in intestinal and extra-intestinal diseases [49]. 

Despite this, few studies have investigated in vivo permeability in obese patients and the 

current studies have shown conflicting results [14-16, 50]. Herein, we report no statistical 

difference in L/M ratios between non-obese patients and patients with severe obesity and 

found no link with clinical and biological phenotypes. However, zonulin, a marker of 

intestinal tight junction impairment in celiac disease and type 1 diabetes [51] and LBP, a LPS 

transporter, were increased in obese patients, in accordance with previous observations in 

overweight or moderately obese patients [18, 52-54]. Notably, none of these in vivo 

biomarkers of altered barrier function correlated with permeability measured in Ussing 

chambers. Collectively, these results show that a reliable tool measuring permeability for 

clinical practice remains to be identified in the context of human metabolic disease. The 

search for intestinal permeability and epithelial integrity biomarkers is also a major issue in 

other pathological conditions such as IBD. Moreover, the establishment of physiological 

values for permeability or other parameters reflecting healthy barrier function are a 

prerequisite for future prospective studies assessing the benefit of surgical or nutritional 

interventions [55].   

 In conclusion, the “leaky gut” paradigm can be extended to human severe obesity, 

although the intestinal barrier dysfunction differs significantly from the rodent models. In 

human obesity, whereas only subtle barrier alterations are evidenced in the fasting state, 
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increased jejunal permeability is unequivocally revealed by a lipid load and associated with 

inflammatory and metabolic status. These results emphasize the need to consider if and how 

repeated lipid challenges can alter intestinal permeability and play a role in the 

pathophysiology of intestinal barrier function and downstream metabolic impairment in 

obesity. Further research on this topic would pave the way for new nutrition strategies in 

preventive medicine.  
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FIGURE LEGENDS 

Figure 1. Decreased occludin and tricellulin at tight junctions in jejunum of fasted obese 

patients. 

A: Occludin and tricellulin were analyzed by immunofluorescence and confocal microscopy 

in jejunum sections. Photos show their expected distributions at bicellular and tricellular tight 

junctions respectively. The schemes display the labeling profile obtained with either top 

views (as shown on the photos) or side views (shown in B and C and used for quantifications 

as described below). 

B, C: Representative fields of side views of occludin (B) and tricellulin (C) labeling (white),  

with Na K ATPase basolateral co-labeling (green) (Scale bar: 10 µm; BB: Brush Border). 

Fluorescence intensity at the level of tight junction was quantified by Image J® (AU: 

arbitrary unit) as described in Supplementary Figure 1. For each subject, the value is the 

median fluorescence obtained by the measure of ~200 tight junctions of the mid-villus from 

at least 9 fields in tile images with correct orientation according to the Na K ATPase 

basolateral labeling. B: Occludin, non-obese C1 (n=9), obese (n=41) *** P<0.001; C: 

Tricellulin, non-obese C1 (n=8), obese (n=39) ***P<0.001. Obese patients include non-

diabetic obese (black circles) and diabetic obese patients (black triangles).  No significant 

statistical difference was observed according to the presence of type 2 diabetes (P=0.34 and 

P=0.18 for occludin and tricellulin respectively). Results are provided as dot plots with mean 

± SEM; Generalized linear model (GLM) corrected for age and sex.  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Figure 

patient

Jejunum

Sulfonic

subgrou

B: FITC

obese C

diabetic

(ObD) t

257.1±3

kDa (P=

(AU), a

 

2: Jejunal

ts at fasting

m samples w

c Acid 0.4

ups accordin

C-Dextran 4

C1 (n=6), ob

c obese pati

than in obes

32.6 AU in 

=0.85) and 

are provided

l permeabi

g state. 

were mount

 kDa, non-

ng to the na

4 kDa, non-

bese (n=26)

ients (black

se (Ob) pati

Ob (n=13), 

10 kDa (P=

d as dot plot

 

ility measu

ted in Ussin

-obese C1 

dir in the di

obese C1 (n

). Obese pa

k triangles)

ients for FIT

p=0.01) bu

=0.84). Data

s with mean

ured in Uss

ng chamber

(n=7), obe

istribution o

n=10), obes

atients inclu

. Ex vivo p

TC-SA 0.4 k

ut was comp

a, expressed

n ± SEM; G

sing chamb

rs to measu

ese (n=33). 

of permeabi

se (n=65). C

ude non-diab

permeability

kDa (168.3

parable whe

d as fluores

GLM correct

bers in obe

ure permeab

Dotted cir

ility values 

C: FITC-De

betic obese 

y was lowe

±23 AU in 

en consideri

scence slope

ted for age 

ese and no

bility for A

rcles deline

(Low versu

extran 10 kD

(black circ

er in diabeti

ObD (n=20

ing FITC-D

e in Arbitra

and sex.  

on-obese 

 

A: FITC-

eate two 

us High). 

Da, non-

cles) and 

ic obese 

0) versus 

Dextran 4 

ary Units 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

Figure 3: Lactitol/Mannitol (L/M) excretion ratio, zonulin serum levels, endotoxemia-

related parameters and fecal calprotectin in obese and non-obese patients at fasting 

state. 

A:  L/M urinary excretion ratio in non-obese C2 (n=29) and obese patients (n=27). B: 

Zonulin serum level (ng/ml) in non-obese C2 (n=30) and obese patients (n=26). * P<0.05. C 

and D: Serum levels of LBP (µg/ml) and sCD14 (µg/ml) in non-obese C2 (n=30) and obese 

patients (n=27). *** P<0.001. E: Fecal calprotectin concentration (µg/g stool) in non-obese 

C2 (n=29) and obese patients (n=41). * P<0.05. Obese patients include non-diabetic obese 

(black circles) and diabetic obese patients (black triangles). No differences between Ob and 

ObD patients were observed for any of these parameters (L/M ratio, P=0.46; zonulin, P=0.39; 

LBP, P=0.08; sCD14, P= 0.34; fecal calprotectin P= 0.6). Results are provided as dot plots 

with mean ± SEM; GLM corrected for age and sex. 
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Figure 4: Obesity-related phenotype and jejunal permeability relationships 

A: Heat map of correlations between parameters of intestinal barrier function (evaluated 

either by the L/M ratio, serum levels of zonulin, LBP or sCD14 or permeability measured 

directly in Ussing chambers) with baseline obesity-related clinical parameters adjusted for 

age, sex and BMI (partial Pearson correlations). Each colored square denotes a correlation at 

the intersection of columns and lines. Color intensity (color key) indicates the correlation 

coefficient magnitude using the red color for positive correlation and blue for negative 

correlation. Significant P values are indicated for each intersection: * P<0.05 ** P<0.01 *** 

P<0.001. Detailed Rho, P and n values are presented in Supplementary Table 3. PPM: post-

prandial micelles. B: Biplot from the PCA of the inflammation markers. Vectors 

corresponding to the 7 inflammation markers are displayed and subgroups with low (black) 

and high permeability (green) to the 0.4 kDa tracer, determined according to Figure 2A, are 

delineated using the convex hull. C: Serum levels of haptoglobin, CRP and fibrinogen 

according to permeability to the 0.4 kDa tracer (low or high, see Figure 2A). ** P<0.01 *** 

P<0.001. Obese patients include non-diabetic obese (black circles) and diabetic obese patients 

(black triangles). Results are provided as dot plots with mean ± SEM; GLM corrected for age 

sex and BMI.  
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to the mucosa sample used for jejunal permeability assessment in Ussing chambers and 

incubated in presence or not of PP micelles before fixation and immunolabelling. Non-

parametric unpaired Mann-Whitney test. *P<0.05. D: Variation of FITC-Dextran 4 kDa flux 

after exposure to PP micelles according to type 2 diabetes status (GLM model: FITC-Dextran 

4 kDa flux with PP micelles ~ Age + BMI + Sex + FITC-Dextran 4 kDa flux baseline + type 

2 diabetes) in obese patients without (Ob, n=20) or with type 2 diabetes (ObD, n=18); * 

P<0.05. 

 

 

 

 

SUPPLEMENTARY MATERIAL ONLINE 

 

Supplementary materials and methods  YES 

 

Supplementary figure legends  YES 

 

Figure S1. Immunofluorescence analysis of occludin and tricellulin in human jejunum 

samples 

 

Figure S2. WES analysis of occludin and tricellulin levels in human jejunum samples 
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Figure S3. Effect of different combinations of lipids on TEER and on permeability to FITC-

Dextran 4 kDa 

 

Table S1. Detailed P and n values corresponding to generalized linear model including 

different intestinal permeability hallmarks and anti-diabetic treatments as categorical 

variables 

 

Table S2. Detailed Rho, P and n values corresponding to analyses of partial correlation 

between different hallmarks of altered intestinal barrier function 

 

Table S3. Analyses of partial correlation between obesity-related phenotype and hallmarks of 

altered intestinal barrier function 
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Table 1. Clinical and biological baseline characteristics of obese and non-obese (C1 and C2) patients enrolled in the present study 

Mean±SEM [min–max]; non-parametric unpaired Mann-Whitney test (quantitative variables); Chi-square test (categorial variables); DXA: Dual-energy X ray 
absorptiometry; OSA: obstructive sleep apnea syndrome.  
¥% of fat mass was measured by impedance for non-obese and DEXA for obese patients  
* data not considered in 29 diabetic obese patients treated with sulphonylureas and/or insulin and/or GLP-1 agonists. 

  

  
 

C1 non obese
(n=14) 

C2 non obese
(n=30) 

Obese
(n=78) 

P value*
C1 versus 

obese 
C2 versus 

obese 
Demographic data Sex ratio M/F n (%) 7 (50)/7 (50) 2 (7)/28 (93) 18 (23)/60 (77) 0.037   0.049 

Age (Y) 60.1±3 [30.8-71] 43±2.2 [21.3-63.8] 42.6±1.5 [21-67]   0.0003 0.18 
Corpulence and adipokines Weight (kg) 68.5±3.5 [47-88] 60.7±1.3 [48.5-85] 125.5±2.3 [87.8-194] <0.0001   <0.0001 

BMI (kg/m²) 23.5±0.9 [18.4-27.6] 22.5±0.3 [18.8-24.9] 45.5±0.6 [37-56.9] <0.0001   <0.0001 
Fat mass (%)¥ - 27.8±1 [17-37] 47.3±0.6 [27.4-56.9] - - 

Comorbidities Type 2 diabetes n (%) 0 0 42 (53.8) <0.0001   <0.0001 
Hypercholesterolemia n (%) 2 (14.3) 0 36 (46.1)   0.026   <0.0001 
Hypertriglyceridemia n (%) 0 0 41 (52.6)     0.0003     0.0003 
OSA n (%) 0 0 56 (71.8)   <0.0001   <0.0001 
Hypertension n (%) 2 (14.3) 0 36 (46.1)     0.0258   <0.0001 
Systolic blood pressure (mmHg)  127.4±1.7 [123-136] 110.1±1.8 [93-130] 120.8±1.5 [100-157] 0.02   <0.0001 
Diastolic blood pressure (mmHg)  56.2±3.5 [27-67] 71.2±1.3 [61-88] 68±1.3 [50-96]   0.004   0.025 

Glucose metabolism Glycemia (mmol/L) - 4.6±0.1 [3.8-5.1] 6.6±2.2 [3.5-17.1] -   <0.0001 
Insulinemia (mU/L)* - 6.3±0.6 [2.2-18] 22.4±2.2 [0.5-85.6] -   <0.0001 
HOMA-IR* - 1.2±0.1 [0.4-3.7] 5.8±0.6 [0.1-25.1] -   <0.0001 

Lipid metabolism Total Cholesterol (mmol/L)  - 4.9±0.2 [3.3-6.7] 4.7±0.1 [3.1-7.2] - 0.23 
Triglycerides (mmol/L) - 0.9±0.3 [0.3-1.8] 1.7±0.1 [0.5-6.2] -   <0.0001 
HDL (mmol/L) - 1.6±0.1 [0.8-2.4] 1±0.1 [0.6-1.8] -   <0.0001 
LDL (mmol/L) - 2.9±0.1 [1.3-4.3] 2.9±0.1 [1.3-5.3] -  0.88 
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Table 2: Inflammation markers, adipokines and metabolic parameters in obese patients 
 
Mean±SEM [min–max] 
 
 

 

  
 

Obese
(n=78) 

Low-grade inflammation  CRP (mg/L) 8±1 [0.8-58] 
Orosomucoïd (mg/l) 0.9±0.1 [0.2-2.2] 
Haptoglobin (mg/l) 1.8±0.1 [0.6-4] 
IL6 plasma (pg/ml) 6.9±1.9 [1.4-130.8] 
Fibrinogen (g/l) 4.5±0.1 [2.9-6.2] 
Leucocytes (X109/mm3) 7.3±0.2 [4-11.7] 

Adipokines Adiponectin (µg/ml) 4.1±0.2 [1.7-11.3] 
Leptin (ng/ml) 61±3.5 [15-164.1] 

Metabolic parameters  Visceral fat mass (%) 30.9±2.7 [9.2-75.6] 
 HbA1c (%) 6.8±0.1 [5.1-10.6] 
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