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Abstract

We investigate numerically and theoretically the precursory intermittent activity characterizing the pre-
liminary phase of damage accumulation prior to failure of quasi-brittle solids. We use a minimal but
thermodynamically consistent model of damage growth and localization developed by Berthier et al. (2017).
The approach accounts for both microstructural disorder and non-local interactions and permits inferring a
complete scaling description of the spatio-temporal structure of failure precursors. By developing a theoret-
ical model of damage growth in disordered elasto-damageable specimen, we demonstrate that these scaling
relations emerge from the physics of elastic manifolds driven in disordered media, while the divergence of
these quantities close to failure is reminiscent of the loss of stability of the specimen at the localization
threshold. Our study sorts out a long-standing debate on the nature of the compressive failure point and
the origin of the universal statistics of the precursors preceding it. Our analysis rules out a critical-point
scenario in which the divergence of the precursor size close to failure is signature of a second-order phase
transition governed by the microstructural disorder. Instead, we show that while the jerky evolution of dam-
age prior to failure results from the presence of material disorder, the latter does not significantly change the
nature of the localization process, which is an instability well described by standard bifurcation theory of
homogeneous systems. Finally, we harness our detailed understanding of the precursory statistics to design
a methodology to estimate the residual lifetime of a structure from the statistical analysis of precursors.
This method relevant for structural health monitoring is shown to perform rather accurately on our data.

Keywords: Compressive failure, damage accumulation and localization, quasi-brittle materials, failure
precursors, statistical aspects of failure, disordered materials, failure prediction, structural health
monitoring

Quasi-brittle failure takes place through the accumulation and then the localization of a large number
of microcracks in interaction. This failure mode is ubiquitous in a large range of materials such as concrete,
rocks, woods, ceramics, especially under compressive loading conditions (Ashby and Sammis, 1990; Lockner
et al., 1991; Kachanov, 2003). However, the way microcracks evolve and organize over time to ultimately
lead to the failure of a specimen or a structure remains poorly understood.

Quasi-brittle failure generally proceeds in three steps (Fortin et al., 2006; Manzato et al., 2014; Tal
et al., 2016). First, damage spreads rather uniformly within the specimen. Then, microcracks progressively
coalesce and organize into fracture patterns of increasing size. Finally, at the localization threshold, the
damage activity concentrates into a macroscopic band, ultimately leading to the complete failure of the
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specimen. Noticeably, damage accumulation preceding localization is accompanied by an intense acoustic
activity (Lockner, 1993; Petri et al., 1994; Fortin et al., 2009). These acoustic emissions are reminiscent of
bursts of damage activity, also referred to as precursors, separated by silent periods reminiscent of elastic
reloading phases. As localization approaches, the intermittency in the damage growth together with the
acoustic activity intensify: The size and the duration of the bursts both increase as a power law with the
distance to failure (Guarino et al., 1998; Girard et al., 2010; Kun et al., 2013; Baró et al., 2018; Vu et al., 2019).
As a result, close to failure, they largely exceed the characteristic microstructural size of the material and its
associated time scale. The statistical features of the mechanical and acoustic bursts have been extensively
investigated both experimentally (Garcimartin et al., 1997; Guarino et al., 2002; Deschanel et al., 2006;
Davidsen et al., 2007; Rosti et al., 2009; Baró et al., 2013; Vu et al., 2019) and numerically (Herrmann
and Roux, 1990; Zapperi et al., 1997b; Tang, 1997; Amitrano, 2006; Alava et al., 2006; Pradhan et al.,
2010; Girard et al., 2010; Kun et al., 2014). It turns out that they follow power-law statistics involving
scaling exponents that are robust and independent, to a large extent, of the type of materials and loading
conditions. Such features are the hallmark of a cooperative evolution of damage during the accumulation
phase and such universal scaling behaviors is very often reminiscent of critical phenomena. As a result, it
has been argued that compressive failure can be interpreted as a second-order phase transition where the
critical point corresponds to the failure threshold (Garcimartin et al., 1997; Moreno et al., 2000; Girard
et al., 2010; Weiss et al., 2014; Vu et al., 2019). In this scenario, the scaling exponents involved in the
precursors statistics are critical exponents. Their value depends on the range of the interactions while the
divergence of the burst size and duration close to failure is reminiscent of the classical phenomenology of
critical phenomena. This scenario is particularly attractive as it entails universality of the scaling exponents.
Yet, a theoretical proof of the critical nature of compressive failure in elasto-damageable solids is still lacking.
As a result, the statistical features of the precursors observed experimentally, such as the value of the scaling
exponents, remain still largely unexplained.

The objective of this work is not to provide a comprehensive modeling of the intermittent evolution of
damage observed during compression experiments in all its complexity. Instead, we seek to identify and
characterize the elementary mechanisms that underlie intermittency during compressive failure and account
qualitatively for the statistical features of precursors observed experimentally. Hence, our approach consists
in considering the simplified model of damage accumulation and failure proposed in Berthier et al. (2017),
which we review in the first section of our article. In this approach, quasi-brittle specimens are described
at a continuum mesoscopic scale by a 1D array of interacting elasto-damageable elements loaded in parallel
with randomly distributed damage thresholds. Interactions between neighboring elements emerging from
elasticity are described qualitatively by introducing a cooperative length scale through a non-local damage
variable (Pijaudier-Cabot and Bazant, 1987; Frémond and Nedjar, 1996; Pijaudier-Cabot and Grégoire,
2014). This length scale governs the spatial extent of the stress redistribution taking place in the specimen
after an individual damage event. As shown by Berthier et al. (2017), this approach is sufficiently simple to
reveal and identify the basic mechanisms underlying quasi-brittle failure and rich enough to capture the main
features of their mechanical response. In particular, it predicts damage localization and catastrophic failure,
which we showed to result from the unstable evolution of specific growth modes of the damage field that
are selected by the spatial structure of the non-local interactions. Here, we first show that this model also
provides a realistic description of the precursory activity preceding failure. We investigate the size, duration
and spatial extent of damage bursts as predicted by this approach and demonstrate that they follow scaling
relations. We also show that these quantities, on average, diverge as the specimen is driven closer to failure,
thus reproducing qualitatively the main features observed experimentally (Garcimartin et al., 1997; Guarino
et al., 2002; Baró et al., 2018; Vu et al., 2019).

Taking advantage of the simplicity of the considered model, we then explore theoretically the elementary
mechanisms at the origin of the jerky evolution of damage during the accumulation phase preceding failure.
We first retrieve that precursors are cascades of elementary failure events, also called avalanches, triggered
by each other through the non-local stress redistribution following each individual event. We then derive
an evolution equation of the damage field within the specimen and show that it behaves like an interface,
the elasticity of which derives from the non-local nature of the interactions considered in our damage
model. This interface is driven in a disordered medium reminiscent of the disordered fracture properties
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of the specimen with a driving speed that diverges as the specimen approaches failure. This mapping
between quasi-brittle failure and the realm of driven elastic interfaces (Barabási and Stanley, 1995), already
conjectured by Weiss et al. (2014) and Vu et al. (2019), successfully accounts for the statistical features of
the precursors observed at some finite distance to failure. In particular, it explains the scaling relationships
between the size, the duration and the spatial extent of precursors as observed in our simulations. However,
at odds with the conjecture made by Weiss et al. (2014) and Vu et al. (2019), our analysis shows that
the divergence of these quantities close to the localization threshold is not reminiscent of the depinning
transition, a dynamic phase transition emerging from the competition between disorder and elasticity met
by driven elastic interfaces (Narayan and Fisher, 1993). Instead, this behavior derives from the unstable
nature of damage localization (Rudnicki and Rice, 1975; Bigoni, 2012; Dansereau et al., 2019), a standard
bifurcation that does not result from the presence of material disorder.

This new interpretation of the divergence of the precursor size and duration close to failure has several
important implications that are thoroughly discussed in our article. In particular, it implies that final
failure does not result per se from the micro-instabilities observed during the precursory accumulation phase.
Precursors are simply by-products of the collective growth of the damage field in interaction with the material
disorder. As such, shutting down the disorder would also shut down the intermittency and would result
in a smooth homogeneous growth of damage until the localization threshold is reached. From a modeling
perspective, it means that the approach proposed by Berthier et al. (2017) and extended more recently to
2D elasto-damageable solids by Dansereau et al. (2019) using standard bifurcation theory of homogeneous
systems is sufficient to account for damage localization and failure, as well as to predict the load bearing
capacity of quasi-brittle solids with a reasonable accuracy. The proposed explanation of the divergence of
the burst size and duration close to failure suggests that this mechanism is ubiquitous in compressive failure
and follows the same law in a large range of materials. In the last part of our study, following the seminal
ideas of Sornette (2002), we harness this property to design a methodology that predicts the residual lifetime
of structures from the statistical analysis of precursors. We show that for specimens submitted to slowly
increasing external loading amplitude, the failure load can be inferred rather accurately from the evolution
of the precursor size far away from the localization threshold, thus paving the way for quantitative and
predictive methods of structural health monitoring in more complex situations (Mayya et al., 2020).

Our article is organized as follows. In the first section, we review the model proposed by Berthier et al.
(2017) which is used to simulate the intermittent evolution of damage in quasi-brittle solids. The second
part is dedicated to the thorough statistical characterization of the precursors. Their magnitude, duration
and spatial extent are related to each other by simple scaling laws and their variations over time display
a power-law increase as failure approaches. The third section deals with the theoretical description of the
intermittency and the interpretation of these properties. We provide an evolution law of the damage field
that accounts for the collective evolution of the damage within the specimen and that fully captures the
statistical properties observed numerically. This evolution equation sheds light on the complex connection
between quasi-brittle failure and the theoretical framework of driven elastic interfaces. It also provides
explanation for the divergence of the precursor size close to failure as a result of the unstable nature of
the localization process. The last section is dedicated to the application of these concepts in structural
health monitoring. We bring the numerical proof of concept that the non-stationary nature of the precursor
statistics can be harnessed to predict the residual lifetime of progressively damaging specimens.

1. Model and numerical implementation

In this section, we provide the main features of the model used numerically to investigate the intermittent
evolution of damage during compressive failure. The reader is invited to refer to the work of Berthier et al.
(2017) for a more detailed review and discussion on the average failure behavior predicted by this approach,
as well as and the numerical scheme employed for its resolution.

1.1. A thermodynamics based damage model
In our description, we consider a uni-dimensional structure (Σ) made of elasto-damageable elements in

parallel. Such a system is loaded between two rigid plates: The bottom one is clamped while a quasi-static
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uni-axial loading, controlled in displacement ∆, is applied to the top one. We consider that each element is
homogeneously deformed and undergoes a displacement equal to the macroscopic one. Individual elements
are characterized by a scalar damage parameter d. This quantity, analogous to a microcracks density, ranges
from zero when the element is intact to one when fully broken. Such a damage level affects the elastic
response of each element as its elastic stiffness k decreases with d. Each element represents a mesoscopic
heterogeneity of randomly drawn damage energy Yc that may vary with damage level. As a result, the total
energy required to fully break an element is given by

∫ 1

0
Yc(d̃)dd̃. The total energy of the system is then

written as the sum of three contributions: The elastic energy stored in each element, the dissipated energy
by damage and the work of the external force:

E = Eel + Ed −W =

∫
Σ

1

2
∆2k(d(x))dx+

∫
Σ

∫ d(x)

0

Yc(x, d̃)dd̃dx−
∫ ∆

0

F (∆̃)d∆̃. (1)

As expressed in this equation, the local stiffness is chosen to depend on a non-local damage parameter d
rather than on its local counterpart d. This non-local damage field corresponds to the weighed average

d(x) = α(x) ∗ d(x) =

∫
Σ

α(x− x′)d(x′)dx′. (2)

As shown in Berthier et al. (2017), the introduction of such a non-local damage variable allows for a simple
and practical implementation of the elastic interactions within the structure. Indeed, each individual damage
event triggers a redistribution of stress the spatial extent of which is set by the so-called interaction function
α(x). Interestingly with this approach, elastic interactions can be tuned to explore their impact on the
failure response of the specimen, as done by Berthier et al. (2017). In addition, this formulation ensures
that the total energy is conserved all along the process of damage accumulation.

A damage criterion is then obtained by deriving the former equation with respect to the damage param-
eters, and invoking energy conservation. In practice, the rate of mechanical energy composed of work of the
external force and the elastic energy released in the specimen must compensate the rate of energy dissipated

by damage for the damage to grow. Denoting F(x) = −δE
δd

the total driving force for damage, the damage
criterion writes as {

F(x) = Y (x)− Yc(x) < 0 ⇒ No damage

F(x) = Y (x)− Yc(x) = 0 ⇒ Damage growth
(3)

where Y (x) is the non-local elastic energy release rate. It writes as the convolution of the interaction function
α(x) with the local rate of energy restitution Y (x) (see Berthier et al. (2017)):

Y (x) = α(x) ∗ Y (x) where

Y (x) = −1

2
∆2k′(d(x)).

(4)

Here, k′ denotes the derivative of the stiffness with respect to the damage parameter d. Note that we adopt
here a thermodynamically-consistent damage mechanics framework (Frémond and Nedjar, 1996; Pham et al.,
2011), in a similar manner to fracture mechanics predicting crack propagation from the balance of mechanical
and fracture energy (Lawn, 1993; Rice, 1978). The particularity of the proposed model relies in that the
driving force involved in the damage criterion is non-local. This arises from the dependency of the local
stiffness on the non-local damage parameter. It means that the driving force in one element depends on
the damage level within the surrounding elements, in a manner defined by the interaction function α. It
also implies that an increase of damage in one element induces an update of the damage driving force in an
extended region around the damaging element. Therefore, the tunable function α controls the mechanism
of stress redistribution following damage events and more specifically its spatial extent.
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Energy conservation is illustrated in Fig. 1(a). Below the elastic limit ∆el, the elastic energy release rate
is not sufficient to damage the material and therefore the work of the external force is entirely stored as
elastic energy. Above ∆el, the mechanical energy injected within the medium via the work of the external
force is shared among stored elastic energy and released dissipated energy due to damage. As we will see in
the following, the dissipation of mechanical energy through damage occurs through sudden bursts separated
by silent elastic phases. This intermittency during quasi-brittle failure of disordered materials is the main
focus of this study.

1.2. Material parameters
The microstructural heterogeneities of the material are accounted for by spatial variations in the damage

energy field Yc(x, d), described by the quenched noise yc(x, d). For each element located at x and having a
damage level d, yc(x, d) is drawn from a uniform distribution of standard deviation σ and zero mean value.
The field of resistance to damage hence writes as

Yc(x, d) = Yc0 [1 + yc(x, d) + η d] (5)

where η > 0 is a hardening parameter and Yc0 is the average damage energy of the intact material. The
mechanical response remains qualitatively unaffected for a broad range of parameter values as long as
disorder is present and a transition from a stable to an unstable growth of damage in the constituting
elements takes place as d(x) increases (see Berthier et al. (2017) for the determination of the ranges of
material parameter verifying this condition). In the numerical study, we use σ = 0.2 and η = 9. Note
however, that the statistical properties of the precursors revealed by our study remain identical for other
parameter values as long a failure is preceded by a preliminary regime of damage accumulation.

The stiffness decay with damage, representative of the degradation of the elastic properties as microcracks
develop, is introduced via a polynomial expression. For a single element, such a softening writes as

k(d) = k0

[
ad3 − (a+ 1)d+ 1

]
(6)

where k0 is the stiffness of the intact material and a = −0.3 is a constant the sign of which sets the stability
of individual elements (see Berthier et al. (2017)).

The interaction function α is expressed as

α(x) = α0 exp

(
−|x|

2`

)
(7)

In this expression, |x| represents the distance between elements, α0 is a normalization constant ensuring
energy conservation such that

∫
Σ
α(x)dx = 1 and `o is an internal length which controls the spatial extent

of interactions within the specimen. In particular, it provides the range over which the driving force is
redistributed after a damage event. Here also, as illustrated subsequently, the main results of our study
remain robust to the choice of `o as long as it is much larger than the element size and much smaller than
the specimen size. In practice, we consider internal lengths several times larger than the heterogeneity size
and system sizes several thousand times larger.

1.3. Numerical resolution
We take advantage of the quasi-static loading conditions and adopt an extremal dynamics inspired by

Schmittbuhl et al. (1995) based on the following rules: The imposed displacement is increased until the
failure criterion is reached for at least one element. The damage level of this element is then increased by
an elementary increment δd0 � 1, and the spatial distribution of driving forces in the material is updated
using Eqs. (4), (5) and (7). As schematically shown in Fig. 1(d), the redistribution of driving force results
in additional damage, leading to additional driving force redistributions until such a cascade stops. This
occurs when the driving force Y is below its critical value Yc, everywhere in the specimen. The external
load is then further increased until the weakest element of the array reaches its failure threshold, triggering
another cascade of damage events.
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There is no explicit time in the simulation. Yet, we can define a posteriori the rate vext at which the
displacement imposed to the specimen is increased. We consider the limit vext → 0 that corresponds to
quasi-static loading conditions. Thus, the elastic reloading phases are much longer than the dissipative
phases. This justifies our numerical procedure. In addition, it results in two specific features - damage
cascades take place under fixed imposed displacement and precursors are well separated in time so they
appear as isolated dissipative events.

2. Intermittency and precursors statistics

2.1. Global and local scale manifestations of the intermittent growth of damage
As observed experimentally by Petri et al. (1994), Guarino et al. (1998), Davidsen et al. (2007), Baró

et al. (2013) or Vu et al. (2019), the energy dissipated through damage during quasi-brittle failure evolves
in a step-wise fashion, even though the applied load amplitude is continuously increased. This phenomenon
as captured by our approach is illustrated in the inset of Fig. 1(a). The mechanical response of the spec-
imen under slowly increasing load consists of slow reloading phases where the material behaves elastically
(identified by plateau regimes in the evolution of the accumulated dissipated energy) and micro-instabilities
taking place at constant displacement (identified by instantaneous increase of the accumulated dissipated
energy). Owing to the description of damage as a transfer of mechanical energy into dissipated energy, the
evolution of the elastic energy stored in the specimen also reflects such a jerky dynamics (not shown here).
The signature of this intermittent behavior is also observable from the macroscopic force-displacement curve,
as shown in the inset of Fig. 1(b). Here, the elastic reloading phases are separated by sudden drops of force
resulting from the decrease in elastic stiffness associated with the degradation of the material. As further
highlighted later, a remarkable feature of these fluctuations is the broad range of scales that they cover.
This is in contrast with standard Gaussian statistics that describes mild fluctuations, for example observed
in at-equilibrium systems, and that are reminiscent of thermal fluctuations.

Such an intermittent dynamics, also referred to as crackling noise (Sethna et al., 2001), is reported for
a large range of mechanics problems involving disorder, such as tensile failure of brittle disordered solids
through crack growth (Ponson, 2016), wetting of disordered surfaces (Eggers et al., 2009) or imbibing of
porous media (Planet et al., 2009). It is also observed beyond mechanics, for example during the mag-
netization of ferromagnets, displaying the so-called Barkhausen noise (Zapperi et al., 1998), or even in
social systems as illustrated by the application of these concepts for describing the abnormally large fluc-
tuations of the stock markets (Sornette et al., 1996). As a common denominator to all these very different
physical systems, long-range interactions in interaction with disorder result in feedback loops that trigger
micro-instabilities with broadly distributed sizes.

The mechanism underlying such avalanches in compressive failure is illustrated in Fig. 1(c). It consists
of a cascade of local failure events triggered by each other by the redistribution of stress in the specimen
that follows each elementary damage. A remarkable feature of these cascades is the evolution of their
energy (referred to as their size S) that increases as the specimen approaches failure, as shown in the inset
of Fig. 1(b). This evolution reveals the progressive loss of stability of the specimen, a connection further
explored in Section 3.

Beyond the time-series features of the damage evolution, we also investigate the spatial structure of the
damage cascades. To that end, we study damage spatial organization at the local scale by comparing the
damage field before (blue) and after (red) after a certain number (typically ten) of successive avalanches, as
illustrated in Fig. 1(d) for four different load levels. Far from failure, i.e. at low damage levels 〈d〉 . 0.55,
damage spreading is dominated by material disorder. Damage grows rather uniformly within the specimen,
and the incremental variation of the damage field is characterized by small clusters of dimension comparable
with the characteristic size of the material heterogeneity. On the contrary, close to failure for 〈d〉 ' 0.9, we
observe compact localized avalanches the size of which is much larger than the heterogeneity size. At this
stage, the redistribution process dominates over material disorder, leading to large and structured precursors.
This competition between material disorder and elastic interactions, as well as its evolution as the specimen
is driven towards failure, will be thoroughly investigated in the following.
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Figure 1: Observation of precursors and basic damage mechanism: (a) Evolution of the elastic energy Eel, the dissipated
energy Ed and the work W of the external force with the imposed loading amplitude ∆, normalized by the elastic limit
∆el =

√
−2Yc0/k′(0). Note that the sum of the three terms remains constant, as a result of the energy conservation principle

from which derives our model. The inset emphasizes the intermittent nature of damage evolution that displays bursts of
dissipated energy; (b) macroscopic force-displacement response during damage growth normalized by the elastic limits Fel and
∆el of the specimen displaying catastrophic failure for ∆c ≈ 2.1 ∆el. The size S of damage bursts is shown in the lower inset as
a function of the distance to failure. The effect of the damage cascades on the force-displacement response of the specimen is
evidenced by the sudden force drops shown in the upper inset; (c) schematic of the feedback loop at the origin of the precursory
micro-instabilities; (d) damage field before (blue) and after (red) ten successive avalanches at different distances to failure. The
damage field is normalized by the critical damage level dc at failure.
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2.2. Statistical characterization of precursors
To investigate the intermittent evolution of damage, we characterize each precursor by three quantities:

its spatial extent `x, its size Sd and its duration T . `x corresponds to the distance between the two most
distant damaged elements belonging to the same damage cascade. Sd is defined as the total number of
elementary damage increments (the quantity δd0 in Section 1.3) constituting the cascade. As shown from
its linear variation with the dissipated energy S during the whole cascade (see Fig. 2(a)), Sd measures the
energy dissipated through a precursor. In the following, we consider equivalently S or Sd to measure the
precursor size. Despite the discrete dynamics adopted in our numerical scheme, we can also define the
duration T of a precursor from the total number of damage redistribution loops involved during the cascade.
This amounts to assume that an individual damage event and the resulting redistribution of driving force
take place over some material specific time scale that is much smaller than the characteristic time of the
applied driving, an assumption that is supported by the limit vext → 0 considered in this study.

Remarkably, these three quantities are related through power laws as shown in Fig. 2. In particular, the
spatial extent `x of the precursors is related to its size Sd via the fractal dimension df as

`x ∼ S1/df
d (8)

where df = 2.35±0.15. As shown by the renormalization of the ordinates of Fig. 2(c), `x scales linearly with
the interaction length `0 introduced in the redistribution function. Note also that the smallest precursors
following such a scaling behavior are of the order of 10 `0, suggesting that such damage cascades emerge from
the cooperative response of a sufficiently large number of material elements in interaction. Investigating now
the duration of the precursors in Fig. 2(b), we observe that it scales with the avalanche size as

T ∼ Sz/dfd (9)

where z = 1.40 ± 0.15 is the so-called dynamic exponent. Therefore, these three quantities (size, duration
and length scale) can be related to each other and, by virtue of these scaling, we can equally use one or the
other to characterize the magnitude of a damage cascade.
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Figure 2: Scaling behavior of precursors as observed during the whole process of damage evolution: Relationship between (a)
the dissipated energy S, (b) the duration T and (c) the spatial extent `x of the precursors to the total number Sd of elementary
damage increments per cascade. The dashed lines indicate the scaling relationships S ∼ Sd, T ∼ S

z/df
d and `x ∼ S

1/df
d ,

respectively, leading to the value of the fractal dimension df = 2.35± 0.15 and the dynamic exponent z = 1.40± 0.15.

As noticed previously, the intermittency during damage spreading is non-stationary. We now explore
this feature through the detailed analysis of the avalanche size distribution computed at different distances
δ to catastrophic failure. We define δ as

δ =
∆c −∆

∆c −∆el
(10)

8



where ∆el and ∆c are the elastic limit and the failure load, respectively. This quantity ranges from one as
the first damage event takes place to zero at failure.

The precursors statistics is then investigated at different instants during the progressive failure of the
specimen. To do so, we divide the specimen’s lifetime into bins and, considering several realizations of the
disorder, we compute the distribution of precursor sizes in each bin. Because the focus of this paper is on the
precursors to failure and not the failure event itself, the final cascade during which catastrophic failure takes
place is left aside. The distributions Pδ(S) of avalanche sizes are shown in Fig. 3(a) for `0 = 5. Irrespective
of the value of the interaction length, a power law distribution with exponent β = 1.5± 0.1 is obtained for
avalanches of size S � S?. Above the cut-off S? which increases as failure is approached, the probability
density decays exponentially fast. Hence, the avalanche size distributions are well described by

Pδ(S) ∼ S−βe−S/S
?

. (11)

The variations of S∗ with the distance to failure δ is shown for the interaction lengths `0 = 5 and `0 = 10
in the inset of Fig. 3(a). In both cases, a power-law behavior

S∗ ∼ 1/δγ (12)

is observed with γ = 1.0± 0.1.
This property rationalizes the observation made in the inset of Fig. 1(b): As the specimen approaches

failure, the characteristic precursor size set by the cut-off S? increases. Owing to the scaling relations shown
in Fig. 2, it implies that the characteristic spatial extent and characteristic duration of the precursors also
increase as failure is approached. This is indeed verified in Fig. 3(b): The cutoffs T ? and `? as extracted from
the distributions of duration Pδ(T ) and spatial extent Pδ(`x) of avalanches also increase with the distance
to failure as {

T ∗ ∼ 1/δφ

`∗x ∼ 1/δκ
(13)

with φ = 0.53± 0.10 and κ = 0.37± 0.10.
We can now connect these relationships with the ones previously evidenced in Fig. 2 between the size,

the duration and the spatial extent of all the precursors. Applying them to the cut-off of the statistical
distributions at some given distance δ to failure, one obtains T ? ∼ (S?)z/df and `?x ∼ (S?)1/df that, together
with Eqs. (12) and (13), lead to T ∗(δ) ∼ (S∗(δ))z/df ∼ δ−γz/df and `∗x(δ) ∼ (S∗(δ))1/df ∼ δ−γ/df from which
we infer the relationships between exponents{

φ = γ z/df

κ = γ/df .
(14)

Interestingly, a third relationship φ = κ z relating the exponents φ and κ characterizing the non-stationary
nature of the damage evolution with the dynamic exponent z can be derived from the previous equations.
We can verify that all these scaling relations are consistent with the values of the exponents measured in
our simulations.

We now focus on the spatial characterization of the precursors at the local scale. As the specimen is
driven closer to failure, damage cascades extend over material regions of increasing size. We aim to find
the footprint of this increasing cooperative length scale on the accumulated damage field by introducing the
correlation function

C(δx) =
√
〈〈d(x)〉2δx〉x − 〈〈d(x)〉δx〉2x = std(〈d(x)〉δx). (15)

This function is then averaged over different disorder realizations, at some given distance δ to failure.
From the central limit theorem, one expects the correlation function to decay as 1/

√
δx for an uncorrelated

damage field, as awaited from a purely random process of damage growth. On the contrary, if the damage
field is correlated over some length scale, a deviation from this behavior is expected. Hence, this correlation
function reveals deviation from pure random processes and determines the scales at which such deviations
take place.
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Figure 3: Statistics of avalanches at different distances to failure: (a) normalized probability density function computed at
different distances δ to catastrophic failure. The dashed line indicates the scaling behavior S−1.5. The variations of the cutoff
avalanche size S∗ as defined by Eq. (11) is shown in inset. It varies as S? ∼ 1/δ as highlighted by the dashed line; (b) evolution
of the cutoffs duration T ? and spatial extent `?x extracted from the distributions Pδ(T ) and Pδ(`x) (not shown here). They
also increase as a power-law T ? ∼ 1/δφ and `?x ∼ 1/δκ with the distance to failure with the exponents φ ' 0.53 and κ ' 0.37.

Figure 4 shows the correlation function as a function of the box size δx after normalization by
√
δx,

for `0 = 5 and various distances to failure. As expected, far from failure (see for example δ = 0.98),
the normalized correlation function is constant, pointing out an uncorrelated damage field. As failure is
approached, a deviation from this plateau behavior is observed. The crossover length ξ between a square
root behavior C(δx) ∼ 1/

√
δx at large length scales (δx > ξ), and a non-trivial regime at shorter length

scales (δx < ξ), defines the correlation length ξ of the damage field. The spatial extent of correlated damage
increases as failure is approached, and so does the amplitude of the deviation from the random field behavior.
Hence, the accumulated damage field shows correlations over an increasing range of length scales, up to the
correlation length ξ. The latter increases as failure is approached and follows a power law

ξ ∼ 1/δρ (16)

where ρ = 0.35 ± 0.10 (see the inset of Fig. 4). Interestingly, this behavior is similar to the one of the
avalanche spatial extent that also increases as `∗x ∼ 1/δκ with κ ' ρ, suggesting that both quantities are
signatures of the same process (see Fig. 3(c)). Moreover, the lowest value of ξ that could be identified at the
earliest stage of the damage spreading is of the order of 10 `0, a length scale that compares with the precursor
spatial extent above which scaling behaviors between size, duration and spatial extent starts to emerge (see
Figs. 2(c) and 3(b)). Hence, we conclude that the cooperative dynamics of damage, which accumulates
through bursts localized over some material region of characteristic size ξ, shapes the accumulated damage
field through the introduction of non-trivial correlations over a length scale `x ' ξ that increases as failure
is approached.

In summary, the failure precursors can be characterized by the dissipated energy per avalanche S, the
accumulated damage Sd, the duration T or the spatial extent `x that are related all together by scaling
relationships. The scaling exponents involved are independent of the spatial extent of the redistribution
function, in the range investigated in our study. In addition, the statistical characterization of precursors
reveal that the progressive degradation of the specimen is a non-stationary phenomenon. In particular, the
characteristic size, duration and spatial extent of the precursors diverges as a power law with the distance
to catastrophic failure. The presence of large structured avalanches is encoded in the accumulated damage
field from which emerges also a diverging correlation length Eq. (16).

Overall, our detailed analysis of the precursors statistics reveals the existence of a time scale T ? and
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Figure 4: Normalized correlation function of the cumulative damage field at several distances δ to failure. The inset shows the
evolution the extracted correlation length ξ that is found to vary as ξ ∼ 1/δρ with ρ ' 0.35.

a length scale `∗x ' ξ encoded in the damage field fluctuations. Both characterize the process of damage
spreading and diverge at failure. Such a behavior is often considered as a hallmark of critical phenomena.
In this scenario proposed by Garcimartin et al. (1997), Moreno et al. (2000), Girard et al. (2010), Weiss
et al. (2014) and Vu et al. (2019), compressive failure is interpreted as a second-order phase transition
between a specimen able to sustain a mechanical load and a fully broken specimen. This interpretation is
appealing as the observation of universal scaling exponents is a key features of second order phase transitions.
Nevertheless, and despite the strong similarities with the phenomenology of critical phenomena, we will see
in the following that this conclusion is too hasty and that the behavior of the precursors as the specimen
is driven closer to failure is actually not consistent with the response of a system that is driven towards a
critical point.

3. Theoretical modeling : Deciphering the statistics of precursors

We now aim at providing a quantitative explanation for the statistical properties of the precursors ob-
served in our simulations. Our approach is the following : Starting from the description of quasi-brittle
failure provided in Section 1, we derive an evolution equation of the damage field at a fixed distance to
failure. This equation describes damage evolution under stationary conditions. This evolution equation
shows explicitly the connection between the theoretical framework of driven disordered elastic interfaces
(Narayan and Fisher, 1993; Barabási and Stanley, 1995; Leschhorn et al., 1997) and the process of damage
spreading in disordered elasto-damageable solids (Section 3.2), a connection already conjectured by Weiss
et al. (2014). This mapping is then used to interpret the statistical features of the precursors observed in
our simulations at a fixed distance to failure, such as the scaling relations between the size, the duration
and the spatial extent of the damage cascades. In a second step, we theoretically investigate the origin of
the non-stationary evolution of precursors statistics (Section 3.3). Modeling failure of homogeneous elasto-
damageable specimens as a standard bifurcation (Berthier et al., 2017), we show that some parameters
controlling the damage evolution equation, for example the driving speed of the elastic interface, diverge at
failure. Such a description accounts for the divergence of the duration and spatial extent of the precursors
observed in our simulations, without invoking the role of material disorder. Our analysis thus rules out
a scenario in which quasi-brittle failure is interpreted as a critical phenomenon emerging from the com-
petition between elasticity and disorder and provides an alternative explanation for the divergence of the
characteristic time and length scale of the damage cascades close to failure.
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3.1. Evolution equation of the damage field under fixed loading amplitude
We start our theoretical analysis by deriving an evolution equation of the damage field as it evolves

from a reference damage level d(x, t0) = d0 at the reference time t0 under a fixed loading amplitude ∆ = ∆0.
We consider the damage field perturbation δd(x, t) = d(x, t) − d0 and assume a so-called over-damped
dynamics ḋ(x, t) = δ̇d(x, t) ∝ F(d(x, t),∆0) where F is the damage driving force introduced in Eq. (3). This
assumption is commonly used for deriving kinetic laws from thermodynamic driving force, e.g. in brittle
fracture or plasticity problems to relate the crack speed (Gao and Rice, 1989; Ponson and Pindra, 2017) or
the plastic flow (Puglisi and Truskinovsky, 2005) to the local driving. As shown by Chopin et al. (2018) in
the context of crack propagation under tensile loading conditions, it actually derives from the linearization
of the rate-dependency of the dissipative term. This amounts here to assume that the resistance to damage
Yc is an increasing function of the damage rate ḋ.

We then decompose the total damage driving force defined in Eq. (3) into two contributions: (i) A
homogeneous term Fhom = Y (d0,∆0) − Yc(d0), that depends only on the imposed loading amplitude (or
equivalently to the distance to failure) and the initial damage level d0, and (ii) an inhomogeneous contribution
δF that depends on the damage field perturbations δd(x). This leads to the evolution equation

δ̇d(x, t) ∝ F(d(x, t),∆0) = Fhom(d0,∆0) + δF(δd(x, t), d0,∆0) (17)

that provides the damage growth rate as a function of the distribution d(x, t) of damage within the specimen
at the prescribed displacement ∆0. Since our damage model does not allow healing of the material, i.e.
δ̇d ≥ 0, a more rigorous formulation of the damage evolution law is δḋ(x,∆) ∝ max[0,F ]. But for the sake
of simplicity, this positiveness condition on δḋ is not explicitly written in the following. The above equation
can finally be written as

δ̇d(x, t) ∝ Fhom(d0,∆0) + ψ(x, d0,∆0) ∗ δd(x)− yc(x, d(x, t)) (18)

where the disorder term yc introduced in Eq. (5) describes the spatial variations of damage energy that
depends both on the position in the specimen and the current damage level. The inhomogeneous contribution
to the driving force consists of a convolution product accounting for the non-local interactions describing
the redistributions of driving force taking place within the specimen after each individual damage event. As
shown by Berthier et al. (2017), the so-called redistribution kernel ψ is obtained from a linearization of the
driving force around the reference damage level d0 and reads as

ψ(x, d0,∆0) = Y ′(d0,∆0)α2(x)− Y ′c (d0) (19)

where α2(x) = exp(−|x|/(2`0))(2`0 + |x|) denotes the convolution of the interaction function α(x) with itself.
In the former expression, the prime represents the derivative with respect to the reference damage level d0.
We can verify that an increase δd(x) = δd0 δ(x−x0) of the damage field localized in x = x0 where δ(u) is the
Dirac function results in a variation δF(x) = δd0 ψ(x− x0) of the driving force. In other words, the spatial
structure of the load redistribution following an elementary damage event is controlled by the kernel ψ, and
therefore, by the interaction function α(x) introduced in the definition of the non-local damage variable
d̄ = α ∗ d in Eq. (7).

Hence, the evolution equation (18) of the damage field consists of three terms: (i) A local contribution
Fhom, which predicts how the average damage level increases with the imposed loading, (ii) a non-local
contribution δF = ψ ∗ δd that couples the damage growth rate in x with the damage level in the other
regions of the specimen, and (iii) a quenched noise yc that describes the resistance to damage that depends
both on the position x in the specimen, but also on the current damage level d(x). Owing to the dependance
of yc with the damage level, this equation is strongly non-linear and cannot be solved exactly (see for
example Doussal et al. (2004) for advanced methods of resolution based on functional renormalization
group). It turns out that such equations are reminiscent of a broader class of problems referred to as driven
disordered elastic interfaces that deal with elastic manifolds driven in disordered media (Narayan and Fisher,
1993; Barabási and Stanley, 1995; Leschhorn et al., 1997; Wiese, 2021). Following an analogy already used
by Vandembroucq and Roux (2011), Lin et al. (2014) and Weiss et al. (2014), the damage field behaves
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then as a uni-dimensional interface of position δd(x) driven in a two-dimensional plane (x, d) of disordered
resistance yc(x, d). The evolution equation (18) predicts the interface speed δ̇d(x) as a function of the current
interface position δd(x). Note that in this framework, the redistribution kernel ψ describes the elasticity of
the interface. Indeed, as one point of the interface located in x = x0 moves forward of an increment δd0,
the other regions of the interface feels an increase δF(x) = δd0 ψ(x− x0) > 0 of the applied driving force.

3.2. Scaling behavior of the precursors at fixed distance to failure
The behavior of driven disordered elastic interfaces has been thoroughly investigated both theoretically

and numerically (see Wiese (2021) for a recent review). Such systems exhibit an intermittent dynamics
characterized by micro-instabilities localized both in space and time that can be elegantly described by
scaling laws. In particular, the driven elastic interface (and so the damage field that it represents) grows
through avalanches, the size, duration and spatial extent of which scale with each other as{

S ∼ `dfx

T ∼ `z.x
(20)

The exponents df and z take values that depend only on two features of the interface: Its dimensionality and
its elasticity. Here, the interface is a uni-dimensional line while its elasticity is referred to as short-range,
as the redistribution kernel ψ ∼ α2 decays exponentially fast with the distance x resulting in a short-range
coupling between the constituting elements of the specimen. Considering 1D interfaces with short-range
elasticity, Rosso et al. (2003) and Duemmer and Krauth (2005) predicted a fractal dimension df ' 9/4
and a dynamic exponent z ' 3/2. Our numerical investigation of the statistics of precursors carried in
Section 2 led to df = 2.35 ± 0.15 and z = 1.40 ± 0.15, two values that are in good agreement with these
theoretically predicted exponents. This successful comparison suggests that the theoretical framework of
driven disordered elastic interface captures adequately the intermittent dynamics of damage growth, at least
at some fixed distance to failure. This confirms the claim made by Petri et al. (1994); Zapperi et al. (1997b)
that fracture precursors are reminiscent of the critical dynamics of damage growth, even though, as we will
show later, the catastrophic failure of the specimen does not correspond to a critical point.

Before investigating the non-stationary dynamics of damage accumulation and the nature of the failure
point, we would like to emphasize that the interactions between the constituting elements of the specimen,
described by the kernel ψ and the function α from which it derives, control both the onset of specimen failure,
as thoroughly discussed by Berthier et al. (2017), and the statistical properties of the damage cascades that
precede it, as shown here. As a result, the precursory damage activity carry information on the final failure
event, an idea that we will use thereafter to design a method of failure prediction from the statistical analysis
of damage cascades.

3.3. Non-stationary evolution equation of the damage field under monotonically increasing loading amplitude
We now seek to explain the non-stationary features of the damage evolution. We first decompose the

damage field in two contributions
d(x, t0) = d0(t0) + δd(x, t0) (21)

where d0(t0) = 〈d(x, t0)〉x is the mean damage level at the reference time t0 = 0. In the following, we assume
that the damage field perturbations δd� d0 are small in comparison to the reference damage level d0. This
amounts to consider rather small values σ � 1 of disorder amplitude, as damage field fluctuations scales
linearly with σ, as well as rather short amount of time (t− t0) before the reference time t0 must be updated
again.

We can first solve the homogeneous problem that consists in predicting how d0 varies with the imposed
displacement ∆0. The governing equation writes as

Fhom(d0,∆0) = 0 ⇒ d0(∆0) (22)

from which we derives the relation between d0 and ∆0. As a result, we can indifferently use one or the other
variable to describe the reference state of the specimen, and thus the distance to catastrophic failure.
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We are now interested in predicting the evolution of the damage field perturbations. To do so, we assume
that the imposed displacement increases linearly with time

∆(t) = ∆0 + δ∆(t) = ∆0 + vext t (23)

where the displacement increment δ∆(t) is assumed to be small with respect to the reference displacement
∆0. This amounts to consider the evolution of the damage field on a rather short amount of time t− t0 =
t� ∆0/vext, before the reference displacement ∆0 must be updated again.

The equation governing the evolution of δd(x, t) derives from a linearization of the evolution law

ḋ(x, t) ∝ F(d(x, t),∆(t)) ⇒ δḋ(x, t) ∝ F(d0 + δd(x, t),∆0 + δ∆(t)) (24)

where the total damage driving force decomposes into two contributions Fhom(d0,∆0)+δF(∆0, δd(x, t), δ∆(t)).
At the first order in the damage field perturbation δd(x, t), the evolution equation of the damage field per-
turbation writes as

δ̇d(x, t) ∝ ∂Fhom

∂∆
(d0,∆0) δ∆(t) + ψ(d0,∆0) ∗ δd(x, t)− yc(x, d(x, t)). (25)

The last two terms represent the perturbation in the damage driving force under fixed loading amplitude
∆(t) = ∆0, which directly derives from Eq. (18). Using the expression of the homogeneous damage driving
force Fhom(d0∆0) = Y (d0,∆0) − Yc(d0) and the expression (19) of the interaction kernel ψ(d0,∆0), one
obtains

δ̇d(x, t) ∝ ∂Fhom

∂∆
(d0,∆0) vextt− Y ′c (d0)δd(x) + Y ′(d0,∆0)(α2 ∗ δd)(x)− yc(x, d). (26)

Introducing the parameters K, vm and H, the evolution equation takes its final form

δ̇d(x, t) ∝ K(δ) [vm(δ)t− δd(x, t)] +H(δ)

∫
Σ

α2(|x− x′|) [δd(x′, t)− δd(x, t)] dx′ − yc(x, d(x, t)) (27)

where



K(δ) = K(d0,∆0) = Y ′c (d0)− Y ′(d0,∆0) = −∂Fhom

∂d
(d0,∆0)

vm(δ) = vm(d0,∆0) =
∂Fhom

∂∆
(d0,∆0)

vext

K(d0,∆0)

H(δ) = H(d0,∆0) = −Y ′(d0,∆0).

(28)

Here, the dependence of the newly introduced parameters K, vm and H with the sole distance to failure

δ =
∆c −∆0

∆c −∆el
derives from the homogeneous solution (22) that is used to replace the reference damage level

by its expression d0(∆0) as a function of ∆0, and then ∆0 by δ in the previous expressions.
Under this form, the evolution equation sheds light on the analogy between the damage field evolution and

the problem of an elastic interface driven in a disordered medium, analogy that is schematically illustrated
in Fig. 5. First of all, the elasticity of the interface is described by the integral term of Eq. (27). It provides
the driving force distribution along the interface as a function of its geometry δd(x). For a flat interface,
this contribution is zero and the driving force is constant along the interface. On the contrary, if a point
located in x is in advance (resp. behind) with respect to the rest of the interface (δd(x) > δd(x′) for all x′),
the driving force in x is then smaller (resp. larger) than in the other regions of the interface.1 Second of
all, the first term in the evolution equation (27) describes the driving conditions imposed to the interface.
The interface (and thus the damage field it represents) is driven by a rigid bar moving at the speed vm, as
schematically represented in Fig. 5. The load transfer from the bar to the interface is ensured by Hookean
springs of stiffness K. This particular driving can also be pictured by considering that the interface is
trapped by a quadratic potential of width 1/K that moves with a speed vm.

1As discussed in Section 3.1, this term also provides the spatial structure of the load redistribution taking place after each
individual damage event. The spatial structure is described by the kernel H(δ)α2(x) that is equal to the redistribution kernel
ψ of Eq. (19) up to a constant −Y ′c (d0). This local contribution to the damage driving force is accounted for in the first term
K(δ) [vm(δ)t− δd(x, t)] of the evolution equation (27), together with the other local contributions.
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field

Figure 5: Representation of the damage field evolution by the problem of an elastic interface driven in a random medium. A
rigid bar pulls through Hookean springs on an elastic interface of position d(x, t) which describes the damage accumulated in the
specimen. The interface elasticity, that represents the elastic interactions within the specimen, tries to maintain a homogeneous
damage level, while the disorder traps the elastic line in some rough configurations. The competition between elasticity and
disorder results in the crackling dynamics with broadly distributed precursors described in Fig. 1. The non-stationary behavior
of the precursory activity evidenced in Fig 3 can then be understood as a result of variations in the driving conditions imposed
to the interface, both in terms of driving speed and spring stiffness.

Contrary to the analysis carried in Section 3.1, the parameters involved in Eqs. (27), like the spring
stiffness K and the speed vm at which the interface is driven, now vary with distance to failure, see Eq. (28).
We then examine these variations and their effect on the precursors statistics. Catastrophic failure taking
place at the critical damage level d0 = dc results from the unstable growth of damage under fixed loading

conditions. The failure condition thus writes as
∂Fhom

∂d
(dc,∆c) = 0 that translates, from Eq. (28), into a

vanishing spring stiffness K = 0 at the failure point δ = 0. This also implies that on approaching failure,
the driving speed vm ∼ 1/K blows up.

What is the effect of the variations of K and vm on the statistics of precursors ? In standard models of
elastic interfaces, the driving controls the distance to the so-called depinning transition. In particular, con-
sidering vanishingly small driving speed and spring stiffness drives the interface in a critical state where the
characteristic time T ? and length scale ξ characterizing the intermittent dynamics diverge. Such a behavior
is strikingly similar to the one observed in our simulations and in experiments like the ones of Garcimartin
et al. (1997); Baró et al. (2018); Vu et al. (2019), encouraging Weiss et al. (2014) and Vu et al. (2019)
to conjecture that compressive failure can be interpreted as a critical depinning transition. However, the
essential condition of vanishingly small driving speed vm → 0 is not met, as instead, vm diverges close to
failure. As a result, such scenario cannot account neither for the increase of the precursor size observed in
our simulations, nor the one reported in experiments, as we will argue later. In the following, we present an
alternative explanation based on the interpretation of compressive failure as a standard bifurcation.

3.4. Acceleration of the precursory activity as signature of the unstable nature of compressive failure
We first come back to the evolution equation (27) of the damage field and derive from it the evolution

of the precursor size with distance to failure. On the one hand, we invoke an important property of driven
disordered interfaces, namely that the rate Ṅ of precursors is constant and independent of the interface
speed Wiese (2021), a property that is verified in our simulations, as shown in Fig. 6(c). This implies that
the interface speed is set by the average avalanche size, i.e. 〈δḋ〉 = Ṅ 〈S〉 ∝ 〈S〉. On the other hand,
following the evolution equation (27), the interface velocity is imposed by the speed vm at which the rigid
bar moves, so that 〈S〉 ∝ vm.2 The expression (28) of the speed vm then leads to

〈S〉 ∼ 1

K
. (29)

2This property can be deduced by noticing that the first term in the evolution equation (27) of the interface must remain
finite, so that δd ∝ vm t
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Figure 6: (a) Variations of the precursor size measured in the simulations with the distance to failure. The behavior 〈Sd〉 ∝
〈S〉 ∝ δ−αs with an exponent αs = 0.48 ± 0.05 (dashed line) is compatible with the square-root singularity predicted in
Eq. (30) from the governing equation (27); (b) The spring stiffness K involved in the governing equation (27) and computed
from Eq. (28) is represented as a function of the distance to failure δ. The dashed line K ∝

√
δ confirms that it vanishes as

the specimen approaches failure. (c) The rate Ṅ ∝ dN/dδ of precursors is shown as a function of the distance to failure. This
behavior is compatible with a standard property of driven elastic interfaces, namely that the rate of avalanches is constant and
independent of the interface speed.

We now derive the variations of the stiffness K with the distance to failure δ. As noticed earlier, K =

−∂Fhom

∂d
(d0,∆0) provides the stability of the process of damage growth for a homogeneous specimen. As

a result, K vanishes when δ = 0. It turns out that close to failure, K ∝
√
δ, a property that is verified in

Fig. 6(b) and demonstrated in Appendix A. Therefore, the average avalanche size diverges as

〈S〉 ∼ 1√
δ
. (30)

As shown in Fig. 6(a), this behavior accounts for the variations of 〈S〉 measured in our simulations that
shows divergence with an exponent αs ' 0.48± 0.05.

We are now in position to explain the divergence of the characteristic time and length scale of the
precursors observed close to failure in our simulations. We focus first on the size of the largest precursors
S? that can be related to 〈S〉 from the expression (11) of the precursor size distribution,

〈S〉 ∝ (S?)2−β ∝
√
S? (31)

where the exponent β ' 1.5 is inferred from the simulations. Combined with the square-root divergence (30)
of the average precursor size, one obtains

S? ∼ 1/δ (32)

that accounts for the behavior reported in Eq. (12) for the largest precursors. Using finally the scaling
relations T ? ∼ (S?)z/df and `?x ∼ (S?)1/df between the duration, the spatial extent and the size of the
largest precursors, we predict {

T ? ∼ 1/δφ with φ = z/df ' 2/3

`?x ∼ 1/δκ with κ = 1/df ' 4/9,
(33)

two equations that account for the numerical observations of Eqs. (13) and (14).
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The ability of our model to describe quantitatively the non-stationary dynamics of failure precursors
observed in our simulations calls for a few comments. First, the divergence of the duration, size and spatial
extent of the damage cascades close to failure does not derive from the depinning transition of the elastic
manifold describing the damage field.3. Instead the elastic interface that describes the damage field is driven
away from the critical point. This phenomenon takes place through the divergence of the driving speed and
thus the damage rate, a behavior that is reminiscent of the presence of a bifurcation point in δ = 0 leading
to the full failure of the specimen, irrespective of the presence of material disorder. This conclusion is
in line with the ones drawn by Zapperi et al. (1997a) who investigated failure in disordered materials by
micro-cracking using a discrete approach referred to as random fuse model. Such a description may also
lead to a divergence of the precursor size close to failure, without the system reaching a critical state.
Instead, the failure process can be described as a standard bifurcation for which the disorder is irrelevant.
Such mechanism, referred to as sweeping of an instability, encompasses many physical systems including
ferromagnets and granular materials (Sornette, 2002).

In fracture, the absence of critical behavior at the failure point has practical consequences. Indeed, the
exponents characterizing the precursor evolution close to failure do not derive from the theory of critical
phenomena, but instead, can be predicted from standard bifurcation theory. As a result, the exponent that
describes the divergence of the avalanche size close to failure is expected to keep a constant value αs = 1/2,
irrespective of the range of the interactions as well as the system dimension. In practice, this means that the
results drawn in our simplified description of material failure can be extended to more realistic situations,
including 3D materials for which elasticity leads to long-range interactions. We now harness this property
to design a methodology that predicts the residual lifetime of materials and structures from the statistical
analysis of the failure precursors.

4. Predicting failure from the statistics of precursors: A numerical proof of concept

As an application of our theoretical findings, we now would like to discuss how the acceleration of
precursory activity as a signature of an impending instability can be used in structural health monitoring.

Damage accumulation results in the progressive loss of stiffness of structures, ultimately threatening their
mechanical integrity. Tracking damage and its evolution inside structures is a very challenging task.4 As
a result, acoustic emissions, that accompany damage growth and can be recorded by piezzoelectric sensors,
have been used as a ready-made source of information for monitoring their mechanical health. Laboratory
experiments show that the amplitude of the acoustic bursts increases on approaching failure (Garcimartin
et al., 1997; Baró et al., 2013; Vu et al., 2019). Taking inspiration from sismology, such an increase has been
described using the so-called time-reversed Omori-law5

A(t) =
Ao

(tc − t)p
. (34)

In this expression, A(t) is the amplitude of the acoustic burst recorded at time t before catastrophic failure
that takes place at time tc. Ao is a proportionality constant while the exponent p is found to be close to
one (Baró et al., 2013), even though it has been shown to vary with strain rate and temperature (Ojala et al.,
2004). Inspired by procedures used for predicting earthquakes, landslides and volcanic eruptions (Voight,
1988; Kilburn and Voight, 1998; Sornette, 2002; Bell et al., 2013; Bell, 2018) where similar time-reversed
Omori-law has been reported too, it has recently been proposed that such a scaling behavior could be used

3Note that in such a scenario, the exponents φ, κ and γ characterizing the divergences T ? ∼ 1/δφ, `?x ∼ 1/δκ and S? ∼ 1/δκ

are set by the so-called correlation length exponent ν ' 4/3 leading to φ = ν ' 4/3, κ = ν z ' 2 and γ = ν df ' 3 incompatible
with the exponents measured in the simulations.

4X-ray tomography, although used to characterize damage inside small specimens, see e.g. Kandula et al. (2019)
and Cartwright-Taylor et al. (2020), is not adapted to study large structures.

5The standard Omori-law predicts the size of the after-shocks following large earthquakes (Hirata, 1987; Hirata et al., 1987;
Baró et al., 2013, 2018; Salje et al., 2017). It follows Eq. (34) with the noticeable difference that t− tc is used instead of tc − t.
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for monitoring the mechanical health of structures (Mayya et al., 2020), following the idea of Anifrani et al.
(1995).

In the following, we perform a retrospective failure prediction based on the signals computed in the
simulations of Section 1.3. Our model does not predict the acoustic signal accompanying damage growth.
Instead, we assume that the size S (in energy) of damage precursors can be inferred from the acoustic signal
recorded from the real structure. As a result, we consider the time-series S(t) that follows a scaling behavior
similar to Eq. (34) as input data for failure prediction. We consider that damage starts to grow at t = 0
(corresponding to ∆ = ∆el, i.e. δ = 1) and specimen failure occurs at t = tc (corresponding to ∆ = ∆c, i.e.
δ = 0). Assuming that the displacement is increased linearly with time, the distance to failure writes then
as δ = (tc − t)/tc. The scaling law (30) then rewrites as

〈S〉 =
So

(tc − t)αs
, (35)

where αs = 1/2. This equation is developed in the form

〈S〉1/αs t = tc 〈S〉1/αs − So (36)

that follows Y = tsX − So where both Y = 〈S〉1/αs t and X = 〈S〉1/αs can be computed at different time
steps during the monitoring so that the failure time tc can be subsequently predicted from a linear fit.

Figure 7: (a) Evolution of avalanche energy, S as a function of the time. The averaged data in regular bins of size 20 s is shown
in red. An example case of the prediction tpred.c for a value of tcurrent is also presented.(b) Predicted values of time to failure
and (c) the error in prediction ((tc − tpredc )/tc) at different instances of δ = (tc − t)/t.

The practical implementation of the method is then as follows. We assume that the process of damage
spreading takes tc = 1000 s until the specimen fails, as shown in Fig. 7(a). This amounts to assume a
loading rate ∆̇ = (∆c − ∆el)/1000. The mean precursors size 〈S〉 is obtained from an average over non-
overlapping time windows of 20 s, a duration sufficiently small to accurately capture the acceleration of
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precursory activity. The monitoring of the damage activity is performed at time tcurrent. We then record
damage events in the immediate history of tcurrent, i.e. during 100 s after tcurrent. Equation (36) is then
used to fit the data and predicts the failure time. The prediction tpred

c is shown in Fig. 7(b) as a function
of the residual lifetime δ = (tc − tcurrent)/tc when the monitoring is performed. It is also compared with
the actual failure time tc = 1000 s. The relative error (tc − tpred

c )/tc on the prediction is shown in Fig. 7(c).
It rapidly decreases as the prediction is made closer to final failure. The predictions are within 10% of the
actual failure time when the remaining lifetime is less than 25%.

Interestingly, the proposed methodology is conservative, predicting systematically failure time smaller
than tc. Note also that it does not require monitoring from the beginning of the damage process. Accurate
residual life-assessment can be inferred at any time from data recorded on a rather short amount of time.
The efficiency of the proposed technique relies on the prior knowledge of the scaling exponent αs that is here
exactly equal to 1/2, as shown in Section 3.4. In practice, working with the raw acoustic signal emitted by
the structure and not the mechanical precursors S(t) renders the post-processing more complex. However,
several strategies have been proposed by Mayya et al. (2020) to circumvent these difficulties and they are
now tested in laboratory experiments where both the acoustic precursors and the mechanical precursors can
be recorded.

5. Conclusions

Compressive failure of quasi-brittle solids results from the complex evolution of a large number of dis-
sipative events, such as micro-cracking, in interaction with each other. Here, we examine such a collective
dynamics and its connection with final failure through the statistical analysis of the damage precursors
taking place during the phase of damage accumulation. In practice, we analyze the intermittent mechan-
ical response of a disordered elasto-damageable specimen under compression as predicted from a minimal
thermodynamically-consistent damage model developed by Berthier et al. (2017). This model captures the
co-action of material disorder and elastic interactions conveyed by the non-local stress distribution taking
place in the specimen after each individual damage event. The major results of our study are the following:

1. The proposed description predicts not only localization and catastrophic failure, as shown by Berthier
et al. (2017), but captures also qualitatively the main features of the jerky evolution of damage observed
experimentally in quasi-brittle solids under compression (Petri et al., 1994; Garcimartin et al., 1997;
Guarino et al., 2002; Rosti et al., 2009; Baró et al., 2013; Vu et al., 2019). Damage grows through
bursts the size, duration and spatial extent of which are related to each other by scaling laws. As the
specimen is driven towards failure, these quantities increase following power law relationships with the
distance to final failure.

2. To rationalize these numerical observations, we then investigate theoretically the intermittent growth
of damage. We derive an evolution equation of the damage field within the specimen that captures
quantitatively all the statistical properties of the precursors evidenced in our simulations. It also elicits
the connection between compressive failure and the theoretical framework of elastic interfaces driven
in disordered media used in former studies (Weiss et al., 2014) to represent the damage field. This
mapping accounts for the scaling relations between the size, the duration and the spatial extent of the
failure precursors. The exponents involved in these scaling relations are critical exponents emerging
from the so-called depinning transition, a second order phase transition taking place when the driving
speed of the elastic interface goes to zero. However, and contrary to the conjecture made by Weiss
et al. (2014) and Vu et al. (2019), the increase of these quantities close to failure does not emerge from
the depinning transition. Instead, it results from the divergence of the damage rate (that translates
into the divergence of the interface driving speed), a feature that arises from the presence of a standard
bifurcation at the compressive failure threshold Berthier et al. (2017); Dansereau et al. (2019). This
new explanation for the non-stationnary features of the damage evolution accounts for our numerical
observations and in particular for the square-root divergence of the precursor size with distance to
failure.
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3. Last but not least, we finally harness the universal statistical properties of failure precursors to design
an innovative technique of structural health monitoring inspired from the method proposed by Anifrani
et al. (1995). Using our numerical data, we show that short time-series of precursors size available
ahead final failure can be processed to predict the residual lifetime with accuracy. As the proposed
methodology is based on the physics of damage spreading in quasi-brittle solids, we expect its predic-
tions to be more robust than the methods used currently in structural health monitoring.

Finally, we would like to discuss how the results derived in this study for a model elasto-dameable solid may
apply to more realistic situations The nature of the interactions in real materials being different, i.e. long-
ranged while we considered short-range interactions, the exponents characterizing the relations between the
size, the duration and the spatial extent are expected to differ. Nonetheless, the scaling relations between
these quantities are expected to hold and the exponents can be predicted from the theory of driven disordered
interfaces using the appropriate interaction kernel Dansereau et al. (2019) and specimen dimensionality -
– 1D vs. 2/3D. The scaling laws characterizing the divergence of these quantities with the distance to
failure are shown to be independent of the dimensionality of the specimen and the nature of the elastic
interactions. Hence, the evolution of precursors towards failure is expected to be characterized by the
simple and robust scaling laws provided in our study, reinforcing further the robustness of the proposed
methodology of structural health monitoring (Mayya et al., 2020).

In summary, the minimal model of damage growth used in this study paved the way for a deep un-
derstanding of the physics of compressive failure as it could describe, at least qualitatively, all its salient
features, namely localization, intermittency and non-stationnary dynamics. It turned out that these differ-
ent phenomena emerged from different mechanisms, albeit connected to each other through the long-range
elastic interactions within the specimen that control both the statistics of damage cascades during the accu-
mulation phase and the final failure. The scenario derived from our work suggests that damage precursors
are simple by-products of the damage growth, that could potentially be shut down if the material disorder
could be shut down too. As a result, they can’t explain the final failure, but instead, constitute ready-made
signals informing about the ongoing damage accumulation. This idea has major implications in structural
health monitoring, in particular when it comes to decipher the acoustic emission data to predict the residual
lifetime of structures. The next challenges lie certainly in understanding in depth the complex relationship
between the acoustic precursors and the mechanical ones investigated in this study as well as investigating
experimentally at the microstructural scale the complex spatio-temporal evolution of damage in 2D and 3D
elasto-damageable materials in order to challenge and refine the proposed scenario.
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Appendix A. Evolution of spring stiffness K close to failure

In this appendix, we describe the effect of the non-stationarity of loading on the stability of damage
evolution given by stiffness K(d0,∆0) of the springs connecting the rigid bar to the interface. In the mean-
field limit, we have

K(d0,∆0) = −∂Fhom

∂d
(d0,∆0) = Yc0η +

1

2
∆2

0k
′′(d0) (A.1)

For instances when d0 → dc corresponding to ∆0 → ∆c, the stiffness K can be expressed by a series
expansion around (dc,∆c) as follows.

K(d0,∆0) = −∂Fhom

∂d
(dc,∆c)−

∂2Fhom

∂d2
(dc − d0)− ∂2Fhom

∂d∂∆
(∆c −∆0) (A.2)
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where, dc and ∆c are the localization threshold and critical loading amplitude, respectively. From Berthier
et al. (2017), the damage evolution was understood to become unstable at localization threshold implying
∂Fhom

∂d (dc,∆c) = 0 leaving the second and third terms of Eq. (A.2). Further, quantities (dc − d0) and
(∆c − ∆0) in these terms are measures of the distance to failure in terms of damage levels and loading
amplitude, respectively. We now proceed to obtain a relation between these two quantities to decipher the
effect on K. The damage driving force in the mean-field limit Fhom for damage levels d0 → dc follows as

Fhom(d0,∆) = Fhom(dc,∆c) +
∂Fhom

∂d
(dc − d0) +

∂Fhom

∂∆
(∆c −∆0)

+
1

2

∂2Fhom

∂d2
(dc − d0)2 +

1

2

∂2Fhom

∂∆2
(∆c −∆0)2

(A.3)

From governing equation, we obtain both Fhom(d0,∆) and Fhom(dloc,∆c) = 0. Re-invoking the failure
criterion, ∂Fhom

∂d (dc,∆c) = 0, we obtain,

(dc − d0)2 ≈ A0(∆c −∆0) −→ (dc − d0) ∼ (∆c −∆0)0.5 (A.4)

where, A0 is a constant and the term containing (∆c −∆0)2 is neglected for being small when ∆0 → ∆c.
Comparing Eqs. (A.2) and (A.4), we obtain

K(d0,∆0) ∼
√
δ (A.5)

where, δ ∼ (∆c −∆0) and the third term in Eq. (A.2) is neglected for being small when ∆→ ∆c.

Appendix B. Summary of exponents and scaling laws.

We here summarize the scaling laws relating exponents and compare measured values to scaling-inferred
and theory prediction values. In the table, the avalanche size Sd can be replaced by S, owing to their linear
relationship.

Equation Relation Exponent Measure Scaling

(8) `x ∼ S
1/df
d df 2.35± 0.15 (20) Theory: 9/4 = 2.25

(9) T ∼ Sz/dfd z 1.40± 0.15 (20) Theory: 3/2 = 1.5

(11) P (Sd) ∼ S−βd β 1.50± 0.10
(12) S∗d ∼ 1/δγ γ 1.00± 0.10 (30)-(31)⇒(32)' 1
(13) T ∗ ∼ 1/δφ φ 0.52± 0.10 (9)(12)(13)⇒(14),(9)(32)⇒(33)

' 0.6
(14) `∗x ∼ 1/δκ κ 0.37± 0.10 (8)(12)(13)⇒(14),(8)(32)⇒(33)

' 0.42
(13) ξ ∼ 1/δρ ρ 0.35± 0.10
(30) 〈S〉 ∼ 1/δαs αs 0.48± 0.05 Theory: 0.50
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