
HAL Id: hal-03974124
https://hal.sorbonne-universite.fr/hal-03974124

Submitted on 5 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new methodology inspired from the Theory of Critical
Distances for determination of inherent tensile strength

and fracture toughness of rock materials
S. Aligholi, Laurent Ponson, Q.B. Zhang, A.R. Torabi

To cite this version:
S. Aligholi, Laurent Ponson, Q.B. Zhang, A.R. Torabi. A new methodology inspired from the The-
ory of Critical Distances for determination of inherent tensile strength and fracture toughness of
rock materials. International Journal of Rock Mechanics and Mining Sciences, 2022, 152, pp.105073.
�10.1016/j.ijrmms.2022.105073�. �hal-03974124�

https://hal.sorbonne-universite.fr/hal-03974124
https://hal.archives-ouvertes.fr


 

1 

 

 1 

A new methodology inspired from the theory of critical distances for determination 2 

of inherent tensile strength and fracture toughness of rock materials 3 

 4 

S. Aligholi a,*, L. Ponson b, A.R. Torabi c, Q.B. Zhang a 5 

a Department of Civil Engineering, Monash University, VIC 3800, Australia 6 

b Fracture Lab, Institut Jean le Rond d’Alembert, CNRS – Sorbonne Université, Paris, France 7 

c Fracture Research Laboratory, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran 8 

 9 

Abstract  10 

Measuring the intrinsic fracture properties of quasi-brittle materials like rocks is of great importance and 11 

at the same time a major issue for engineers. In this study, we explore the ability of the Theory of Critical 12 

Distances (TCD) to determine accurately both the tensile strength and the fracture toughness. To this end, we 13 

conduct ring tests and semi-circular bend tests on four rock types including a red sandstone, a white coarse-14 

grained marble, a fine-grained granite and a coarse-grained granite. This selection covers sedimentary, 15 

metamorphic and igneous rock types with different grain sizes. The experimental data are analysed using a new 16 

methodology developed from the so-called Point Method (PM), a particular form of the TCD, from which we 17 

infer the intrinsic tensile strength and the fracture toughness of the studied rock materials. Our results are 18 

compared with those obtained from the methodology recommended by ISRM that is modified to take into 19 

account the finite notch root radius used in our experiments. The comparison is successful, supporting that the 20 

newly developed methodology is suitable to determine the intrinsic tensile strength and the fracture toughness 21 

of rock materials. 22 
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1. Introduction  26 

Rocks are archetypes of quasi-brittle materials. Under compression, they generally show a rather extended 27 

non-linear regime owing to the spreading of micro-fractures before final failure takes place. Under traction, they 28 

fail through the propagation of a crack that grows through the coalescence of micro-cracks localized at the crack 29 

tip vicinity in the so-called process zone. If the spatial extent of the process zone is small with respect to the 30 

specimen size, this phenomenon is then appropriately described by the theory of Linear Elastic Fracture 31 

Mechanics (LEFM).1 Within the LEFM framework, we introduce the fracture toughness 𝐾Ic that quantifies the 32 

ability of the material to resist to crack growth. Alternatively, one can seek to determine the stress level at which 33 

the material fails in traction, thus defining the material tensile strength. This is of particular relevance in absence 34 

of an initial crack in the structure.2,3 However, defining an intrinsic (specimen independent) tensile strength for 35 

quasi-brittle solids is a rather difficult challenge, as the load-bearing capacity of quasi-brittle specimens is 36 

known to strongly depend on its size,4,5 and often overlooked in engineering practice.6 37 

Owing to their quasi-brittle nature, rock made structures can give rise to catastrophic failures. Therefore, 38 

the accurate determination of their failure properties is key to assess the structural resistance of rock masses, an 39 

important issue in many rock engineering practices such as tunnelling, rock cutting processes, hydraulic 40 

fracturing and rock slope stability.7 In the following, the term structural properties is used when the geometrical 41 

features of the specimens or bodies do play a significant role on top of the intrinsic properties that depend only 42 

on the microstructural features of the rock materials as well as the surrounding environment.8 43 

A suitable solution for defining the tensile strength of rocks consists in considering the characteristic stress 44 

level at which the material fails within the process zone of a stress concentrator or a running crack. According 45 

to the Cohesive Zone Model (CZM) for brittle cracks,9-10 the so-called cohesive strength 𝜎c of the material is 46 

then related to the material fracture toughness via the cohesive length ℓc (or process zone size along the crack 47 

propagation direction) through the relation 𝐾Ic ∝ 𝜎c√ℓc .9 Although appealing, this definition raises serious 48 

experimental issues: how to determine the stress level at the tip of stress concentrators, as the process zone is 49 

hardly larger than 1 mm in most quasi-brittle specimens. 50 

Theoretically speaking, specimens without stress concentrator could be tested under direct tension to 51 

determine the material tensile strength while specimens with sharp cracks can be used to measure the material 52 

fracture toughness. However, in practice, such a procedure is neither reliably achievable nor practical. On the 53 

one hand, it turns out that specimens without stress concentrators cannot be used to determine the tensile strength 54 

of rock materials. The reasons behind this observation have been largely discussed by researchers e.g. 4, 11 and 55 

relates to the stochastic (defect driven) nature of tensile failure. On the other hand, preparing sharp cracks in 56 

rock specimens is a challenging task. 57 
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Considering these issues, new methodologies based on different concepts have been proposed to reliably 58 

determine the tensile strength and fracture toughness of different materials including rocks. One of them is the 59 

so-called Theory of Critical Distances (TCD) based on notch mechanics. It aims at providing simple and 60 

practical tools to engineers including rock engineers. TCD includes a group of theories used for predicting the 61 

effects of stress concentrators on material behaviour under mechanical loads.12 The TCD can take different 62 

forms and has been used with success in a wide range of engineering problems to determine or predict properties 63 

of different materials including composites,13-14 metals,15-17 polymers,18-19 and rocks.20-23 The TCD can 64 

circumvent the experimental difficulties encountered when it comes to determining the intrinsic tensile strength 65 

and fracture toughness of quasi-brittle materials. With such an approach, specimens without stress concentrators 66 

or perfectly sharp cracks are not required to determine these properties, as we will show in the following. 67 

Furthermore, notch mechanics can be applied to modify the effect of a round-tip notch on apparent fracture 68 

toughness of materials and provide engineers with accurate values of fracture toughness,24-27 as also detailed 69 

later. 70 

This paper is organized as follows. First, we present the studied rock materials as well as the experimental 71 

and analytical methods adopted for this study. A brief theoretical background on the methodology employed to 72 

analyse the ring tests and bending tests carried in this study is provided in Section 2. Section 3 presents our main 73 

results including a discussion. Finally, the conclusions of our study are drawn in Section 4. 74 

 75 

2. Materials and Methods 76 

Four different rock types including a red sandstone, a white coarse-grained marble, a fine-grained granite 77 

and a coarse-grained granite are selected for this study. This selection covers sedimentary, metamorphic and 78 

igneous rock types with different grain sizes. The PM form of the TCD is applied to measure accurately the 79 

failure properties of these rock materials including tensile strength and fracture toughness. To check the validity 80 

of the proposed PM, the fracture toughness of the tested rocks is also measured according to the ISRM Suggested 81 

Method 28 modified to take into account the finite radius of the notch used in our experiments. 82 

 83 

2.1. A modified version of the PM based on CZM 84 

The PM is the simplest form of the TCD.29 Its failure criterion has been defined by Taylor 30 as follows: 85 

‘Failure will occur when the stress at a distance 𝐿/2 from the notch root is equal to 𝜎0’. This translates as: 86 

 (1) 𝜎(𝐿 2⁄ ) = 𝜎0 
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where L is a characteristic distance, and 𝜎0 is the inherent tensile strength of the material. If the stress distribution 87 

ahead of a stress concentrator and the characteristic distance are known, then the inherent tensile strength can 88 

be determined. As justified in Appendix A, the material fracture toughness 𝐾Ic can finally be estimated from 89 

the relation: 90 

(2) 
𝐿 =

1

𝜋
(

𝐾Ic

𝜎0
)

2

 

Although the PM has been successfully applied to a large range of fracture problems, it remains a 91 

phenomenological method.30 Interestingly, it is intimately connected to the CZM of failure, which rigorously 92 

extends LEFM to elasto-damageable solids. In its simplest version, CZM introduces a cohesive stress 𝜎c, below 93 

which the material behaves elastically and beyond which it does not sustain any mechanical load. This approach 94 

predicts the spatial extent of the fracture process zone, also called the cohesive zone, through the Dugdale–95 

Barenblatt (D–B) formula (see Appendix A):9,31 96 

(3) 
ℓc =

𝜋

8
(

𝐾Ic

𝜎c
)

2

 

This formula is almost identical to Eq. (2) up to a constant 𝜋2/8 ≈1.23. On top of it, considering the tensile 97 

stress distribution 𝜎(𝑟) = 𝐾I/√2𝜋𝑟 ahead of a running crack as predicted by LEFM, one infers the relation 98 

𝜎(4ℓc 𝜋2⁄ ) = 𝜎c that is similar to Eq. (1). In the following, we use Eq. (3) instead of Eq. (2), as it derives from 99 

a well-identified assumption, namely the existence of a unique stress level that provides both the elastic limit 100 

and the failure threshold of the material, but we use the following PM based methodology to determine both 𝜎c 101 

and ℓc. 102 

Specimens with different notch geometries are loaded up to failure. Following Eq. (1), the point of 103 

intersection of the stress distribution ahead of the stress concentrators at the onset of failure is expected to 104 

provide the material tensile strength. Following the previous interpretation of the PM based on CZM, two 105 

extreme stress concentrators, i.e. a sharp notch (very high-stress concentration) and a flat free surface (no stress 106 

concentration), are best suited. However, in practice, machining very sharp notches and initiating a crack from 107 

a flat free surface are quite difficult to achieve in rock materials. 108 

To circumvent these difficulties, Semi-Circular Bend (SCB) specimens with a notch root radius of about 109 

350m and ring specimens with an inner radius of around 14mm are used to produce the highest and lowest 110 

possible stress concentrations, respectively. Despite the discrepancy between these specimens and the perfect 111 
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concentrators expected theoretically, our method provides accurate values of tensile strength, as we will show 112 

in Section 3. 113 

 114 

2.2. Ring test 115 

Rock rings are used in the following as the low-stress concentrator specimens. This test geometry has been 116 

used in the past to measure the apparent tensile strength of rocks and other brittle materials.32,33 Note however 117 

the apparent tensile strength is a structure-dependent property rather than an inherent material property.11, 34 The 118 

difference between the value of the apparent tensile strength and 𝜎c  results from the combination of three 119 

factors: (1) the probabilistic nature of the resistance of materials to tensile loading; (2) the complexity of the 120 

failure process involving the initiation of a crack by damage accumulation before it can propagate; and (3) the 121 

calculated stress following a linear elastic assumption may not be the 'real' stress experienced by the material.11 122 

The minimum diameter of the internal hole that could be drilled into the sandstone and the marble is about 123 

3mm, while it is about 6mm for granites (Fig. 1-c). Rings with four different inner diameters are prepared for 124 

the sandstone and the marble, whereas three different ring specimens are prepared for granites. Moreover, 125 

normal disk specimens with no hole are also prepared and tested for all rock types. At least three different 126 

specimens for any geometry are tested and the average of calculated tensile strengths for each rock 127 

type/geometry is used for further analyses. The outer diameter and thickness of the rings/disks are around 75 128 

and 30 mm, respectively. Note that, following the analysis of Fillon,35 the ratio of the inner to the outer diameter 129 

of our ring specimens is less than or equal to 0.4 so that the tensile mode of failure dominates over the 130 

compressive one.32 The driving rate of the cross-head for all our tests is set to 0.05 mm/min. 131 

The apparent tensile strength 𝜎max is defined as the maximum stress level applied locally to the material at 132 

the onset of failure, assuming that it behaves elastically everywhere. It then follows:  133 

(4) 
𝜎max =

𝑃max

𝜋𝐵𝑅0

[6 + 38(𝑅 𝑅0⁄ )2] 

that provides the tensile stress applied to the inner surface of the specimen at the applied failure load 𝑃max. For 134 

disk specimens for which 𝑅 = 0, the maximum applied stress is located at the center of the specimen and 135 

follows: 136 

(5) 
𝜎max =

𝑃max

𝜋𝐵𝑅0
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Here, 𝐵 is the ring thickness while 𝑅 and 𝑅0 are the inner and outer radii of the ring, respectively. 137 

Following Torabi et al.,36 Kirsch’s solution together with Hobbs’ correction 32 are used to determine the 138 

tensile stress distribution 𝜎𝑥(𝑦) along the loading axis 𝑦 (see the schematic of the ring specimen shown in Fig. 139 

1-a for the definition of the axes 𝑥 and 𝑦): 140 

(6) 
𝜎𝑥(𝑦) =

𝜎max

2
(2 − 2

𝑅2

𝑦2
+ 12

𝑅4

𝑦4) 𝐹corr 

Here, 𝐹corr is a correction factor that should be taken into account for sufficiently large 𝑅 𝑅0⁄  ratios, which 141 

follows: 142 

(7) 
𝐹corr = 1 +

19

3
(

𝑅

𝑅0
)

2

. 

In the course of the ring experiments, we observe an interesting phenomenon that we would like to discuss. 143 

As shown in Figs. 2-b and 2-d, the mechanical response of the ring specimen with the largest inner radius shows 144 

two peaks, the first one being larger than the second one. It turns out that full failure of the ring specimen took 145 

place in two steps. First, as the load is increased, the tensile strength of the material is reached and failure takes 146 

place at point A (see Fig. 2-c). After stress drop, the sample is still able to sustain load. As a result, the applied 147 

load increases again, starting from a lower level until it reaches a second time the tensile strength of the material 148 

at point C (see Fig. 2-c). It is interesting to notice that each half of the sample can still bear some compressive 149 

load until the tensile strength of the material is reached a second time at point C, and providing a good evidence 150 

that the sample has been split under pure tension at point A. 151 

The first and second peaks in Fig. 2-d corresponds to the fractures labelled in Fig. 2-c and located at points 152 

A and C, respectively. From this observation, it can be concluded that ring test is suitable to measure the tensile 153 

strength. From recorded videos by high-speed cameras, we do observe that rings with smaller internal holes are 154 

always separating from point A in a tensile mode as well (Fig. 3), as expected from direct numerical simulations 155 

of failure in such specimens.33  156 

 157 

2.3. Semi-circular bending test 158 

The notched semi-circular geometry is used for preparing rock specimens with high-stress concentrators. 159 

Various methods have been used to determine the fracture toughness of rock materials.e.g. 28,37-39 The method 160 
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suggested by ISRM 28 relies on SCB specimens that is rather simple to machine and provides good 161 

repeatability.e.g. 40-43 162 

Herein, SCB specimens are prepared and tested according to ISRM. Multiple SCB specimens for each rock 163 

type are tested and the average generalized (or apparent) fracture toughness 𝐾Ic
U is calculated as follows: 164 

(8) 
𝐾Ic

U = 𝑌′
𝑃max√𝜋𝑎

𝐷𝐵
 

Here 𝑎, 𝐵, 𝐷, and 𝑃max are the notch length, the specimen thickness, the diameter of the SCB specimen and the 165 

maximum applied load, respectively (see Fig. 4). The notch length of the tested SCB specimens is comprised 166 

between 14 to 16 mm while the notch tip radius is 350 microns. The diameter and the thickness of the SCB 167 

specimens range from 74 to 76 mm and 29 to 31 mm, respectively. Finally, 𝑌′ gives the non-dimensional stress 168 

intensity factor derived using the finite element method while assuming plane-strain conditions.28 Its expression 169 

follows: 170 

(9) 𝑌′ = −1.297 + 9.516(𝑠 𝐷⁄ ) − (0.47 + 16.457(𝑠 𝐷⁄ ))𝛽 + (1.071 + 34.401(𝑠 𝐷⁄ ))𝛽2 

where 𝑠 is the span length which is between 37 to 38 mm for all our tests while 𝛽 is equal to 2𝑎/𝐷. 171 

Failure of SCB specimens is recorded by means of a high-speed camera (Fig 5-a). It can be clearly seen 172 

that the fracture initiates from the notch tip and propagates parallel to the axis of application of the forces, as 173 

expected. Typical load-extension curves obtained for different rock types are shown in Fig 5-b. 174 

Creager–Paris solution 24 provides the stress distribution in SCB specimens with a blunted notch of radius 175 

𝜌: 176 

(10) 
𝜎(𝑥, 0) =

2𝐾U

√𝜋

𝑥 + 𝜌

(2𝑥 + 𝜌)3 2⁄
 

using the coordinate system depicted in Fig. 4-b. 𝐾U, the apparent stress intensity factor, is provided by Eq. (8) 177 

after replacing the failure load 𝑃max by the current applied load 𝑃. 178 

 179 

2.4. Direct fracture toughness measurement using SCB tests 180 
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To test the ability of the proposed methodology to accurately measure the fracture toughness of rock 181 

materials, we proceed to an independent measurement of 𝐾Ic using the failure load of the semi-circular bending 182 

tests. The basic idea is to consider that at the onset of failure, the imposed stress intensity factor (determined 183 

from Eqs. (8) and (9) at the tip of the notch) reaches the fracture toughness value 𝐾Ic . However, in our 184 

experiments, the notch tip radius is too large to be neglected. Compiling a large set of experimental data, Gomez 185 

et al.25 determined the ratio of the apparent fracture toughness (resulting from the finite notch root radius) over 186 

the actual material fracture toughness: 187 

(11) 𝐾Ic
U

𝐾Ic
= √1 +

𝜋

4

𝜌

(𝐾Ic 𝜎c⁄ )2
 

Here, the intrinsic tensile strength 𝜎c is determined using the PM based methodology while 𝜌 measured 188 

from 2D slices of SCB specimens scanned by means of X-ray tomography, is found to be close to 350 microns 189 

(Fig. 4-d). 𝐾Ic
U corresponds to the apparent fracture toughness measured experimentally. As the material fracture 190 

toughness 𝐾Ic appears on both sides of this equation, Eq. (11) must be solved iteratively following the procedure 191 

described in Appendix B and illustrated in Figs. 6-a and 6-b. It turns out that the ratio 𝐾Ic/𝐾Ic
U is close to 0.95 192 

for the four materials investigated. 193 

Beyond the particular cases of the fracture tests carried in this study, Figs. 6-c and 6-d depicts the effect of 194 

the cohesive length in comparison to the notch root radius on the ratio 𝐾Ic/𝐾Ic
U. In particular, it can be seen that 195 

small notch radii compared to cohesive length give rise to 𝐾Ic ≈ 𝐾Ic
U. 196 

  197 

 3. Results and discussion  198 

3.1. Size effect on tensile strength measurements using ring specimens 199 

A natural first step in assessing the structure-independent tensile strength of the rock materials investigated 200 

is to determine the apparent (structure dependent) tensile strength 𝜎𝑚𝑎𝑥 as a function of the ring geometry. Ring 201 

specimens with various inner radii as well as disk specimens from different rock types are tested for such a 202 

purpose. Fig. 7-a shows the value of 𝜎𝑚𝑎𝑥 as a function of the inner hole radius as obtained after averaging over 203 

different samples. It appears that the apparent tensile strength strongly depends on the hole radius (Fig. 7-b). 204 

This calls for a more advanced method of analysis to determine the inherent tensile strength. 205 

 206 

3.2. Intrinsic tensile strength and material fracture toughness 207 
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The methodology described in Section 2.1 based on the SCB specimens with a notch root radius of 350 208 

microns (high concentrator) and the ring specimens with inner radii of 13–15mm (low concentrator) is applied 209 

in Fig. 8 for the four rocks investigated. According to Eq. (1), the intersection point of the tensile stress 210 

distributions at the onset of failure for both ring and SCB specimens provides both the inherent tensile strength 211 

and the cohesive zone length. The fracture toughness value is then obtained from Eq. (3) using the D–B 212 

relationship. The results obtained for the four rocks investigated are summarized in Table 1. 213 

The validity of the proposed methodology is now tested. First, we compare the fracture toughness value 214 

predicted by Eq. (3) with the fracture toughness value measured directly from the notched SCB specimen, after 215 

taking into account the effect of its finite notch root radius. For this purpose, the value of 𝜎𝑐  determined 216 

previously is used in Eq. (11), providing the ratio 𝐾Ic/𝐾Ic
U between the inherent fracture toughness and the 217 

apparent one, as explained in Sec. 2.4. The comparison shown in Table 2 is excellent. We then compare in Table 218 

3 the cohesive zone length as measured from our method using the intersection point between both stress 219 

distributions at the onset of failure (see Fig. 8) with the one predicted from D–B Formula using the fracture 220 

toughness determined directly from the notched SCB tests and modified for the rounded notch tip effect. Here 221 

also, the agreement is very good. Last but not least, we did proceed to an independent measurement of the 222 

process zone length from statistical fractography, a technique that consists in analysing the statistics of fracture 223 

surface roughness to extract the characteristic size of the damage processes taking place at the crack tip vicinity 224 

during propagation, and found values comparable to the one determined in this study, i.e. in the range 0.7 – 1 225 

mm. 226 

These results call for a few comments. First, the intrinsic tensile strength varies in the range 8 – 25 MPa 227 

for the different rock materials investigated. This is somehow larger, however comparable to the values reported 228 

in the literature for such materials.6, 44 Note that using smaller hole radius for the low stress concentrator gives 229 

larger values of 𝜎𝑐 , as inferred from Fig. 9 where the tensile stress distribution at the onset of failure is 230 

represented for the different specimen geometries. First, considering stronger stress concentrator is not 231 

compatible with the justification of Eq. (1) that requires the combination of a high and a low stress concentrator 232 

(see Section 2.1). Second, it leads to smaller values of cohesive length, of the order of a few hundred of microns, 233 

that do not match with the results inferred from the statistical analysis of the fracture surfaces. 234 

We then would like to discuss the fracture toughness values measured for the four rocks investigated. Our 235 

methodology provides accurate fracture toughness values, in agreement with values of 𝐾Ic determined directly 236 

from the notched SCB specimens using the ISRM suggested method. Afterwards, it turns out that the value of 237 

the apparent fracture toughness obtained with a notch root radius less than 500 microns as suggested by ISRM 238 

already provides a rather good estimate of 𝐾Ic for the rocks investigated. Overall, precision achieved by both 239 

methods is remarkable. 240 

 241 
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3.3. Discussion 242 

So far, the results are interpreted and it is concluded that PM is successful in order to measuring intrinsic 243 

tensile strength and material fracture toughness, especially when the D–B formula is being used to determine 244 

the material fracture toughness. This conclusion can open new doors for future researches and needs further 245 

enlightening. The main questions should be answered concerning these results are: 1) Why PM is successful? 246 

2) Why D–B formula is giving better results? 247 

To answer these fundamental questions, first, we need to give a brief background of PM, and both original 248 

and developed methods used to calculate the characteristic length L. As discussed in section 2, Eq. (1) introduced 249 

by Peterson 45 is the main failure criterion of PM. This formula is considering a material dependent characteristic 250 

length inferring the estimated stress for a particular geometry at a distance L/2 from its concentrator is equal to 251 

inherent tensile strength of the material. In this argument, L is a constant characteristic length depends on 252 

intrinsic properties of a material, and is independent from geometry of specimen. Therefore, for homogeneous 253 

materials, stress distribution, as a function of distance from concentrator, of any two different geometries would 254 

intersect at a point showing material properties. The abscissa of this point is half of the material characteristic 255 

length and its ordinate is intrinsic tensile strength. 256 

Although PM is successful in practice, from above presentation, there are two major facts lacking 257 

applicability and supportive theoretical arguments. First, materials are not homogeneous and there should be 258 

always some rooms for experimental calibrations, even though one uses the highest and lowest possible stress 259 

concentrators for determining the intersection point as it is done in this study. Second, how the L should be 260 

determined to further estimate material fracture toughness and why L/2 is corresponding to material tensile 261 

strength. The first issue concerning applicability of this model is out of scope of this study and will be addressed 262 

in a future work. From the results of this study, the second issue turns out to be very important and can increase 263 

the accuracy of PM with some modifications. Not solid, but it is reasonable to consider the stress at half of the 264 

characteristic length L would be equal to intrinsic tensile strength. It is somehow representing the average stress 265 

over L that lead to failure of material. It is notable that this argument is close to CZM assumptions for derivation 266 

of Eq. 3 (refer to Appendix A). 267 

Barenblatt 9 and Dugdale 31 separately and at the same time have developed basis for the CZM. Their 268 

models have different theoretical arguments and physics but treat the problem with similar procedures. 269 

Barenblatt model is looking at the problem at microscopic scale and considers inter-molecular cohesive stresses 270 

at a large enough area for applying continuum fracture mechanics, and is suitable for brittle materials. Dugdale 271 

model is a macroscopic model and considers perfectly plastic material behaviour inside the process zone ahead 272 

of crack tip. In these models, the process zone (the cohesive zone in Barenblatt model or the plastic zone in 273 

Dugdale model) in direction of applied load (y) is small compared to its length in crack propagation direction 274 

(x). Moreover, in Barenblat model the length of cohesive zone is small in comparison to crack length ℓc ≪ 𝑎, 275 
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and the distribution of cohesive stress 𝜎c in the cohesive zone for a given material is always the same and 276 

independent of the external load.46 These two models in the most simplified scenario (strip or line model) will 277 

be end up with the same closed form solution, and this is why Eq. (3) referred to as D–B formula (refer to 278 

Appendix A). 279 

Overall, considering CZM and PM descriptions it makes sense to employ D–B formula instead of Eq. (2) 280 

for calculating the characteristic length. On the one hand, PM asserts L is material dependent and can be 281 

determined by testing specimens from same material but different geometries. On the other hand, Barenblatt 282 

model argues distribution of 𝜎c in the cohesive zone for a given material is always the same and depends on 283 

material properties. Finally, although these formulas considering different stress distributions over L or ℓc, both 284 

Eq. (1) and Eq. (3) are considering average stress at L/2 at the moment of failure, and it seems D–B model 285 

assumptions are closer to reality. 286 

 287 

4 Conclusions 288 

In this study, a TCD based methodology is examined to determine two key mechanical properties of rock 289 

materials namely intrinsic tensile strength and material fracture toughness. The first and foremost conclusion is 290 

that PM form of TCD is a suitable means to reliably determine intrinsic tensile strength and material fracture 291 

toughness of different rock types. According to our results, PM is very reliable if the cohesive length ℓc is 292 

considered as the characteristic length L in this method. 293 

Following the results of this study, it turns out that plane disk specimens without stress concentrators cannot 294 

be used to measure tensile strength of rock materials, and tensile strength is underestimated if plane specimens 295 

are used. However, it could provide engineers with a safe and conservative estimation despite the fact that it 296 

would often increase the costs of a project. From the observations in the course of ring experiments, it can be 297 

concluded that ring test is a suitable means to measure apparent tensile strength of rock materials. Tensile 298 

strength of rocks revealed to depend on their structural properties due to the facts discussed by Hudson.11 299 

However, if a specific value should be reported for a particular rock type and is needed by analytical or 300 

numerical solutions, then intrinsic tensile strength of the rock can be determined following the procedure in this 301 

study with the aid of newly developed PM. 302 

Brittle nature of rock materials is a major issue for fabricating sharp notch in SCB specimens to successfully 303 

determine material fracture toughness. In this study, notch mechanics and practical developments in similar 304 

materials were introduced to circumvent this difficulty. From the experimental observations and comparison 305 

with different methods, it is being suggested that Gomez et al.25 formula can be used to successfully rectify the 306 

notch root radius effect on determining fracture toughness of rock materials. However, if the notch root radius 307 

is smaller than the cohesive length, the ISRM suggested method 28 is a reliable method for determining fracture 308 
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toughness of rock materials. Based on the results of this study, the cohesive length is around 1mm for rock 309 

materials. Therefore, if the notch width is less than 1mm or notch root radius is less than 500 microns, as 310 

specified in the ISRM suggested method,28 then the material fracture toughness measured by this method is 311 

reasonably close to the real value. 312 

Although, the results are satisfying, there is a mismatch between the actual location and the considered 313 

intersection point for estimating the intrinsic tensile strength because of material heterogeneities and theoretical 314 

assumptions. This is why fracture toughness values estimated from SCB tests modified for notch root effect and 315 

developed PM are a bit different. The question remains open in this study is that how this issue can be rectified 316 

and if there is any way to measure L or ℓc for different materials to get the best possible results. In other words, 317 

the length of the fracture process zone in the direction of crack propagation or the cohesive length ℓc should be 318 

quantified to determine the actual stress at the tip of cohesive zone right before failure of a material in order to 319 

precisely measure the material fracture toughness. Further investigations and future researches are required to 320 

exactly quantify the length of fracture process zone and answer this question. 321 
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 331 

Appendix A 332 

Following Taylor,30 derivation of Eq. (2) starts by Westergaard’s equation 47 that provides estimation of 333 

tensile stress 𝜎(𝑟) in the direction of crack propagation as a function of distance r from the crack tip, for a 334 

through-thickness crack of a half-length a in an infinite body. The equation can be read as: 335 
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(A1) 
𝜎(𝑟) = 𝜎√

𝑎

2𝑟
 

if 𝑟 ≪ 𝑎 i.e. for the comparatively close points to the crack tip for an applied tensile stress 𝜎.  336 

According to LEFM for the same conditions mode I stress intensity factor 𝐾I can be calculated: 337 

(A2) 𝐾I = 𝜎√𝜋𝑎 

At the moment of failure 𝐾I and 𝜎 can be replaced by critical mode one stress intensity factor or fracture 338 

toughness 𝐾Ic and tensile failure stress 𝜎𝑓, respectively: 339 

(A3) 𝐾Ic = 𝜎𝑓√𝜋𝑎 

Finally, combining the PM criterion Eq. (1) with Eqs. (A1 and A3), 𝜎𝑓
2 is equal to both side of the Eq. (A4): 340 

(A4) 𝐿𝜎0
2

𝑎
=

𝐾𝐼𝑐
2

𝜋𝑎
 

which is another form of the Eq. (2). 341 

Derivation of Eq. (3) can be summarized as follows. If a crack or notch with length a as shown in Fig. A1 342 

is considered, then distribution of 𝜎c(𝑥, 0) along ℓc ranged from the physical crack tip or notch tip to fictitious 343 

crack tip would be non-linear. The general formula for calculating mode I stress-intensity factor associated with 344 

such cohesive stresses 𝐾I
c for a straight crack in an infinite body can be formulated as follows:1 345 

(A5) 
𝐾I

c = −2√(𝑐 𝜋⁄ ) ∫
𝜎c(𝑥, 0)

√𝑐2 − 𝑥2

𝑐

0

𝑑𝑥 

where 𝑐 = 𝑎 + ℓc and √𝑐2 − 𝑥2 is Green’s function. There is no close form solution for this equation since the 346 

distribution of 𝜎𝑐 over ℓc is unknown. The D–B formula is derived by simplifying this condition. If we consider 347 

𝜎c over ℓc has a constant value (strip model), then Eq. (A5) will transform to: 348 
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(A6) 
𝐾I

c = −√(2 𝜋⁄ ) ∫
𝜎c(𝑥, 0)

√𝑥

𝑐

𝑎

𝑑𝑥 

Fig. A2 shows this simplified situation for a crack of length 2(𝑎 + ℓc) = 2𝑐 in an infinite body under uniaxial 349 

tensile stress 𝜎. Then, using superposition of the problem, and right before crack propagation, the following 350 

equilibrium could be reached: 351 

(A7) 𝐾I = −𝐾I
c 

where 𝐾I is given in Eq. (A2) and 𝐾I
c can be solved using Eq. A6. Now, the equilibrium can be rewritten as 352 

follows: 353 

(A8) 
𝜎√𝜋𝑐 = 2𝜎c√

𝑐

𝜋
cos−1

𝑎

𝑐
; 

→ √𝜋𝑐 (𝜎 −
2𝜎c

𝜋
cos−1

𝑎

𝑐
) = 0; 

∴
𝑎

𝑎 + ℓc
= cos (

𝜋𝜎

2𝜎c
) 

Finally, by two reasonable assumptions including ℓc ≪ 𝑎 and 𝜎 ≪ 𝜎c this equilibrium can be solved for ℓc: 354 

(A9) 
1 −

ℓc

𝑎
= 1 −

𝜋2𝜎2

8𝜎c
2 ; 

→ ℓc =
𝜋𝜎2𝜋𝑎

8𝜎c
2  

that is another form of Eq. (3). 355 

 356 

Appendix B 357 

The iterative method for estimating material fracture toughness 𝐾Ic from Gomez et al.25 practical formula 358 

(Eq. 11) can be presented as follows. First of all, Eq. 11 can be divided in the two following formulas: 359 
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(B1) 𝐾𝐼𝑐
𝑈

𝐾𝐼𝑐
= √1 +

𝜋

4

𝜌

𝑙ch
 

where 𝑙𝑐ℎ is a characteristic length given in Eq. B2: 360 

(B2) 𝑙ch = (𝐾Ic 𝜎c⁄ )2. 

Then, an iterative process for estimating 𝐾Ic can be presented in four steps as follows:  361 

a) estimating the 𝑙ch using Eq. (B2) by assuming 𝐾Ic is equal to the measured generalized fracture 362 

toughness from experiment;  363 

b) estimating the material fracture toughness by replacing the measured generalized fracture 364 

toughness from experiment, notch tip radius 𝜌, and the calculated 𝑙ch from the first step into Eq. 365 

(B1);  366 

c) updating the 𝑙ch by replacing the estimated material fracture toughness from the second step into 367 

Eq. (B2); and  368 

d) repeating this loop several times until old and new 𝑙ch values and accordingly material fracture 369 

toughness values converge. 370 

The larger the 𝜌 or the smaller the 𝑙ch, the greater the number of required iterations for convergence (see Fig. 371 

4-a).  372 

This method has a limitation that is connected to the ratio of 𝜌 𝑙ch⁄ . Based on some numerical examples, it 373 

turns out that this iterative process works well if 𝜌 is smaller or slightly larger than 𝑙ch. It is notable that if 𝜌 =374 

𝑙ch, then 𝐾Ic 𝐾c
U⁄ ≈ 0.5 (after convergence). 375 

 376 

References 377 

1. Lawn B. Fracture of Brittle Solids. London: Cambridge University Press; 1993. 378 

2. Myer LR, Kemeny JM, Zheng Z, Suarez R, Ewy RT, Cook NGW. Extensile cracking in porous rock under 379 

differential compressive stress. Appl Mech Rev 1992;45(8):263–280. 380 



 

16 

 

3. Haimson BC, Cornet FH. ISRM suggested methods for rock stress estimation—Part 3: hydraulic fracturing 381 

(HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci. 2003;40:1011–382 

1020. 383 

4. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18(3):293–297. 384 

5. Bazant ZP, Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton 385 

Florida: CRC Press; 1997. 386 

6. Perras M, Diederichs M. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng. 387 

2014;32:525–546. 388 

7. Justo J, Castro J, Cicero S. Application of the Theory of Critical Distances for the Fracture Assessment of a 389 

Notched Limestone Subjected to Different Temperatures and Mixed Mode with Predominant Mode I 390 

Loading Conditions. Rock Mech Rock Eng. 2021; https://doi.org/10.1007/s00603-021-02365-7. 391 

8. Atkinson BK. Subcritical crack growth in geological materials. J Geophys Res: Solid Earth. 392 

1984;89(B6):4077–4114. 393 

9. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 1962;7:55–394 

129. 395 

10. Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids.    396 

1994;42(9):1397–1434. 397 

11. Hudson JA. Tensile strength and the ring test. Int J Rock Mech Min Sci Geomech Abstr. 1969;6:91–97. 398 

12. Taylor D. The theory of critical distances. Eng Fract Mech. 2008;75:1696–1705. 399 

13. Ibáñez-Gutiérrez FT, Cicero S, Carrascal IA, Procopio I. Effect of fibre content and notch radius in the 400 

fracture behaviour of short glass fibre reinforced polyamide 6: an approach from the Theory of Critical 401 

Distances. Comp Part B: Eng. 2016; 94:299–311. 402 

14. Ibáñez-Gutiérrez FT, Cicero S, Carrascal IA. On the influence of moisture content on the fracture behaviour 403 

of notched short glass fibre reinforced polyamide 6. Comp Part B: Eng. 2019;159:62–71.  404 

15. Susmel L, Taylor D. Fatigue design in the presence of stress concentrations. Int J Strain Analy. 2003;38:443–405 

452. 406 

16. Susmel L, Taylor D. On the use of the theory of critical distances to predict static failures in ductile 407 

metallic materials containing different geometrical features. Eng Fract Mech. 2008;75:4410–4421. 408 

https://doi.org/10.1007/s00603-021-02365-7


 

17 

 

17. Pereira JCR, de Jesus AMP, Xavier J, Correia JAFO, Susmel L, Fernandes AA. Low and ultra-low-cycle 409 

fatigue behavior of X52 piping steel based on theory of critical distances. Int J Fatigue. 2020;134:1–9. 410 

18. Cicero S, Torabi AR, Madrazo V, Azizi P. Prediction of fracture loads in PMMA Unotched specimens using 411 

the equivalent material concept and the theory of critical distances combined criterion. Fatigue Fract Eng 412 

Mater Struct. 2017;1–12. 413 

19. Peron M, Torgersen J, Berto F. A novel approach for assessing the fatigue behavior of PEEK in a 414 

physiologically relevant environment. Materials. 2018;11:1923. 415 

20. Cicero S, García T, Castro J, Madrazo V, Andrés D. Analysis of notch effect on the fracture behaviour of 416 

granite and limestone: an approach from the theory of critical distances. Eng Geol. 2014;177:1–9. 417 

21. Jenkins A, Fathi E, Belyadi F. Stress field behavior induced by hydraulic fracture in shale reservoirs: a 418 

practical view on cluster spacing. J Nat Gas Sci Eng. 2017;48:186–196. 419 

22. Justo J, Castro J, Cicero S, Sánchez-Carro MA, Husillos R. Notch effect on the fracture of several rocks: 420 

application of the theory of critical distances. Theor Appl Fract Mech. 2017;90:251–258. 421 

23. Justo J, Castro J, Cicero S. Notch effect and fracture load predictions of rock beams at different temperatures 422 

using the theory of critical distances. Int J Rock Mech Min Sci. 2020;125:104161. 423 

24. Creager M, Paris P. Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int J 424 

Fract Mech. 1967;3:247–252. 425 

25. Gomez FJ, Guinea GV, Elices M. Failure criteria for linear elastic materials with Unotches. Int J Fract. 426 

2006;141:99–113. 427 

26. Lazzarin P, Filippi S. A generalized stress intensity factor to be applied to roundedV-shaped notches. Int J 428 

Solids Struct. 2006;43:2461–2478. 429 

27. Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C. Crack nucleation in variational phase-field models of 430 

brittle fracture. J Mech Phys Solids. 2018;110:80–99. 431 

28. Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T. ISRM-suggested method for determining 432 

the Mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng. 433 

2014;47(1):267–274. 434 

29. Taylor D.  Predicting the fracture strength of ceramic materials using the theory of critical distances. Eng 435 

Fract Mech. 2004;71:2407–2416. 436 



 

18 

 

30. Taylor D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Oxford, UK: 437 

Elsevier; 2007. 438 

31. Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100–104. 439 

32. Hobbs DW. An assessment of a technique for determining the tensile strength of rock. Br J Appl Phys. 440 

1965;16:259–268. 441 

33. Zhang XJ, Yi YN, Zhu HB, Liu GY, Sun LB, Shi L, Jiang H, Ma SP. Measurement of tensile strength of 442 

nuclear graphite based on ring compression test. J Nucl Mater. 2018;511:134–140. 443 

34. Bai QS, Tu SH, Zhang C. DEM investigation of the fracture mechanism of rock disc containing hole(s) and 444 

its influence on tensile strength. Theor Appl Fract Mec. 2016;86:197–216. 445 

35. Filon LNG. The stresses in a circular ring. Sel Engng Pap Instn Civ Engrs. 1924;Paper No. 12. 446 

36. Torabi AR, Etesam S, Sapora A, Cornetti P. Size effects on brittle fracture of Brazilian disk samples 447 

containing a circular hole. Eng Fract Mech. 2017;496–503. 448 

37. ISRM. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–449 

2006. In: R. Ulusay, J.A. Hudson (eds) Suggested methods prepared by the commission on testing methods, 450 

International Society for Rock Mechanics, compilation arranged by the ISRM Turkish National Group. 451 

Kozan Ofset, Ankara: 2007. 452 

38. Nara Y, Kaneko K. Study of subcritical crack growth in andesite using the Double Torsion test. Int J Rock 453 

Mech Min Sci. 2005;42:521-530. 454 

39. Ponson L. Depinning transition in the failure of inhomogeneous brittle materials. Phys Rev Lett. 455 

2009;103:055501. 456 

40. Chong KP, Kuruppu MD, New specimen for fracture toughness determination for rock and other materials. 457 

Int J Fract. 1984; 26(2):R59–R62. 458 

41. Aliha MRM, Hosseinpour GR, Ayatollahi MR. Application of cracked triangular specimen subjected to 459 

three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng. 460 

2013;46(5):1023–1034. 461 

42. Zhang QB, Zhao J. Effect of loading rate on fracture toughness and failure micromechanisms in marble. 462 

Eng Fract Mech. 2013;102:288–309. 463 



 

19 

 

43. Nejati M, Aminzadeh A, Driesner T, Saar MO. On the directional dependency of Mode I fracture toughness 464 

in anisotropic rocks. Theor Appl Fract Mech. 2020;107:102494. 465 

44. Li D, Wong LNY. The Brazilian disc test for rock Mechanics applications: review and new insights. Rock 466 

Mech Rock Eng. 2013;46(2):269–287.  467 

45. Peterson RE. Notch-sensitivity. In Metal Fatigue (Edited by Sines G and Waisman JL.). New York: McGraw 468 

Hill; 1959;293–306. 469 

46. Gross D, Seelig T. Fracture Mechanics With an Introduction to Micromechanics, Third ed. Berlin: Springer-470 

Verlag; 2018. 471 

47. Westergaard HM. Bearing Pressures and Cracks, J Appl Mech. 1939;6:49–53.  472 



 

20 

 

List of Figures 473 

Fig. 1. Ring experiment: (a) Schematic of the ring specimen; (b) A marble ring with an inner radius of 15mm 474 

under compression; and (c) Specimens with the minimum inner radii before testing. 475 

Fig. 2. a) Sandstone ring specimen under compression; b) Mechanical response of the sandstone ring specimens 476 

with different inner radii; c) Schematic illustration of the two steps failure behaviour of ring specimens; and d) 477 

Mechanical response of the ring specimens made of different rocks for the largest inner radii (13-15mm). 478 

Fig. 3. Sequence of high-speed images taken from a sandstone ring with an inner radius of 3 mm showing 479 

symmetric fracture propagation from point A, as depicted in Fig. 2-c. 480 

Fig. 4. SCB fracture tests: (a) Schematic of SCB specimen under three point bending; (b) Schematic of the stress 481 

distribution on the bisector line of a blunted notch under opening mode loading conditions; (c) SCB specimens 482 

before testing; and (d) 2D image slice of a sandstone SCB specimen scanned by means of X-ray tomography 483 

after failure. Note the radius 𝜌  350m of the initial notch. 484 

Fig. 5. (a) Sequence of high-speed images taken from a fine-grained granite SCB specimen showing crack 485 

initiation and growth from the initial notch tip; (b) Mechanical response of the notched SCB specimens for the 486 

four rocks investigated.  487 

Fig. 6. Graphical guides for modifying the notch root radius effect on material fracture toughness: a) A 3D guide 488 

showing the iterative process; and b) A guide for estimating 𝐾Ic as a function of notch tip radius, intrinsic tensile 489 

strength and generalized fracture toughness. c) 𝐾Ic as a function of notch tip radius, the cohesive length and 490 

generalized fracture toughness; and d) a single master curve for evaluating 𝐾Ic as a function of ℓc 𝜌⁄  ratio and 491 

generalized fracture toughness. 492 

Fig. 7. Failure load 𝑃max (a) and apparent tensile strength 𝜎max (b) of the different rocks investigated as obtained 493 

from the different fracture tests. 494 

Fig. 8. Application of the PM for the determination of the tensile strength: Stress distribution against distance 495 

for the two geometries displaying the highest and the lowest stress concentrations for (a) sandstone, (b) marble, 496 

(c) fine-grained granite and (d) coarse-grained granite. The point of intersection of both curves provide the 497 

intrinsic tensile strength as well as the cohesive length, as illustrated for marble in the panel (b). 498 

Fig. 9. Tensile Stress distribution against distance at the onset of failure for different fracture test geometries 499 

and different materials: a) sandstone; b) marble; c) fine-grained granite; and d) coarse-grained granite.  500 

Fig. A1. Schematic of Barenblat cohesive zone model 501 

Fig. A2. Equilibrium for derivation of D–B formula as superposition of applied and cohesive stresses 502 



 

21 

 

List of Tables 503 

Table 1. The intrinsic tensile strength, the cohesive half-length and the material fracture toughness, determined 504 

by the developed PM. 505 

Table 2. Comparison of measured generalized fracture toughness 𝐾Ic
U  [MPa.m0.5] and modified fracture 506 

toughness 𝐾Ic [MPa.m0.5] values with those obtained using the common and developed PMs. 507 

Table 3. The cohesive length ℓc [mm] as per D–B formula determined both from SCB tests modified for the 508 

rounded notch tip effect and the developed PM. 509 

  510 



 

22 

 

 
  

(a) (b) (c)  

Fig. 1. Ring experiment: (a) Schematic of the ring specimen; (b) A marble ring with an inner radius of 15mm 511 

under compression; and (c) Specimens with the minimum inner radii before testing. 512 
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(a) (b) 

  
(c) (d) 

Fig. 2. a) Sandstone ring specimen under compression; b) Mechanical response of the sandstone ring specimens 514 

with different inner radii; c) Schematic illustration of the two steps failure behaviour of ring specimens; and d) 515 

Mechanical response of the ring specimens made of different rocks for the largest inner radii (13-15mm). 516 
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Fig. 3. Sequence of high-speed images taken from a sandstone ring with an inner radius of 3 mm showing 518 

symmetric fracture propagation from point A, as depicted in Fig. 2-c. 519 
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  521 



 

25 

 

  

(a) (b) 

  

(c) (d) 

Fig. 4. SCB fracture tests: (a) Schematic of SCB specimen under three point bending; (b) Schematic of the stress 522 

distribution on the bisector line of a blunted notch under opening mode loading conditions; (c) SCB specimens 523 

before testing; and (d) 2D image slice of a sandstone SCB specimen scanned by means of X-ray tomography 524 

after failure. Note the radius 𝜌  350m of the initial notch. 525 
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Fig. 5. (a) Sequence of high-speed images taken from a fine-grained granite SCB specimen showing crack 528 

initiation and growth from the initial notch tip; (b) Mechanical response of the notched SCB specimens for the 529 

four rocks investigated.  530 
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(a) (b) 

  
(c) (d) 

Fig. 6. Graphical guides for modifying the notch root radius effect on material fracture toughness: a) A 3D guide 531 

showing the iterative process; and b) A guide for estimating 𝐾Ic as a function of notch tip radius, intrinsic tensile 532 

strength and generalized fracture toughness. c) 𝐾Ic as a function of notch tip radius, the cohesive length and 533 

generalized fracture toughness; and d) A single master curve for evaluating 𝐾Ic as a function of ℓc 𝜌⁄  ratio and 534 

generalized fracture toughness. 535 
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(a) (b) 

Fig. 7. Failure load 𝑃max (a) and apparent tensile strength 𝜎max (b) of the different rocks investigated as obtained 537 

from the different fracture tests. 538 
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(a) (b) 

  

(c) (d) 

Fig. 8. Application of the PM for the determination of the tensile strength: Stress distribution against distance 540 

for the two geometries displaying the highest and the lowest stress concentrations for (a) sandstone, (b) marble, 541 

(c) fine-grained granite and (d) coarse-grained granite. The point of intersection of both curves provide the 542 

intrinsic tensile strength as well as the cohesive length, as illustrated for marble in the panel (b). 543 
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(a) (b) 

  

(c) (d) 

Fig. 9. Tensile Stress distribution against distance at the onset of failure for different fracture test geometries 545 

and different materials: a) sandstone; b) marble; c) fine-grained granite; and d) coarse-grained granite.  546 
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 548 

Fig. A1. Schematic of Barenblat cohesive zone model. 549 
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 551 

Fig. A2. Equilibrium for derivation of D–B formula as superposition of applied tensile and cohesive stresses. 552 
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Table 1. The intrinsic tensile strength, the cohesive half-length and the material fracture toughness, determined 554 

by the developed PM. 555 

Rock type 𝜎c [MPa] ℓc/2 [mm] 𝐾Ic [MPa.m0.5] 

Sandstone 8.4 0.53 0.44 

Marble 15.4 0.51 0.78 

Fine grained granite 24.0 0.39 1.07 

Coarse grained granite 19.8 0.48 0.98 

 556 

  557 
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Table 2. Comparison of measured generalized fracture toughness 𝐾Ic
U  [MPa.m0.5] and modified fracture 558 

toughness 𝐾Ic [MPa.m0.5] values with those obtained using the common and developed PMs. 559 

Rock type 𝐾Ic
U (ISRM 28) 𝐾Ic (Gomez et al.25) 𝐾Ic (common PM) 𝐾Ic (developed PM) 

Sandstone 0.45 0.43 0.49 0.44 

Marble 0.80 0.76 0.86 0.78 

Fine grained granite 1.08 1.00 1.19 1.07 

Coarse grained granite 1.02 0.97 1.11 0.98 

  560 
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Table 3. The cohesive length ℓc [mm] as per D–B formula determined both from SCB tests modified for the 561 

rounded notch tip effect and the developed PM. 562 

Rock type Experimental Developed PM 

Sandstone 1.03 1.07 

Marble 0.96 1.01 

Fine grained granite 0.68 0.78 

Coarse grained granite 0.94 0.96 

 563 
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