

T-Cell Receptor signatures of T cell subsets in disease revealed by robust high-throughput TCR sequencing.

Pierre Barennes (PhD Student)

Laboratory i³ : Immunology – Immunopathology – Immunotherapy Director : Pr. David Klatzmann

TCR repertoire in AIDs rationale

- T cell receptor (TCR) is a hallmark characteristics of T cell specificity
- **Tissues** are specifically **targeted** in AIDs
- TCR repertoire has been shown to be altered in AIDs compared to healthy volunteers (HV)
- AIDs are for many of them due to the Teff/Treg **imbalance**

Hypothesis :

- \rightarrow Antigen-specific protective Treg vs. pathogenic Teff balance may be altered
- \rightarrow T cell repertoires may provide biomarkers of disease vs. healthiness

International collaboration

We compared the same sample using 8 protocols

Goal : to evaluate the reproducibility between replicates and between methodology

Similarity score from same sample reveal :

RACE-3 has the highest reproducibility score (intra- & inter-methods)

Barennes et al. In review

Replicates fraction in control :

RACE-3 shares the highest fraction of control's clonotypes for both chains

TRA

Distribution of control's clonotypes by replicates

RACE-3 captures the most number of clonotypes, with the greatest sensitivity and reliability

Replicates fraction in control :

RACE-3 captures the most number of clonotypes, with the greatest sensitivity and reliability

 \Rightarrow Selection of RACE-3 methodology (TakaraBio[®] SMARTer Human TCR a/b Profiling Kit)

9

TCR repertoire in T1D

T1D is :

- a T cell **mediated** disease
- characterized largely by :
 - T cell-mediated **destruction** of insulin-producing **pancreatic β cells**
 - defect in IL-2 production, possibly explaining Treg quantitative and/or qualitative dysfunctions

→ Pilot TCR study on T1D patients compared to healthy volunteers

Material and Method

Clinical groups	Subject Number	F/H
T1D	28	10/16
HV	19	14/5

$\alpha\beta$ TCRs are not quantitatively altered

 \Rightarrow need to explore if Tregs in T1D have a qualitative defect

Higher diversity in Treg from T1D

 \Rightarrow Shannon index reveals significant higher diversity for Treg-T1D (TRB)

Expanded clonotypes can be tracked

Prop_stim : **Proportion of highly stimulated cells** (total number of reads at/or above the threshold, normalized by the total number of reads in the entire repertoire)

powerTCR : Koch H et al. PLOS Computational Biology (2018)

Expanded clonotypes can be tracked

=> Higher diversity in Treg-T1D (TRB) could be explained by the lower proportion of "Highly stimulated cells" => Defect of IL-2 production

β TCRs cluster patient but not groups

To explore more precisely and find clonotypes associated with disease, we used probabilistic model

Probability distribution model

CDR3aa : Antigen Binding specific Region

Orange dots indicates CDR3aa that are significantly over-observed in samples in comparison with the probability of generation => "Immune Involved response"

Probability distribution reveals higher over-observed CDR3aa in T1D

CDR3aa p.adjusted > 0.05 \rightarrow Non-Enriched CDR3aa

 \triangleright CDR3aa p.adjusted < 0.05 \rightarrow Enriched CDR3aa

Two-sided Fisher's Exact Test

HV vs T1D

	TEFF		TREG	
	Enrich	Non-Enrich	Enrich	Non-Enrich
HV	11 568	1 120 308	8 238	855 492
	(1.02%)	(98.98%)	(0.95%)	(99.05%)
T1D	29 291	2 102 723	15 978	1 376 895
	(1.37%)	(98.63%)	(1.15%)	(98.85%)
TEFF p-value : < 2.2e-16		TREG		
		p-value :		
		< 2.2e-16		

 \Rightarrow Significant higher proportion of CDR3aa that could be involved in an Immune response in T1D

Probability distribution reveals higher over-observed CDR3aa in T1D

Are these CDR3aa shared between patients? What about cell subset sharing?

Identification of cell type/diagnosis TCR signatures

Presence (black) or absence (light grey) of the CDR3aa p.adj < 0.05

CDR3aa that are not T1D associated

=> We observed "private" clusters in each condition but also high proportion of public CDR3aa

Are these clusters T1D associated?

Clustering of "Immune Involved" CDR3aa

Clustering of "Immune Involved" CDR3aa

Clustering of "Immune Involved" CDR3aa

TEFF T1D Enrich CDR3aa are more T1D specific than HV

⇒ Highest proportion of "specific CDR3aa-Lev1" in "Enriched CDR3aa" from T1D-Teff

Conclusions

TCR repertoire in **T1D** patients **revealed**

- a higher diversity of Treg repertoire in T1D compared with HV
- a tendency toward lower expansions in Treg T1D
- Higher proportion of enriched CDR3aa in T1D compared with HV
- Some of these CDR3aa are private in T1D with higher proportion of T1D disease association
- Go further by **comparing** specific **clusters** with **Logo**, **Connection** Stats, higher number of **neighbours** (Lev1) than expected, add other AIDs, ...

Other AIDs

Shared clusters with other AIDs ?

Presence (black) or absence (light grey) of the CDR3aa p.adj < 0.05

Acknowledgment

i ³ Laboratory	Collaborators	Sequencing platforms		
 David Klatzmann TCR Repertoire team : Encarnita Mariotti-Ferrandiz Adrian Six 	Anne Eugster Daniel C. Douek	Equipex LIGAN-PM/CNRS UMR8199 • Véronique Dhennin • Julien Derop • Marion Delbarre	IGENSEQ / ICM Yannick Marie Agnes Rastetter 	
Valentin Quiniou	Amy Ransier	Providers		
 Vanessa Mhanna Federica Martina Clinicians : 	 Benny Chain Imran Uddin Mazlina Ismail Theres Oakes 	TakaraBio®P• Matthieu Pesant•• Thanh Ha Nguyen•• Magnolia Bostick•	rimadiag® Guillaume Lhermite Julie Delangue Thomas Alexandre	
Michelle Rosenzwajg		Contacts lab i ³		
 Roberta Lorenzon Alexandra Roux Claire Ribet Michèle Barbié 	 Dmitriy M. Chudakov Mikhail Shugay Evgeniy S. Egorov Alexey N. Davydov 	Pierre Barennes <u>pierre.barennes@sorbonne-universite.fr</u> David Klatzmann <u>david.klatzmann@Sorbonne-universite.fr</u>		

THANK YOU FOR YOUR ATTENTION