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Abstract

Objectives

In cross-sectional studies of time-to-event data collected by patient examinations at a single

random point in time, a fraction of them will not experience the event regardless of the length

of the follow-up time. This is the case in clinical immunology studies that include a mixed

population, with both immune-reactive and immune-tolerant (or non-susceptible) patients.

In these cases, classical tests of current status data may perform poorly. New methods for

testing these data are needed.

Methods

In the two-sample comparison setting, we propose a score test for testing the null hypothe-

sis that survival does not differ in either the non-susceptible fraction or the time-to-event dis-

tribution among the susceptible fraction.

Results

In a wide range of scenarios, simulation results show interesting improvements in power for

the proposed score test compared to the logrank-type test in most of the configurations we

investigated. In a cross-sectional study of drug immunogenicity among treated multiple scle-

rosis patients, the proposed score test reveals that gender is associated with the immunoge-

nicity of interferon.

Introduction

Biopharmaceutical products (BP) are currently one of the fastest growing groups of drugs

used in clinical immunology to treat patients with immune-based disorders, such as multiple
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sclerosis, rheumatoid arthritis, and inflammatory bowel diseases. These products, however,

may lead to the development of antibodies (either binding or neutralizing) directed against the

drug—known as anti-drug antibodies or ADAs—with treatment failures as a potential clinical

consequence [1]. The prediction of ADA occurrence is a challenging problem today. Limited

resources lead most studies conducted by clinical laboratories searching for the risk factors of

ADAs to rely on cross-sectional sampling in which patients receiving BP are tested for ADA

status (positive/negative) at a single random point in time. ADA status, however, is an active

process that depends upon the dynamics of ADA production by (T-cell dependent) B-lympho-

cyte clones. Specific methodologies for time-to-event outcomes must be used to analyze such

data. In addition, no information is available for individual patients between the first drug

administration and the monitoring time point, which means that the only information avail-

able about the time-to-occurrence of ADA is whether it exceeds the random monitoring time

point. This special kind of data, which is known as current status data (or case I interval-cen-

sored data), requires particular methods that differ substantially from those used for classical

right-censored data [2, 3].

Several k-sample tests have been proposed to compare time-to-event distributions of cur-

rent status data. They rely on efficient score statistics that can be expressed as either rank tests

or weighted logrank-type tests (for a review, see [3]). These statistics allow investigators to test

for equality of hazard functions against constant or non-constant (over time) hazard ratio

alternatives [3, 4]. In general, the weighted logrank-type tests use weight functions that are

either motivated by the expected deviation from the null hypothesis or model-based with some

optimal properties for a particular family of alternatives (e.g. the Gρ extended family of Har-

rington-Fleming survival distributions as seen in [5, 6]).

However, all these statistics rely on the assumption of so-called proper survival distribu-

tions. Broadly speaking, it is assumed that if the follow-up time is long enough, all patients

will eventually experience the event of interest. This is obviously not the case in an investiga-

tion of BP immunogenicity; instead, we expect that a fraction of the patients receiving BP are

immune-tolerant (non-susceptible) to the drugs and will not experience ADA at all during the

long-term follow-up. The other patients are immune-reactive (susceptible) to ADA, and their

time-to-ADA detection depends on the dynamics of ADA clonal production by B lympho-

cytes. Thus, the bioclinical factors studied may be associated with differences either in the pro-

portion of immune-tolerant patients or in the distribution of the time-to-ADA occurrence

among immune-reactive patients. For classical right-censored data, this problem of a mixed

population has been tackled mainly from two different frameworks, one relying on two-com-

ponent mixture cure models and the other on bounded cumulative hazard models [7].

The first approach considers that the study population is a mixture of two groups of

patients: non-susceptible and susceptible. This formulation has led to proposals for various

parametric and non-parametric models [7–10]. The second approach, called a promotion time

cure model [11], assumes that the observed time-to-event is the first of some latent event time

and has interesting mechanistic interpretations in various biological fields, such as oncology.

Such a first-activation scheme with a Poisson process leads to the bounded cumulative hazard

model introduced by Yakovlev and Tsodikov [12–14].

Although many estimates and testing methods for these cure models have been proposed,

few have been implemented in classical survival analysis software (such as R or SAS), and none

is designed to cope with interval-censored data. The latter fact explains why, at best, investiga-

tors today use the interval-censored tests that have previously been implemented, but ignore

the mixed population issue.

We recently faced this methodological problem in analyzing the immunogenicity of inter-

feron among multiple sclerosis patients. It prompted us to develop a procedure for testing the
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null hypothesis of equality of the two survival functions with a fraction of non-susceptible

patients.

The main purpose of this work is thus to provide a simple test able to detect survival differ-

ences, for use by practitioners with cross-sectional data from a mixed population.

In the Methods section, we first introduce a semi-parametric improper survival model that

allows us to describe changes in the non-susceptible fraction and/or in the survival distribution

in the susceptible fraction. We then present a score test for the two-sample problem to test the

null hypothesis that the variable under consideration has no effect on either the proportion of

susceptible patients or the time-to-event distribution. This test relies on the components of the

score statistic obtained under the nu ll hypothesis and can be re-expressed as a vector of linear

rank statistics. In the Results section, the Simulation study subsection reports the results of

simulation experiments performed to study the power properties of the proposed test and

compare them with those of the classical logrank test for current status data. In the second

Results subsection, we use the proposed test to analyze the predictive effect of gender on the

occurrence of ADA. In the last section, the Discussion, we review the advantages and limita-

tions of the proposed test and its potential extensions. We also give some advice for its practi-

cal use.

Methods

Notations

Let the continuous random variables T and C represent the unobservable failure and monitor-

ing time, respectively. Let f(t) denote the probability density function, and S(t) (resp. �SðtÞ) the

survival function (resp. cumulative distribution function) of T. The hazard function (or the

instantaneous event rate) of T is h(t) with h(t) = f(t)/S(t).
For current status data, we observe only whether the event of interest occurred before

some single random monitoring time. Here, for each patient i (i = 1, . . ., n), Zi is a binary

variable that indicates group membership (Zi = 0 or 1, with 0 the reference group). Thus,

(Ci, di ¼ 1ðCi�TiÞ, Zi) comprise the observed data. If an event occurred, we know that Ti
belongs to [0, Ci]; otherwise Ti belongs to [Ci,1+[. Here, we assume that the censoring and

the failure times are independent. We also assume that the censoring times are independent

and identically distributed random variables for all subjects.

Improper survival model

Rationale for considering a bounded cumulative hazard model. The biological mecha-

nisms of ADA immunogenicity as well as pragmatic statistical considerations led us to con-

sider a bounded cumulative model. The main idea is to model the distribution of the ADA

detection time through a simplified mechanistic immunological model whereby each individ-

ual is potentially able to produce ADAs that arise from the activation of latent (or unobserv-

able) BP-specific (T-dependent) B-cell clones. At the cellular level, each one of these clones can

emerge and become an immunocompetent ADA-producing clone. Once a BP-specific B-cell

clone is activated, its production leads sooner or later to ADA detection. ADA status becomes

positive for the first time as soon as any of these immunocompetent BP-specific B-cell clones

produces sufficient antibodies to reach the detection threshold.

From a statistical point of view, assuming relevant probability distributions for both the

number of latent B-cell clones and the time-to-ADA detection, we can deduce the marginal

(or population) survival distribution of this time to detection. In the spirit of the stochastic

models developed in the seminal work of Yakovlev and Tsodikov [12], we assume that the
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number of B-cell clones is distributed as a Poisson distribution and that the clones are inde-

pendent. This leads to the bounded cumulative model presented just below.

Survival model. In this work, we consider the following semi-parametric improper sur-

vival model such that for patient i we have:

Sðt j Zi ¼ zÞ ¼ SzðtÞ ¼ e� yeaz ½1� exp ð� LðtÞebzÞ� ð1Þ

where Λ(t) is an unspecified increasing positive function from zero to infinity.

For the hazard functions, h0(t) and h1(t):

h1ðtÞ ¼ h0ðtÞe
aþbe� LðtÞðeb � 1Þ:

The survival function Sz(t) is improper in the sense that limt!+1 Sz(t)> 0. Its limiting

value is called the tail defect (sometimes referred as the plateau) and here equals e−θeαz. In our

setting, it represents the probability of being immune-tolerant. Changes in the immune-toler-

ant fraction and in the time-to-event distribution (here the dynamics of ADA production) are

modeled through the parameters of interest α and β. Thus when α = 0, the two groups have the

same plateau (proportion of non-susceptible patients). And when β = 0, Model (1) is a propor-

tional hazard model with a relative risk constant over time with a different plateau value.

Under Model (1), the simplified log-likelihood for the n observed current status data is:

lnða; b; y;Lð:ÞÞ ¼
Xn

i¼1

di log ð1 � e� yeazi ½1� exp ð� LðciÞebzi Þ�Þ
n o

� ð1 � diÞfyeazi ½1 � exp ð� LðciÞe
bziÞ�g

:

Score test for H0 : α = β = 0

The null hypothesisH0 : α = β = 0 to be tested is the equality of the two improper survival dis-

tributions, that is, that group membership has no effect on either time-to-event distribution or

the immune-tolerant fraction. Under the null hypothesisH0, the score vector has the following

components U = (Uα, Uβ) where:

Ua ¼
@ln
@a
j
a¼b¼0

¼
Xn

i¼1

di
e� y ½1� exp ð� LðciÞÞ�y ½1 � exp ð� LðciÞÞ�

1 � e� y½1� exp ð� LðciÞÞ�
zi

� �

� ð1 � diÞfy ½1 � exp ð� LðciÞÞ�zig:

Thus,

Ua ¼
Xn

i¼1

zi
y ½1 � exp ð� LðciÞÞ�
1 � e� y½1� exp ð� LðciÞÞ�

� �

di � 1þ e� y½1� exp ð� LðciÞÞ�
� 	

;

¼
Xn

i¼1

ziwa;i:

And,

Ub ¼
@ln
@b
ja¼b¼0 ¼

Xn

i¼1

di
e� y½1� exp ð� LðciÞÞ�yLðciÞe� LðciÞ

1 � e� y½1� exp ð� LðciÞÞ�
zi

� �

� ð1 � diÞfyLðciÞe
� LðciÞzig:
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Thus,

Ub ¼
Xn

i¼1

zi
yLðciÞe� LðciÞ

1 � e� y½1� exp ð� LðciÞÞ�

� �

di � 1þ e� y½1� exp ð� LðciÞÞ�
� 	

;

¼
Xn

i¼1

ziwb;i:

As shown from the preceding two formulas, these score statistics can be rewritten as linear

rank statistics with the following ranking-like functions wα,i and wβ,i for subject i, which

depend upon the cumulative distribution function under the null hypothesis.

wa;iðciÞ ¼
� log ð1 � �SH0

ðciÞÞ
�SH0
ðciÞ

" #

fdi �
�SH0
ðciÞg;

wb;iðciÞ ¼

� y log 1þ
log ð1 � �SH0

ðciÞÞ
y

 !

1þ
log ð1 � �SH0

ðciÞÞ
y

" #

�SH0
ðciÞ

2

6
6
6
6
4

3

7
7
7
7
5
fdi �

�SH0
ðciÞg;

where �SH0
ð:Þ is the cumulative distribution function under the null hypothesisH0.

In practice, we replace �SH0
ðtÞ and θ by �̂SH0

ðtÞ and ŷ applying the following ad hoc approach.

For interval-censored data, a non-parametric maximum likelihood estimator (NPMLE) for the

cumulative distribution function under the null hypothesis �̂SH0
ðtÞ can be obtained by running

the classical pooled-adjacent-violators algorithm on the full dataset [15]. This estimator uses

the estimated jumps (probability mass) occurring over the so-called innermost intervals [16].

In our setting with an improper survival distribution, we arbitrarily consider that for the last

innermost interval (the upper limit of which is infinite), the jump is set to zero. Thus, under

the null hypothesis, an estimator of θ is obtained by ŷ ¼ � logð�̂SH0
ð1ÞÞ where �̂SH0

ð1Þ is the

estimate of the tail defect and its value is the difference between the last estimate of 1 and

�̂SH0
ðtÞ. Moreover, when �SH0

ð:Þ ¼ 0, by convention �SH0
ð:Þ ¼ min �SH0>0

ð�SH0
ð:ÞÞ.

This approach relies on the hypothesis that the censoring mechanism verifies a condition of

sufficient follow-up, that is, that the susceptible subjects will experience the event within the

follow-up period [8]. In practice, it implies that we should allow a period of observation that is

long enough to detect the presence of immune-tolerant individuals in the study population

(i.e. the last interval should be event-free).

Since the statistics Uα and Uβ can be expressed as linear rank statistics, we can obtain their

permutational variances and the covariance under the null hypothesis (see [2, 17]):

VUa
¼

1

n � 1

Xn

i¼1

ðwai � �waÞ
2
Xn

i¼1

ðzi � �zÞ2
" #

;
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VUb
¼

1

n � 1

Xn

i¼1

ðwbi � �wbÞ
2
Xn

i¼1

ðzi � �zÞ2
" #

;

covðUa;UbÞ ¼
1

n � 1

Xn

i¼1

wai � �wað Þ wbi � �wb

� �Xn

i¼1

ðzi � �zÞ2
" #

;

with �w: ¼
1

n
Pn

i¼1
w:i and �z ¼

1

n
Pn

i¼1
zi.

Finally, the proposed test statistic ofH0 is given by:

TH0
¼ ðUa;UbÞV

� 1
Ua

Ub

 !

where V is the matrix of variance-covariance obtained with the preceding formulas.

Under the null hypothesis, the statistic TH0
is asymptotically distributed as a chi-square with

two degrees of freedom.

Results

Simulation study

Protocol. To examine the properties of this test, we conducted Monte-Carlo simulations

with data generated under either a bounded cumulative hazard model or a two-component

mixture cure model. We compared the proposed score test to the logrank-type test for inter-

val-censored data [18], which is the test statistic used most often for interval-censored data.

Both test the same null hypothesis of equality of the two survival distributions. Note that the

logrank-type test supposes a mis-specified model in which the cure fraction is not considered.

We review the formula for the logrank-type test in the appendix. In this simulation study, we

investigated the impact of various percentages of censoring rates, covariate imbalances and

restricted follow-ups.

Survival times were generated according to the two models described below.

The first was a bounded cumulative model such that: S(t j Z = z) = e−θeαz[1 − exp(−teβz)]. The

other was a two-component mixture model such that: S(t j Z = z) = e−θeαz + (1 − e−θeαz) e−teβz.

The variable Z was generated according to a Bernoulli distribution of parameter ξ. Unless

otherwise stated, ξ = 0.5. The censoring (monitoring) times, C, were independently generated

from an exponential distribution with rate parameter λC; its value was chosen according to the

desired percentage of censored susceptible observations.

The total number of subjects ntot was set at 400.

The following configurations were considered: β varied from −3.2 to 3.2 with a pitch of 0.4,

and α varied from −0.5 to 0.5 with a pitch of 0.25. The plateau values for the reference group,

τ0 = SZ = 0(1) = e−θ, were set at 0.3, 0.5, and 0.7. We indicated for each value of α the plateau

value for the group Z = 1 such that t1 ¼ t
expðaÞ
0 . The censoring rates (p) used were 20% and 40%.

Here, p refers only to the percentage of censored observations among the susceptible subjects.

Thus, the total percentage of censored subjects for the reference group is equal to τ0 + p(1 − τ0).

The results are presented in Tables 1–6 and in Tables A-F in S1 File.

For unbalanced designs, ξ was set at 0.3 and 0.7. The results are presented in Tables 7–8 and

in Tables G-H in S1 File.
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Table 1. Bounded cumulative hazard model, exponential censoring, τ0 = 30%, p = 20%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 100.0 100.0 99.8 99.8 99.6 98.9 97.8 94.7 89.8 84.4 78.8 74.3 71.1 68.2 69.9 69.1 68.0

τ1 = 0.48 (0.0) (0.1) (-0.1) (-0.1) (-0.2) (-0.4) (-0.9) (-2.5) (-4.5) (-6.2) (-5.7) (-3.3) (0.7) (4.2) (9.5) (10.6) (13.5)

-0.25 99.9 99.9 99.8 99.4 98.1 94.0 81.5 58.3 34.0 19.2 19.0 27.6 39.8 54.8 65.0 72.6 77.6

τ1 = 0.39 (0.1) (0.1) (0.3) (0.4) (0.8) (0.7) (-1.3) (-7.5) (-9.6) (-3.1) (8.9) (22.4) (33.9) (44.8) (50.8) (52.1) (53.1)

0 99.9 99.8 99.7 98.6 93.6 77.5 43.2 13.9 5.1 14.1 45.0 78.1 93.2 98.7 99.6 99.9 99.9

(0.4) (0.7) (1.4) (3.5) (7.7) (11.6) (6.1) (1.0) (0.9) (7.9) (11.9) (8.4) (4.3) (1.7) (0.6) (0.3)

0.25 100.0 99.9 99.0 95.7 83.0 51.1 19.6 11.9 34.0 73.6 96.2 99.9 100.0 100.0 100.0 100.0 100.0

τ1 = 0.21 (1.2) (2.6) (6.8) (15.3) (28.4) (28.3) (14.2) (1.1) (-9.1) (-6.4) (-0.9) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

0.5 99.9 99.6 97.7 89.0 66.6 37.3 29.3 53.6 88.6 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.14 (2.7) (7.7) (19.3) (40.1) (47.4) (32.1) (11.0) (-8.2) (-5.1) (-0.3) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.3

https://doi.org/10.1371/journal.pone.0179896.t001

Table 3. Bounded cumulative hazard model, exponential censoring, τ0 = 70%, p = 20%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 69.9 70.7 68.2 67.6 64.4 64.3 61.6 59.5 56.3 55.2 52.9 50.9 49.7 49.8 49.2 49.1 48.9

τ1 = 0.81 (-7.7) (-8.5) (-8.7) (-8.6) (-9.5) (-9.2) (-10.5) (-10.4) (-11.0) (-10.3) (-10.5) (-11.2) (-10.3) (-10.2) (-9.8) (-10.5) (-9.7)

-0.25 73.2 69.9 64.1 58.6 52.9 42.8 33.1 23.8 17.2 12.8 10.9 10.4 11.2 12.8 13.5 13.8 15.2

τ1 = 0.76 (-0.3) (-1.5) (-3.1) (-3.2) (-3.7) (-5.3) (-5.7) (-7.9) (-6.1) (-3.2) (-0.5) (1.5) (4.0) (6.7) (7.8) (8.6) (10.1)

0 75.0 70.1 62.1 51.4 38.8 26.3 13.8 7.4 4.3 6.1 13.5 25.3 38.8 52.2 64.7 70.1 74.1

(7.4) (9.4) (8.0) (6.9) (4.6) (2.6) (0.7) (-0.1) (-1.0) (0.9) (2.3) (5.0) (6.4) (7.9) (7.5) (8.0)

0.25 75.4 67.4 58.4 43.9 28.8 16.5 9.2 8.7 17.3 36.3 61.8 81.7 94.1 98.3 99.4 99.6 99.9

τ1 = 0.63 (18.1) (16.8) (18.6) (16.8) (13.0) (9.1) (4.3) (0.0) (-5.8) (-7.8) (-7.1) (-2.9) (-0.8) (0.0) (-0.1) (0.0) (0.0)

0.5 73.5 64.6 53.4 37.9 24.3 16.1 17.7 29.5 55.7 81.6 95.9 99.6 100.0 100.0 100.0 100.0 100.0

τ1 = 0.56 (26.1) (27.2) (28.1) (24.1) (18.1) (9.9) (2.2) (-6.9) (-9.6) (-6.5) (-1.7) (-0.1) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.7

https://doi.org/10.1371/journal.pone.0179896.t003

Table 2. Bounded cumulative hazard model, exponential censoring, τ0 = 50%, p = 20%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 96.5 95.7 95.3 94.3 92.9 90.8 88.1 84.5 79.4 75.2 71.5 68.3 66.5 65.2 64.3 64.1 62.9

τ1 = 0.66 (-0.9) (-1.3) (-1.6) (-2.2) (-2.0) (-3.1) (-4.8) (-6.1) (-7.5) (-8.7) (-8.8) (-8.1) (-7.0) (-7.4) (-6.4) (-5.8) (-5.6)

-0.25 97.4 96.0 94.0 91.2 83.5 73.6 59.2 41.9 26.4 17.2 14.8 16.7 20.4 25.5 29.8 34.7 37.4

τ1 = 0.58 (1.4) (1.5) (1.5) (1.6) (0.1) (-2.5) (-5.2) (-8.0) (-7.8) (-4.3) (2.1) (8.6) (15.0) (20.3) (25.2) (28.5) (30.8)

0 97.2 95.3 91.8 84.4 70.2 49.8 25.9 10.0 4.6 10.2 26.6 49.8 71.8 84.6 91.8 95.1 96.9

(4.5) (6.2) (8.5) (9.4) (11.2) (9.9) (4.2) (0.5) (0.7) (2.7) (8.2) (11.5) (10.7) (7.6) (6.4) (4.4)

0.25 97.0 93.7 88.4 77.1 55.9 30.0 13.1 11.4 26.7 57.6 87.0 97.8 99.8 100.0 100.0 100.0 100.0

τ1 = 0.41 (9.2) (14.0) (20.1) (25.6) (25.6) (17.0) (8.1) (0.5) (-8.3) (-8.0) (-2.6) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0)

0.5 96.0 92.4 84.0 68.5 45.3 27.3 24.4 44.5 79.0 96.2 99.9 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.32 (16.7) (25.5) (35.6) (41.8) (36.5) (22.0) (6.0) (-8.4) (-8.1) (-2.0) (-0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.5

https://doi.org/10.1371/journal.pone.0179896.t002
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Table 5. Bounded cumulative hazard model, exponential censoring, τ0 = 50%, p = 40%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 100.0 100.0 100.0 100.0 100.0 99.7 97.1 87.6 66.0 41.8 26.8 23.6 27.5 36.3 47.4 56.5 62.1

τ1 = 0.66 (0.0) (0.0) (0.0) (0.0) (0.0) (-0.1) (-1.1) (-5.1) (-10.0) (-8.4) (1.2) (11.1) (21.9) (30.3) (38.1) (40.6) (41.1)

-0.25 100.0 100.0 100.0 100.0 99.6 97.0 83.6 51.3 20.9 8.4 12.5 33.0 60.2 82.1 93.4 97.4 98.9

τ1 = 0.58 (0.0) (0.0) (0.0) (0.0) (-0.2) (-0.7) (-3.6) (-8.0) (-6.5) (0.7) (6.2) (11.5) (15.0) (11.1) (7.3) (3.0) (1.5)

0 100.0 100.0 100.0 99.7 97.4 84.4 48.6 15.8 4.3 14.8 49.1 84.1 97.7 99.9 100.0 100.0 100.0

(0.0) (0.0) (0.0) (-0.1) (0.3) (0.5) (-3.4) (-2.2) (-2.8) (-2.5) (-0.4) (0.3) (0.2) (0.0) (0.0) (0.0)

0.25 100.0 100.0 99.9 98.4 88.5 57.6 19.2 6.7 20.6 62.6 93.2 99.4 100.0 100.0 100.0 100.0 100.0

τ1 = 0.41 (0.0) (0.0) (0.0) (0.5) (1.9) (4.8) (3.0) (1.0) (-7.1) (-7.3) (-2.7) (-0.3) (0.0) (0.0) (0.0) (0.0) (0.0)

0.5 100.0 99.9 99.2 93.1 66.5 26.9 10.6 22.6 66.2 94.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.32 (0.0) (0.1) (0.4) (4.4) (9.1) (10.0) (5.7) (-6.3) (-10.2) (-2.3) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.5

https://doi.org/10.1371/journal.pone.0179896.t005

Table 6. Bounded cumulative hazard model, exponential censoring, τ0 = 70%, p = 40%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 99.9 99.9 99.8 99.1 97.5 91.7 80.5 63.1 43.9 28.8 18.5 16.0 15.1 18.4 21.4 23.4 27.5

τ1 = 0.81 (0.0) (-0.1) (0.1) (-0.3) (-0.8) (-2.6) (-5.7) (-9.8) (-10.9) (-7.8) (-3.0) (3.8) (7.8) (12.7) (16.8) (18.4) (20.8)

-0.25 100.0 99.9 99.0 97.1 91.1 76.6 54.5 29.1 13.9 6.7 7.6 16.1 29.9 46.2 60.3 72.4 79.6

τ1 = 0.76 (0.0) (0.0) (-0.2) (-0.4) (-1.6) (-5.6) (-6.2) (-8.1) (-4.6) (-0.6) (2.8) (5.5) (8.4) (9.2) (10.1) (8.9) (7.3)

0 99.9 99.5 97.6 92.8 78.4 54.5 26.8 10.1 4.6 10.8 27.0 53.6 78.2 92.0 97.9 99.5 99.9

(0.1) (0.3) (-0.2) (-0.7) (-0.6) (-2.1) (-3.5) (-1.7) (-0.9) (-2.9) (-3.8) (-1.4) (0.2) (0.0) (0.0) (0.0)

0.25 99.5 98.0 93.8 82.0 60.1 30.0 11.9 6.2 14.1 37.0 71.0 92.6 98.8 99.9 100.0 100.0 100.0

τ1 = 0.63 (0.1) (0.3) (0.1) (0.7) (1.6) (1.8) (2.0) (0.4) (-4.5) (-9.0) (-6.8) (-2.2) (-0.4) (-0.1) (0.0) (0.0) (0.0)

0.5 98.8 95.4 86.7 65.7 37.6 14.8 8.3 17.1 45.8 76.4 95.3 99.5 100.0 100.0 100.0 100.0 100.0

τ1 = 0.56 (0.3) (0.5) (3.3) (4.5) (6.7) (5.2) (2.9) (-4.2) (-9.4) (-7.9) (-2.3) (-0.3) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.7

https://doi.org/10.1371/journal.pone.0179896.t006

Table 4. Bounded cumulative hazard model, exponential censoring, τ0 = 30%, p = 40%, ntot = 400, ξ = 0.5.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 100.0 100.0 100.0 100.0 100.0 100.0 99.9 97.2 80.7 48.5 27.7 27.9 46.5 68.7 83.8 92.6 96.2

τ1 = 0.48 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (-0.1) (-1.3) (-7.3) (-8.5) (6.3) (21.9) (38.0) (45.3) (39.6) (28.4) (20.0)

-0.25 100.0 100.0 100.0 100.0 100.0 99.8 96.5 70.8 26.7 8.6 20.6 58.5 88.9 98.4 99.9 100.0 100.0

τ1 = 0.39 (0.0) (0.0) (0.0) (0.0) (0.0) (-0.1) (-1.1) (-7.1) (-8.1) (1.6) (8.9) (12.3) (8.7) (2.2) (0.4) (0.1) (0.0)

0 100.0 100.0 100.0 100.0 100.0 97.3 72.7 24.0 4.7 22.9 72.2 97.5 99.9 100.0 100.0 100.0 100.0

(0.0) (0.0) (0.0) (0.0) (0.1) (0.2) (-2.9) (-2.3) (-3.9) (-3.1) (0.2) (0.0) (0.0) (0.0) (0.0) (0.0)

0.25 100.0 100.0 100.0 100.0 98.8 80.7 30.6 6.8 27.1 79.4 98.9 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.21 (0.0) (0.0) (0.0) (0.0) (0.3) (3.8) (4.1) (2.0) (-7.4) (-6.3) (-0.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

0.5 100.0 100.0 100.0 99.5 89.2 43.8 11.5 26.1 79.5 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.14 (0.0) (0.0) (0.0) (0.5) (4.6) (10.0) (6.3) (-6.1) (-7.2) (-0.6) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.3

https://doi.org/10.1371/journal.pone.0179896.t004
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We also evaluated the impact of a restricted follow-up on the test’s properties by generating

censoring times from a uniform distribution lying in a small interval (0,Umax), with Umax vary-

ing according to the β value and set to ensure that 20% of the susceptible patients did not have

a sufficient follow-up. The results are reported in Table I (S1 File). For the latter two scenarios,

the plateau value was 30% and p = 20%.

As stated above, we used a non-parametric maximum likelihood estimator for the cumula-

tive distribution function under the null hypothesis (�̂SH0
ðtÞ) for the proposed statistic. This

estimate was obtained by the pooled-adjacent-violators algorithm available from the ‘isotone’

package [19]. For the classical logrank-type test adapted to interval-censored data, we used the

‘gLRT2’ function from the ‘glrt’ package [20]. The R-function for computing the proposed

score test is available from the corresponding author on request.

For each scenario, we generated 5,000 datasets. We considered a two-sided test with a 0.05

significance level. The results, in percentages, are summarized in the tables presented below.

We report the probabilities of rejectingH0 for the proposed score test together with the

Table 7. Bounded cumulative hazard model, exponential censoring and unbalanced design, τ0 = 30%, p = 20%, ntot = 400, ξ = 0.3.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 100.0 100.0 100.0 100.0 99.9 99.6 97.9 92.0 82.0 69.9 63.6 59.3 58.0 58.4 59.9 61.4 62.3

τ1 = 0.48 (0.0) (0.0) (0.0) (0.0) (-0.1) (-0.1) (-0.9) (-3.2) (-6.9) (-8.5) (-5.0) (0.5) (8.1) (13.4) (18.9) (24.0) (25.6)

-0.25 100.0 100.0 100.0 99.9 99.6 96.1 82.8 54.5 30.0 17.4 17.4 24.5 35.1 45.3 53.4 59.0 62.0

τ1 = 0.39 (0.0) (0.0) (0.0) (0.0) (0.1) (0.2) (-2.4) (-7.9) (-8.0) (-2.1) (8.7) (18.5) (29.5) (38.5) (45.1) (49.0) (50.8)

0 100.0 100.0 100.0 99.5 95.9 78.0 42.5 13.6 4.6 12.5 34.2 60.4 79.3 88.5 93.8 96.0 97.0

(0.0) (0.0) (0.1) (0.5) (2.9) (6.0) (4.1) (1.0) (1.4) (6.9) (15.8) (17.8) (15.9) (14.9) (12.4) (11.6)

0.25 100.0 99.9 99.7 97.3 82.4 46.5 15.7 10.4 28.1 61.9 89.1 97.8 99.5 99.9 99.9 100.0 100.0

τ1 = 0.21 (0.0) (0.1) (0.8) (6.2) (14.6) (19.6) (9.6) (0.4) (-7.4) (-7.3) (-0.9) (0.7) (0.3) (0.1) (0.0) (0.1) (0.0)

0.5 100.0 99.9 98.2 89.2 58.9 29.1 22.2 46.4 83.2 97.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.14 (0.0) (0.6) (5.8) (21.7) (34.2) (24.5) (5.8) (-9.5) (-6.8) (-1.0) (-0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.3

https://doi.org/10.1371/journal.pone.0179896.t007

Table 8. Bounded cumulative hazard model, exponential censoring and unbalanced design, τ0 = 30%, p = 20%, ntot = 400, ξ = 0.7.

α β -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-0.5 92.2 91.9 92.2 91.9 90.8 90.4 88.4 88.6 85.9 84.9 83.0 79.1 76.6 76.8 75.2 73.2 72.9

τ1 = 0.48 (-3.1) (-3.0) (-2.9) (-3.7) (-4.1) (-4.0) (-5.3) (-4.6) (-6.3) (-6.0) (-6.3) (-7.2) (-7.9) (-6.7) (-6.9) (-6.7) (-6.9)

-0.25 95.4 94.3 93.3 90.3 84.9 76.5 63.1 46.9 29.6 16.9 13.8 20.5 33.3 49.8 64.5 76.2 82.5

τ1 = 0.39 (4.3) (3.9) (3.4) (2.7) (1.9) (-0.5) (-4.1) (-7.6) (-8.0) (-4.1) (4.8) (15.7) (26.8) (35.6) (38.8) (37.9) (32.7)

0 96.6 95.3 93.2 88.9 79.7 60.2 34.0 12.0 4.8 13.1 42.0 77.1 96.1 99.6 99.9 100.0 100.0

(10.9) (12.1) (14.3) (16.7) (17.4) (14.5) (7.4) (1.3) (0.3) (3.4) (5.5) (3.3) (0.7) (0.0) (0.0) (0.0)

0.25 97.4 95.8 92.3 84.4 68.6 43.1 20.3 13.0 29.3 69.2 94.8 99.6 100.0 100.0 100.0 100.0 100.0

τ1 = 0.21 (18.7) (22.1) (29.3) (33.2) (35.3) (26.7) (13.6) (2.1) (-7.3) (-6.2) (-1.7) (-0.2) (0.0) (0.0) (0.0) (0.0) (0.0)

0.5 97.6 94.7 90.6 79.8 60.9 36.4 27.4 46.7 82.1 98.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

τ1 = 0.14 (28.2) (35.0) (44.5) (50.6) (47.2) (30.7) (10.1) (-6.0) (-6.4) (-0.7) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

t1 ¼ tZ¼1 ¼ t
expðaÞ
0 / τ0 = τZ = 0 = 0.3

https://doi.org/10.1371/journal.pone.0179896.t008
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differences observed in statistical power between the score test and the logrank-type test (posi-

tive values of differences indicate better power with the proposed score test). The values esti-

mated under the null hypothesis are also reported, highlighted in gray in the tables.

Simulation results. For all the situations considered here under the bounded cumulative

model (Tables 1–6), the estimated values for the proposed score test under the null hypothesis

(α = β = 0) were within the random sampling fluctuation of the nominal significance level

based on the chi-square distribution with two degrees of freedom.

As seen in Tables 1–3 (20% censoring, balanced design), the proposed score test was more

powerful than the logrank-type test in most of the scenarios. However, as expected, when β =

0, the improper model was a proportional hazard model and the logrank-type test was always

more powerful. Table 1 shows that power was up to 53.1% higher for the proposed score test

than for the logrank-type test, and never more than 9.6% lower. In Tables 2 and 3, power for

the proposed score test was up to 41.8% and 28.1% higher and no more than 8.8% and 11.2%

lower, respectively. For any given configuration, power decreased as plateau value increased.

This reduced power is not surprising since fewer events are expected with a higher plateau

value (as in the configurations in Tables 2 and 3). Moreover, for configurations with low values

of β, power for the proposed score is lower than for the logrank-type test, as reported above for

β = 0.

It should be noted that for any given combination of α and β, the power for the proposed

score test is higher than for the logrank-type test when αβ> 0; on the other hand, the differ-

ences in power between these two score tests are highest in favor of the proposed score test

when αβ< 0.

These power trends for the proposed score test may be explained by the model from which

the test is derived: it supports two parameters for only one covariate. This means that the two

parameters compete with each other to some extent. Moreover, a first-order Taylor expansion

of β around zero gives us: hZ = 1 (t)� hZ = 0 (t) eα + β(1 − Λ(t)). We then have a time-dependent

hazard ratio. Broadly speaking, at earlier event times (when Λ(t)< 1), α and β each offsets the

other when they have opposite signs.

High observed differences in power when αβ< 0 can also be explained by the fact that

these configurations are clearly not favorable to the logrank-type test because the survival

curves cross. For example, when α is negative and β is positive, the reference group has a lower

plateau value and a lower risk of event.

From Tables 4–6, which used 40% censoring, we see the same trends in comparing the

power of these two tests. Note that power for the proposed score test compared to that for the

logrank-type test was slightly lower than it was in the same scenario with 20% censoring. It

was, however, still interesting: up to 45.3% higher and no more than 8.5% lower (τ0 = 30%). In

general, for a given configuration, the power of the proposed score test was higher with a cen-

soring rate of 40% compared to 20%. This increase in power when the censoring rate goes up

may be explained by the hazard ratio form when we have a mix of positive and negative contri-

butions associated with β and dependent on the follow-up scheme.

Looking at the unbalanced designs (ξ = 0.3 and ξ = 0.7) in Tables 7–8, we see that the differ-

ences in power were quite similar to those observed in the balanced designs. The proposed

score test performed better with ξ = 0.3 than in situations with ξ = 0.7, depending on the sign

of αβ.

For all the simulated scenarios under a mixture cure model (Tables A-H in S1 File), the esti-

mated values for the proposed score test under the null hypothesis were within the random

sampling fluctuation of the nominal significance level. When we look at the power results and

differences in power compared with the logrank test, we see that the results were slightly better

than those obtained under the cumulative bounded hazard model. As an example, in Table A
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(S1 File) with p = 20%, τ0 = 30%, ξ = 0.5, power for the proposed score test, compared to that

with the logrank-type test, was as much as 58.1% higher and no more than 8.7% lower.

In the case where the non-sufficient follow-up condition was violated (Table I in S1 File),

the type I error rate was close to the nominal significance level (4.8%). The performances of

the proposed score test were slightly lower than that obtained with sufficient follow-up and

comparable censoring rates. Moreover, the power gains of the proposed score test compared

with the logrank-type test were also lower in this case.

Testing the influence of gender on ADA occurrence

This dataset came from a cross-sectional study performed by the Immunology Reference Lab-

oratory of Düsseldorf. The study, which was approved by the ethics committee of the medical

faculty of the university of Düsseldorf, was part of a databank created by the European ABIR-

ISK consortium [21]. The objective of this consortium is to identify and decipher the impact of

bioclinical factors on the immunogenicity of BP across various immune diseases and drugs. In

this work, we focused on immunogenicity of interferon products—intramuscular and subcuta-

neous—in newly treated multiple sclerosis patients. Here, we considered biotherapeutic-naive

adult patients whose biological samples were taken within the first 21 months of treatment to

be sure to capture potential late events, given that the classical window of appearance for

ADAs is 18 months. The dataset comprised patients taking interferon-β: 63.3% took inter-

feron-β-1a and 36.7% interferon-β-1b. Interferon-β-1b is only administered subcutaneously

whereas interferon-β-1a can be administered subcutaneously (55.2%) or intramuscularly

(44.8%). We expected a non-negligible proportion of immune-tolerant patients in this cohort.

One sample per patient was provided. In all, 969 patients were analyzed, 9.9% of whom had

developed ADAs (nADA = 96). The sample included 72.6% of women (nwomen = 703). The vari-

able Gender was tested.

Fig 1 displays the non-parametric maximum likelihood estimator of the time-to-ADA sur-

vival distribution for each group. The proposed score test produces a significant difference at

the global level of 5% with a value of 7.54 (p-value = 0.02), whereas the logrank-type test was

not significant with a value of 3.33 (p-value = 0.07).

Discussion

Due to time and budget constraints, cross-sectional survival studies often use designs in which

patients are randomly sampled at a single point in time. One example is the investigation of

BP immunogenicity in a study population expected to include a mixture of immune-tolerant

and immune-reactive patients. The analysis of these data requires an extension of classical test

statistics for current status data since these statistics are not designed to cope with mixed popu-

lations. It is worth noting that this problem is not specific to clinical immunogenicity but is

also encountered in oncology (early-stage cancer with cured patients) and infectious diseases

(immune individuals, vaccinology), among other fields. In this paper, we proposed a novel

two-sample test based on an improper survival model that is well suited for detecting depar-

tures from the equality of survival distributions in mixed patient populations. Here, the choice

to use a bounded cumulative hazard model was motivated by its interesting mechanistic inter-

pretation of ADA immunogenicity. The proposed score test is designed to detect changes

either in the proportion of susceptible patients or in the time-to-event distribution among

non-susceptible patients. As seen from our simulations, under the null hypothesis, the pro-

posed test maintains a correct type I error across all the configurations we studied. Looking at

the simulation results under the alternative hypotheses, we see that the power of the proposed

test is better than that of the logrank-type test in most situations. For a plateau of 30% and a
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censoring rate of 20%, power increases by up to 53% and decreases to no more than 10% as

compared to the logrank-type test. Our test is derived under a model that supports two param-

eters for only one covariate. Thus, the two parameters compete against each other to some

extent. This explains why the power of the proposed score test is lower in situations where

there is an opposite directional effect on the time-to-event distribution and the non-suscepti-

ble fraction: belonging to group 1, compared to the reference group, entails a lower risk of sus-

ceptibility but a higher risk of event for those who are susceptible. The simulation results also

show that when censoring is high among the susceptible individuals, the power gains relative

to the logrank-type test are preserved. When the sufficient follow-up condition is not verified,

that is, when the length of follow-up is shorter than the window of time during which an event

can occur, the power of the test is reduced. In that case, its estimated type I error rate is close

to the nominal level.

In our immunogenicity study, using our proposed test, we identified a significant associa-

tion between gender and ADA occurrence. In the analysis considered in this work, an

immune-tolerant fraction exists; continuing follow-up enabled many patients to be tested after

the first 18 months and therefore allowed an interpretable time sequence for ADA occurrence.

We determined that gender plays a role in ADA immunogenicity, a role undetected by the

classical logrank-type test but reported in other interferon-β cohorts treated for multiple scle-

rosis [22]. Gender may explain the lack of statistical significance of the logrank-type test, for it

mainly acts on the dynamics of ADA production. As seen in Fig 1, men have a higher risk of

developing ADA than women and a similar risk of susceptibility.

Fig 1. Non-parametric maximum likelihood survival estimate from Dusseldorf data.

https://doi.org/10.1371/journal.pone.0179896.g001
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A limitation of the proposed test is that it can detect only a global difference between

groups; it cannot distinguish between a change in the non-susceptible fraction or the survival

distribution among the susceptible individuals. Thus, further additional work is needed to

derive simple solutions to resolve this problem. Nonetheless, in view of the improved power

obtained when the survival distribution changes among susceptible individuals, the use of

the proposed score test can be recommended for widespread use when a fraction of non-

susceptible individuals is expected. From a practical perspective, it should be borne in mind

that this test performs best in situations with a sufficient length of follow-up, that is, a win-

dow of observation long enough for the last potential event to occur within it. In other

words, we should provide a follow-up adequate for detecting the presence of non-susceptible

individuals in the study population. As with the classical logrank-type test, the proposed

score test relies upon the assumption that the distribution of the monitoring times is the

same across the different groups to be compared. In our study, we can reasonably consider

that there is no planned difference in monitoring times between men and women. It should

also be noted that the proposed test can be extended to take other factors into account, by

developing a stratified version with strata defined by the levels of the factors. Finally, we

think that our proposed test is both easy to implement and valuable in cross-sectional sur-

vival studies with mixed populations, given that the logrank-type test can be ineffective in

this situation.

Appendix

The logrank-type statistic corresponds to the grouped likelihood score test for interval-cen-

sored data deduced under proportional hazards alternatives [18]. This is the most commonly

used semi-parametric test adapted to interval-censored data.

With current status data, the simplified log-likelihood is:

LLikðb; Sð:ÞÞ ¼
Xn

i¼1

ð1 � diÞ log ½Sðci j ziÞ� þ di log ½1 � Sðci j ziÞ�

Thus, the corresponding score statistic, denoted by Ucs
0

, is:

Ucs
0
¼
Xn

i¼1

zi
log ŜðCiÞ
1 � ŜðCiÞ

1 � ŜðCiÞ � di
� �

In the logrank-type test used in the simulations, the covariance matrix is derived under the

null hypothesis, see Sun [23] for details. We chose the function ‘gLRT2’ of the package ‘glrt’ for

calculation speed considerations. Other procedures (exact or asymptotic permutation meth-

ods, score test with the observed Fisher’s information and multiple imputations) are available

in different R packages such as ‘interval’ [24] and ‘FHtest’ [25].

Supporting information

S1 File. Supplementary tables. Table A, Mixture cure model, exponential censoring,

τ0 = 30%, p = 20%, ntot = 400, ξ = 0.5. Table B, Mixture cure model, exponential censoring,

τ0 = 50%, p = 20%, ntot = 400, ξ = 0.5. Table C, Mixture cure model, exponential censoring,

τ0 = 70%, p = 20%, ntot = 400, ξ = 0.5. Table D, Mixture cure model, exponential censoring,

τ0 = 30%, p = 40%, ntot = 400, ξ = 0.5. Table E, Mixture cure model, exponential censoring,

τ0 = 50%, p = 40%, ntot = 400, ξ = 0.5. Table F, Mixture cure model, exponential censoring,

τ0 = 70%, p = 40%, ntot = 400, ξ = 0.5. Table G, Mixture cure model, exponential censoring,

τ0 = 30%, p = 20%, ntot = 400, ξ = 0.3. Table H, Mixture cure model, exponential censoring,
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τ0 = 30%, p = 20%, ntot = 400, ξ = 0.7. Table I, Bounded cumulative hazard model, uniform

censoring and insufficient follow-up, τ0 = 30%, ntot = 400, ξ = 0.5.

(PDF)
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