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Abstract

Replacement therapy in severe hemophilia A leads to factor VIII (FVIII) inhibitors in 30% of

patients. Factor VIII gene (F8) mutation type, a family history of inhibitors, ethnicity and

intensity of treatment are established risk factors, and were included in two published predic-

tion tools based on regression models. Recently investigated immune regulatory genes

could also play a part in immunogenicity. Our objective is to identify bio-clinical and genetic

markers for FVIII inhibitor development, taking into account potential genetic high order

interactions. The study population consisted of 593 and 79 patients with hemophilia A from

centers in Bonn and Frankfurt respectively. Data was collected in the European ABIRISK

tranSMART database. A subset of 125 severely affected patients from Bonn with reliable

information on first treatment was selected as eligible for risk stratification using a hybrid

tree-based regression model (GPLTR). In the eligible subset, 58 (46%) patients developed

FVIII inhibitors. Among them, 49 (84%) were “high risk” F8 mutation type. 19 (33%) had a

family history of inhibitors. The GPLTR model, taking into account F8 mutation risk, family

history of inhibitors and product type, distinguishes two groups of patients: a high-risk group

for immunogenicity, including patients with positive HLA-DRB1*15 and genotype G/A and

A/A for IL-10 rs1800896, and a low-risk group of patients with negative HLA-DRB1*15 /

HLA-DQB1*02 and T/T or G/T for CD86 rs2681401. We show associations between

genetic factors and the occurrence of FVIII inhibitor development in severe hemophilia A

patients taking into account for high-order interactions using a generalized partially linear

tree-based approach.
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Introduction

For severe hemophilia A (HA) patients, the current standard of care includes regular prophy-

lactic infusions of factor VIII (FVIII) products in order to prevent spontaneous bleeds or on

demand infusions to treat bleeds. The main concern nowadays is the development of inhibi-

tors that neutralize the activity of the FVIII molecule, which occurs mainly in the first 20 days

of exposure for approximately 30% of the patients. In this context, the search for risk factors

for immunogenicity of FVIII products is of primary concern in order to understand the mech-

anisms leading to the development of inhibitors and ultimately to prevent their development.

Many factors (patient-, disease- or product-related) could influence the potential risk for

immunogenicity of biotherapeutics, but the relative contributions of these factors to the devel-

opment of neutralizing antibodies is currently not completely understood. Several risk factors

of inhibition against FVIII products are well recognized, such as factor VIII gene (F8) muta-

tion type, a family history of inhibitors, ethnicity, intensity [1], but others are still under

debate. Concerning the product type, it was shown in a randomized prospective trial (SIPPET)

that patients treated with plasma-derived factor VIII containing von Willebrand factor had a

lower incidence of inhibitors than those treated with recombinant factor VIII [2].

In this search for risk factors of immunogenicity, the genetic diversity of immune regula-

tory genes, which may have a role in the immunogenicity of FVIII products, has been the sub-

ject of recent investigations [3,4]. Table 1 gives a summary of recently published results, which

have focused on specific HLA alleles and immune genes.

For the purpose of risk prediction, researchers have also investigated the potential of classic

regression models for quantifying an individual’s risk using a clinical scoring system. In this

context, two studies have investigated immunogenicity risk factors and proposed prediction

scores [16,17]. The first study was based on 332 previously untreated patients (PUPs) born in

the 90s and the method was validated on an external cohort of 64 patients. Predictive factors

were positive family history, high risk of F8 mutation and initial intensive treatment [16]. The

second study included 825 PUPs born 1990–2007 and was validated internally. The predictors

were the same as in the first study with an improved definition of treatment intensity combin-

ing dose and duration of intensive treatment [17].

Our main objective was to identify bio-clinical and genetic markers associated with the

development of FVIII inhibitor taking into account potential genetic high order interactions.

The reason for also considering non-linear approaches is that high order interactions between

genetic variants are to be expected. We thus decided to consider a recursive, partitioning

model (tree-based model) which is better suited for exploring such interactions than standard

regression models.

The increasing interest in using regression tree-based models for studying hemophilia A

has been clearly discussed by Henrard et al. in a recent article [18]. Compared to a generalized

linear model (linear, logistic), the authors underlined the fact that regression trees can easily

cope with interactions and identify them in the final model. Such interactions are of primary

concern when dealing with HLA markers, and the use of regression trees could provide mean-

ingful subdivisions of HLA markers that are in strong linkage disequilibrium [19].

In this research, we used a hybrid strategy that combined a linear structure for the variables

that were not expected to interact with each other and a tree-based structure for those that

were expected to interact. In practice, the tree-based model is considered in a second step after

adjustment on the variables that are found to be significant in the multivariate logistic model.

The main aim is to be able to detect important genetic interactions that could have been over-

looked by the logistic model. This tree-based model is a hybrid multivariate structure called

Generalized Partially Linear Tree-based Regression (GPLTR) that integrates the advantages of

Risk stratification of factor VIII inhibitors
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generalized linear regression and tree-based models. The linear part is used to model the effect

of the known classic risk factors and the nonparametric tree part is used to capture the distri-

butional shape of the data using the complex joint effects of multiple genetic explanatory

variables.

The analyses were performed on cohorts of hemophilia A patients with a long follow-up

from two German centers that are reference laboratories for anti-FVIII antibody testing. From

this dataset, we evaluated the combined role of clinical and genetic factors in the immunoge-

nicity of FVIII products on a selected population of severe HA PUPs in order to reduce the

magnitude of any potential confounding variables associated with therapeutic changes over

time.

Materials and methods

Design and study population

The population eligible for inclusion in this historical cohort analysis was selected from two

German sites (Bonn and Frankfurt) under the leadership of the ABIRISK EU-consortium. For

Bonn, follow-up data was collected prospectively for HA patients (children and adults) treated

with FVIII products since 1967. The Bonn database was created in 1978 and became an elec-

tronic system in 1990. For Frankfurt, data for HA patients having entered services since 1979

was collected in an electronic database created in 2005. For both databases, patients could have

been treated previously elsewhere before registering at the current sites.

In all, 593 patients with severe HA from the Bonn database and 79 from the Frankfurt data-

base were included in the present study. Data were fully anonymised prior to access for the

analysis.

Genotyping information

HLA class II (HLA-DRB1, HLA-DQB1) typing was performed by PCR sequence-specific

primer (SSP) methodology (Olerup SSP AB; Invitrogen Ltd, One Lambda Inc) following the

manufacturer’s protocol.

SNP variants for IL-10 1082A>G (rs1800896), CTLA4 CT60A>G (rs3087243), TNF

308G>A (rs1800629), CD32 500 A>G (rs1801274), MAPK9 (rs4147385) were genotyped. For

the CD86 gene, four biallelic SNPs were investigated: rs2715267 in the promoter region,

rs2681417 in the exon 4 region, rs1129055 in the exon 7 region and rs2681401 in the untrans-

lated transcribed region (UTR). These four biallelic SNPs were selected as candidate SNPs for

the analysis, since a team from the ABIRISK consortium has previously shown that antigen

presenting cells are activated when exposed to specific FVIII concentrates and that this activa-

tion correlates with CD86 expression levels [20].

All these biallelic polymorphisms were detected by PCR amplification and direct

sequencing.

Regarding HMOX-1, the 5’-flanking region of the HO-1 gene containing the (GT)n dinu-

cleotide repeat was amplified as described elsewhere [21]. Each repeat number was calculated

with GeneMapper (Applied Biosystems). To confirm the size of (GT)n repeats, selected sam-

ples were subjected to a sequence analysis.

Candidate variables

Data on patient and disease characteristics, such as the mutation type of the F8 gene classified

as “high risk” (large deletions, nonsense mutation, intron 22 or intron 1 inversions) versus

“low risk” (small deletions/insertions of<200 base pairs, missense mutations, and other

Risk stratification of factor VIII inhibitors
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Table 1. Summary of studies finding statistically significant associations between genetic factors evaluated in the present study and inhibitor development in severe

hemophilia A.

Genetic

factor

Author, year Country # Patients—total

and with

inhibitors (inh+)

Haplotype / Allele /

SNP (rs)

Results Comments

HLA Oldenburg,

1997 [5]

Germany 71 patients,

29 inh+

DQA1�0102 OR = 2.2 n.s. Haplotype DQA1�0102, DQB�0602, DR15

occurred more often in inhib+DR15 OR = 2.2 n.s.

Hay, 1997 [6] United Kingdom 176 patients, 52

inh+

DQA1�0102 OR = 3.1

[1.0–10.1]

Analyses also stratified on mutation type

(intron 22 inversion vs others). DRB�1501,

DQB1�0602, DQA1�0102 is an established

haplotype

Pavlova, 2009

[3]

Germany 260 patients, 130

inh+

DRB1�15 OR = 1.99

[1.21–3.25]

Inh+ and inh- patients were matched by

mutation type

Haplotypes also studiedDQB1�0602 OR = 1.99

[1.15–3.40]

De Barros,

2012 [7]

Brazil 122 patients, 36

inh+

DRB1�14 OR = 4.87

[1.14–24.41]

Re-calculated

Not only severe HA patients

Pergantou,

2013 [8]

Greece 52 patients,

28 inh+

DRB1�01 OR = 10.9

[1.3–93.9]

DQB1�05:01 OR = 12.8

[1.5–109.3]

DRB1�11 OR = 0.2

[0.06–0.6]

DQB1�03 OR = 0.15

[0.04–0.55]

IL-10 Astermark,

2006 [9]

MIBS group: several

European countries and

Toronto, Canada

siblings.

60 unrelated

families,

124 patients, 63

inh+

allele 134 in the IL-10G

microsatellite

OR = 5.4

[2.1–13.7]

Not only severe HA patients

Pavlova, 2009

[3]

Germany 260 patients, 130

inh+

-1082 G>A (rs1800896)

G vs A

OR = 1.59

[1.12–2.24]

Haplotypes with TNFA also studied

Lozier, 2011

[10]

48 centers in North

America and Europe

915 Caucasian

patients,

282 inh+

six SNPs (contains

-1082 G>A)

p<0.05 Interaction with HIV status: the global

effect of IL-10 haplotypes on inhibitors was

stronger in HIV-positive subjects

TNFA, CTLA4 also studied but no

significant association with inhibitor status

CTT haplotype at

rs6667202, rs4072226,

rs4072227

OR = 1.23

[1.01–1.50]

Pinto, 2012

[11]

India 120 patients, 50

inh+

-1082 G>A (rs1800896) OR = 1.85

[0.94–3.70]

Haplotype analysis with two other IL-10

SNPs (rs1800871 and rs1800872)

allele G vs A Re-calculated

Pergantou,

2013 [8]

Greece 52 patients,

28 inh+

Haplotype -1082G>A,

-819C>T, -592C>A

ACC or ATA

homozygotes vs others

OR = 4.7

TNFA Astermark,

2006 [12]

MIBS group: several

European countries and

Toronto, Canada

siblings.

60 unrelated

families,

124 patients, 63

inh+

-308 G>A (rs1800629)

A/A vs others

OR = 19.2

[2.4–156.5]

Pavlova, 2009

[3]

Germany 260 patients, 130

inh+

-308 G>A (rs1800629)

A/A vs others

OR = 4.76

[1.00–22.47]

3 other TNFA SNPs also analyzed but no

significant association with inhibitor status

Pinto, 2012

[11]

India 120 patients, 50

inh+

-308 G>A (rs1800629) NS—n.a. 4 other TNFA SNPs also analyzed but no

significant association with inhibitor statusrs1799724 C/T vs others OR = 3.19

[1.27–7.99]

(Continued)
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mutations including splice site defects), family history of factor VIII inhibitors, and blood

group, were considered in the present study.

The type of the first FVIII product (plasma-derived versus recombinant product) was avail-

able for a restricted sub-cohort of patients who were first treated in the center hosting the data-

base after its creation, or who had a reliable documentation of their first treatment if they were

treated elsewhere. For readability, this sub-cohort is referred to by the term “well-docu-

mented” population.

The genetic factors mentioned in the previous section were also considered as potential

markers.

Data was standardized into a common format and entered into the ABIRISK tranSMART

database, which integrates immunogenicity data from a number of European countries in a

well-structured format. The data is harmonized across different cohorts and the format is

based on the CDISC standards (http://www.cdisc.org/). Where no previous variable descrip-

tion can be found in CDISC, a local variable description is used. Data was prepared by data

custodians using a data load plan describing the variable semantics and format. Anonymized

data was uploaded into the ABIRISK database, which is based on the tranSMART platform

[22]. The tranSMART platform is an open-source knowledge management platform for trans-

lational science, supported by a large number of organizations (http://www.transmart

foundation.org/).

Outcome definition

The inhibitor status of hemophilia patients was defined as being positive (inhibitor patient

group, inh+) or negative (control patient group, inh-) from laboratory results of current

Bethesda assays, or historical results for earlier patients. Positivity in laboratories is defined by

two consecutive assays with a Bethesda assay result of 0.6 BU or more and no detectable FVIII

Table 1. (Continued)

Genetic

factor

Author, year Country # Patients—total

and with

inhibitors (inh+)

Haplotype / Allele /

SNP (rs)

Results Comments

CTLA4 Astermark,

2007 [13]

MIBS group: several

European countries and

Toronto, Canada

siblings.

60 unrelated

families, 124

patients, 63 inh+

-318 C>T (rs5742909)

allele T vs C

OR = 0.3

[0.1–0.8]

Pavlova, 2009

[3]

Germany 260 patients, 130

inh+

CT60 A>G (rs3087243)

allele A vs G

OR = 0.72

[0.51–1.02]

2 other CTLA4 SNPs also analyzed

HMOX1 Repesse, 2013

[14]

France and Germany 362 patients, 99

inh+

(GT) repeats:

<21 = S; 21–

29 = M;>30 = L

LL/LM/LS vs others OR = 2.21

[1.30–3.76]

MAPK9 Astermark,

2013 [4]

HIGS combined cohorts

from Europe, North

America, Latin America,

South Africa

833 patients rs4147385 OR = 2.03

[1.48–2.78]

Results of genetic metaanalysis (Illumina

iSelect 14626 SNPs: inflammatory and

immune genes)

CD32—

FCGR2A

Eckhardt,

2014 [15]

MIBS group: several

European countries and

Toronto, Canada

85 Caucasian

patients

44 unrelated

families

rs1801274 5 other FCGR SNPs also analyzed but no

significant association with inhibitor statusCT vs CC OR = 1.8

[1.1–2.9]

TT vs CC OR = 3.3

[1.2–8.7]

https://doi.org/10.1371/journal.pone.0218258.t001
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activity assessed by FVIII activity assay below 1%. All the patients included had been treated

for at least 50 days (50 days of exposure).

Statistical analyses

The selection of patients for the different analyses is described in a flowchart in Fig 1.

In the Bonn entire cohort, people were born from 1920 to 2012. This interval was cut in

three smaller intervals: before 1978, 1978–1995 and after 1995. Inhibitor positivity rates were

different in these three categories.

A descriptive analysis of patient, disease and treatment characteristics for the entire dataset

was performed with univariate logistic regressions taking into account birth cohort effect and

“well-documented” status. To avoid blurring any association between a variable and the out-

come, these analyses were run separately on Bonn and Frankfurt datasets: a first exploration

was carried out on Bonn, then a confirmation on Frankfurt’s dataset. If results were consistent,

analyses were performed on the pooled cohort.

For each polymorphism, genotype frequencies were determined. Descriptive analyses of

genetic markers were performed with chi-square tests (or Fisher’s exact test as needed) and

univariate logistic regression. A classic additive genetic model was considered.

The multivariate analyses were performed only on the "well-documented" population as

previously defined, in order to obtain unbiased analyses.

Fig 1. Patient inclusion flow chart per site in association studies.

https://doi.org/10.1371/journal.pone.0218258.g001
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Two multivariate models were considered. The first model was a classic multivariate logistic

regression model where both clinical and genetic factors were candidate variables. The model

was constructed using a stepwise forward strategy, starting with variables having univariate p-

values below 0.2, and proceeding with entry and removal criteria at p-values of 0.05.

The second model was the Generalized Partially Linear Tree-based Regression (GPLTR).

This tree-based model provides a classification of patients in homogeneous groups in terms of

risk of inhibitor development and identifies relevant genetic interactions. This procedure is a

hybrid multivariate approach combining both GLM (generalized linear models) and CART

(classification and regression trees). The GPLTR modeling procedure is described elsewhere

[23]. Briefly, an iterative procedure is used in a first step to build trees that are grown to maxi-

mum size and adjusted on selected variables. A forward procedure is used in a second step to

compute a set of nested subtrees. The optimal GPLTR tree is finally selected via the Bayesian

Information Criterion (BIC).

As regression-trees are prone to instability, i.e. a small change in the data set can result in

different series of splits, thus making variable selection somewhat precarious, we also con-

structed multiple trees using a bootstrapping approach [24]. This procedure is not intended to

give prediction since our dataset is underpowered for reaching such objective. However, it is a

way to evaluate the stability of the association results. More precisely, the bagging procedure

enables computation of variable importance measures that assess the relevance of each variable

across the set of trees. It provides a way to rank the variables according to their discriminative

power. Variables that are associated with the outcome have large values as compared to those

who are not associated with. These latter results provide us some arguments regarding the reli-

ability of the selected optimal GPLTR tree.

Statistical analyses were performed using R software (version 3.3.1. software). Haplotype

analyses were performed using the ’HaploStats’ R package. Regression tree analyses were per-

formed with the ’GPLTR’ R package [25].

Results

The dataset comprised 593 and 79 patients with severe HA from the Bonn and the Frankfurt

databases respectively. Univariate analyses for well-established risk factors were performed

separately. A pooled analysis was performed when results exhibited the same trend.

As shown in Fig 1, the analyses excluded 442 patients for whom we had no reliable informa-

tion on the first exposure to FVIII products.

Of the 586 patients from Bonn and the 79 patients from Frankfurt, respectively 113 (19%)

and 32 (41%) developed inhibitors. The analysis of birth cohort effect showed that, in Bonn,

the incidence of inhibitors increased over time: 12% of the patients born before 1978 devel-

oped inhibitors, 23% between 1978 and 1995 and 44% after 1995. There was no significant dif-

ference between birth cohorts in Frankfurt (22% before 1995 and 19% after 1995).

Univariate analysis

Patients with an F8 mutation risk considered as “high risk” had a 3.61 times greater risk (95%

CI 2.13–6.40) of developing inhibitors compared to patients with a “low risk” according to the

pooled analysis of the Bonn and Frankfurt data (Table 2). Among patients with a history of

hemophilia A, the presence of a family history of inhibitors was associated with a 5.94 times

greater risk (95% CI 2.73–13.29) of developing inhibitors in the Bonn dataset. This informa-

tion was not available in the Frankfurt dataset. Patients with a blood group other than O were

more likely to develop inhibitors than those with group O. This association did not reach sta-

tistical significance in the pooled dataset, with patients with blood group other than O having
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a 1.46 times greater risk (95% CI 0.94–2.31). As shown in the flow-chart (Fig 1), the type of

FVIII at first exposure could only be analyzed in the “well-documented” subgroup of the

patients. In the Bonn subgroup, patients first exposed to recombinant FVIII developed more

inhibitors than those exposed to plasma-derived products (OR = 2.18, 95% CI 0.97–4.99). This

association was not observed in the Frankfurt database.

HLA class II markers and immune response genes IL-10, TNF-a, CTLA-4, CD32, MAPK9

and CD86 were analyzed for their association with inhibitor development in 142 patients from

the Bonn database.

(Fig 1). We found no statistically significant deviation from the Hardy Weinberg equilib-

rium for any of the candidate SNPs. Table 3 gives the univariate odds ratios for each genetic

factor.

For HLA markers, HLA-DRB1�01 was associated with a lower risk (OR = 0.34, 95% CI

0.13–0.83) while HLA-DRB1�15 and HLA-DQB1�06 alleles were associated with a higher risk

of inhibitor development (ORs = 3.48, 95%CI 1.70–7.34 and 2.24, 95%CI 1.08–4.71 respec-

tively). The haplotype analysis showed an increased risk for the haplotypes ’DRB1�15-

DQB1�06’ (p = 0.002) and ’DRB1�04-DQB1�03’ (p = 0.03).

For immune genes, only IL-10 and CD86 showed a significant association. IL-10-1082

G>A was associated with a lower risk of inhibitor development (OR = 3.36, 95% CI 1.25–9.45

for the A/A genotype compared to G/G). One SNP from the UTR region of gene CD86,

Table 2. Univariate odds ratios for patient, disease and treatment risk factors for inhibitor development.

Bonn (N = 586) Frankfurt (N = 79) Pooled

(N = 665)

inh- inh+ inh- inh+ Inh-

N = 473 N = 113 N = 47 N = 32 N = 520

n (%) n (%) OR� (95% CI) p-value n (%) n (%) OR�� (95% CI) p-value n (%)

F8 mutation Low risk 166

(37)

15 (14) 1 reference <0.0001 15

(32)

4 (13) 1 reference 0.06 181 (36)

type High risk 286

(63)

89 (86) 3.69 [2.04–7.07] 32

(68)

28

(88)

3.27 [1.04–12.59] 318 (64)

Missing 21 9 21

Family history No family history of HA 343

(73)

63 (56) 1.27 [0.72–

2.31]

0.43 MISSING

Family history of HA without

inhibitors

107

(23)

21 (19) 1 reference

Family history of HA and of

inhibitors

23 (5) 29 (26) 5.94 [2.73–13.29]

<0.0001

Blood group O 166

(37)

33 (31) 1 reference 0.21 15

(44)

7 (30) 1 reference 0.23 181 (37)

Others 285

(63)

69 (73) 1.37 [0.84–2.26] 19

(56)

16

(70)

2.01 [0.65–6.59] 304 (63)

Missing 22 7 13 9 35

Type of FVIII Plasma derived 73 (84) 49 (72) 1 reference 0.06 29

(73)

21

(75)

1 reference 0.87

at first

exposure

Recombinant 14 (16) 19 (28) 2.18 [0.97–4.99] 11

(27)

7 (25) 0.91 [0.29–2.76]

Missing 386 45 7 4

�Adjusted on birth cohorts (before 1978, 1978–1995, after 1995) and “well-documented” status

��Adjusted on birth cohorts (before 1995, after 1995) and”well-documented” status

���Adjusted on birth cohorts (before 1995, after 1995), “well-documented” status and site (Bonn or Frankfurt)

https://doi.org/10.1371/journal.pone.0218258.t002
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Table 3. Univariate odds ratios for genetic risk factors of inhibitor development.

inh-

(N = 79)

inh+

(N = 63)

N = 79

n (%)

N = 63

n (%)

OR (95% CI) p (chi2 or Fisher’s test)

HLA DRB1�01 21 (27) 7 (11) 0.34 [0.13–0.83] 0.03

DRB1�03 10 (13) 10 (16) 1.28 [0.49–3.35] 0.78

DRB1�04 14 (18) 14 (22) 1.31 [0.57–3.01] 0.67

DRB1�07 17 (22) 14 (22) 1.03 [0.46–2.28] 1

DRB1�08 10 (13) 2 (3) 0.22 [0.02–1.12] 0.07

DRB1�11 27 (35) 15 (24) 0.59 [0.27–1.23] 0.23

DRB1�13 22 (28) 16 (25) 0.87 [0.40–1.83] 0.86

DRB1�15 17 (22) 31 (49) 3.48 [1.70–7.34] 0.001

DRB1�16 2 (3) 3 (5) 1.89 [0.21–23.32] 0.66

DQB1�02 20 (26) 18 (29) 1.14 [0.54–2.41] 0.88

DQB1�03 43 (56) 30 (48) 0.72 [0.37–1.40] 0.42

DQB1�04 10 (13) 2 (3) 0.22 [0.02–1.10] 0.07

DQB1�05 24 (31) 17 (27) 0.82 [0.39–1.70] 0.72

DQB1�06 31 (40) 38 (60) 2.24 [1.08–4.71] 0.03

missing 1 0

TNFalpha G/G 54 (68) 44 (71) 1 reference 0.89

(-308 G>A) G/A 23 (29) 16 (26) 0.85 [0.40–1.80]

rs1800629 A/A 2 (3) 2 (3) 1.23 [0.14–10.57]

missing 0 1

CTLA-4 A/A 19 (24) 12 (19) 1 reference 0.41

(CT 60) A/G 35 (44) 35 (56) 1.58 [0.68–3.82]

rs3087243 G/G 25 (32) 16 (25) 1.01 [0.39–2.67]

IL-10 G/G 30 (38) 13 (21) 1 reference 0.05

(-1082 G>A) G/A 38 (48) 34 (54) 2.06 [0.94–4.69]

rs1800896 A/A 11 (14) 16 (25) 3.36 [1.25–9.45]

HMOX1 SS 8 (10) 11 (17) 1 reference 0.28

SM 30 (38) 25 (40) 0.61 [0.21–1.73]

SL 8 (10) 2 (3) 0.18 [0.02–0.96]

MM 20 (25) 10 (16) 0.36 [0.11–1.17]

ML 11 (14) 13 (21) 0.86 [0.25–2.90]

LL 2 (3) 2 (3) 0.73 [0.07–7.14]

HMOX1 alleles S 53 (34) 44 (35) 1 reference 0.96

M 82 (52) 63 (50) 0.93 [0.55–1.55]

L 23 (15) 19 (15) 1.00 [0.48–2.06]

CD32 G/G 17 (22) 14 (22) 1 reference 0.90

rs1801274 G/A 34 (43) 29 (46) 1.04 [0.44–2.48]

A/A 28 (35) 20 (32) 0.87 [0.35–2.17]

MAPK9 C/C 45 (57) 37 (59) 1 reference 0.33

rs4147385 C/T 31 (39) 20 (32) 0.78 [0.38–1.59]

T/T 3 (4) 6 (10) 2.43 [0.60–12.15]

CD86_pro A/A 45 (57) 32 (51) 1 reference 0.56

rs2715267 A/C 26 (33) 21 (33) 1.14 [0.54–2.36]

C/C 8 (10) 10 (16) 1.76 [0.63–5.08]

CD86_ex4 A/A 72 (91) 56 (89) 1 reference 0.67

rs2681417 A/G 6 (8) 6 (10) 1.29 [0.42–3.96]

(Continued)
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rs2681401, was associated with a lower risk of inhibitor development (OR = 0.25, 95% CI

0.08–067 for the T/T genotype compared to G/G).

Multivariate analysis

The variables associated with inhibitor development in univariate analyses remained statisti-

cally significant in multivariate logistic regression (Table 4). The HLA-DRB1�15 allele, which

is in linkage disequilibrium with DQB1�06, was the one retained in the final model as it was

the one with the strongest association with inhibitor development. The AIC (Akaike Informa-

tion Criterion) for the final multivariate logistic model was of 142.31.

For the analyses based on the optimal GPLTR tree, the F8 mutation type, a family history of

inhibitors and the type of FVIII product were included in the linear part of the model. For the

tree part, all genetic factors were candidates to build the hybrid tree-based model. The final

model selected the following variables: HLA-DRB1�15, CD86, IL-10, and HLA-DQB1�02 as

risk factors in the tree part (Fig 2).

The optimal GPLTR tree identified three groups of patients according to their category of

HLA-DRB1�15, CD86, IL-10, and HLA-DQB1�02 with probabilities of 0.18 (left branch), 0.47

(29 inhibitors positive among 62 patients in the intermediate branches) and 0.77 (right

branch) of developing inhibitors. The AIC for the final model is 134.95.

Table 3. (Continued)

inh-

(N = 79)

inh+

(N = 63)

N = 79

n (%)

N = 63

n (%)

OR (95% CI) p (chi2 or Fisher’s test)

G/G 1 (1) 1 (2)

CD86_ex7 G/G 36 (46) 32 (51) 1 reference 0.82

rs1129055 G/A 35 (44) 25 (40) 0.80 [0.40–1.62]

A/A 8 (10) 6 (10) 0.84 [0.25–2.68]

CD86_UTR G/G 22 (28) 28 (44) 1 reference 0.02

rs2681401 T/G 35 (44) 28 (44) 0.63 [0.30–1.32]

T/T 22 (28) 7 (11) 0.25 [0.08–0.67]

https://doi.org/10.1371/journal.pone.0218258.t003

Table 4. Adjusted odds ratios for patient, disease, treatment and genetic risk factors for inhibitor development.

inh-

N = 67

inh+

N = 58

OR (95%CI) P

F8 mutation type Low risk 37 49 1 reference 0.0035

High risk 30 9 4.34 (1.67–12.21)

Family history No fam. hist. of HA 39 29 1.51 (0.55–4.28) 0.4279

Hist. of HA without hist. of inhibitors 24 10 1 reference

Hist. of inhibitors 4 19 7.19 (1.79–34.21) 0.0078

Type of FVIII at first Plasma-derived 61 44 1 reference 0.0323

exposure Recombinant 6 14 3.69 (1.16–13.05)

IL-10 0 25 12 1 reference 0.0441

A allele dominant 1 42 46 1.93 (1.03–3.77)

HLA-DRB1�15 0 52 29 1 reference 0.0078

1 or 2 15 29 3.54 (1.42–9.28)

CD86_UTR 0 21 27 1 reference 0.0344

T allele dominant 1 46 31 0.38 (0.15–0.91)

https://doi.org/10.1371/journal.pone.0218258.t004
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Patients found negative for HLA-DRB1�15 and HLA-DQB1�02 and genotype T/T or G/T

for CD86 (rs2681401) were at low risk for immunogenicity (OR = 0.13, 95% CI 0.04–0.37)

whereas patients found positive for HLA-DRB1�15 and genotype G/A or A/A for IL-10

(rs1800896) were at high risk for immunogenicity (OR = 3.30, 95% CI 1.14–10.24).

Results from the random forest (bagging procedure) associated with the tree-based model

provide a ranking of the variables based on deviance importance scores (Fig 3). HLA-

DRB1�15, IL10, CD86 and HLA-DQB1�02 which were the variables selected in the optimal

GPLTR tree are among the five variables with the higher scores.

Discussion

In this study, we investigated the association of bio-clinical and genetic markers with the devel-

opment of FVIII inhibitor taking into account potential genetic high order interactions.

The classic bio-clinical factors selected by our analyses were in line with those reported in

previous studies. The F8 mutation type and a family history of FVIII inhibitors were con-

firmed as being associated with inhibitor development in severe hemophilia A patients. The

type of FVIII product (recombinant versus plasma-derived) was also selected in our analyses,

this result being consistent with those of SIPPET. These bio-clinical variables were considered

in the linear part of the model for both the logistic and the tree-based model. Intensity of the

first treatments was not available in the dataset and could not be assessed. Taking into account

these three variables, the GPLTR model identified three groups of patients according to their

category of HLA-DRB1�15, CD86, IL10, and HLA-DQB1�02 with probabilities equals to 0.18,

0.47 and 0.77 to develop inhibitors.

In the multivariate logistic model, the classic categorization of F8 mutation type as “low”

versus “high” risk shows an odds ratio in the same range (around four) as in the previously

published methods [16]. A family history of FVIII inhibitor was also associated with inhibitor

development. Interestingly, even with adjustment on genetic factors, the odds ratio remains

high (around seven) suggesting that other genetic risk factors contribute to this hereditary

risk.

Fig 2. Optimal GPLTR tree associated with inhibitor development linearly adjusted on F8 mutation type, family

history of inhibitors and type of FVIII product. n represents number of patients among 125 patients included in the

model.

https://doi.org/10.1371/journal.pone.0218258.g002
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The multivariate logistic regression model showed that HLA-DRB1�15, CD86, and IL-10

variants had an impact on the occurrence of neutralizing inhibitors. HLA-DRB1�15 has

already been shown to be associated with inhibitor development [5]. In the present study,

other HLA markers, such as DRB1�01, DQB1�06, were associated with inhibitor development

in the univariate analysis but not in the multivariate analysis. As these markers are in strong

linkage disequilibrium, the final multivariate logistic model only selected the one that made

the highest contribution. Previous studies reported an association between IL-10 polymor-

phisms and inhibitor development [3,8–11]. We showed that IL-10 (1082A>G) is a risk factor

of inhibitor development. The protein encoded by the IL-10 gene is a cytokine that has pleio-

tropic effects in immune regulation and inflammation. In vitro studies indicate that the 1082G

allele is associated with higher IL-10 production and the A allele with lower IL-10 production

[26]. We observed that the 1082A allele was associated with a higher probability of inhibitor

development, suggesting that low IL-10 production is associated with higher inhibitor risk.

For the first time to our knowledge, we report that one SNP in the UTR region of CD86 gene

(rs2681401) was associated with a lower risk for T/T and G/T genotypes. Interestingly the tree

representation suggests that these three genes, HLA-DRB1�15, IL10 and CD86, are part of a

same immune cascade, with CD86 involved in activation of the antigen presenting cells [20],

HLA in the presentation to T-cells and IL-10 in the immune regulation. We could not confirm

any association of SNPs in the TNFalpha, CTLA4 and HMOX1 genes with inhibitors, but the

sample size may be too small to detect it.

Fig 3. Deviance Importance Scores (DIS) obtained from bagged GPLTR for each of the competitive variables included in the multivariate model.

https://doi.org/10.1371/journal.pone.0218258.g003
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Taking into account F8 mutation type, family history of inhibitors, and type of FVIII prod-

uct, the optimal GPLTR hybrid tree-based model also selected HLA-DRB1�15, CD86, and IL-

10 and provided additional information by also selecting HLA-DQB1�02. Of note, based on

these genetic markers, the optimal GPLTR tree provided a partition structure of the whole

population under study that formed more homogeneous groups for inhibitor development.

The hybrid tree-based model showed that the highest risk for immunogenicity was observed

in patients with positive HLA-DRB1�15 and IL-10 genotype G/A and A/A. Of the 30 patients

(24% of the total) in this group, 23 experienced FVIII inhibitors. In contrast, the lowest risk

group for immunogenicity was defined by negative HLADRB1�15/ HLADQB1�02 and CD86

(TT or G/T). In this group, among the 33 patients (26% of the total), only 4 experienced inhibi-

tors. The other groups formed by the tree-based model had an intermediate risk. Results

obtained from the bagging procedure confirmed the importance of the selected variables and

suggest that the final tree-based model is sufficiently reliable. It is also worth noting that the

GPLTR model provided a better fit for the data according to the Akaike information criterion

compared to a classic multivariate logistic regression approach.

Concerning blood group, patients in blood group O were less likely to develop inhibitors

but the association was not statistically significant in the univariate analysis combining the

Bonn and Frankfurt cohorts (p = 0.10). In the eligible subset of the Bonn cohort, blood group

was also not significant in the multivariate analysis. This could result from a lack of power. It is

worth noting that this variable is classified as the nineth in terms of fit scores by the bagged

GPLTR procedure. An association between blood group and inhibitors has previously been

reported [27]. Given the data on the potential role of von Willebrand factor (VWF) in immune

recognition of FVIII [28] and inhibitor development [2], it is of note that levels of VWF differ

in individuals with different blood groups. This association warrants further investigation.

The ABIRISK project, as a collaborative initiative, enables data from different sites to be

pooled. Investigation of the main clinical factors (patient-, disease- and treatment-related) was

based on the historical cohorts of Bonn and Frankfurt. Datasets were however rather different

in terms of data availability, especially concerning genetic information. In addition, a selection

of population in terms of homogeneity in birth cohort and follow-up was necessary. While the

descriptive analyses were carried out on the whole population, a small subpopulation from the

Bonn cohort was used for the multivariate analyses. Mostly patients treated previously else-

where were excluded as some were patients treated a long time ago and as there were no reliable

information on first treatment for these patients. With this unbiased but reduced population,

however, comes a decrease in power for the statistical analyses. Our study has some limitations

that should be mentioned. Since it is an observational study, we could not exclude some bias

between negative and positive inhibitor patients, these latter been more well documented. The

majority of the population are Caucasian but we could not exclude some heterogeneity in the

ancestry background of our population. Moreover, our dataset has a reduced sample size and

additional studies with larger sample size are required to strengthen our findings.

Conclusion

The present study investigates the relationship between genetic factors and FVIII inhibitor

development in severe hemophilia A patients, together with F8 mutation type, a family history

of inhibitors and FVIII product type. It relies on a hybrid tree-based model which is well suited

to investigate high-order interactions. The final optimal tree distinguishes two groups of

patients: a high-risk group for immunogenicity with positive HLA-DRB1�15 and IL-10 geno-

type G/A and A/A, a low-risk group for immunogenicity with negative HLADRB1�15/

HLADQB1�02 and CD86 genotype T/T and G/T.
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affections inflammatoires du tube digestif (Matthieu Allez, Sabrina Williams), Universitaetskli-

nikum Bonn (Johannes Oldenburg, Thilo Albert), Karolinska Institutet (Anna Fogdell Hahn,

Malin Ryner, Ryan Ramanujam), Pfizer (Tim Hickling), Merck Serono (Elisa Bertotti), Ipsen

(Julie Le Grand), University College London (Claudia Mauri, Liz Jury), Sanofi-Aventis

Research and Development (Vincent Mikol, Agnès Hincelin-Mery, Catherine Prades, Pauline

Loas), Università di Firenze (Enrico Maggi), Novartis Pharma AG (Annette Karle, Sebastian

Spindeldreher, Verena Romach-Riegraf), Fondazione per l’Istituto di Ricerca in Biomedicina

(Antonio Lanzavecchia), Klinikum rechts der Isar der Technischen Universitaet Muenchen

(Bernhard Hemmer), Commissariat à l’Energie Atomique (Bernard Maillere), Novo Nordisk

(Christian Ross Pedersen), Scicross AB (Pierre Dönnes), Bayer Schering Pharma AG (Jeann-

ette Lo, Pascale Buchmann), eTRIKS (Fabien Richard), Paul-Ehrlich-Institut (Christine Kei-

pert), ALTA Ricerca e Sviluppo in Biotecnologie S.r.l.u. (Riccardo Bertini, Simona Farnetani).

Author Contributions

Conceptualization: Delphine Bachelet, Thilo Albert, Signe Hässler, Stephan Schultze-Strasser,
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Königs, Johannes Oldenburg, Philippe Broët.
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