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ABSTRACT
Objectives Around 30% of patients with rheumatoid 
arthritis (RA) do not respond to tumour necrosis factor 
inhibitors (TNFi). We aimed to predict patient response 
to TNFi using machine learning on simple clinical and 
biological data.
Methods We used data from the RA ESPOIR cohort to 
train our models. The endpoints were the EULAR response 
and the change in Disease Activity Score (DAS28). We 
compared the performances of multiple models (linear 
regression, random forest, XGBoost and CatBoost) on the 
training set and cross- validated them using the area under 
the receiver operating characteristic curve (AUROC) or the 
mean squared error. The best model was then evaluated 
on a replication cohort (ABIRISK).
Results We included 161 patients from ESPOIR and 118 
patients from ABIRISK. The key selected features were 
DAS28, lymphocytes, ALT (aspartate aminotransferase), 
neutrophils, age, weight, and smoking status. When 
predicting EULAR response, CatBoost achieved the best 
performances of the four tested models. It reached an 
AUROC of 0.72 (0.68–0.73) on the train set (ESPOIR). 
Better results were obtained on the train set when 
etanercept and monoclonal antibodies were analysed 
separately. On the test set (ABIRISK), these models 
respectively achieved on AUROC of 0.70 (0.57–0.82) and 
0.71 (0.55–0.86). Two decision thresholds were tested. The 
first prioritised a high confidence in identifying responders 
and yielded a confidence up to 90% for predicting 
response. The second prioritised a high confidence 
in identifying inadequate responders and yielded a 
confidence up to 70% for predicting non- response. The 
change in DAS28 was predicted with an average error of 
1.1 DAS28 points.
Conclusion The machine learning models developed 
allowed predicting patient response to TNFi exclusively 
using data available in clinical routine.

INTRODUCTION
Rheumatoid arthritis (RA) is a complex 
disease, heterogeneous in its clinical pres-
entation, severity and response to therapies. 

Targeted disease- modifying antirheumatic 
drugs (tDMARDs) are recommended for 
patients who do not respond to first- line 
methotrexate therapy. Thirteen drugs with 
different mechanisms of action may be consid-
ered for treatment, and tailoring treatment 
for an individual patient can be challenging.1 
Tumour necrosis factor inhibitors (TNFi) 
are frequently the first choice but unfortu-
nately, around one- third of patients do not 
respond and would have benefited from 
another tDMARD.2 There is a lack of simple 
markers to identify TNFi responders which 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ There are no widely used clinical and/or biological 
factors that predict response to tumour necrosis 
factor inhibitors (TNFi) in patients with rheumatoid 
arthritis (RA).

WHAT THIS STUDY ADDS
 ⇒ We trained machine learning algorithms that use 
clinical and biological data to predict response to 
TNFi and validated them in a separate cohort.

 ⇒ We had a good overall prediction of TNFi response 
that was further improved when analysing etaner-
cept and monoclonal TNFi separately.

 ⇒ We then set the decision thresholds of two different 
models to predict more accurately either response 
or non- response. We were thus able to accurately 
predict those two outcomes separately

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Accurately predicting non- response to TNFi could 
save time by directly using other targeted disease- 
modifying antirheumatic drugs.

 ⇒ Machine learning could improve management of 
patients with RA through predicting treatment re-
sponse to TNFi.
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results in a trial–error process that is detrimental for the 
patient and costly for the healthcare system. Regarding 
RA management, predicting the therapeutic response or 
failure to a TNFi treatment prior to its initiation would 
be groundbreaking. Several studies have tried to identify 
biomarkers, but none of them have emerged as a reliable 
predictive factor of response.2

With the increasing amount of available data in medi-
cine, new tools are required to extract information. 
Machine learning algorithms learn patterns from data 
and assume these will reproduce in the future. These 
algorithms identify patterns and rules without being 
explicitly programmed to do so, allowing unbiased 
discoveries. This is especially interesting in medicine to 

Table 1 Characteristics of the training set (ESPOIR) and validation set (ABIRISK) at last visit before treatment initiation

Feature’s name

ESPOIR ABIRISK

n=161 n=118

Age, years 49 (13) 52 (13)

Female, n (%) 115 (71) 89 (76)

Weight, kg 69 (15) 75 (19)

Height, cm 166 (9) 167 (9)

Body mass index 24.9 (4.6) 25.6 (5.5)

Autoimmunity family history, n (%) 48 (30) 37 (32)

Ever smokers, n (%) 72 (45) 72 (61)

Current smokers, n (%) 28 (17) 33 (28)

Smoking cumulative dose, pack- year 8 (13) 15 (14)

Past pregnancy (among sex=female), n (%) 92 (74) 70 (79)

DAS28 4.6 (1.6) 4.4 (1.1)

CRP, mg/L 17 (27) 12 (16)

Erythrocyte sedimentation rate, mm 26 (23) 23 (19)

Creatinine, µmol/L 74 (17) 66 (14)

AST, UI/L 22 (8) 25 (13)

ALT, UI/L 22 (13) 27 (20)

White blood, cells/109 7.9 (2.6) 8.5 (3.2)

Neutrophils, cells/109 5.4 (2.4) 6.1 (3.2)

Lymphocytes, cells/109 1.7 (0.68) 2.1 (2.9)

Presence of anti- citrullinated protein antibody, n (%) 113 (70) 81 (70)

Presence of rheumatoid factor IgM 119 (74%) 78 (68%)

TNFi treatment sequences, N N=208 N=118

  Etanercept sequences, N (%) 100 (48) 68 (58)

  Monoclonal anti- TNF antibodies sequences, N (%) 108 (52) 50 (42)

   Adalimumab sequences, N (%) 80 (74) 39 (78)

   Infliximab sequences, N (%) 17 (16) 11 (22)

   Certolizumab sequences, N (%) 8 (7) 0 (0)

   Golimumab sequences, N (%) 3 (3) 0 (0)

  First TNFi line, N (%) 153 (74) 107 (91)

  Non- responder imputation, N (%) 10 (4.8) 21 (18)

  Responder to sequences, N (%) 122 (59) 72 (61)

   Etanercept, N (%) 64 (64) 42 (62)

   Monoclonal anti- TNF antibodies, N (%) 58 (54) 30 (60)

  Co- treated with corticosteroids, N (%) 94 (45) 51 (43)

  Co- treated with MTX, N (%) 152 (73) 64 (54)

Results are presented as follows: mean (SD) for continuous variables and amount (percentage) for binary variables.
ALT, aspartate aminotransferase; AST, alanine transaminase; CRP, C reactive protein; DAS28, disease activity score; MTX, methotrexate; 
TNFi, tumour necrosis factor inhibitors.
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identify markers or combination of markers unknown so 
far by physicians. Machine learning is now widely used in 
healthcare, especially in radiology and oncology, whether 
it be for diagnosis, prognosis or treatment recommenda-
tion; and has proven itself very useful in assisting physi-
cians for certain precise tasks.3 4

Recently, several studies have considered the increasing 
amount of available data and suggested that machine 
learning techniques could be clinically used to predict 
the TNFi therapeutic response.5–8 These suggestions 
are backed by recent initiatives implementing machine 
learning models on a variety of RA datasets. Two of these 
initiatives use genetic data to predict patient response to 
TNFi.9 10 Using this approach in clinical practice remains 
a challenge since genetic data are not widely available. 
Other initiatives11 12 apply machine learning on clinical 
and biological data for similar objectives. However, these 
approaches often fail to describe how such models could 
be useful in clinical practice. Specifically, they do not 
study the impact of the decision threshold that transposes 
the probability yielded by the model into a binary thera-
peutic response. Defining this threshold requires a deep 
understanding of the clinical context to assess the clinical 
impact of such a tool. Unfortunately, this process is often 
poorly described. Another key element is the explanation 
of the model’s predictions, as most studies do not show 
the impact of the variables in predicting the response to 
treatment. Underlining the key variables impacting the 
model predictions helps to build rheumatologists’ confi-
dence in the technique and promote further clinical 
use. Ultimately, most of these existing models might be 
of limited clinical use due to the absence of replication 
cohorts to validate the results.

This study builds and compares different machine 
learning models to predict the therapeutic TNFi response 
for patients with RA based on routinely available clinical 
and biological data. It is based on data from the ESPOIR 
cohort to train our models, and the results were validated 
on the ABIRISK cohort.

METHODS
Patients
We included patients from ESPOIR,13 a French multicen-
tric, longitudinal and prospective early arthritis cohort 
that constituted the training dataset. ESPOIR is an obser-
vational study that followed patients for 11 years; and 
where patients were treated according to each centre’s 
clinical practice, without any modification for research. 
As validation cohort, we used ABIRISK,14 a prospective 
study investigating the predictive factors of development 
of anti- drug antibodies in patients with RA treated with 
a first TNFi. Patients were followed until the end of the 
treatment and up to 18 months after the treatment initi-
ation. Patients were included if they fulfilled the 2010 
American College of Rheumatology/EULAR criteria and 
received at least one injection of TNFi. No restriction 
on disease activity, disease duration, failure of previous 
DMARDs nor co- medication was applied so that the 
selected population reflects the diversity observed in clin-
ical practice. The decision to introduce a TNFi was left 
to the choice of the treating physician according to local 
practice. Patients stopping the TNFi treatment within 6 
months after initiation due to pregnancy, surgery, poor 
compliance to the protocol or unknown reasons were 
excluded from the study population. Patients stopping 
the TNFi treatment within 6 months after initiation due 
to inefficacy or adverse events were considered as inade-
quate responders (non- responder imputation). Patients 
stopping the TNFi treatment within 6 months after initi-
ation due to remission were considered as responders.

In the ESPOIR cohort, a patient could switch from one 
TNFi drug to another during the follow- up. Each treat-
ment sequence was considered as independent from 
each other. To account for these multiple treatments, 
we included a binary variable equal to 0 for TNFi- naive 
patients at sequence initiation and 1 otherwise.

We performed the analysis in the population treated 
with any type of TNFi. We then divided the popula-
tion into two sets: patients treated with etanercept and 
patients treated with monoclonal anti- TNF antibodies, 
anticipating a potential difference in the response to 
these two types of TNFi.

Variables
We have included all the daily practice clinical and 
biological variables that were available in both cohorts. 
They include demographics, smoking status, Disease 
Activity Score (DAS28), C reactive protein, disease char-
acteristics, complete blood count parameters, and liver 
and kidney parameters as shown in table 1.

Endpoints
Two endpoints were considered, resulting in two distinct 
predictive tasks:
1. The primary endpoint was the prediction of the thera-

peutic response, defined as good or moderate EULAR 
response15 assessed 12 months (±6 months due to 
yearly visits in the ESPOIR cohort) after treatment 

Table 2 Result of the variable selection process for the 
prediction of the EULAR response

All TNFi Etanercept Monoclonal antibodies TNFi

DAS28 DAS28 DAS28

Age Sex Sex

Ever smoked Ever smoked Ever smoked

Weight BMI Weight

Lymphocytes ESR

Neutrophils

ALT

The feature selection was run on the training set (ESPOIR).
ALT, alanine transaminase; BMI, body mass index; DAS28, 
disease activity score; ESR, erythrocyte sedimentation rate; 
TNFi, tumour necrosis factor inhibitors.
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initiation. This endpoint is binary (response vs inad-
equate response) and is analysed using the area un-
der the receiver operating characteristic (ROC) curve 
(AUROC). A higher AUROC corresponds to a better 
model.

2. The secondary endpoint was the prediction of change 
in the erythrocyte sedimentation rate DAS28.15 It is 
defined as the difference between DAS28 12 months 
after treatment initiation and DAS28 at treatment ini-
tiation. This difference is noted ΔDAS28 in the follow-
ing. This endpoint is continuous and analysed using 
the mean squared error (MSE). A lower MSE corre-
sponds to a better model.

Models
For both endpoints, the prediction pipeline is composed 
of consecutive blocks (online supplemental figure 1):

 ► A missing data imputation method.
 ► A variable selection process to select the predictive 

variables.
 ► A machine learning model predicting the outcome 

based on the predictive variables.

Four machine learning models were assessed: a linear 
regression model (logistic regression for the therapeutic 
response prediction and ridge regression for the ΔDAS28 
prediction), a random forest model16 and two gradient 
boosted trees models (XGBoost17 and CatBoost18). 
Advantages and limits of these models are detailed in 
online supplemental methods.

Each model uses the variables available at the last 
visit before treatment initiation to predict the outcome. 
For the primary endpoint, the models output a score 
(between 0 and 100) which is interpreted as a proba-
bility for the patient to respond to TNFi. Ultimately, this 
score is compared with a decision threshold to obtain a 
binary prediction (response vs inadequate response). For 
the secondary endpoint, the models directly predict the 
DAS28 12 months after initiation.

The variables available in both cohorts are presented in 
table 1. Variable selection process and missing data impu-
tation methods are presented in online supplemental 
methods.

Evaluation
The whole process (automated feature selection and 
model training) was evaluated using leave- one- out 
cross- validation on the training dataset. Only the best 
trained model was evaluated on the validation dataset to 
ensure the replication of the results. The metrics used to 
compare the models were the AUROC for the response 
classification (the higher, the better) and the MSE for the 
ΔDAS28 prediction (the lower, the better).

The prediction of the therapeutic response is a binary 
classification task and in such a case, classic epidemiolog-
ical metrics exist. Specifically, for this task, we computed, 
to provide clinical perspective, the positive predictive 
value (PPV), the negative predictive value (NPV), the 
sensitivity and the specificity.

The models predict a probability for a patient to 
respond to TNFi. This probability is compared with a 
decision threshold to obtain the final binary outcome. 
The choice of this decision threshold requires to deter-
mine the best use case for the clinician. Two scenarios 
can be considered:

Figure 1 Performances of the models predicting the EULAR 
response calculated on the training set. Cross- validated 
AUROC of our models for each drug class on the training 
set with the 95% CI. The higher the AUROC, the better. 
Stars legend the p value ns: 5.00e- 02<p≤1.00e+00 and 
****p≤1.00e- 04. AUROC, area under the receiver operating 
characteristic curve; ETN, etanercept; mAB, monoclonal 
antibodies; TNFi, tumour necrosis factor inhibitors.

Table 3 Performances of the best models for the EULAR response prediction

Drug Best model Best missing value imputer AUROC (train) AUROC (validation)

Overall TNFi CatBoost MICE 0.72 (0.68 to 0.73) Not evaluated since worse than 
drug- class- specific models on the 
training set

Etanercept Random forest Median 0.74 (0.68 to 0.75) 0.70 (0.57 to 0.82)

Monoclonal anti- TNF 
antibodies

CatBoost MICE 0.74 (0.69 to 0.77) 0.71 (0.55 to 0.86)

The best model and best missing value imputer were selected on the training set (ESPOIR) using AUROC. The replication of the results was 
assessed on the validation set (ABIRISK). Numbers in brackets refer to 95% CIs.
AUROC, area under the receiver operating characteristic curve; MICE, Multiple Imputation by Chained Equations ; TNFi, tumour necrosis 
factor inhibitors.
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1. A high decision threshold guaranteeing the highest 
possible confidence when predicting a patient as re-
sponder to the treatment.

2. A low decision threshold guaranteeing the highest 
possible confidence when predicting a patient as inad-
equate responder to the treatment.

To choose the high threshold, we fixed a minimum 
PPV of 80% and selected the threshold that maximised 
the sensitivity on the cross- validated training set given 
this minimum PPV. To select the low threshold, we set a 
minimum value of 80% for the NPV. Given this minimum 
NPV, we selected the threshold that resulted in the best 
specificity on the cross- validated training set.

Details of the statistical methods for model comparison 
and CIs are detailed in online supplemental methods.

Explainability of the prediction of response to TNFi
Ultimately, we studied how the models yielded their 
decisions. One of the most popular packages to date to 
explain machine learning predictions is SHAP.19 SHAP 
is based on the concept of Shapley value. A Shapley 
value is specific to a patient and to a characteristic. This 
value measures the weight of a patient characteristic on 
the patient outcome. A positive (resp. negative) Shapley 
value indicates a positive (resp. negative) influence on 
patient response to treatment. Higher Shapley values 
indicate stronger influences on patient response and vice 
versa.

We performed Shapley explanation on the ESPOIR 
and ABIRISK sets to obtain several visualisations for each 
model. We displayed explanation diagrams at the dataset 
level, plotting for each patient and each feature the 
contribution of this feature to the prediction.

RESULTS
Screening process
Among the patients from the ESPOIR cohort, 161 were 
included, of whom 95 initiated a treatment by etan-
ercept and 96 initiated a treatment with an anti- TNF 
monoclonal antibody (in the ESPOIR cohort, 30 patients 
switched from one TNFi to another during the follow- up, 
resulting in more treatment sequences than the number 
of patients). In the ABIRISK cohort, 118 patients were 
included, of whom 68 initiated a treatment by etanercept 
and 50 initiated a treatment with adalimumab or inflix-
imab.

The percentage of response to TNFi is 59% in the 
training set (ESPOIR) and 61% in the validation set 
(ABIRISK). The baseline characteristics of treatment 
sequences are displayed in table 1.

Results of the variable selection process
A backward feature selection process was applied to the 
variables presented in table 1 for each of the drug classes. 
The result of the feature selection process is presented in 
table 2 for the EULAR response and online supplemental 
table 2 for the ΔDAS28 prediction. Only these variables 
were used to train the models for the prediction of the 
therapeutic response and the prediction of the ΔDAS28.

Figure 2 Performances of the best model predicting the 
EULAR response on the training and validation sets. ROC 
curves of the best models for the prediction of response to 
overall TNFi (A), etanercept (B) and monoclonal anti- TNF 
antibodies (C). ROC, receiver operating characteristic; TNFi, 
tumour necrosis factor inhibitors.
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Evaluation of the models
The four machine learning models were assessed for the 
prediction of the EULAR therapeutic response. First, all 
TNFi were considered. Then, the models were assessed 
on the etanercept and on the anti- TNF monoclonal anti-
bodies groups. Results and comparison of the models 
are displayed in figure 1. Overall, CatBoost and random 
forest had the best performances, and the limited 
performances of the logistic regression compared with 
tree- based models suggest non- linear interaction effects 
between the variables.

Results were better on the training set when splitting 
all TNFi in etanercept and monoclonal TNFi antibodies, 
we then only evaluated the drug- class- specific models on 
the validation set. For each drug class, the model that 
performed the best on the training dataset was then 
assessed on the validation dataset (table 3).

ROC curves for the best models for each drug on both 
ESPOIR and ABIRISK are presented in figure 2. They 
showed that models had a good generalisability with 
overlapping curves between the training and validation 
datasets. Calibration curves are presented in online 
supplemental figures 5–7.

For the two decision strategies detailed in the evalua-
tion section, we computed for each group of drugs the 
specificity, the sensitivity, the PPV and the NPV of the 
best model on the validation dataset(table 4). When 
the strategy maximising the confidence in the detection 
of the responders was used, we looked in particular at 
the specificity and the PPV of the model. We obtained 
a higher PPV in the monoclonal antibody group (92%) 
than in the etanercept group (78%). On the other hand, 
we focused on the sensitivity and the NPV for the strategy 
identifying inadequate responders confidently. Sensitivity 
replicated very well on the validation set and reached 
90% whatever be the drug class.

Evaluation of the ΔDAS28 prediction models is detailed 
in online supplemental figure 3. Overall, the ridge regres-
sion model had the best performances suggesting limited 
non- linear interaction effects between the variables.

For each drug, the model that performed the best 
on the training set was then evaluated on the validation 
database (ABIRISK); the results are presented in online 
supplemental table 3 with their 95% CIs. The mean 

average error was computed on the validation set as it 
is easier to interpret. Overall, our models predicted the 
ΔDAS28 after treatment initiation with an error around 
1.1 points of DAS28. This error should be compared with 
the 0.6 threshold, which is the minimum clinically rele-
vant variation of the DAS28.

Explanation of the models
For the prediction of the therapeutic response, the 
models with the best performances on the validation 
dataset were the CatBoost and random forest models. To 
interpret these models, we computed the SHAP values on 
the concatenation of the training and validation datasets 
for each class of drug (online supplemental figure 2). As 
an example, high DAS28 was obviously associated with 
response to treatment, whereas a low value contributed 
to inadequate response for all TNFi. When plotted indi-
vidually (Figure 3), non- linear interactions arise, espe-
cially for values above 5 for which the effect of DAS28 
on response was limited. Biological variables such as ALT 
(alanine transaminase) and lymphocytes had a U shape 
relationship with prediction of response. Thus, high and 
low values were associated with response and mid- range 
with inadequate response (figure 3).

Explanation of the ΔDAS28 prediction models is 
detailed in online supplemental results.

DISCUSSION
This study establishes that machine learning models are 
efficient to assess the therapeutic TNFi response using 
exclusive data available in clinical routine. We obtained a 
good AUROC on the replication cohort. By underlining 
how each variable impacted the model’s predictions, 
this study provides insight on how these predictions are 
made.

The first objective of the study was to assess the perfor-
mances of a machine learning model based exclusively 
on clinical and biological data. It is worth noting that 
the results replicate properly between the training set 
(ESPOIR) and the validation set (ABIRISK). For the 
EULAR response prediction, the AUROC dropped 
by less than 0.05 points (etanercept and monoclonal 
anti- TNF antibodies). Interestingly, even though dividing 

Table 4 Metrics of interest regarding the prediction of the EULAR response

Drug

Strategy 1 (high confidence in response) Strategy 2 (high confidence in non- response)

Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV

Etanercept 60% (44% 
to 74%)

73% (55% 
to 89%)

78% (63% 
to 92%)

53% (36% 
to 69%)

95% (88% 
to 100%)

15% (4% to 
30%)

64% (52% to 
76%)

67% (20% to 
100%)

Monoclonal 
anti- TNF 
antibodies

37% (20% 
to 55%)

95% (83% 
to 100%)

92% (73% 
to 100%)

50% (35% 
to 66%)

90% (78% 
to 100%)

40% (19% to 
62%)

69% (54% to 
84%)

73% (44% to 
100%)

For the two strategies presented in methods, we display the metrics on the validation set (ABIRISK). Numbers in brackets 
refer to 95% CIs.
NPV, negative predictive value; PPV, positive predictive value; TNF, tumour necrosis factor.
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by molecule groups leads to smaller study groups, which 
should decrease the prediction efficacy, the ΔDAS28 and 
the EULAR response prediction were more efficient 
when treatments were analysed separately (ie, etanercept 
and monoclonal anti- TNF antibodies) than together. 

This improvement in the results suggests differential 
mechanisms of action between the two classes of drug. 
This suggestion is strengthened by the observation that 
the variables used to predict response to etanercept or 
monoclonal anti- TNF antibodies are partially different 
or have different weight in the prediction (table 2 and 
online supplemental table 2).

The results of this study can be compared with similar 
initiatives using machine learning to predict treatment 
response to TNFi.9–12 The prediction of the therapeutic 
response is the most frequent task; however, the only 
study providing a replication dataset and using the 
EULAR response as the primary endpoint is the publica-
tion of the winners of the DREAM RA Challenge.9 Their 
model was developed using genomic data and reached 
an AUROC of 0.62. Numerically, our models seem to 
outperform theirs, especially when separating TNFi in 
groups of drugs. Nevertheless, large CIs do not allow us to 
conclude definitively. This comparison tends to confirm 
the potential of simple clinical and biological data for 
the identification of TNFi inadequate responders while 
extensive genetic data are not available in routine clin-
ical practice. This remark is aligned with the conclusions 
of the DREAM RA challenge,20 which noted that genetic 
data had limited effect on the final performance of the 
models.

The second objective of the study was to assess the 
potential of artificial intelligence- derived tools in clin-
ical practice. Two different perspectives are offered to a 
clinician using these models: having the highest possible 
confidence of response when prescribing an anti- TNF or 
having the highest possible confidence when deciding 
to skip the anti- TNF drugs and directly prefer another 
tDMARD. The first scenario prioritises the PPV and the 
specificity of the algorithm, whereas the second priori-
tises the NPV and the sensitivity of the algorithm. We thus 
defined two decision thresholds to adapt the model to 
those two perspectives.

The first model brings the highest possible confidence 
in the detection of responders. It enables clinicians to 
prescribe TNFi with a 80% (etanercept) to 90% (mono-
clonal anti- TNF antibodies) confidence of response 
(PPV), which is much higher than the 60%–65% response 
rate observed in our cohorts and in the literature.2 Using 
this algorithm and reaching this confidence would result 
in 50% (etanercept) to 75% (monoclonal anti- TNF anti-
bodies) fewer patients treated with TNFi. Among these 
untreated patients, we would have missed 50% (etaner-
cept and monoclonal anti- TNF antibodies) of responders 
(complementary of the NPV). These figures can be 
balanced given the large therapeutic arsenal of targeted 
treatments available in RA. Patients predicted as inade-
quate responders could easily be given another tDMARD.

The second model prioritises the confidence in the 
detection of inadequate responders. It enables clinicians 
to skip the TNFi and switch to another tDMARD with 
around 70% confidence of inadequate response (NPV). 
Reaching this level of confidence using our algorithm 

Figure 3 SHAP values of the best models for the prediction 
of the EULAR response to overall TNFi (A), etanercept (B) 
and monoclonal anti- TNF antibodies (C).The SHAP values 
are computed on a concatenation of the training and 
validation sets. Only the four most potent variables are 
displayed. Each dot represents a patient’s data at treatment 
initiation and is placed on the y- axis according to its SHAP 
value and on the x- axis depending on the variable value. 
Positive (resp. negative) SHAP values influence the outcome 
towards a response (resp. inadequate response). This 
influence is proportional to the SHAP value. Female sex is 
encoded by 0. Jitter was added to binary variable to facilitate 
the reading. BMI, body mass index; DAS28, Disease Activity 
Score; ESR, erythrocyte sedimentation rate; ETN, etanercept; 
mAB, monoclonal antibodies; TNFi, tumour necrosis factor 
inhibitors.
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would result in 30%–35% less patients treated with TNFi. 
Among these untreated patients, we would have missed 
30%–35% of responders (complementary of the NPV). 
The NPV of this strategy is quite satisfactory compared 
with the current clinical practice in which no clear 
markers are available.

The third objective of the study was to emphasise 
the explainability of the machine learning models. To 
provide a medical perspective, this study thoroughly 
details the explainability of the algorithm using the 
SHAP values. Our method was inspired by the successful 
application of SHAP values in oncology.21 Several clinical 
studies assessed the influence of classic clinical variables 
on the response to TNFi.2 Even if the conclusions on 
the influence of several variables are contradictory, a lot 
of consensus stands out and can be compared with the 
SHAP values of the models. In general, male sex, younger 
age and low body mass index (BMI) were associated with 
a response to TNFi, and smoking was associated with an 
inadequate response to TNFi. These results are consistent 
with the coefficients of the linear regression model for 
the prediction of the ΔDAS28 presented in online supple-
mental figure 4. As for the three classes of drugs (overall 
TNFi, etanercept and monoclonal anti- TNF antibodies), 
male sex, younger age and low BMI were associated with 
response, whereas smoking was associated with inade-
quate response. They are also consistent with the results 
of the EULAR response prediction presented (online 
supplemental figure 2) as young age and low weight are 
associated with response (positive SHAP values). The 
impact of the smoking status is unclear however, and the 
sex variable was not selected.

The SHAP values demonstrate that the models capture 
complex non- linear interactions between the features 
and the output. These non- linearities are particularly 
clear when plotting the Shapley values against DAS28 
(figure 3). They also highlight turning points of influ-
ence between EULAR response and inadequate response; 
DAS28=4 appears as a clear frontier, for instance.

This study faces several limitations. The main limita-
tion is the sample size which is rather small compared 
with data amount usually used in machine learning. The 
number of patients limits the accuracy of the algorithms 
and prevents from drawing very strong conclusions, given 
the spread of the CIs. Then, the use of data from two very 
different prospective cohorts results in a varying time 
between follow- ups. However, this variance highlights our 
model strengths since their performances are similar on 
those two very different cohorts. Modelling limitations 
can also be pointed out. In particular, for the predic-
tion of the ΔDAS28, we only selected patients for which 
the DAS28 6 months after treatment initiation was avail-
able, which resulted in immortal time bias. This bias is 
not present in the prediction of the EULAR therapeutic 
response however, for which we used an inadequate 
response imputation rule. To improve the modelling of 
longitudinal data, Recurrent Neural Networks have been 
explored.22 23 Although this modelling would complicate 

the insertion of this algorithm into a clinical environ-
ment, it could also result in a significant improvement.

To envision the use of this algorithm in clinical prac-
tice, we aim to design treatment strategy clinical trials. 
They would compare usual care with a decision based on 
the prediction of response by the algorithm.

CONCLUSION
In this study, we have demonstrated the ability of 
machine learning algorithms to predict response to TNFi 
using simple clinical and biological variables. Focusing 
on clinical use, we developed a model and assessed its 
performances in two scenarios, having a high confidence 
in either identifying TNFi responders or identifying TNFi 
inadequate responders. Both demonstrated interesting 
results compared with the current clinical practice and 
these algorithms pave the way to a personalised treat-
ment strategy in RA.
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