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Heregulin-1ß and HER3 in hepatocellular
carcinoma: status and regulation by insulin
Corina Buta1, Eva Benabou1, Marie Lequoy1,2, Hélène Régnault1,3, Dominique Wendum1,4, Fatiha Meratbene1,5,
Hamza Chettouh1, Lynda Aoudjehane1,6, Filomena Conti1,6,7, Yves Chrétien1, Olivier Scatton1,7,
Olivier Rosmorduc1,3, Françoise Praz1, Laetitia Fartoux1,3 and Christèle Desbois-Mouthon1*

Abstract

Background: The heregulin-1ß/HER3-driven pathway is implicated in several epithelial malignancies and its
blockade is currently undergoing clinical investigation. Paradoxically, the status and the regulation of this pathway
is poorly known in hepatocellular carcinoma (HCC).

Methods: Using 85 HCC obtained after tumour resection, heregulin-1ß and HER3 expression was evaluated by
real-time RT-PCR, ELISA and/or immunohistochemistry. Statistics were performed to analyze associations between
gene expression and clinicopathological parameters. The effects of insulin on the heregulin-1ß/HER3 pathway was
investigated in four HCC cell lines.

Results: HER3 mRNA was upregulated in 52 % of tumours, while heregulin-1ß mRNA was downregulated in
82 %. Hepatitis B and C viral infections were respectively associated with high and low HER3 mRNA
expression. No association was seen between neither HER3 or heregulin-1ß mRNA and prognostic factors,
survival or recurrence. Immunohistochemistry showed predominant cytoplasmic staining of HER3 in tumours
but the staining was nonreproducible. HER3 mRNA and protein levels were not correlated in liver tissues. In
HCC cells, insulin promoted HER3 proteasomal degradation and inhibited heregulin-1ß stimulation of cell
migration. HER3 and insulin receptor co-immunoprecipitated in these cells. The loss of insulin receptor
expression by RNA interference sensitized cells to heregulin-1ß-induced AKT phosphorylation.

Conclusions: Autocrine heregulin-1ß loop is uncommon in HCC and HER3 mRNA expression is differentially
influenced by hepatitis viruses. Insulin is a negative regulator of HER3 protein expression and function in HCC
cells. Altogether these data may explain why HER3 and heregulin-1ß expression have no prognostic value and
suggest that HCC patients are unlikely to derive benefit from HER3-targeted monotherapies.

Keywords: HER3/ERBB3, Insulin receptor, Hepatitis virus, Liver cancer

Background
Hepatocellular carcinoma (HCC) is a primary tumour of
the liver whose incidence has steadily increased in recent
years, reaching the fifth place worldwide. HCC has a dis-
mal prognosis and it ranks second in terms of mortality.
A minority of patients benefit from curative therapies
(liver transplantation, tumour resection) and a high
incidence of postoperative recurrence is observed after
resection. Tumour recurrence is the major cause of

death following resection [1–3]. In this context, efforts
must be pursued to better characterize HCC at genetic,
molecular and cellular levels to identify key oncogenic
pathways and therapeutical targets.
HER3 (ErbB3) belongs to the HER family including

HER1 (ErbB1 or epidermal growth factor receptor
(EGFR)), HER2 (ErbB2), and HER4 (ErbB4). Heregulin-
1ß (or neuregulin-1ß) is a high affinity ligand for HER3.
HER3 has minimal tyrosine kinase activity and its full
activation upon heregulin-1ß binding, depends on its
association with other HER members such as EGFR and
HER2. Activated HER3 has six tyrosine-containing bind-
ing sites for the p85 regulatory subunit of PI3K in the
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cytoplasmic tail, making HER3 a major regulator of AKT-
dependent signalling [4–6]. These last years, the heregulin-
1ß/HER3 signalling axis has generated much interest in
medical oncology. Indeed, high tumour expression of
HER3 has been shown to be predictive of tumour pro-
gression and poor survival in patients with ovarian [7],
breast [8, 9], melanoma [10] or gastric [11, 12] cancers.
The presence of paracrine/autocrine heregulin-1ß loops
also defines a subset of agressive tumours with higher
recurrence in head and neck squamous cell carcinomas
[13, 14]. Yet, the poor prognostic value of HER3 and/or
heregulin-1ß remains controversial in other cancers
such as bladder cancer [15], uveal melanoma [16] and
lung adenocarcinoma [17].
Data regarding the HER3 status in HCC are scarce. Avail-

able data have been essentially obtained from populations
of Asian patients with viral hepatitis. A Japanese study re-
ported that 64 out of 84 HCC were positive for cytoplasmic
HER3 by immunohistochemistry [18]. The transcriptomic
profile of 37 hepatitis B virus (HBV)-related HCC showed
that HER3 mRNA was one of the most frequently induced
[19]. More recently, a Taiwanese group reported that upreg-
ulation of HER3 mRNA was associated with HBV etiology,
microvascular invasion, early recurrence and poor clinical
outcome in 71 patients with HCC [20]. No data are avail-
able regarding heregulin-1ß expression in HCC.
The present study was defined to gain information

regarding the status of HER3 and heregulin-1ß in a
French collection of HCC. We observed that HER3
mRNA expression was increased in 52 % of 85 tumours
while heregulin-1ß mRNA expression was reduced in
82 %. No prognostic value was found for HER3 or
heregulin-1ß mRNA expression in this collection. In
addition, no correlation was observed between HER3
mRNA and protein levels. The analysis of the post-
transcriptional regulation of HER3 in HCC cell lines
revealed that the heregulin-1ß/HER3 signalling pathway
was controlled negatively by insulin at different levels.

Methods
Patients and liver tissue specimens
Eighty-five HCC (T) and paired adjacent non-tumour
(NT) liver tissues were collected from patients undergo-
ing curative liver resection for HCC at the Saint-Antoine
hospital (Paris, France). Clinicopathological characteris-
tics are summarized in Table 1. Part of this collection
was used in our previous study where it was designated
as collection #2 [21]. All patients gave informed consent
to the study, which was conducted in accordance with
the French laws and regulations (CNIL n° 1913901 v 0).

Cell culture and treatments
HepG2, Hep3B, and Huh7 cells were obtained from the
American Type Culture Collection (ATCC). PLC/PRF5

cells were provided by Dr Christine Perret (Institut
Cochin, France). Cell line authentication was routinely
performed by using a panel of nine ATCC short tandem
repeats. Cell lines were cultured as previously reported
[22] and routinely controlled for mycoplasma conta-
mination. Primary cultures of human hepatocytes were
established as previously described [23]. In some experi-
ments, serum-deprived cells were treated with insulin,
IGF-II (Sigma-Aldrich), heregulin-1ß (R&D Systems),
cycloheximide, bafilomycin A1 (Sigma-Aldrich) and/or
MG-132 (Cell Signaling Technology).

Western blotting and ELISA
Protein electrophoresis and transfert to nitrocellulose
were performed according to standard procedures. The
primary antibodies are summarized in Additional file 1:
Table S1. Blot revelations and quantifications were
performed using ChemiDoc™ Touch Imaging System
(BIORAD). Total amounts of HER3 and heregulin-1β
were quantified in human liver tissue extracts by ELISA
according to manufacturer’s instructions (R&D Systems).

Table 1 Clinicopathological characteristics of 85 patients with HCC

Age at surgery (years)

Median [range] 64.0 [18–85]

Sex ratio (M/F) 5.1 (71/14)

Etiology of chronic liver disease, n (%)

HCV infection
HBV infection
Alcohol abuse
Hemochromatosis
NASH
Combined viral hepatitis and alcohol
Combined metabolic syndrome and alcohol
Undetermined

21 (24.7)
27 (31.8)
5 (5.9)
2 (2.3)
11 (12.9)
5 (5.9)
8 (9.4)
11 (12.9)

Advanced fibrosis/cirrhosis, n (%) 49 (57.6)

Maximal tumour size, mean ± SD (mm) 65.2 ± 38.5

AFP (≥400 ng/ml), n (%)a 15 (17.6)

Multiplicity, n (%) 18 (21.2)

Tumour grade

Well differentiated, n (%)
Moderately differentiated, n (%)
Poorly differentiated, n (%)

21 (24.7)
41 (48.2)
23 (27.0)

CK19 expression, n (%)b 17 (20.0)

Microvascular invasion, n (%) 40 (47.0)

Satellite nodules, n (%) 26 (30.5)

Recurrence, n (%) 45 (52.9)

Recurrence before 2 years, n (%) 40 (47.1)

Delay to recurrence (months), median [range] 7.8 [1–61]

Overall mortality, n (%) 29 (34.1)

AFP α-fetoprotein, CK19 cytokeratin 19, HCV hepatitis C virus
HBV hepatitis B virus, NASH non alcoholic steatohepatitis
afour missing data
bthree missing data
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RNA interference
The expression of specific mRNA was downregulated
using a mixture of four siRNAs (100 nmol/L, ON-
TARGETplus SMARTpool, Dharmacon) and Dharmafect
4 (Dharmacon). Controls were performed using a non-
targeting siRNA pool (Dharmacon).

RNA isolation and analysis of gene expression
Total RNA was extracted from cell cultures using RNeasy
Mini kit (Qiagen). For liver tissues, a preliminary RNA
extraction step was performed using TRIzol Reagent (Life
Technologies). Quantitative measurements of transcripts
were performed by real-time PCR on a LightCycler 480
instrument (Roche) using SYBR Green chemistry and
specific primers (Additional file 1: Table S2). For each
sample, gene expression was normalized to that of hypo-
xanthine guanine phosphoribosyltransferase mRNA con-
tent and was expressed relatively to the same calibrator.
The relative quantity of each target gene was determined
from replicate samples using the formula 2-ΔΔCt.

Immunohistochemistry
Paraffin-embedded 4-μm sections were dewaxed in xy-
lene and rehydrated in graded alcohol series and micro-
wave antigen retrieval was performed in 10 mM citrate
buffer pH 6 during 15 min. Primary antibody detection
was performed using Novolink Polymer Detection Sys-
tem (Novocastra, Leica Biosystems) according to the
manufacturer’s protocol on an automated staining sys-
tem (Dakocytomation®). Aminoethyl carbazole was used
to reveal the peroxidase activity. The sections were
counterstained with haematoxylin. Four different HER3
monoclonal antibodies were tested (Additional file 1:
Table S1) but only the clone RTJ1 (Thermo Scientific,
1:30 dilution, overnight at 4 °C) gave signals. The clone
RTJ1 was validated by siRNA-mediated knockdown and
Western blotting (Additional file 2: Figure S1).

Immunofluorescence analysis
Cells seeded on glass coverslips were fixed with 4 % para-
formaldehyde, blocked with 1 % BSA and 10 % goat serum
in PBS, followed by overnight incubation with a 1:250 di-
lution of the primary antibody in PBS at 4 °C (Additional
file 1: Table S1). Cells were then incubated with a 1:200
dilution of conjugated secondary antibody (Alexa Fluor®
488 or 546 dye) in PBS for 1 h at room temperature. The
slides were counterstained with 4′,6-diamidino-2-pheny-
lindole (DAPI) for nuclei detection. Fluorescence was
visualized using an immunofluorescence microscope (Leica
Microsystems) with a DFC300 FX digital camera.

Cell migration assays
Migration was performed in 6.5 mm Transwell® with 8-μm
pore polycarbonate membrane insert (Corning). Cells

(1 × 105) in medium without serum were plated in the
upper chamber and medium containing 10 % fetal
bovine serum (FBS) was added in the lower chamber
as a chemoattractant. After 24 h, cells were treated
with or without insulin or heregulin-1β for 24 h. Cells that
had not migrated were removed from the upper surface of
inserts by using cotton-tipped swabs and migrated cells
that were attached to the lower surface were enumerated
by microscopy following fixation by 4 % paraformaldehyde
for 15 min and nucleic acid staining with DAPI. Four
random fields were counted per insert. For the wound-
healing assay, cells (5 × 104) were seeded in a 24-well dish,
incubated for 24 h in complete medium and serum-
harvested overnight. The cell monolayers were pretreated
with mitomycin C (1 μg/ml) for 2 h to inhibit cell prolifer-
ation, scraped with a p200 pipet tip and washed. Cells
were then treated with or without insulin or heregulin-1β.
Photographs were taken at 0 and 48 h with a phase-
contrast microscope and at least ten fields were recorded
for each treatment.

Statistical analysis
Comparison of mRNA expression between tumours and
adjacent liver tissue was performed using Wilcoxon signed-
rank test. The association between gene expression (T/NT
ratio) and clinicopathological features was evaluated using
the Mann–Whitney U-test. Survival analysis was done by
the Kaplan–Meier method and the groups were compared
with the log-rank test. Data from in vitro experiments were
reported as means +/− SEM of at least three independent
experiments. The comparisons of different groups were
carried out using Mann–Whitney test. Differences were
considered statistically significant at p < 0.05.

Results
HER3 and heregulin-1ß mRNA expression is not associated
with clinicopathological markers of tumour progression
and reduced survival in HCC
We analysed the expression of HER3 mRNA in a French
collection of 85 resected HCC. We observed that HER3
mRNA was increased in 52 % of HCC (T) versus paired
non-tumour (NT) liver tissue with a median fold-induction
of 1.94 (Fig. 1a). High HER3 T/NT ratios were associated
with HBV, while lower values were associated with HCV
(Table 2). Except for tumour size, the HER3 T/NT ratio
was not associated with histological and biological markers
reminiscent of tumours with poor outcome such as CK19
expression, satellite nodules, multiplicity, microvascular
invasion and high serum levels of AFP (Table 2). The HER3
T/NT ratio was higher in well/moderately differentiated tu-
mours than in poorly differentiated tumours. Finally, there
was no difference in overall survival (OS) or recurrence-
free survival (RFS) in patients with high or low HER3
T/NT ratio (Fig. 1b).
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Similar analyses were conducted for heregulin-1ß
ligand. Heregulin-1ß mRNA levels were lower in 82 %
of HCC compared with surrounding liver tissue (me-
dian fold-ratio of 0.09) (Fig. 1c). The heregulin-1ß
expression ratio (T/NT) correlated neither with
tumour size, multiplicity, microvascular invasion, OS
nor RFS (Table 2 and Additional file 3: Figure S2); it
was higher in CK19-negative and well/moderately
differentiated tumours.

HER3 mRNA and protein levels are not correlated in HCC
and adjacent liver tissue
We then attempted to investigate HER3 protein expres-
sion by immunohistochemistry. Out of four primary

antibodies tested, only the RTJ1 clone yielded staining.
This staining was exclusively cytoplasmic. This finding
raises questions regarding the validity of these signals
since HER3 is supposed to be also localized at cell
membrane. Moreover, HER3 staining turned out to be
nonreproducible in terms of intensity as illustrated in
Fig. 2a and no reliable association studies could be
performed from these analyses.
Thirty-two paired T/NT tissue samples previously ana-

lysed for HER3 mRNA expression were also measured for
HER3 protein levels by ELISA. We observed no statistical
difference between HER3 protein contents in tumours vs
nontumour liver tissues (Fig. 2b, left). Spearman correlation
analysis indicated no correlation between HER3 mRNA

Fig. 1 HER3 and heregulin-1ß mRNA expression in HCC. a HER3 mRNA expression was evaluated by RT-qPCR in 85 human paired T/NT liver tissue
samples (left). The distribution of HER3 T/NT ratio is presented on the right side. b Kaplan-Meier analysis of the probabilities of overall survival (left)
and recurrence-free survival (right) according to the upregulation of HER3 mRNA. c Heregulin-1ß mRNA expression was evaluated by RT-qPCR in
85 human paired T/NT liver tissue samples (left). The distribution of heregulin-1ß T/NT ratio is presented on the right side
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levels (evaluated by real-time PCR) and HER3 protein levels
(evaluated by ELISA) (Spearman r = −0.230; p = 0.071;
Fig. 2b, right). In contrast, heregulin-1ß protein levels were
decreased in tumours compared with nontumour liver
tissues (Fig. 2c, left) and heregulin-1ß mRNA and protein

levels tended to be positively correlated (Spearman
r = 0.289; p = 0.023; Fig. 2c, right). The lack of correl-
ation between HER3 transcript and protein levels sug-
gested that HER3 is subjected to post-transcriptional and/
or post-translational regulation in human liver samples.

Table 2 Relations between HER3 and heregulin-1ß mRNA fold inductions (T/NT) and the pathological characteristics of 85 HCC

Number HER3 mRNA fold induction (T/NT)a P values Heregulin-1ß fold induction (T/NT)a P values

HBV

Yes
No

27
58

2.38 [0.29–20.25]
1.55 [0.07–15.51]

0.033 0.02 [0.00–4.56]
0.13 [0.00–25.46]

0.075

HCV

Yes
No

21
64

1.30 [0.25–12.86]
2.21 [0.07–20.25]

0.016 0.06 [0.00–4.17]
0.095 [0.00–25.46]

0.724

NASH

Yes
No

11
74

2.74 [0.69– 5.30]
1.60 [0.07–20.25]

0.313 0.33 [0.02–2.04]
0.05 [0.00–25.46]

0.074

MS + alcohol

Yes
No

8
77

1.32 [0.85–4.50]
2.06 [0.07–20.25]

0.425 0.715 [0.05–25.46]
0.06 [0.00–4.56]

0.011

Alcohol

Yes
No

5
80

2.11 [0.96–6.77]
1.85 [0.07–20.25]

0.727 0.10 [0.00–0.89]
0.08 [0.00–25.46]

0.783

Advanced fibrosis/cirrhosis

Yes
No

50
35

1.52 [0.25–20.25]
2.60 [0.07–15.51]

0.150 0.090 [0.00–4.17]
0.090 [0.00–25.46]

0.719

AFPb

< 400 ng/ml
≥ 400 ng/ml

47
34

1.85 [0.07–20.25]
2.09 [0.25–15.51]

0.867 0.13 [0.00–4.56]
0.05 [0.00–25.46]

0.293

Tumour size

< 5 cm
≥ 5 cm

44
41

1.47 [0.25–7.89]
2.68 [0.07–20.25]

0.019 0.09 [0.00–4.56]
0.09 [0.00–25.46]

0.631

Multiplicity

Yes
No

18
67

2.05 [0.32–20.25]
1.94 [0.07–7.89]

0.796 0.24 [0.00–4.17]
0.06 [0.00–25.46]

0.310

Satellite nodules

Yes
No

26
59

2.11 [0.07–20.25]
1.58 [0.25–7.89]

0.458 0.15 [0.00–25.46]
0.05 [0.00–4.56]

0.164

Differentiation

Well/moderate
Poor

61
24

2.22 [0.29–20.25]
1.43 [0.07–6.77]

0.021 0.23 [0.00–25.46]
0.01 [0.00–1.76]

0.001

CK19 expressionc

< 5 %
≥ 5 %

65
17

1.85 [0.25–20.25]
2.44 [0.07–15.51]

0.926 0.11 [0.00–25.46]
0.01 [0.00–1.06]

0.006

Microvascular invasion

Yes
No

41
44

2.08 [0.07–20.25]
1.56 [0.29–6.94]

0.194 0.08 [0.00–25.46]
0.09 [0.00–4.56]

0.624

AFP α-fetoprotein, CK19 cytokeratin 19, HCV hepatitis C virus
HBV hepatitis B virus, MS metabolic syndrome, NASH non alcoholic steatohepatitis
aValues are expressed as median [range]
bfour missing data
cthree missing data
All statistical analyses were performed using Mann-Whitney test
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Insulin promotes HER3 degradation in human
hepatocytes and HCC cell lines
Limited data are available regarding the post-transcriptional
and post-translational mechanisms controlling HER3 ex-
pression in hepatocytes. A few years ago, Carver and
colleagues reported that in cultured rat hepatocytes insulin
impaired heregulin-1ß signalling by promoting HER3

downregulation [24]. We examined whether such a mech-
anism was relevant to human normal and transformed
hepatocytes, that expressed both HER3 and IR receptors
[21, 22]. As shown in Fig. 3a, insulin down-regulated HER3
protein expression in primary cultures of normal hu-
man hepatocytes. A similar effect was observed in the
presence of IGF-II, another ligand to the insulin receptor

Fig. 2 HER3 protein expression in HCC. a HER3 detection by immunohistochemistry with RTJ1 antibody revealed cytoplasmic staining in HCC.
Representative pictures of two tumours (T1, T2) are shown. HER3 staining was non reproducible in terms of intensity between two lots of antibody
(compare left and right panels). b left, HER3 protein expression evaluated by ELISA in 32 paired T/NT liver tissue samples; right, correlations between
HER3 mRNA and protein levels. c left, heregulin-1ß (HRG-1ß) protein expression evaluated by ELISA in 32 paired T/NT liver tissue samples; right,
correlations between heregulin-1ß mRNA and protein levels
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(IR). Insulin and IGF-II also decreased HER3 protein
levels in HepG2 and PLC/PRF5 cancer cells but not in
Hep3B and Huh7 cells (Fig. 3b). There was no decrease
in HER3 mRNA levels after insulin treatment in HepG2
and PLC/PRF5 cells (Additional file 4: Figure S3A),
showing that the effect of insulin was posttranscrip-
tional. To determine whether the decreased levels of

HER3 in insulin-stimulated HCC cells were due to
increased degradation, we blocked the de novo pro-
tein synthesis with cycloheximide and analyzed the
rates of HER3 decay. The half-life of HER3 in insulin-
stimulated cells was shorter (2–3 h) than in unstimulated
cells (>6 h) (Fig. 3c) indicating that insulin destabilizes
HER3 protein. We then examined how insulin promoted

Fig. 3 Effects of insulin on HER3 protein in normal hepatocytes and HCC cell lines. a–b Human normal hepatocytes and liver cancer cell lines
(HepG2, PLC/PRF5, Hep3B, Huh7) were treated with 10−8 M insulin (ins) or IGF-II for 24 and 48 h. Whole-cell lysates (20 ug) were analysed by
Western blot for HER3 expression. ß-actin detection was performed to control protein loading. c Serum-starved HepG2 and PLC/PRF5 cells were
treated for 24 h with or without 10−8 M insulin, then with cycloheximide (CHX, 40 ng/ml) for different durations, analyzed by Western blot for
HER3 expression and quantified. AKT detection was performed to control protein loading. d Serum-starved HepG2 and PLC/PRF5 cells were
treated for 24 h with or without 10−8 M insulin, 10 uM MG132, or 100 nM bafilomycin and analyzed by Western blot for HER3 expression. ß-actin
detection was performed to control protein loading. Blots are representative of three independent experiments
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HER3 degradation. First, we observed that treatment of
HepG2 and PLC/PRF5 cells with the specific proteasome
inhibitor MG132 for 24 h reversed the effect of insulin on
HER3 downregulation while bafilomycin A, a selective
inhibitor of lysosomal v-ATPase, was ineffective (Fig. 3d).
This indicated that the negative regulation of HER3 pro-
tein levels by insulin was a proteasome-mediated process.
Additionally, it seemed that the effect of insulin did not
require the involvement of NRDP1, an E3 ubiquitin ligase,
which can control the steady-state levels of HER3 [25]. In-
deed, insulin did not modify NRDP1 expression and more
importantly siRNA-induced downregulation of NRDP1
expression did not impact insulin effect on HER3 expres-
sion (Additional file 4: Figure S3 B and C).

Insulin inhibits heregulin-1ß stimulation of migration in
HCC cell lines
We then examined whether insulin impacted heregulin-1ß/
HER3-dependent biological effects in Hep3B and Huh7 cell
lines in which the hormone did not down-regulate HER3
expression. As shown in Fig. 4a, heregulin-1ß promoted cell
migration as evaluated by Transwell migration assays in
these cell lines while it was ineffective to stimulate prolifer-
ation and viability (Additional file 5: Figure S4). Insulin was
a potent mitogen in these cell lines [21] but had no effect
on cell migration (Fig. 4a). When insulin was combined to
heregulin-1ß, we observed that the promigratory effect of
heregulin-1ß was reduced in Hep3B and Huh7 cell lines
(Fig. 4a). The ability of insulin to counteract heregulin-1ß
migratory effect was confirmed in Huh7 cells using a
wound healing assay (Fig. 4b).

HER3 is associated to IR in HCC cell lines
As a first step to investigate the mechanisms underlying
the functional interaction between heregulin-1ß- and
insulin-dependent pathways, we examined the cellular
localization of HER3 and IR by immunofluorescence
(Fig. 5a). In HCC cell lines, the two receptors showed a
partially overlapping pattern of distribution. A potential
interaction between IR and HER3 in HCC cells was next
assessed by immunoprecipitation. HER3 was immuno-
precipitated from whole-cell lysates, and the resulting
precipitates were subjected to immunoblot analysis with
an antibody to IR. In all cell lines, we observed that
HER3 coimmunoprecipitated with IR (Fig. 5b).

Insulin inhibits the heregulin-1ß/HER3/AKT pathway in
HCC cell lines
We then examined the impact of insulin on the heregulin-
1ß/HER3 signalling axis in HCC cells. The effect of insulin
on HER3 phosphorylation was evaluated by Western blot
by analysing two major tyrosine phosphorylation sites,
Y1289 and Y1197. Strikingly, the hormone induced an
increase of HER3 Y1289 phosphorylation in Hep3B cells

while it was ineffective to promote HER3 Y1197 phos-
phorylation (Fig. 6a, left). As a comparison, both tyrosine
residues were potently phosphorylated by heregulin-1ß
(Fig. 6a, right). Insulin-induced phosphorylation of HER3
Y1289 was reduced when IR expression was down-
regulated with siRNA (Fig. 6b). The stimulatory effect of
insulin on HER3 Y1289 phosphorylation was observed in
the three other cell lines but to a lesser extent (Additional
file 6: Figure S5). As insulin also promoted EGFR phos-
phorylation in HCC cells (Fig. 6c), we wondered whether
insulin induction of Y1289 HER3 phosphorylation re-
quired EGFR activity. The effect of insulin on HER3 was
maintained in the presence of gefitinib, an EGFR TKI, or
after EGFR downregulation with siRNA suggesting that it
occurred independently of EGFR activation (Fig. 6c). Fi-
nally, we examined the consequence of IR downregulation
with siRNA on HER3 and AKT phosphorylation in the
presence of increasing doses of heregulin-1ß. As shown in
Fig. 6d, HER3 phosphorylation tended to be reduced while
AKT phosphorylation was enhanced and detectable at
lower doses of ligand after IR depletion. Altogether, these
data indicate that HER3 is in a close proximity to IR in
HCC cells and that IR exerts a negative constraint on
heregulin-1ßlHER3 that could involve IR-mediated HER3
Y1289 phosphorylation.

Discussion
Our study shows that HER3 mRNA is upregulated (52 %)
in a French collection of 85 HCC compared with adjacent
nontumour tissue. In accordance with studies performed
on Asian collections of HCC [19, 20], we observed that
the upregulation of HER3 mRNA was associated to
chronic HBV infection. Therefore, it is tempting to specu-
late that HBV may favour higher HER3 expression during
liver carcinogenesis. In this setting, a recent in vitro study
showed that the viral protein Hbx transcriptionally up-
regulates HER3 expression in HCC cells [26]. Moreover,
secreted HER3 has been shown to be a biomarker for early
HCC in patients with chronic B hepatitis and cirrhosis
[27]. By contrast, it has been recently demonstrated that
HCV down-regulates HER3 expression at both transcript
and protein levels in the Huh7 cell line [28]. Accordingly,
we observed that HER3 mRNA levels were low in HCV-
related HCC. Altogether, these data suggest that the
expression of HER3 mRNA is regulated differentially by
the viral factors contributing to HCC.
Fold induction for HER3 mRNA expression was also

higher in well/moderately differentiated tumours than in
poorly differentiated ones. In the same setting, studies
conducted on a large panel of hepatoma cell lines showed
that HER3 expression was higher in cell lines with an
epithelial phenotype than in those with a mesenchymal
phenotype [29, 30], suggesting that HER3 is rather a
marker of epithelial traits in HCC.
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Autocrine expression of heregulin-1ß has been reported
to be a predictive biomarker for response to anti-HER3
antibodies, even in tumours showing no significant prog-
nostic association between heregulin-1ß and OS or PFS
[31, 32]. In our HCC collection, the expression of
heregulin-1ß transcript was lower in tumours (82 %) than
in adjacent tissue, which does not support the existence of
heregulin-1ß/HER3 autocrine loops in HCC. Moreover,

we have not been able to assign a prognostic value to
HER3 and heregulin-1ß mRNA levels. These data contrast
with the study by Hsieh and colleagues [20], which
reported that upregulation of HER3 mRNA was pre-
dictive of early recurrence and poor clinical outcome
in a Taiwanese collection of 71 HCC. The reason for such
a discrepancy remains unclear. One potential explanation
is that the two patient populations diverge in terms of

Fig. 4 Effects of insulin on heregulin-1ß stimulation of cell migration in HCC cell lines. a Hep3B and Huh7 cells seeded on Transwell® inserts were
treated for 24 h with 10−8 M insulin and/or 50 ng/ml heregulin-1ß (HRG-1ß). Migrated cells were enumerated by microscopy following nucleic
acid staining with DAPI. b Huh7 cells were submitted to a wound-healing assay by scraping cell layer with a p200 pipet tip and were treated for
48 h with 10−8 M insulin and/or 50 ng/ml heregulin-1ß. The wound closure (% of H0) was measured
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liver-disease etiology. Altogether these data suggest that
HCC patients may not derive significant clinical benefit
from HER3-directed monotherapies.
There is no standardized method for HER3 detection by

immunohistochemistry and information regarding HER3
staining in HCC are limited. The sole extensive study was
published with the clone 2F12, which showed frequent
HER3 cytoplasmic staining in HCC [18]. In our hands,
this clone (and two other ones) did not give signals while
the clone RTJ1 yielded cytoplasmic staining but was not
reproducible in terms of intensity. The clone RTJ1 has
been previously used to detect HER3 in breast [8, 33] and
lung [34] cancers. However, the reliability of this clone
has been challenged by others [35]. An internationally
accepted and validated method for immunohistochem-
istry detection of HER3 needs consideration.
HER3 is a receptor that is finely regulated at the post-

transcriptional and post-translational levels in several cell
types. Notably, the steady state level of HER3 protein
can be regulated by the ubiquitin-proteasome pathway
[25]. Since we did not observe correlation between
HER3 mRNA and protein levels in human liver tissue,
it is highly probable that HER3 is submitted to post-
transcriptional and/or post-translational regulation in

this tissue. Although insulin is generally considered as
an anabolic hormone that supports protein synthesis
and inhibits protein degradation, prolonged exposure
of cells to insulin also promotes ubiquitin-proteasome
degradation of specific proteins such as insulin-receptor
substrate-1 [36] and Foxo1 [37]. Liver tumours express IR
and insulinemia plays a key role in the pathogenesis of
HCC [38]. We show here that insulin promotes the deg-
radation of HER3 protein in untransformed human hepa-
tocytes and that this negative regulation is maintained in
some HCC cell lines such as HepG2 and PLC/PRF5 cells.
The pathway whereby insulin acts to repress HER3 pro-
tein expression involves proteasome engagement. Further
studies are needed to examine whether insulin enhances
HER3 ubiquitination in HCC cells. In any case, we did not
find evidence of a contributory role of NRDP1 in the
effect of insulin.
In HCC cells in which insulin did not promote HER3

degradation, we demonstrate that insulin is able to
counteract the pro-migratory effect of heregulin-1ß
namely Hep3B and Huh7 cells. The functional interplay
between IR and HER3 signalling can be at least partly
explained by the physical proximity between the two
receptors proved by a coimmunoprecipitation assay. We

Fig. 5 Association of HER3 to IR in HCC cells. a Hep3B and HepG2 cells were analyzed for HER3 and IR expression by immunofluorescence.
b Whole-cell lysates from HCC cells were immunoprecipitated with a HER3 antibody and analyzed by Western blot using an anti-IR antibody. In
parallel, negative controls were performed by immunoprecipitating the same lysates with a rabbit IgG. Pictures and blots are representative of
two independent experiments
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Fig. 6 Effects of insulin on heregulin-1ß/HER3 signalling in HCC cell lines. a Hep3B cells were treated with insulin (left: increasing doses during
10 min; right: 10−8 M for different times) or with heregulin-1ß (HRG-1ß increasing doses during 10 min). Whole-cell lysates (20 µg) were analysed
by Western blot for phosphorylation and expression of HER3, IR and/or AKT. b Hep3B cells were transiently transfected with a control (siCont) or
siRNA directed against IR (siIR) and then treated with or without 10−8 M insulin for 10 min. Whole-cell lysates (20 μg) were analysed by Western
blot for phosphorylation and expression of HER3 and/or IR. c Hep3B cells were treated or not with 2 uM gefitinib (left) or transiently transfected
with control (siCont) or siRNA directed against EGFR (siEGFR) (right) and then treated with or without 10−8 M insulin for 10 min. Whole-cell lysates
(20 µg) were analysed by Western blot for phosphorylation and expression of HER3, EGFR and/or IR. d Hep3B (left) and Huh7 (right) cells were
transiently transfected with a control (siCont) or siRNA directed against IR (siIR) an then treated with or without increasing doses of heregulin-1ß
for 10 min. Whole-cell lysates (20 µg) were analysed by Western blot for phosphorylation and expression of HER3, AKT and/or IR
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demonstrate that insulin, through its receptor, was able to
rapidly phosphorylate HER3. However, the striking obser-
vation was that the insulin-induced HER3 phosphorylation
was partial, involving Y1289 but not Y1197 residue. More-
over, we report that the depletion of IR protein with siRNA
was accompanied by an increase in heregulin-1ß-induced
AKT phosphorylation, indicating that HER3 activation was
dependent on IR expression levels. The inhibitory effect of
IR on heregulin-1ß/HER3 signalling probably explains the
ability of insulin to restrict cell migration in response to
heregulin-1ß. The underlying mechanisms remain to be
deciphered. In particular, it will be of interest to examine
the impact of insulin-induced HER3 phosphorylation on
heregulin-1ß affinity and heterodimers balance (EGFR/
HER3, IR/HER3) at the plasma membrane.

Conclusions
Our study highlights several factors (hepatitis virus,
insulinemia) that may regulate HER3 expression in HCC
and explain why HER3 expression has no prognostic
value in a HCC population, which is heterogeneous in
terms of etiology. Further studies are required to bring
conclusive answers about the clinical significance of
HER3 downregulation and inhibition in the setting of
insulin signalling.
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Additional file 1: Table S1. Antibodies for Western blot and
immunofluorescence. Table S2 Primers used for real-time PCR. (DOCX 78 kb)

Additional file 2: Figure S1. Evaluation of RTJ1 antibody specificity by
Western blot. PLC/PRF5 and HepG2 cells were transiently transfected with
a control (siCont) or a siRNA directed against HER3 (siHER3). Whole-cell
lysates (20 μg) were analysed by Western blot for HER3 expression using
RTJ1 and 2F12 antibodies. (TIF 338 kb)

Additional file 3: Figure S2. Prognostic value of heregulin-1ß. Kaplan-
Meier analysis of the probabilities of overall survival (left) and recurrence-free
survival (right) according to the upregulation of heregulin-1ß (HRG-1ß)
mRNA. Statistical analysis: log-rank test. (TIF 305 kb)

Additional file 4: Figure S3. Effect of insulin on HER3 and NDPR1
expression. A. HepG2 and PLC/PRF5 cells were treated for 24 h with
10−8 M insulin or IGF-II and analysed for HER3 expression by RT-qPCR.
B. HepG2 and PLC/PRF5 cells were treated for 6, 17 and 48 h with 10−8

M insulin and analysed for NRDP1 expression by RT-qPCR (left). Cells
treated for 48 h with insulin were also analysed for NRDP1 protein
expression by Western blot. C. PLC/PRF5 cells were transiently transfected
with a control (siCont) or siRNA directed against NRDP1 (siNRDP1) and
then treated with or without 10−8 M insulin for 10 min. Whole-cell lysates
(20 μg) were analysed by Western blot for HER3 and NRDP1 expression.
β-actin detection was performed to control protein loading. Values are
means ± SEM of three independent experiments. Blots are representative
of two independent experiments. (TIF 489 kb)

Additional file 5: Figure S4. Effect of heregulin-1ß on HCC cell
proliferation and viability. A. Serum-deprived Hep3B and Huh7 cells
were treated with 0.3 % FBS, 10 % FBS or 0.3 % FBS plus heregulin-1ß
(HRG-1ß, 50 ng/µl) and cell number were counted at day 1, 2 and 3.
B. Serum-deprived Hep3B and Huh7 cells were treated with 0.3 % FBS,
10 % FBS or 0.3 % FBS plus heregulin-1ß (50 ng/µl) and cell viability was
determined using a MTT assay. (TIF 332 kb)

Additional file 6: Figure S5. Effects of insulin on HER3 phosphorylation
in HCC cell lines. Huh7, HepG2 and PLC/PRF5 cells were treated with
insulin (left: increasing doses during 10 min; right: 10−8 M for different
times). Whole-cell lysates (20 μg) were analysed by Western blot for
phosphorylation and expression of HER3 and/or IR. (TIFF 1.16 mb)
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