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Abstract 
 
Background: Hepatic encephalopathy (HE) is a frequent neurological complication of cirrhosis. 

Evidence suggests a synergic pathophysiological implication of hyperammonemia and systemic 

inflammation. In addition, the blood-brain barrier (BBB) permeability can be impaired in cirrhotic 

patients, notably in those displaying HE. We hypothesized that systemic inflammation could trigger 

leukocytes transendothelial migration (TEM) through the BBB in cirrhotic patients and especially those 

with HE.  

Methods: We studied the effects of patients’ plasma on the TEM of the leukocyte U937 cell line in 

vitro, using a validated BBB model (hCMEC/D3 cell line). We compared TEM of U937 leukocytes 

across hCMEC/D3 monolayer incubated with the plasma of i) patients with cirrhosis without HE, ii) 

patients with cirrhosis and HE, iii) healthy controls. 

Results: We show that the plasma of cirrhotic patients with HE enhances TEM of U937 leukocytes 

across hCMEC/D3 BBB model. We found a correlation between U937 TEM on the one hand, the 

West-Haven score and ammonemia on the other one. A trend towards a correlation between U937 

TEM and PS-100Beta in plasma, a marker of BBB solute’s permeability increase, was also found. 

Conclusion: These findings suggest that circulating factors could increase leukocytes TEM in cirrhotic 

patients and contribute to the increased BBB permeability that has been described in cirrhotic patients 

with HE. 

  



Introduction 

 
Hepatic encephalopathy (HE) is defined as the neurological or neuropsychological symptoms caused 

by liver failure, a chronic liver disease and/or a portosystemic shunt (1). HE could be present at least 

in one half of cirrhotic patients in its overt form and in more than two third of patients when minimal HE 

is included. HE constitutes an independent risk factor of death. HE impairs the quality of life and it is 

associated with substantial costs related to hospitalization (2). HE represents also a major burden for 

families/caregivers and health care systems (3). Hepatic encephalopathy’s pathophysiology is still 

debated. The synergic effect of hyperammonemia and systemic inflammation is now well admitted (4, 

5). Modifications of the gut microbiota have also been implicated and could explain both 

hyperammonemia and systemic inflammation (6). Recently, we showed that the blood-brain barrier 

(BBB) permeability to solutes and xenobiotics was increased in cirrhotic patients with HE (7).  

The BBB is a unique organization of cerebral microvessels in which endothelial cells (EC) expressing 

tight junction proteins (claudin-5, occludin and junctional adhesion molecules (JAMs)) lay on a basal 

lamina made of type-IV collagen (8, 9). Pericytes embedded in the basal lamina could be largely 

implicated in the cerebral vasoregulation (10). Astrocytic endfeet cover the entire microvessels 

providing what is called the glial limitans. This special organization confers a particularly low 

permeability to solutes and circulating cells explaining that specific transport systems (receptors and 

transporters) are needed to fuel the brain with nutrients and allow exclusion of its waste products. EC 

are sensitive to inflammatory stimuli. They express Toll-Like receptor 4 (TLR-4) and receptors of 

cytokines including TNF-alpha and IL-1beta (CD120a and IL-1R respectively), that are elevated in the 

circulation of cirrhotic patients with HE (4). In patients with other neurological disorders such as 

multiple sclerosis (11), stroke (12), or Parkinson disease (13), systemic inflammation is associated 

with an increased transendothelial migration (TEM) of leukocytes through the BBB (8, 12, 13). Within 

the brain, leukocytes cause an increase in the amount of matrix metalloproteinase -2 and -9 (MMP-2 

and MMP-9) that will alter cerebral microvessels’ basal lamina and thus BBB permeability.  

We hypothesized that leukocytes TEM through the BBB is possible in HE cirrhotic patients due to the 

systemic inflammation and that this could exacerbate altered BBB permeability. We took advantage of 

the unique human hCMEC/D3 cell line that resumes human BBB characteristics (14), to test this 

hypothesis in vitro. 

 

  



Materiel and methods 

 

Patients 

This study was approved by local ethic’s committee of La Pitié-Salpêtrière Hospital. All participants 

were recruited in the Intensive Care Unit of Hepatology in La Pitié-Salpêtrière University Hospital, 

Paris, France and they all gave written informed consent. Inclusion criteria were: 1) cirrhosis, defined 

by clinical biological and/or morphological parameters and 2) age between 18 and 70 years. Exclusion 

criteria were: 1) a past history of neurological disease; 2) current evolutive neurological disease; 3) 

hepatocellular carcinoma; 4) expected survival of less that 3 months; 5) refusal to participate. HE was 

evaluated with the West Haven score (15). A score ≥2 defined overt HE. The cohort of cirrhotic 

patients was divided into 2 groups, i.e., with or without overt HE. A control group included subjects 

without any history of liver or neurological disease, who also gave their written informed consent. 

 

Blood samples  

Blood samples were collected on EDTA tube and placed on ice. Then, 2 centrifugations were 

performed (10 min, 800 g, 4°C) to obtain plasma that was immediately stored at -80°C. Biological 

analyses were performed using routine biochemical methods.  

 

Human cerebral endothelial cells 

We used the hCMEC/D3, a stable model of human EC and a largely validated in vitro BBB model (14). 

EC were cultured in Petri dish coated with collagen I (Rat Tail Collagen I, RDS, France), and were 

seeded each 3 days, as previously described (14, 16).  

 

Monocytic cell line U937 

We used the U937 monocytic cell line, that resumes leukocytes property to cross the BBB by TEM 

(17). For all experiences of TEM, U937 monocytes were used and labeled with the tracer Deep-Red 

Dye (Molecular Probes, C34565, OR, USA). Monocytes were labeled on the day of TEM experience. 

 

Transendothelial leukocytes migration experiments 

hCMEC/D3 cells were cultured as a monolayer on 8µm porous Transwell inserts (Corning) previously 

coated with collagen IV. At Day 6, i.e., when hCMEC/D3 are confluent, monocytes (U937 cell-line) 

were added to the upper chamber in SVF-free RPMI 1640 medium (Molecular Probes) containing 1% 

of plasma from patients or healthy controls (Fig 1A) and were incubated at 37° for 16h. In each 

experiment, 25 ng/mL of the CCL-2 chemokine was added to the lower chamber to create a 

chemotactic gradient. The confluence of hCMEC/D3 cells was controlled by the immunofluorescence 

of PECAM-1 (CD31) (Fig 1B). Patient’s plasma samples were diluted (endoGRO 1% with U937 

labeled): 106 monocytes in 100 µL of plasma were placed in the upper compartment. After 16 hours, 

TEM was stopped and the upper compartment was analyzed using flow cytometry. 

 

Cell counting by flow cytometry  



All U937 cells were marked before experiments with a fluorescent cell tracker (Deep-Red Dye, 

Molecular Probes). The content of the lower chamber was harvested and cell counting was directly 

performed by flow cytometry using counting beads (Gallios, Beckman Coulter). Counting beads 

(CountBright, Molecular Probes) were added to each sample immediately before assay. The 

concentration of beads was precisely known and enabled us to estimate the absolute number of U937 

cells that had migrated. The beads were easily separated from cells during flow cytometry assays on 

the basis of their physical properties (FSC/SSC, Fig 2A) and their high fluorescence in each channel 

(Fig 2B). Doublets were eliminated through an FSC-A/FSC-H assay (Fig 2B and 2E). The cell-tracker 

on U937 cells was only fluorescent in the FL-6 channel (Fig 2C). The efficacy of the cell tracker was 

also checked, comparing the cytometric profile of dyed U937 (red histogram) with undyed U937 (black 

histogram) and undyed hCMEC/D3 cells (blue histogram) (Fig 2D). To confirm beads’ identity, an 

analysis was performed in the FL-1 channel (Fig 2F). The accuracy of the counting beads was 

checked comparing a wide range of expected concentrations of cells that were obtained by serial 

dilutions and the calculated ones, showing excellent correlations (Fig 2G).  

 

Statistical analyses 

Results were expressed in median and interquartile range for quantitative variables and in absolute 

value and percentage for each group. Qualitative variables were compared using Fisher exact test and 

quantitative variables with non-parametric tests Wilcoxon and Kruskal-Wallis. All analyses were 

performed with JMP 9.0 software (CA, United States). 

 

 

Results 

 

Patients’ and healthy controls’ characteristics 

Twenty-eight cirrhotic patients and 7 healthy controls were included. Twelve patients had no HE and 

16 displayed HE. Baseline characteristics of patients and controls are depicted in Table 1. 

 

Transendothelial migration of U937 through the BBB in presence of sera of patients and controls 

TEM of U937 cells was significantly different between the 3 groups (Figure 3A). TEM was higher in the 

presence of plasma of cirrhotic patients with HE compared to cirrhotic patients without HE (p=0.0448) 

and to healthy controls (p=0.0334) (Figure 3A). Despite the absence of statistical significance, a trend 

towards an increased TEM in cirrhotic patients without HE compared to healthy controls was 

observed. A correlation exists between the importance of TEM and West-Haven scores (p=0.0015) 

and ammonemia (p=0.0231) (Figure 3B&C). A similar trend was observed for PS100-Beta, a marker 

of BBB solute’s permeability increase, but was not significant (p=0.0981) (Figure 3D). 

 

Discussion 

 



In this study, we show that the plasma of cirrhotic patients with HE enhances TEM of U937 monocytes 

across hCMEC/D3 BBB model compared to cirrhotic patients without HE. U937 TEM is correlated with 

the West-Haven score and with ammonemia and might also be correlated with PS-100Beta. This 

result suggests a new mechanism in the pathophysiology of HE in cirrhosis and could imply, if 

confirmed, new therapeutic strategies since specific blockers of TEM are already available. 

Systemic inflammation in cirrhosis and elevated pro inflammatory cytokines (TNF-alpha, IL-6) were 

found to be necessary in patients with cirrhosis to develop HE in the presence of hyperammonemia 

(4). Systemic inflammation may facilitate recruitment and migration of leukocytes through endothelia in 

these patients. Indeed, it has been demonstrated that leukocytes and EC presented an activated state 

in cirrhosis (18). Pro-inflammatory cytokines such as TNF-alpha and IL-6 have an impact on BBB 

permeability in patients without cirrhosis (19). Moreover, their concentration correlate with the severity 

of HE and may promote TEM of leukocytes.  

Our results reinforce the possible role of systemic inflammation to precipitate HE in cirrhosis. Several 

hypotheses have been raised to explain this association including an increase in benzodiazepine-like 

substances induced by IL-1beta and TNF-alpha (20), and a decrease in cerebral brain blood flow in 

response of proinflammatory cytokines (21). Our work suggests another mechanism relying of the 

increase in TEM. This theory is of interest, since several therapeutic strategies aiming to decrease 

TEM of leukocytes have been developed in different neurological diseases such as multiple sclerosis 

(natalizumab).  

Our study included a limited number of subjects, as 28 patients were included. Moreover, HE may vary 

over time. Some patients may have been evaluated during improvement of HE. Finally, our results 

suggest, despite a non-significant difference with healthy controls, that there was an increase in BBB 

permeability in patients with cirrhosis, even in the absence of HE (22). One can thus infer that 

modifications of BBB may precede overt HE.  

In conclusion, we suggest an increase in leukocytes BBB permeability in cirrhotic patients with HE.  

Although we used a validated model of human BBB, further studies are needed in order to evaluate 

TEM of leukocytes in vivo and validate our assumption in animal models using drugs blocking TEM 

like natalizumab, or even by analyzing the brain of deceased patients with cirrhosis, with or without 

HE.  
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Table 1: Baseline characteristics of the cirrhotic patients and controls 

 

  
Healthy controls 

n=7 

 
No HE cirrhotic patients 

n=12 

 
HE cirrhotic patients 

n=16 
 

Age (years) 29 [27-42] 55 [52-60] ### 58 [52-64] $$ 

Male gender (%) 22% 68% 58% 

Etiology of cirrhosis    

Viral NA 31% 33% 

Alcoholic NA 25% 56% 

Other NA 44% 11% 

Child-Pugh score    

A NA 25% 0% 

B NA 36% 18% 

C NA 39% 82%* 

MELD Score NA 15 [13-20] 19 [16-32]* 

West-Haven Score NA 0 [0-1] 2 [2-2]*** 

Ascites 0% 75% 50% 

Gastrointestinal 
bleeding 

0% 50% 50% 

Previous episode of HE 0% 58% 75% 

Asterixis 0% 0% 73%*** 

Bacteriemia 0% 0% 25% 

Sodium (mmol/L) 140 [139-140] 138 [131-142] 136 [135-140 $ 

Bilirubin (µmol/L) 6 [5-9] 32 [19-98] ### 104 [22-476] $$$ 

GGT (UI/ml) 20 [14-23] 45 [30-203] ## 45 [31-102] $$ 

AST (UI/ml) 25 [23-28] 42 [34-54)## 63 [39-72] $$$* 

ALT (UI/ml) 14 [12-23] 26 [20-40] 32 [17-45] $ 

Ammoniemia (µmol/L) 34 [30-37] 66 [42-84] ## 82 [58-88] $$* 

PT (%) 97 [90-102] 54 [40-65] ### 42 [24-58] $$$ 

Albumin (g/L) 44 [42-47] 32 [27-33] ### 30 [25-31] $$$ 

CRP (mg/L) 5 [3-14] 14 [3-28] 11 [3-58] $ 

PCT (ng/ml) 0.06 [0.04-0.09] 0.23 [0.08-0.5] 0.49 [0.23-1.97]  $ 

PS-100Beta (µg/ml) 0.06 [0.05-0.10] 0.08 [0.05-0.1] 0.1 [0.08-0.24]* 

Creatinine (µmol/L) 73 [66-77] 64 [51-125] 84 [63-97) 

Hemoglobin (g/dL) 12.9 [12.3-13.7] 9.75 [8.7-11.5] ## 10 [8.3-10.8] $$ 

Leukocytes (103/mm3) 5.8 [5.4-6.3] 4.37 [3.92-8.39] 7.59 [4.69-10.15)*] 

Neutrophiles (103/mm3)  3.2 [2.8-4.2] 2.98 [2.15-7.27] 4.83 [3.44-8.68]* 

Abbreviations: MELD, Model for End-stage Liver Disease, HE, hepatic encephalopathy, GGT, gamma-
glutamine transferase, AST, aspartate amino transferase; ALT, alanine amino transferase;; NA, not 



applicable; PT, prothrombin time; CRP, C reactive protein;; PCT, procalcitonin; PS-100Beta, protein S-
100 Beta. 
 
 

Significant differences between groups are marked as following: between healthy controls and HE 

patients: $; between healthy controls and cirrhotic patients without HE: #; between HE patients and 

cirrhotic without HE: *; p values are marked as following: $, #, *: p < 0.05; $$, ##, **: p < 0.01; $$$, 

###, ***: p < 0.001. 

 

 

FIGURE LEGENDS 

 

Figure 1: Leukocytes transendothelial migration experiment across the BBB 

A, Outline of TME experiment on Transwell inserts; B, anti-PECAM-1 (CD31) immunostaining of 

hCMEC/D3 cells. 

 

Figure 2: Cell counting strategy by flow cytometry  

Counting beads (CountBright, Molecular Probes) were added to each sample immediately before 

assay. The concentration of these beads was precisely known and enabled us to estimate the 

absolute number of U937 cells that had migrated. These beads were easily separated from cells 

during flow cytometry assays on the basis of their physical properties (FSC/SSC, Fig 2A) and their 

high fluorescence in each channel (Fig 2B). Doublets were eliminated through a FSC-A/FSC-H assay 

(Fig 2B and 2E). The cell-tracker on U937 cells was only fluorescent in the FL-6 channel (Fig 2C). 

The efficiency of the cell tracker was also checked, comparing the cytometric profile of dyed U937 (red 

histogram) with undyed U937 (black histogram) and undyed hCMEC/D3 cells (blue histogram) (Fig 

2D). To confirm beads’ identity, an analysis was performed in the FL-1 channel (Fig 2F). The accuracy 

of the counting beads was checked comparing a wide range of expected concentrations of cells that 

were obtained by serial dilutions and the calculated ones, showing excellent correlations (Fig 2G).  

 

Figure 3: U937 leukocytes transendothelial migration across the BBB in presence of plasma of 

cirrhotic patients and healthy controls. 

A, U937 TEM across the hCMEC/D3 BBB model. Correlations between U937 TEM and B, West-

Haven score; C, ammonia concentration in plasma; D, PS-100Beta concentration in plasma. 
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