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Refined F5 Algorithms for Ideals of Minors of Square Matrices

SRIRAM GOPALAKRISHNAN, Sorbonne Université, CNRS, LIP6, France

VINCENT NEIGER, Sorbonne Université, CNRS, LIP6, France

MOHAB SAFEY EL DIN, Sorbonne Université, CNRS, LIP6, France

We consider the problem of computing a grevlex Gröbner basis for the set 𝐹𝑟 (𝑀 ) of minors of size 𝑟 of an 𝑛 × 𝑛 matrix𝑀 of generic
linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal ⟨𝐹𝑟 (𝑀 ) ⟩ cannot
be generated by a regular sequence. As such, when using the general-purpose algorithm 𝐹5 to find the sought Gröbner basis, some
computing time is wasted on reductions to zero. We use known results about the first syzygy module of 𝐹𝑟 (𝑀 ) to refine the 𝐹5

algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In
particular, in the case 𝑟 = 𝑛 − 2, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding
complexity analysis which improves upon the previously known estimates.

1 INTRODUCTION

Motivation and problem. Let𝑀 be an 𝑛 × 𝑛 matrix with entries in the polynomial ring R = k[𝑥1, . . . , 𝑥𝑘 ] where k is a
field. For 𝑟 < 𝑛, we let I𝑟 (𝑀) be the determinantal ideal generated by the sequence 𝐹𝑟 (𝑀) of all minors of𝑀 of size
𝑟 + 1. We consider the problem of computing the common roots in k̄𝑘 to 𝐹𝑟 (𝑀), hence those points at which 𝑀 has
rank at most 𝑟 . This NP-hard problem MinRank [16], and its variants where𝑀 may be rectangular, lies at the heart of
multivariate cryptography. It is at the foundations of several schemes [17, 37, 45] and is still used to assess the security
of encryption and signature schemes [2, 7, 8, 12, 19, 26].

Determinantal ideals also arise in fundamental areas such as effective real algebraic geometry as they encode critical
points (see e.g. [28, 48]), then used to solve a variety of problems. This includes polynomial optimization [4, 31],
computing sample points and answering connectivity queries in smooth real algebraic sets [3, 5, 46] [47], determining
the dimension of real algebraic sets [6, 40], and quantifier elimination over the reals [34, 35, 43].

Determinantal ideals and polynomial system solving. Determinantal ideals enjoy plenty of combinatorial and algebraic
properties [13, 14, 41] which can be leveraged to better understand the complexity of computing their roots, and to
adapt and accelerate polynomial system solvers in this context. The most advanced results in this direction have been
achieved in the context of symbolic homotopy techniques with the design of an adapted homotopy pattern [33] which
has next been refined to take into account specific structures when the entries of the matrix𝑀 are sparse [39].

In this paper, we focus on the problem of computing Gröbner bases of the ideal I𝑟 (𝑀) w.r.t. some admissible monomial
ordering, under the assumptions that I𝑟 (𝑀) has dimension 0 (or is R) and that the entries of𝑀 have total degree at
most 1.

Gröbner bases algorithms and determinantal ideals. Since Buchberger’s algorithm [15], the quest for fast algorithms
for computing Gröbner bases has been driven by two main issues: (i) finding better strategies for handling critical pairs
during the Gröbner basis construction and (ii) hunting reductions to 0 which are instrinsically related to algebraic
objects named syzygies that are associated to the ideal under consideration. Issue (i) has been addressed by the Faugère’s
celebrated 𝐹4 algorithm [24], which also made explicit the use of linear algebra subroutines in Gröbner bases algorithms.

The authors are supported by Quantum Information Center Sorbonne (QICS); by the Agence nationale de la recherche (ANR), grant agreements ANR-19-
CE40-0018 De Rerum Natura and ANR-18-CE33-0011 SESAME projects; by the joint ANR-Austrian Science Fund FWF projects ANR-22-CE91-0007
EAGLES and ANR-FWF ANR-19-CE48-0015 ECARP; and by the EOARD-AFOSR, grant agreement FA8665-20-1-7029.
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While a lot remains to be done in this direction (see e.g. [11]), much attention has focused on issue (ii) and variants of
Faugère’s 𝐹5 algorithm [25] have been developed in several directions to give rise to signature-based Gröbner bases
algorithms (see [21] and references therein). One byproduct of these works, which finds its roots in foundational works
by Lazard and Giusti [30, 42], is that they paved the way to complexity estimates under some regularity assumptions,
thanks to the reduction to linear algebra and degree bounds on the maximum degree reached during the computation
(related to the classical notion of index of regularity [18, Chap. 9, §3]).

This has been developed, in the context of determinantal ideals, by the series of works [27, 29], which yield
complexity estimates for computing Gröbner bases under regularity assumptions (which are generic in the sense of
algebraic geometry). These estimates are coarse: they do not leverage the shape of the matrices encountered during the
computation.

Already in the simpler case of regular sequences, by exploiting the fact that the 𝐹5 algorithm avoids all reductions to
zero in this case, a sharper complexity analysis of 𝐹5 [9] shows significant improvements against such coarse estimates.

In the context of determinantal ideals, mimicking this to get better complexity estimates is a premature gait. Indeed,
𝐹𝑟 (𝑀) is not a regular sequence, and running the 𝐹5 algorithm with input 𝐹𝑟 (𝑀) does lead to a number of reductions to
0. Hence there is a need to refine and tune the 𝐹5 algorithm for determinantal ideals. Such a refinement has already
been achieved for boolean polynomial systems [10]. However, recall that these reductions to 0 are related to so-called
syzygy modules of the ideal under study. Syzygy modules of determinantal ideals are notoriously more intricate than
those of ideals generated by regular sequences or boolean systems.

In this paper, we tackle the following problems: (i) What is the suitable notion of regularity one can attach to
determinantal ideals in order to hunt reductions to 0? (ii)What are the properties of modules of syzygies associated
to determinantal ideals one can leverage under this notion of regularity? (iii) How to refine the 𝐹5 algorithm for
determinantal ideals to obtain fewer reductions to 0 and, ultimately, are there some instances of determinantal ideals
for which one can prove that there are no reductions to 0?

Foundations. We begin by recalling first the connection between free resolutions and syzygy modules of ideals, and
then the syzygy criterion from [21] which reveals the link between free resolutions and reductions to zero in 𝐹5. In
Algorithm 1, we give an altered version of the standard matrix-𝐹5 algorithm: it computes Gröbner bases for modules
over R and exploits the full syzygy criterion (see Proposition 2.7), allowing us to leverage reductions to zero in lower
degrees to avoid reductions to zero in subsequent degrees.

Next, we turn to genericity: for any 1 ≤ 𝑟 < 𝑛, the ideal of (𝑟 + 1)-minors of an 𝑛 × 𝑛 matrix of indeterminates has
the so-called Cohen-Macaulay property. Thus, for a suitably generic choice of coefficients of the linear forms in𝑀 , the
ideal I𝑟 (𝑀) is Cohen-Macaulay as well. It is precisely under the genericity assumption derived from this notion that a
complex of free modules, called the complex of Gulliksen and Negård, is a free resolution of I𝑛−2 (𝑀), and can therefore
be exploited to avoid reductions to zero.

Main results.We fix throughout 𝑘 = (𝑛 − 𝑟 )2, which, by [29, Thm. 10], guarantees that I𝑟 (𝑀) has dimension zero.
By tracing basis elements for the free modules which make up the complex of Gulliksen and Negård, we are able, in

Theorem 3.2, to explicitly compute a generating set for the first syzygy module of the system of (𝑛 − 1)-minors of an
𝑛 × 𝑛 matrix of linear forms, provided the above stated genericity assumption holds. A result from [38] states that for
any 1 ≤ 𝑟 < 𝑛, the first module of syzygies Syz(𝐹𝑟 (𝑀)) is generated by the syzygies between the (𝑟 + 1)-minors of each
(𝑟 + 2) × (𝑟 + 2) submatrix of𝑀 , under some genericity assumptions. Thus, the problem of computing a generating set
for Syz(I𝑟 (𝑀)) reduces to computing one for Syz(I𝑛−2 (𝑀)).
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Therefore, combining the complex of Gulliksen and Negård with the result of [38], we are able to explicitly compute
a full generating set for Syz(𝐹𝑟 (𝑀)), and subsequently provide Algorithm 4, which computes a grevlex Gröbner basis
for I𝑟 (𝑀) while avoiding all reductions to zero which arise from the syzygies in degree one.

Under our genericity assumption, when 𝑟 = 𝑛 − 2, the Gulliksen-Negård complex allows us to compute generating
sets for the higher syzygy modules of 𝐹𝑛−2 (𝑀) as well. In Proposition 5.1, we give explicit generators for the second
syzygy module of I𝑛−2 (𝑀). This study culminates in Algorithm 6 which is an altered version of matrix-𝐹5 which
avoids all reductions to zero. Finally, in Proposition 6.1, we again exploit the Gulliksen-Negård complex to provide
an explicit form for the Hilbert series of I𝑛−2 (𝑀) when the entries of𝑀 are sufficiently generic homogeneous linear
forms. In Proposition 6.2, we use this series to give a complexity analysis of our new algorithm in the case 𝑟 = 𝑛 − 2,
demonstrating that asymptotically, the arithmetic complexity of our new algorithm is in 𝑂 (𝑛4𝜔−1), while the current
best-known asymptotic arithmetic complexity of computing a grevlex Gröbner basis for I𝑛−2 (𝑀) is in 𝑂 (𝑛5𝜔+2). Here,
2 ≤ 𝜔 ≤ 3 is a complexity exponent for matrix multiplication.

We conclude by giving, in Table 1, some experimental data in which we compare the ranks of the matrices computed
by 𝐹5 to the number of rows in the matrices computed by both 𝐹5 and our new algorithm. When 𝑟 = 𝑛 − 2, this
experimental data confirms that we remove all reductions to zero. When 𝑟 < 𝑛 − 2, it confirms that we avoid all
reductions to zero arising from the minimal generating set for the first syzygy module of 𝐹𝑟 (𝑀), of which there are
many.

With knowledge of the higher syzygy modules of I𝑟 (𝑀), we could apply the same principle as we do in the case
𝑟 = 𝑛 − 2 and compute elements of Syz(𝐹𝑟 (𝑀)) in higher degrees, thereby avoiding more of the reductions to zero
present in Table 1.

Perspectives. In [44], it is shown that in some cases, one can obtain generators for the second syzygy module of I𝑟 (𝑀)
by lifting second syzygies of minors of submatrices, as is the case for first syzygies. Thus, the careful treatment of the
Gulliksen-Negård complex which we give in this paper could be exploited in future works to avoid more reductions to
zero when 𝑟 < 𝑛 − 2.

Similarly, suppose𝑀 is no longer a square matrix, but is instead an 𝑛 ×𝑚, 𝑛 ≠𝑚 matrix of generic homogeneous
linear forms over k. Then when 𝑟 = min(𝑛,𝑚) − 1 so that I𝑟 (𝑀) is the ideal of maximal minors of 𝑀 , the Eagon-
Northcott complex (see [14, 2.C] and [20]) provides a free resolution of I𝑟 (𝑀). Similarly, when 𝑟 = min(𝑛,𝑚) − 2, the
Akin-Buschbaum-Weyman complex (see [1]) provides a free resolution of I𝑟 (𝑀). Again, the tools and methods brought
in this paper could be adapted to accelerate Gröbner bases computations in this case and yield new complexity bounds.

Finally, in full generality, the Lascoux resolution (see [41]), is a free resolution for I𝑟 (𝑀) for any 𝑛,𝑚, 𝑟 provided
Q ⊆ k. Again, one may expect refined F5 algorithms by leveraging this resolution.

2 PRELIMINARIES

2.1 Syzygies

We recall basic definitions and properties of syzygy modules, when working over the Noetherian ring R = k[𝑥1, . . . , 𝑥𝑘 ].
We refer to [22] for more details. For a finitely generated R-moduleM = ⟨𝑝1, . . . , 𝑝ℓ ⟩, the first syzygy module ofM is
defined as

Syz(M) := {(𝑠1, . . . , 𝑠ℓ ) ∈ Rℓ : 𝑠1𝑝1 + · · · + 𝑠ℓ𝑝ℓ = 0}.

This definition depends on the generators; we sometimes write Syz(𝑝1, . . . , 𝑝ℓ ). From there one inductively defines the
𝑗-th syzygy module ofM as follows. Since R is Noetherian, Syz𝑗−1 (M) is finitely generated. Having chosen a set of
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generators {𝑞1, . . . , 𝑞𝑡 } for Syz𝑗−1 (M),

Syz𝑗 (M) := {(𝑠1, . . . , 𝑠𝑡 ) ∈ R𝑡 : 𝑠1𝑞1 + · · · + 𝑠𝑡𝑞𝑡 = 0}.

It is frequent thatM is the ideal generated by polynomials 𝐹 = (𝑓1, . . . , 𝑓ℓ ) ⊆ R. Then, the first syzygy module
of 𝐹 contains the Koszul syzygies, which are those following from the commutativity of polynomial multiplication:
𝑓𝑖 𝑓𝑗 − 𝑓𝑗 𝑓𝑖 = 0. In fact, they generate Syz(𝐹 ) in the case of regular sequences (that is, when 𝑓𝑖 is not a zero-divisor in
R/⟨𝑓1, . . . , 𝑓𝑖−1⟩ for any 2 ≤ 𝑖 ≤ ℓ):

Theorem 2.1 ([23, Thm. A.2.49]). If (𝑓1, . . . , 𝑓ℓ ) is a regular sequence, then Syz(𝐹 ) =
〈
𝑓𝑖𝑒 𝑗 − 𝑓𝑗𝑒𝑖 : 1 ≤ 𝑖, 𝑗 ≤ ℓ, 𝑖 ≠ 𝑗

〉
where 𝑒𝑖 is 𝑖-th standard basis vector. Furthermore, Syz2 (𝐹 ) = {0}.

Thus, in that case, all syzygy modules of order ≥ 2 are trivial.

Example 2.2. Let (𝑓 , 𝑔) ⊆ R be a regular sequence. By definition, 𝑔 is not a zero-divisor in R/⟨𝑓 ⟩. In other words,
for all ℎ ∈ R, if ℎ𝑔 ∈ ⟨𝑓 ⟩, then ℎ ∈ ⟨𝑓 ⟩. Suppose now that 𝑠1, 𝑠2 ∈ R are such that 𝑠1 𝑓 + 𝑠2𝑔 = 0. Then 𝑠1 𝑓 = −𝑠2𝑔, so
𝑠2𝑔 ∈ ⟨𝑓 ⟩ and thus 𝑠2 ∈ ⟨𝑓 ⟩. We can therefore write 𝑠2 = 𝑝𝑓 for some 𝑝 ∈ R. Subsequently, we obtain (𝑠1 + 𝑝𝑔) 𝑓 = 0.
Since R is a domain and 𝑓 ≠ 0, 𝑠1 = −𝑝𝑔. This shows that (𝑠1, 𝑠2) = 𝑝 (−𝑔, 𝑓 ). Thus, any syzygy is generated by a Koszul
syzygy. □

In the context of 𝐹𝑟 (𝑀), while the Koszul syzygies are among the syzygies of the minors of𝑀 , they do not generate
Syz(𝐹𝑟 (𝑀)).

Example 2.3. Take 𝑛 = 3 and 𝑟 = 1, so that𝑀 = (𝑓𝑖, 𝑗 )1≤𝑖, 𝑗≤3. Replacing the third row with the second row yields a
matrix with determinant zero. Therefore, the Laplace expansion formula gives

𝑓21 (𝑓12 𝑓23 − 𝑓13 𝑓22) − 𝑓22 (𝑓11 𝑓23 − 𝑓13 𝑓21) + 𝑓23 (𝑓11 𝑓22 − 𝑓12 𝑓21) = 0

This corresponds to a syzygy between the minors of𝑀 . To see that the corresponding syzygy is not Koszul, note that
the degree of the syzygy is one, whereas since each minor has degree 𝑟 + 1 = 2, the Koszul syzygies must all have degree
at least two. □

2.2 Free resolutions

As highlighted in Section 1, in relation to the 𝑘-th syzygy module of 𝐹𝑟 (𝑀), our approach involves the description of
a free resolution of I𝑟 (𝑀) (when 𝑟 = 𝑛 − 2). For a finitely generated R-moduleM, a free resolution ofM is an exact
complex

· · · 𝑑𝑡+1−−−→ E𝑡
𝑑𝑡−−→ E𝑡−1

𝑑𝑡−1−−−−→ · · · 𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→M → 0

where for each 𝑗 > 0, E 𝑗 is a finitely generated free R-module, and the 𝑑 𝑗 are R-module homomorphisms. The exactness
condition precisely means that ker(𝑑 𝑗 ) = im(𝑑 𝑗+1). The free resolution E• is said to be finite if there exists some𝑚 ≥ 0
such that for all 𝑗 > 𝑚, E 𝑗 = {0}; then 𝑚 is called the length of E•. In general, modules need not have finite free
resolutions; however, it is the case for modules over R = k[𝑥1, . . . , 𝑥𝑘 ]:

Theorem 2.4 (Hilbert’s syzygy theorem). LetM be a finitely generated R-module. There exists a free resolution

0→ E𝑚
𝑑𝑚−−→ E𝑚−1

𝑑𝑚−1−−−−→ · · · 𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→M → 0

whose length𝑚 is at most the number of variables 𝑘 .
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Let us now recall the classical relationship between free resolutions and syzygy modules.

Proposition 2.5. LetM be a finitely generated R-module, E• be a free resolution ofM of length𝑚 ≤ 𝑘 , and ℓ be the

rank of E0. Let {𝑒1, . . . , 𝑒ℓ } be the standard basis for E0, and 𝑝𝑖 = 𝜖 (𝑒𝑖 ) for 1 ≤ 𝑖 ≤ ℓ . Then ker(𝜖) = Syz(𝑝1, . . . , 𝑝ℓ ).

Following Proposition 2.5, if we fix a generating set {𝑞1, . . . , 𝑞𝑡 } of Syz(M) = ker(𝜖), then we can take E1 = R𝑡 and,
as a matrix, 𝑑1 = (𝑞𝑖 𝑗 )1≤𝑖≤𝑡,1≤ 𝑗≤ℓ . Continuing in this fashion, we construct 𝑑2, . . . , 𝑑𝑚 such that Syz𝑗+1 (M) = ker(𝑑 𝑗 )
for 1 ≤ 𝑗 ≤ 𝑚.

Example 2.6. Let (𝑓 , 𝑔) ⊆ R be a regular sequence and I = ⟨𝑓 , 𝑔⟩. We can take E0 = R2 and 𝜖 : (𝑞1, 𝑞2) ∈ E0 ↦→
𝑞1 𝑓 + 𝑞2𝑔 ∈ I, whose matrix is (𝑓 𝑔). As seen in Example 2.2, Syz(I) = ⟨(−𝑔, 𝑓 )⟩. Thus, we can take E1 = R and
continue to construct a free resolution as

E1

( 𝑔

−𝑓
)

−−−−−→ E0
(𝑓 𝑔)
−−−−−→ I → 0.

If ℎ ∈ E1, then (
𝑔

−𝑓 )ℎ = ( 𝑔ℎ

−𝑓 ℎ ) and if 𝑔ℎ = −𝑓 ℎ = 0, then ℎ = 0 since 𝑔 and 𝑓 are both nonzero. This shows
ker(𝑑1) = {0}, and so our free resolution can be completed by taking E3 = {0}. That is,

0→ E1

( 𝑔

−𝑓
)

−−−−−→ E0
(𝑓 𝑔)
−−−−−→ I → 0

is a free resolution of I. □

2.3 The matrix-F5 algorithm

The matrix-𝐹5 algorithm [9] is based on 𝐹5 [25]. For the needs of this paper, we describe here a version of the former
which exploits a more general syzygy criterion of the latter, as explained below.

Throughout, we will take ≺ to be the grevlex monomial order on R, and ≺pot to be the position over term order on
the free module R𝑡 , for any 𝑡 ≥ 1. That is, for monomials 𝑥 = (0, . . . , 0, 𝑥𝑖 , 0, . . . , 0) and 𝑦 = (0, . . . , 0, 𝑦 𝑗 , 0, . . . , 0) in R𝑡

with respective supports 𝑖 and 𝑗 , 𝑥 ≺pot 𝑦 if and only if 𝑖 < 𝑗 or (𝑖 = 𝑗 and 𝑥𝑖 ≺ 𝑦 𝑗 ).

2.3.1 Macaulay matrices; signatures. Let 𝐹 = (𝑓1, . . . , 𝑓ℓ ) ⊆ R𝑡 be a set homogeneous elements of R𝑡 . We assume
𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑ℓ , where 𝑑𝑖 = deg(𝑓𝑖 ), without loss of generality. For 𝑑 ≥ 𝑑1 and 1 ≤ 𝑖 ≤ ℓ , letℳ𝑑,𝑖 be the Macaulay
matrix of (𝑓1, . . . , 𝑓𝑖 ) in degree 𝑑 . Each row of ℳ𝑑,𝑖 corresponds to a polynomial 𝜏 𝑓𝑗 where 1 ≤ 𝑗 ≤ 𝑖 , 𝑑 𝑗 ≤ 𝑑 , and 𝜏 is a
monomial of degree 𝑑 − 𝑑 𝑗 ; the pair ( 𝑗, 𝜏) is called the signature of this row. The columns ofℳ𝑑,𝑖 are indexed by the
monomials of R𝑡 of degree 𝑑 , and are ordered in decreasing order with respect to ≺pot. We take a position over term
order ≺sig on the set of pairs ( 𝑗, 𝜏) with 1 ≤ 𝑗 ≤ ℓ and 𝜏 a monomial of R:

( 𝑗 ′, 𝜏 ′) ≺sig ( 𝑗, 𝜏) if 𝑗 ′ < 𝑗 or ( 𝑗 ′ = 𝑗 and 𝜏 ′ ≺ 𝜏) .

A valid row operation on ℳ𝑑,𝑖 consists in adding to a row with signature ( 𝑗, 𝜏) some k-multiple of a row with signature
which is ≺sig-less than ( 𝑗, 𝜏). We denote by ℳ̄𝑑,𝑖 any row echelon form ofℳ𝑑,𝑖 obtained via a sequence of valid row
operations. We will denote by lt(ℳ̄𝑑,𝑖 ) the monomials corresponding to the pivot columns of ℳ̄𝑑,𝑖 . Recall that the
𝑓1, . . . , 𝑓ℓ are homogeneous. The nonzero rows of ℳ̄𝑑,𝑖 therefore form the elements of degree 𝑑 of a Gröbner basis
for ⟨𝑓1, . . . , 𝑓𝑖 ⟩. For an integer 𝐷 ≥ 0, a set 𝐺 is called a 𝐷-Gröbner basis for ⟨𝐹 ⟩ if for all elements 𝑓 ∈ ⟨𝐹 ⟩ of degree
at most 𝐷 , ltpot (𝑓 ) ∈ ltpot (⟨𝐺⟩). Thus, a 𝐷-Gröbner basis forM = ⟨𝐹 ⟩ is obtained by computing ℳ̄𝑑,𝑖 for 1 ≤ 𝑖 ≤ ℓ
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and 𝑑1 ≤ 𝑑 ≤ 𝐷 . Note that when 𝑡 = 1, 𝑓1, . . . , 𝑓ℓ are polynomials, andM = ⟨𝐹 ⟩ is simply a homogeneous ideal of R,
whence the rows of ℳ̄𝑑,𝑖 form the elements of degree 𝑑 of a traditional Gröbner basis for ⟨𝑓1, . . . , 𝑓𝑖 ⟩.

2.3.2 The syzygy criterion. When there are syzygies amongst the𝑚1, . . . ,𝑚ℓ , the Macaulay matrices ℳ𝑑,𝑖 do not have
full rank. With prior knowledge of these syzygies, the matrix-𝐹5 algorithm can avoid rows which reduce to zero when
computing ℳ̄𝑑,𝑖 from ℳ𝑑,𝑖 .

Proposition 2.7 (Syzygy Criterion, [21, Lem. 6.4]). Let 𝑠 = (𝑠1, . . . , 𝑠ℓ ) be a homogeneous syzygy of𝑚1, . . . ,𝑚ℓ . Let

(𝑖, 𝜏) = ltpot (𝑠). Then

(1) The row of ℳdeg𝜏,𝑖 with signature (𝑖, 𝜏) is a linear combination of rows ofℳdeg𝜏,𝑖 of smaller signature.

(2) For any other monomial 𝜎 ∈ R, the row ofℳdeg𝜏+deg𝜎,𝑖 is a linear combination of rows ofℳdeg𝜏+deg𝜎,𝑖 of smaller

signature.

Proof. We have 𝜏𝑚𝑖 =
∑

𝑗≠𝑖 𝑠 𝑗𝑚 𝑗 −𝑚𝑖 (𝑠𝑖 − ltpot (𝑠)). The module element 𝜏𝑚𝑖 corresponds to the row of ℳdeg𝜏+𝑑𝑖
with signature (𝑖, 𝜏), while ∑

𝑗≠𝑖 𝑠 𝑗𝑚 𝑗 −𝑚𝑖 (𝑠𝑖 − ltpot (𝑠)) is a k-linear combination of other rows of ℳdeg𝜏+𝑑𝑖 ,𝑖 . This
proves Item 1.

Suppose now that the rowwith signature (𝑖, 𝜏) of ℳ̄𝑑,𝑖 is a zero row. Then the polynomial 𝜏 𝑓𝑖 is a k-linear combination
of rows of ℳ𝑑,𝑖 with smaller signature, i.e.,

𝜏 𝑓𝑖 =
∑︁

(𝑖′,𝜏 ′ )≺sig (𝑖,𝜏 )
𝑐 (𝑖′,𝜏 ′ )𝜏

′ 𝑓𝑖′ for some 𝑐𝑖′,𝜏 ′ ∈ k.

As a consequence, for any monomial 𝜎 in R, we can write 𝜎𝜏 𝑓𝑖 =
∑
(𝑖′,𝜏 ′ )≺sig (𝑖,𝜏 ) 𝑐𝑖′,𝜏 ′𝜎𝜏

′ 𝑓𝑖′ , which shows that the
row with signature (𝑖, 𝜎𝜏) of ℳdeg(𝜏 )+deg(𝜎 ),𝑖 is a k-linear combination of rows with smaller signature. This proves
Item 2 □

If 𝑡 = 1, the Koszul syzygies 𝑓𝑗 𝑓𝑖 − 𝑓𝑖 𝑓𝑗 = 0 for all 1 ≤ 𝑖, 𝑗 ≤ ℓ always exist, and produce linear dependencies between
the rows of the Macaulay matrices.

The matrix-𝐹5 algorithm works by interpreting Koszul syzygies in this way to predict the signatures of rows which
will reduce to zero when computing ℳ̄𝑑,𝑖 from ℳ𝑑,𝑖 , and avoiding such rows altogether. Succinctly, the matrix-𝐹5

algorithm utilizes the following criterion, which is a specialization of Proposition 2.7.

Proposition 2.8 (𝐹5 Criterion, [25, Thm. 1]). The rows with signature (𝑖, 𝑡) ofℳ𝑑,𝑖 reduce to zero in ℳ̄𝑑,𝑖 , for all

𝑡 ∈ lt(ℳ̄𝑑−𝑑𝑖 ,𝑖−1).

2.3.3 The matrix-𝐹5 algorithm. When 𝑡 = 1, combining the syzygy criterion with Proposition 2.8 leads to the matrix-𝐹5

algorithm. It works incrementally by degree and index. That is, for a fixed degree 𝑑 , it first computes the elements of
degree 𝑑 of a Gröbner basis for (𝑓1) by reducing the matrix ℳ𝑑,1 to ℳ̄𝑑,1, and then builds the matrix ℳ𝑑,2 using ℳ̄𝑑,1.
Continuing in this fashion, it eventually builds and reduces ℳ𝑑,ℓ , yielding the elements of degree 𝑑 of a Gröbner basis
for the full system 𝐹 .

In Algorithm 1, we complement the description of this algorithm given in [9] by integrating Item 2 of Proposition 2.7.
This is important in our context since, as we will see further, this criterion allows us to avoid a significant number of
reductions to zero that would occur without it. Further, we allow for the input of precomputed syzygies of 𝐹 in order to
exploit Proposition 2.7 and we allow 𝑡 ≥ 1.

Proposition 2.9. Algorithm 1 terminates and is correct.
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Algorithm 1Matrix-𝐹5 (𝐹, 𝐷, 𝑆)
Input: A sequence 𝐹 = (𝑓1, . . . , 𝑓ℓ ) of homogeneous elements of degrees 𝑑1 ≤ · · · ≤ 𝑑ℓ in k[𝑥1, . . . , 𝑥𝑘 ]𝑡 ; a degree

bound 𝐷 ; a set 𝑆 of syzygies of 𝐹 .
Output: The reduced POT 𝐷-Gröbner basis for ⟨𝐹 ⟩.
1: for 𝑖 ∈ {1, . . . , ℓ} do 𝐺𝑖 ← ∅
2: for 𝑑 from 𝑑1 to 𝐷 do
3: ℳ𝑑,0 ← ∅
4: Crit← ltpot (𝑆)
5: for 𝑖 ∈ {1, . . . ,𝑚} do
6: if 𝑑 < 𝑑𝑖 then
7: ℳ𝑑,𝑖 ←ℳ𝑑,𝑖−1
8: else if 𝑑 = 𝑑𝑖 then
9: ℳ𝑑,𝑖 ← concatenate the row 𝑓𝑖 to ℳ̄𝑑,𝑖−1 with signature (𝑖, 1)
10: else
11: ℳ𝑑,𝑖 ← ℳ̄𝑑,𝑖−1
12: if 𝑡 = 1 then
13: for 𝜏 ∈ lt(ℳ𝑑−𝑑𝑖 ,𝑖−1) do
14: Crit← Crit ∪ {(𝑖, 𝜏)}
15: for 𝑓 ∈ rows(ℳ̄𝑑−1,𝑖 ) ∖ rows(ℳ̄𝑑−1,𝑖−1) do
16: (𝑖, 𝜏) ← signature of 𝑓
17: if 𝑓 = 0 then
18: for 𝑗 ∈ {1, . . . , 𝑘} do
19: Crit← Crit ∪ {(𝑖, 𝜏)}
20: for 𝑓 ∈ rows(ℳ𝑑−1,𝑖 ) ∖ rows(ℳ𝑑−1,𝑖−1) do
21: (𝑖, 𝜏) ← signature of 𝑓
22: for 𝑗 ∈ {max{ 𝑗 ′ : 𝑥 𝑗 ′ | 𝜏}, . . . , 𝑘} do
23: if (𝑖, 𝜏 · 𝑥 𝑗 ) ∉ Crit then
24: ℳ𝑑,𝑖 ← concatenate the row 𝑥 𝑗 𝑓 toℳ𝑑,𝑖 with signature (𝑖, 𝜏 · 𝑥 𝑗 )
25: ℳ̄𝑑,𝑖 ← reduced row echelon form ofℳ𝑑,𝑖 obtained via a sequence of valid elementary row operations
26: 𝐺𝑖 ← 𝐺𝑖 ∪ {𝑓 ∈ rows(ℳ̄𝑑,𝑖 ) : 𝑓 ∉ ⟨lt(𝐺𝑖 )⟩}
27: return 𝐺ℓ

Proof. When 𝑡 = 1, this is simply [9, Thm. 9]. When 𝑡 > 1, the same induction argument works. □

2.4 Genericity

In this section, we take notation from [29, Sec. 2 and 3].
Fix 𝑛, 𝑘 ∈ Z>0. Define 𝔞 = {𝔞 (𝑖, 𝑗 )𝑡 : 1 ≤ 𝑡 ≤ 𝑘, 1 ≤ 𝑖, 𝑗 ≤ 𝑛}. For each 1 ≤ 𝑖, 𝑗 ≤ 𝑛, let 𝑓𝑖, 𝑗 =

∑𝑘
𝑡=1 𝑎

(𝑖, 𝑗 )
𝑡 𝑥𝑡 ∈

k[𝔞, 𝑥1, . . . , 𝑥𝑘 ]. We call 𝑓𝑖, 𝑗 a generic homogeneous linear form. We denote by 𝒜 the matrix over k[𝔞, 𝑥1, . . . , 𝑥𝑘 ] whose
(𝑖, 𝑗) entry is 𝑓𝑖, 𝑗 .

Next, for a fixed 𝒂 = (𝑎 (𝑖, 𝑗 )𝑡 ) ∈ k̄𝑘 ·𝑛2
, we denote by 𝜑𝒂 the specialization map 𝜑𝒂 : k[𝔞, 𝑥1, . . . , 𝑥𝑘 ] → k̄[𝑥1, . . . , 𝑥𝑘 ]

which specializes 𝔞 (𝑖, 𝑗 )𝑡 to 𝑎 (𝑖, 𝑗 )𝑡 . We call property, a map

𝒫 : Ideals(k[𝔞, 𝑥1, . . . , 𝑥𝑘 ]) → {true, false}.

For an integer 1 ≤ 𝑟 < 𝑛, we will denote by I𝑟 (𝒜) the ideal of (𝑟 + 1)-minors of𝒜. Subsequently, a property𝒫 is called

I𝑟 (𝒜)-generic if there exists a nonempty Zariski open subset 𝑈 of A𝑘 ·(
𝑛
𝑟+1)2

k
such that for all 𝒂 ∈ 𝑈 , 𝜑𝒂 (I𝑟 (𝒜)) = true.
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An important property which we will make frequent reference to in the following sections is the notion of Cohen-
Macaulayness. Let I be an ideal of R. A sequence of polynomials (𝑓1, . . . , 𝑓ℓ ) ⊆ R is called an I-regular sequence if for
all 1 ≤ 𝑖 ≤ ℓ , 𝑓𝑖 is not a zero-divisor in the module I/⟨𝑓1, . . . , 𝑓𝑖−1⟩. The ideal I is called Cohen-Macaulay if there exists
an I-regular sequence (𝑓1, . . . , 𝑓ℓ ) such that ℓ = dim(I) (dim(I) is the Krull dimension of I in R).

Remark 2.10. If (𝑓1, . . . , 𝑓ℓ ) is an I-regular sequence, then necessarily ℓ ≤ dim(I). The notion of Cohen-Macaulayness
can therefore be understood as requiring that there exists an I-regular sequence of maximal possible length in R.

Proposition 2.11. Let CM be the property CM(I) = true if I is Cohen-Macaulay and CM(I) = false otherwise.

Then for any 1 ≤ 𝑟 ≤ 𝑛 − 2, CM is I𝑟 (𝒜)-generic.

Proof. Let 𝑈 = (𝑢𝑖, 𝑗 ) be an 𝑛 × 𝑛 matrix of indeterminates over k. By [14, Thm. 2.5], I𝑟 (𝑈 ) is Cohen-Macaulay.
Subsequently, we may use [29, Lem. 3] to conclude. □

3 SYZYGIES OF DETERMINANTAL IDEALS

Here, we focus on the syzygies between the minors 𝐹𝑟 (𝑀) of order 𝑟 + 1 of𝑀 . The module Syz(𝐹𝑟 (𝑀)) is known to be
generated by syzygies between minors of order 𝑟 + 1 of submatrices of𝑀 of size (𝑟 + 2) × (𝑟 + 2) [38, Thm. 5.1]. This
allows us to reduce the problem of computing generators for Syz(𝐹𝑟 (𝑀)) from the general case to the case 𝑟 = 𝑛−2. The
Gulliksen-Negård complex [14, 32] is a free resolution of I𝑛−2 (𝑀). We will exploit this complex to obtain Syz(𝐹𝑟 (𝑀))
first when 𝑟 = 𝑛 − 2, then in full generality. We conclude this section with an algorithm which returns a generating set
for Syz(𝐹𝑟 (𝑀)) for any 𝑟 and 𝑛.

3.1 The Gulliksen-Negård complex

The Gulliksen-Negård complex is a free resolution of I𝑛−2 (𝑀),

0→ E3
𝑑3−−→ E2

𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→ I𝑛−2 (𝑀) → 0.

As such, we can use Proposition 2.5 to compute the first syzygy module of the set of generators 𝐹𝑛−2 (𝑀) as the kernel
of the augmentation map of this complex. We recall the construction of the complex here; details and proofs can be
found in [14, 2.D].

We denote byM𝑛 (R) the set of 𝑛 × 𝑛 matrices over R, with the structure of a free R-module of rank 𝑛2. We will
denote by 𝑬𝑖, 𝑗 the standard (𝑖, 𝑗)-th basis matrix ofM𝑛 (R). In this section we will take as generators for I𝑛−2 (𝑀) the
cofactors of𝑀 . To that end, let𝑀∗ = (𝑀∗

𝑖, 𝑗
)𝑖, 𝑗 ∈ M𝑛 (R) be the matrix of these cofactors.

3.1.1 The modules. We begin by defining the component modules E3, E2, E1, E0. Let E0 = M𝑛 (R). Consider the
sequence

R 𝜄−→M𝑛 (R) ⊕ M𝑛 (R)
𝜋−→ R

with 𝜄 (𝑎) = (𝑎𝐼𝑛, 𝑎𝐼𝑛), where 𝐼𝑛 is the identity matrix inM𝑛 (R) and 𝜋 (𝑋,𝑌 ) = tr(𝑋 − 𝑌 ) is the trace of 𝑋 − 𝑌 . The
module ker(𝜋) is generated by the union of the following sets:

• {(0, 𝑬𝑖, 𝑗 ) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗},
• {(𝑬𝑖, 𝑗 , 0) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗},
• {(𝑬𝑖,𝑖 , 𝑬1,1) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 1 ≤ 𝑖 ≤ 𝑛}, and
• {(0, 𝑬𝑖,𝑖 − 𝑬1,1) ∈ M𝑛 (R) ⊕ M𝑛 (R) : 2 ≤ 𝑖 ≤ 𝑛}.

8



On the other hand, im(𝜄) is generated by

(𝐼𝑛, 𝐼𝑛) = (𝑬1,1, 𝑬1,1) +
∑𝑛
𝑖=2 (𝑬𝑖,𝑖 , 𝑬1,1) +

∑𝑛
𝑖=2 (0, 𝑬𝑖,𝑖 − 𝑬1,1).

This shows that E1 = ker(𝜋)/im(𝜄) is a free module. Finally, let E2 =M𝑛 (R) and E3 = R.

3.1.2 The maps. We next define the maps 𝑑1, 𝑑2, 𝑑3, 𝜖 , as follows:

• 𝜖 : E0 → I𝑛−2 (𝑀), 𝑁 ↦→ tr(𝑀∗𝑁 ),
• 𝑑1 : E1 → E0, (𝑁1, 𝑁2) ↦→ 𝑁1𝑀 −𝑀𝑁2,
• 𝑑2 : E2 → E1, 𝑁 ↦→ (𝑀𝑁, 𝑁𝑀), and
• 𝑑3 : E3 → E2, 𝑥 ↦→ 𝑥𝑀∗,

where for (𝑁1, 𝑁2) ∈ M𝑛 (R) ⊕ M𝑛 (R), we denote by (𝑁1, 𝑁2) its image under the canonical surjectionM𝑛 (R) ⊕
M𝑛 (R) ↠ E1.

Proposition 3.1. Let𝑀 be a matrix of homogeneous linear forms in four variables. AssumeI𝑛−2 (𝑀) is Cohen-Macaulay.

With

E0, E1, E2, E3, 𝜖, 𝑑1, 𝑑2, 𝑑3 .

as defined above, the sequence

0→ E3
𝑑3−−→ E2

𝑑2−−→ E1
𝑑1−−→ E0

𝜖−→ I𝑛−2 (𝑀) → 0

is a free resolution of I𝑛−2 (𝑀).

Proof. The condition that I𝑛−2 (𝑀) is Cohen-Macaulay means that there exists an I𝑛−2 (𝑀)-regular sequence of
length equal to the Krull dimension of I𝑛−2 (𝑀) in R. By [29, Thm. 10] and Proposition 2.11, the Krull dimension of
I𝑛−2 (𝑀) is exactly 4. Therefore, the result follows immediately from [14, Thm. 2.26]. □

3.2 The case 𝑟 = 𝑛 − 2

We begin by giving generators for the first syzygy module in the case 𝑟 = 𝑛 − 2, assuming I𝑛−2 (𝑀) is Cohen-Macaulay.
In particular, we prove the following theorem.

Theorem 3.2. Let 𝑀 = (𝑚𝑖, 𝑗 ) be a matrix of homogeneous linear forms in four variables. Suppose that I𝑛−2 (𝑀) is
Cohen-Macaulay. Then the first syzygy module of 𝐹𝑛−2 (𝑀) is generated by:

(i)
∑𝑛
𝑘=1 (−1)𝑘+𝑗𝑚𝑘,𝑖𝑬𝑘,𝑗 for 𝑖 ≠ 𝑗 ;

(ii)
∑𝑛
𝑘=1 (−1)𝑖+𝑘𝑚 𝑗,𝑘𝑬𝑖,𝑘 for 𝑖 ≠ 𝑗 ;

(iii)
∑𝑛
𝑘=1 ((−1)𝑖+𝑘𝑚𝑘,𝑖𝑬𝑘,𝑖 − (−1)𝑘+1𝑚1,𝑘𝑬1,𝑘 ) for 1 ≤ 𝑖 ≤ 𝑛 − 1;

(iv)
∑𝑛
𝑘=1 ((−1) 𝑗+𝑘𝑚 𝑗,𝑘𝑬 𝑗,𝑘 − (−1)𝑘+1𝑚1,𝑘𝑬1,𝑘 ) for 2 ≤ 𝑗 ≤ 𝑛.

Furthermore, the syzygies described by Items (i) to (iv) form a minimal generating set for the Syz(𝐹𝑛−2 (𝑀)) of size 2𝑛2 − 2.

Proof. This is a straightforward computation. Using Proposition 2.5, ker(𝜖) is the first syzygymodule of the cofactors
of𝑀 . By Proposition 3.1, since we assume that I𝑛−2 (𝑀) is Cohen-Macaulay, the Gulliksen-Negård complex is exact. In
particular, ker(𝜖) = im(𝑑1). The image im(𝑑1) is generated by the images of generators for E1 under 𝑑1. Thus, following
Section 3.1, the first syzygy module of 𝐹𝑛−2 (𝑀) is generated by the following syzygies. For 𝑖 ≠ 𝑗 ,

𝑑1
(
(𝑬𝑖, 𝑗 , 0)

)
= 𝑬𝑖, 𝑗𝑀 =

𝑛∑︁
𝑘=1

𝑚𝑘,𝑖𝑬𝑘,𝑗 . (1)
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Similarly, for 𝑖 ≠ 𝑗 ,

𝑑1
(
(0, 𝑬𝑖, 𝑗 )

)
= 𝑀𝑬𝑖, 𝑗 =

𝑛∑︁
𝑘=1

𝑚 𝑗,𝑘𝑬𝑖,𝑘 . (2)

For any 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑑1
(
(𝑬𝑖,𝑖 , 𝑬1,1)

)
= 𝐸𝑖,𝑖𝑀 −𝑀𝑬1,1 =

𝑛∑︁
𝑘=1

(
𝑚𝑘,𝑖𝑬𝑘,𝑖 −𝑚1,𝑘𝑬1,𝑘

)
. (3)

Finally, for any 2 ≤ 𝑗 ≤ 𝑛,

𝑑1
(
(0, 𝑬 𝑗, 𝑗 − 𝑬1,1)

)
= 𝑀𝑬 𝑗, 𝑗 −𝑀𝑬1,1 =

𝑛∑︁
𝑘=1

(
𝑚 𝑗,𝑘𝑬 𝑗,𝑘 −𝑚1,𝑘𝑬1,𝑘

)
. (4)

Finally, since the generators for I𝑛−2 (𝑀) taken in the Gulliksen-Negård complex are the cofactors of𝑀 rather than
the (𝑛 − 1)-minors of𝑀 , we obtain Item (i), Item (ii), Item (iii), Item (iv) by pulling back each of Eq. (1), Eq. (2), Eq. (3),
Eq. (4) respectively under the isomorphism 𝑀∗

𝑖, 𝑗
∈ I𝑛−2 (𝑀) ↦→ (−1) (𝑖+𝑗 )𝑀∗

𝑖, 𝑗
∈ I𝑛−2 (𝑀). There are 𝑛2 − 𝑛 syzygies

described by each of Item (i) and Item (ii), and 𝑛 − 1 syzygies described by each of Item (iii) and Item (iv). This gives a
total of 2𝑛2 − 2 syzygies.

We conclude by proving that these 2𝑛2−2 syzygies form aminimal generating set for Syz(𝐹𝑛−2 (𝑀)). Let𝑚1, . . . ,𝑚2𝑛2−2 ∈
Syz(𝐹𝑛−2 (𝑀)) denote the generating set given by Item (i), Item (ii), Item (iii), Item (iv). Suppose that for some sequence
of polynomials 𝑎1, . . . , 𝑎2𝑛2−2 ∈ R,

𝑎1𝑚1 + · · · + · · · + 𝑎2𝑛2−2𝑚2𝑛2−2 = 0. (5)

For each 1 ≤ 𝑗 ≤ 2𝑛2 − 2, the coefficients 𝑎 𝑗 lie in k since the 𝑚𝑖 ’s are all homogeneous. By Proposition 3.1, the
Gulliksen-Negård complex is exact. Eq. (5) corresponds therefore to an element

(𝑎1, . . . , 𝑎2𝑛2−2) ∈ im(𝑑2) ∩ k2𝑛2−2 .

Letting 𝑁 ∈ 𝑑−1
2 ((𝑎1, . . . , 𝑎2𝑛2−2)), we find that𝑀𝑁, 𝑁𝑀 ∈ M𝑛 (R) are both matrices with entries purely in k. For each

1 ≤ 𝑖 ≤ 𝑛, the entries of the 𝑖-th row of𝑀𝑁 are members of the ideal generated by the 𝑖-th row of𝑀 . The entries of𝑀
are homogeneous linear forms, so the only constant element that they contain is 0. Similarly, for each 1 ≤ 𝑖 ≤ 𝑛, the
entries of the 𝑖-th row of 𝑁𝑀 are members of the ideal generated by the 𝑖-th column of𝑀 , and an analogous argument
applies. Thus, 𝑎 𝑗 = 0 for each 1 ≤ 𝑗 ≤ 2𝑛2 − 2. □

Theorem 3.2 directly leads to Algorithm 2.

Proposition 3.3. Algorithm 2 terminates and is correct.

Proof. The loop on Line 3 constructs the syzygies corresponding to (1) and (2) in Theorem 3.2. Indeed, upon the
conclusion of the loop on Line 11, the tuple 𝑠 (resp. 𝑡 ) instantiated on Line 4 exactly becomes the syzygy (1) (resp. (2)).

Similarly, the loop on Line 9 corresponds to (3) in Theorem 3.2 and the loop on Line 16 corresponds to (4) in
Theorem 3.2. Termination is clear. □

Remark 3.4. In both Theorem 3.2 and Algorithm 2 we require that 𝐹𝑛−2 (𝑀) is Cohen-Macaulay. This is necessary, as
without it the Gulliksen-Negård complex need not be exact and subsequently we cannot compute Syz(𝐹𝑛−2 (𝑀)) using
its differential maps. However, since 𝜖 is defined by 𝜖 (𝑁 ) = tr(𝑀∗𝑁 ), where𝑀∗ = (𝑀∗

𝑖, 𝑗
) is the matrix of cofactors of

𝑀 , a matrix 𝑁 = (𝑁𝑖, 𝑗 ) ∈ M𝑛 (R) is in the kernel of 𝜖 if and only if
∑

1≤𝑖, 𝑗≤𝑛 𝑁 𝑗,𝑖𝑀
∗
𝑖, 𝑗

= 0. That is, ker(𝜖) corresponds
to Syz(𝐹𝑛−2 (𝑀)) even if I𝑛−2 (𝑀) is not Cohen-Macaulay. Moreover, even if I𝑛−2 (𝑀) is not Cohen-Macaulay, the

10



Algorithm 2 SyzGenCorankOne
Input: An integer 𝑛 ≥ 3 and an 𝑛 × 𝑛 matrix 𝑀 = (𝑚𝑖, 𝑗 ) of homogeneous linear forms in R such that I𝑛−2 (𝑀) is

Cohen-Macaulay.
Output: A minimal generating set for Syz(𝐹𝑛−2 (𝑀)).
1: 𝑆 ← ∅ ⊲ to be filled with the output generating set
2: ⊲ handle syzygies from Items (i) and (ii) of Theorem 3.2
3: for 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑛} such that 𝑖 ≠ 𝑗 do
4: 𝑠 ← 0 ∈ R𝑛2

; 𝑡 ← 0 ∈ R𝑛2

5: for 𝑘 ∈ {1, . . . , 𝑛} do
6: 𝑠𝑛 · (𝑘−1)+𝑗 ← (−1)𝑘+𝑗𝑚𝑘,𝑖 ; 𝑡𝑛 · (𝑖−1)+𝑘 ← (−1)𝑘+𝑖𝑚 𝑗,𝑘

7: 𝑆 ← 𝑆 ∪ {𝑠, 𝑡}
8: ⊲ handle syzygies from Item (iii) of Theorem 3.2
9: for 𝑖 ∈ {1, . . . , 𝑛 − 1} do
10: 𝑠 ← 0 ∈ R𝑛2

11: for 𝑘 ∈ {1, . . . , 𝑛} do
12: 𝑠𝑛 · (𝑘−1)+𝑖 ← 𝑠𝑛 · (𝑘−1)+𝑖 + (−1)𝑘+𝑖𝑚𝑘,𝑖

13: 𝑠𝑘 ← 𝑠𝑘 − (−1)𝑘+1𝑚1,𝑘

14: 𝑆 ← 𝑆 ∪ {𝑠}
15: ⊲ handle syzygies from Item (iv) of Theorem 3.2
16: for 𝑖 ∈ {2, . . . , 𝑛} do
17: 𝑠 ← 0 ∈ R𝑛2

18: for 𝑘 ∈ {1, . . . , 𝑛} do
19: 𝑠𝑛 · (𝑖−1)+𝑘 ← 𝑠𝑛 · (𝑖−1)+𝑘 + (−1)𝑖+𝑘𝑚𝑖,𝑘

20: 𝑠𝑘 ← 𝑠𝑘 − (−1)𝑘+1𝑚1,𝑘

21: 𝑆 ← 𝑆 ∪ {𝑠}
22: return 𝑆

Gulliksen-Negård complex is still a complex. Thus, in all cases, im(𝑑1) ⊆ ker 𝜖 , so if I𝑛−2 (𝑀) is not Cohen-Macaulay,
Theorem 3.2 describes (and subsequently Algorithm 2 computes) a generating set for a submodule of Syz(𝐹𝑛−2 (𝑀)).

Remark 3.5. In Theorem 3.2, we require that the entries of𝑀 are homogeneous. However, as long as the ideal I𝑛−2 (𝑀)
is Cohen-Macaulay, the entries of𝑀 may be taken to be affine without issue.

Example 3.6. Let 𝑛 = 3 and 𝑟 = 1 and𝑀 as in Example 2.3. We construct the syzygy described by (1) of Theorem 3.2
for 𝑖 = 1, 𝑗 = 2. This syzygy takes the form

−𝑓1,1𝐸1,2 + 𝑓2,1𝐸2,2 − 𝑓3,1𝐸3,2 . (6)

The basis element 𝐸𝑢,𝑣 maps under 𝜖 to the minor of𝑀 obtained by computing the determinant of the submatrix of𝑀
given by deleting the 𝑢-th row and 𝑣-th column. Thus, Eq. (6) is simply the syzygy obtained by replacing the second
column of𝑀 by the first one, then computing the determinant of this (now singular) matrix via the Laplace expansion
around the second column.

Similarly, for some choice of 𝑖 ≠ 𝑗 , (2) of Theorem 3.2 corresponds to computing via Laplace expansion the
determinant of the singular matrix obtained by replacing row 𝑗 by row 𝑖 .

For 𝑖 = 1, we next construct the syzygy described by (3) of Theorem 3.2. This takes the form

−𝑓2,1𝐸2,1 + 𝑓1,2𝐸1,2 + 𝑓3,1𝐸3,1 − 𝑓1,3𝐸1,3 (7)
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Once again we can map each basis element of this syzygy to its corresponding minor under 𝜖 . In this way, Eq. (7) is
obtained by computing the determinant of𝑀 via the Laplace expansion with respect to the first row and again with
respect to the first column, and setting these equal to one another. □

3.3 The general case

Theorem 3.7. Let 𝑛 ≥ 3 and let 1 ≤ 𝑟 ≤ 𝑛 − 2. Let 𝑘 = (𝑛 − 𝑟 )2. Then there exists a nonempty Zariski open set

𝑈 ⊆ A𝑘 ·(
𝑛
𝑟+1)2

k
such that for all 𝒂 ∈ 𝑈 , taking 𝑀 = 𝜑𝒂 (𝒜), the following holds: Let 𝑀′ be the set of submatrices of size

(𝑟 + 2) × (𝑟 + 2) of𝑀 . For each matrix 𝑁 ∈ 𝑀′, let 𝑆 (𝑁 ) be the set of syzygies of 𝐹𝑟 (𝑁 ) computed using Theorem 3.2. Then

Syz(𝐹𝑟 (𝑀)) =
⋃

𝑁 ∈𝑀 ′ 𝑆 (𝑁 ).

Proof. Let 𝑈 be an 𝑛 × 𝑛 matrix of indeterminates over k. Let 𝑈 ′ be the set of (𝑟 + 2) × (𝑟 + 2) submatrices of 𝑈 .
For each 𝑁 ∈ 𝑈 ′, let 𝑆 (𝑁 ) = Syz(𝐹𝑟 (𝑁 )). By [38, Thm. 5.1], Syz(𝐹𝑟 (𝒜)) =

⋃
𝑁 ∈𝑀 ′ 𝑆 (𝑁 ). Thus, by [29, Lem. 3], there is

a nonempty Zariski open subset 𝑈1 ⊆ A
𝑘 ·( 𝑛𝑟+1)2
k

such that for all 𝒂 ∈ 𝑈1, the syzygies between the (𝑟 + 1)-minors of
𝜑𝒂 (𝒜) are those between the (𝑟 + 1)-minors of each (𝑟 + 2) × (𝑟 + 2) submatrix of 𝜑𝒂 (𝒜). By Proposition 2.11, for each
(𝑟 + 2) × (𝑟 + 2) submatrix 𝑁 of 𝒜, there exists a nonempty Zariski open subset𝑈𝑁 ⊆ A𝑘 ·𝑛

2

k
such that for all 𝒂 ∈ 𝑈𝑁 ,

the ideal generated by the (𝑟 + 1)-minors of 𝑁 is Cohen-Macaulay. Thus, taking𝑈 =
⋂

𝑁 𝑁 ∩𝑈1, the result follows. □

As a result of Theorem 3.7, and using Algorithm 2, we obtain Algorithm 3 which constructs a set of generators for
Syz(𝐹𝑟 (𝑀)).

Algorithm 3 SyzGen
Input: An integer 𝑛 ≥ 3, an integer 1 ≤ 𝑟 ≤ 𝑛 − 2, and an 𝑛 × 𝑛 matrix of linear forms over k.
Output: A minimal generating set for Syz(𝐹𝑟 (𝑀)).
1: 𝑆 ← ∅
2: 𝑃 ← (𝑟 + 2)-element subsets of [𝑛]
3: for 𝑅 ∈ 𝑃 do
4: for 𝐶 ∈ 𝑃 do
5: 𝑀′ ← submatrix of𝑀 with rows indexed by 𝑅 and columns indexed by 𝐶
6: 𝐿 ← 0 ∈ R (𝑟+2)2

7: for 𝑖 ∈ [(𝑟 + 2)2] do
8: 𝐿𝑖 ← index of (𝐹𝑟 (𝑀′))𝑖 in 𝐹𝑟 (𝑀)
9: for 𝑠 ∈ SyzGenCorankOne(𝑀′) do
10: 𝑠′ ← 0 ∈ R(

𝑛
𝑟+1)2

11: for 𝑖 ∈ [
( 𝑛
𝑟+1

)2] do
12: 𝑠′

𝐿𝑖
← 𝑠𝑖

13: 𝑆 ← 𝑆 ∪ {𝑠′}
14: return 𝑆

Proposition 3.8. Algorithm 3 terminates and is correct.

Proof. Line 2 defines 𝑃 to be the set of (𝑟 + 2) element subsets of the set {1, . . . , 𝑛}. Subsequently, Line 3 and Line 4
define 𝑅 and 𝐶 to be sets of indices which define the rows and columns respectively of the submatrix𝑀′ defined on
Line 5. Following Theorem 3.7, and Proposition 3.3 the syzygy module of 𝐹𝑟 (𝑀) is generated by the syzygies returned
by Algorithm 2 run on𝑀′ as 𝑅 and 𝐶 each run over the subsets in 𝑃 .
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The syzygies returned by Algorithm 2 take the form of elements of k[𝑥1, . . . , 𝑥𝑘 ] (𝑟+2)
2
. Note however that 𝐹𝑟 (𝑀)

contains
( 𝑛
𝑟+1

)2 polynomials. Thus, in order to interpret the syzygies returned by Algorithm 2 run on𝑀′ as syzygies
between the polynomials in 𝐹𝑟 (𝑀), we must determine the index of each minor of𝑀′ in 𝐹𝑟 (𝑀). The loop on Line 7
accomplishes this by building a tuple 𝐿 ∈ k[𝑥1, . . . , 𝑥𝑘 ] (𝑟+2)

2
whose 𝑖-th entry is the index of the 𝑖-th entry of 𝐹𝑟 (𝑀′)

in 𝐹𝑟 (𝑀).
Finally, the loop on Line 9 iterates over each syzygy returned by Algorithm 2 and uses the tuple 𝐿 to correctly map

these syzygies to syzygies between the polynomials in 𝐹𝑟 (𝑀). □

Remark 3.9. From Theorems 3.2 and 3.7, neither Algorithm 3 nor Algorithm 2 require any arithmetic k-operations.
Again in the statement of Theorem 3.7 we require that I𝑟 (𝑀) is Cohen-Macaulay. This is necessary in order

for Syz(I𝑟 (𝑀)) to be computed via the syzygies of (𝑟 + 1)-minors of (𝑟 + 2) × (𝑟 + 2) submatrices. If I𝑟 (𝑀) is not
Cohen-Macaulay, Theorem 3.7 gives a (possibly proper) subset of a generating set for Syz(I𝑟 (𝑀)).

Finally, we require that the entries of𝑀 be homogeneous linear forms. Once again, the theorem holds if the entries
are affine, as long as I𝑟 (𝑀) is satisfies the stated genericity assumption.

4 DETERMINANTAL MATRIX-𝐹5 ALGORITHM

In this section, we use the syzygies returned by Algorithm 3 to avoid reductions to zero when running Algorithm 1 to
compute a grevlex Gröbner basis for 𝐹𝑟 (𝑀).

4.1 The degree bound

Proposition 4.1 ([21, Lem. 6.4]). Let (𝑓1, . . . , 𝑓ℓ ) = 𝐹 ⊆ R𝑡 be a system of homogeneous module elements. Let 𝐷 ∈ Z≥0,

and let 𝐺 = 𝐺𝐷−min𝑖 {deg(𝑓𝑖 ) } be the elements up to degree 𝐷 −min𝑖 {deg(𝑓𝑖 )} of a POT-Gröbner basis for Syz(𝐹 ). Then,

(1) 𝜏𝑒𝑖 ∈ ltpot (𝐺), the row ofℳdeg(𝜏 )+deg(𝑓𝑖 ),𝑖 with signature (𝑖, 𝜏) is a linear combination of rows with smaller signature.

(2) If a row with signature (𝑖, 𝜏) ofℳdeg(𝜏 ),𝑖 reduces to zero in ℳ̄𝑑,𝑖 , then 𝜏𝑒𝑖 is in the module generated by ltpot (𝐺).

Proof. Item 1 is simply Proposition 2.7. We turn to Item 2. Fix min𝑖 {deg(𝑓𝑖 )} ≤ 𝑑 ≤ 𝐷 and 1 ≤ 𝑖 ≤ ℓ . Suppose
that the row with signature (𝑖, 𝜏) reduces to zero in ℳ̄𝑑,𝑖 . Then there is a linear dependency 𝑠1 𝑓1 + · · · + 𝑠ℓ 𝑓ℓ = 0. This
corresponds to a syzygy 𝑠 = 𝑠1𝑒1 + · · · + 𝑠ℓ𝑒ℓ ∈ Syz(𝐹 ) with ltpot (𝑠) = 𝜏𝑒𝑖 . Finally,

deg(𝑠𝑖 ) = 𝑑 − deg(𝑓𝑖 ) ≤ 𝐷 − deg(𝑓𝑖 ) ≤ 𝐷 −min
𝑖
{deg(𝑓𝑖 )}.

for each 1 ≤ 𝑖 ≤ ℓ . Thus ltpot (𝑠) = 𝜏𝑒𝑖 is in ⟨ltpot (𝐺)⟩. □

Using Proposition 4.1, in order to remove all reductions to zero when running Algorithm 1 to compute a 𝐷-Gröbner
basis for a graded module 𝐹 ⊆ R𝑡 , we compute the leading terms of the elements up to degree 𝐷 − min𝑓 ∈𝐹 {deg 𝑓 }
of a Gröbner basis for Syz(𝐹 ). We can compute these elements by running Algorithm 1 on a set of chosen generators
for Syz(𝐹 ) itself, with the appropriate degree bound given by Proposition 4.1. However, if Syz2 (𝐹 ) ≠ {0}, then
Proposition 4.1 once again shows that reductions to zero will be encountered when computing the elements up to
degree 𝐷 −min𝑓 ∈𝐹 {deg 𝑓 } of a Gröbner basis for Syz(𝐹 ).

In the determinantal setting, when 𝑟 = 𝑛−2, the Gulliksen-Negård complex allows us to explicitly compute generating
sets for all higher syzygy modules. Thus, we can avoid all reductions to zero when computing a 𝐷-Gröbner basis
for 𝐹𝑟 (𝑀). In the general case, when 𝑟 < 𝑛 − 2, we can only compute a generating set for the first syzygy module
Syz(𝐹𝑟 (𝑀)), and thus cannot efficiently remove all reductions to zero.
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4.2 Algorithm description

We describe an algorithm which exploits the syzygies computed by Algorithm 3 to compute a grevlex Gröbner basis for
𝐹𝑟 (𝑀) without reductions to zero in degree 𝑟 + 2.

Algorithm 4 Determinantal-Matrix-𝐹5 (𝑀, 𝑟, 𝐷)
Input: An integer 𝑛 ≥ 3, an integer 1 ≤ 𝑟 ≤ 𝑛 − 2, and an 𝑛 × 𝑛 matrix 𝑀 of homogeneous linear forms over k in
(𝑛 − 𝑟 )2 variables such that I𝑟 (𝑀) is Cohen-Macaulay.

Output: A grevlex 𝐷-Gröbner basis for I𝑟 (𝑀).
1: 𝑆 ← SyzGen(𝑀, 𝑟 )
2: 𝑆 ′ ← Matrix-F5 (𝑆, 1, ∅)
3: 𝐺 ← Matrix-F5 (𝐹𝑟 (𝑀), 𝐷, 𝑆′)
4: return 𝐺

Proposition 4.2. Algorithm 4 terminates and is correct.

Proof. Termination follows from that of Algorithm 3 and Algorithm 1. To prove correctness, we need to show that
the set 𝑆 ′ computed on Line 2 is indeed a set of syzygies between the elements of I𝑟 (𝑀). By Theorem 3.7, the set 𝑆
computed on Line 1 is a minimal generating set for Syz(𝐹𝑟 (𝑀)). The construction of this generating set, given by
Theorem 3.7, shows that each element of 𝑆 is homogeneous of degree one. Hence, by Proposition 2.9, the set 𝑆 ′ consists
of the elements of degree one of a POT-Gröbner basis for Syz(𝐹𝑟 (𝑀)). □

Remark 4.3. Both the number of rows and the number of columns of the Macaulay matrix in degree one for the set 𝑆 on
Line 2 of Algorithm 4 is bounded by the number of rows of the Macaulay matrix for 𝐹𝑟 (𝑀) in degree 𝑟 + 1. Therefore,
asymptotically, the arithmetic cost of Algorithm 4 is bounded by the arithmetic cost of its final step, computing the
Gröbner basis of 𝐹𝑟 (𝑀).

Proposition 4.4. Let 𝑛 ≥ 3, let 1 ≤ 𝑟 ≤ 𝑛 − 2, let 𝐷 = 𝑟 · (𝑛 − 𝑟 ) + 1, and let 𝑘 = (𝑛 − 𝑟 )2. There exists a nonempty

Zariski open set 𝑈 ⊆ A𝑘 ·(
𝑛
𝑟+1)2

k
such that for all 𝒂 ∈ 𝑈 , taking 𝑀 = 𝜑𝒂 (𝒜), upon running Algorithm 4 with arguments

𝑀, 𝑟, 𝐷 :

(1) a full grevlex Gröbner basis is returned; and

(2) for each 1 ≤ 𝑖 ≤
( 𝑛
𝑟+1

)2, the matrixℳ𝑟+2,𝑖 has full rank.

Proof. By [29], there exists a Zariski open subset𝑈1 ⊆ A
𝑘 ·( 𝑛𝑟+1)2
k

such that the maximal degree of a polynomial in

the reduced grevlex Gröbner basis for I𝑟 (𝑀) is precisely 𝐷 . Let𝑈2 be a nonempty Zariski open subset of A𝑘 ·(
𝑛
𝑟+1)2

k
such

that the results of Theorem 3.7 hold. Let𝑈 = 𝑈1 ∩𝑈2.
Item 1 follows immediately from the degree bound given in [29]. We turn to Item 2. By Proposition 4.1, Item 2, it

suffices to show that the leading terms of the set 𝑆 ′ computed on Line 2 consists of the elements of degree at most 𝑟 + 2
of ltpot (Syz(I𝑟 (𝑀))). This is immediate from Theorem 3.7 and Proposition 2.9. □

Remark 4.5. If we do not impose the genericity assumption on I𝑟 (𝑀) Algorithm 4 will still return a 𝐷-Gröbner basis
for I𝑟 (𝑀), though ℳ𝑟+2,𝑖 need no longer be full rank for all 1 ≤ 𝑖 ≤

( 𝑛
𝑟+1

)2.
If the entries of𝑀 are affine, by Remark 3.9, there are two possibilities. First, Algorithm 3 will still return a generating

set for the first syzygy module of 𝐹𝑟 (𝑀), and these may be used in the original 𝐹5 algorithm which works on affine
input to avoid reductions to zero.
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Alternatively, following [18, Ch. 8, § 2, Prop. 7], one can simply homogenize 𝐹𝑟 (𝑀) with respect to a variable ℎ which
is taken to be grevlex smaller than all other variables of R, and specialize ℎ = 1 upon termination of Algorithm 4.

5 THE CASE 𝑟 = 𝑛 − 2

Now, we describe an altered version of the 𝐹5 algorithm which computes a Gröbner basis for I𝑟 (𝑀) when 𝑟 = 𝑛 − 2
without any reductions to zero. Note that Algorithm 4 does not require 𝑟 < 𝑛 − 2. Thus, we could simply compute
a Gröbner basis for I𝑟 (𝑀) using Algorithm 4 when 𝑟 = 𝑛 − 2. However, only those reductions to zero arising from
syzygies of degree 𝑟 + 2 will be avoided. By Proposition 4.1, any syzygies of degree 𝑑 > 𝑟 + 2 which cannot be generated
by the syzygies of degree 𝑟 + 2 will manifest as reductions to zero in the Macaulay matrices in degree 𝑑 . The algorithm
we describe in this section avoids such reductions as well.

5.1 Higher syzygy modules

By Proposition 3.1, the Gulliksen-Negård complex is a free resolution of I𝑟 (𝑀) as soon as I𝑟 (𝑀) is Cohen-Macaulay.
Thus, the kernels of its differential maps are precisely the syzygy modules of I𝑟 (𝑀).

The map 𝑑4 is defined by 𝑑4 (𝑥) = 𝑥𝑀∗, where 𝑀∗ is the matrix of cofactors of 𝑀 . The third syzygy module
Syz3 (I𝑟 (𝑀)) is the image of 𝑑4, and is thus free of rank 𝑛2 and principally generated by the entries of𝑀∗.

Proposition 5.1. Let𝑀 be an 𝑛 × 𝑛 matrix of homogenoeus linear forms in R. Suppose I𝑛−2 (𝑀) is Cohen-Macaulay.

In the R-basis for ker(𝜋)/im(𝜄) given in Section 3.1, the second syzygy module Syz2 (𝐹𝑟 (𝑀)) is generated by the following

syzygies:

(i) For 2 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛 − 1,∑︁
𝑘≠𝑗

𝑚𝑘,𝑖 (𝐸𝑘,𝑗 , 0) +
∑︁
𝑘≠𝑖

𝑚 𝑗,𝑘 (0, 𝐸𝑖,𝑘 )

+𝑚 𝑗,𝑖

(
(𝐸 𝑗, 𝑗 , 𝐸1,1) + (0, 𝐸𝑖,𝑖 − 𝐸1,1)

)
.

(ii) For 2 ≤ 𝑖 ≤ 𝑛, ∑︁
𝑘≠𝑛

𝑚𝑘,𝑖 (𝐸𝑘,𝑛, 0) +
∑︁
𝑘≠𝑖

𝑚𝑛,𝑘 (0, 𝐸𝑖,𝑘 )

−𝑚𝑛,𝑖
©«
𝑛−1∑︁
𝑗=1
(𝐸 𝑗, 𝑗 , 𝐸1,1) +

𝑛−1∑︁
𝑗=2
(0, 𝐸 𝑗, 𝑗 − 𝐸1,1)ª®¬

(iii) For 1 ≤ 𝑗 ≤ 𝑛 − 1, ∑︁
𝑘≠𝑗

𝑚𝑘,1 (𝐸𝑘,𝑗 , 0) +
∑︁
𝑘≠1

𝑚 𝑗,𝑘 (0, 𝐸1,𝑘 ) +𝑚 𝑗,1 (𝐸 𝑗, 𝑗 , 𝐸1,1)

(iv) Finally, ∑︁
𝑘≠𝑛

𝑚𝑘,1 (𝐸𝑘,𝑛, 0) +
∑︁
𝑘≠1

𝑚𝑛,𝑘 (0, 𝐸1,𝑘 )

−𝑚𝑛,1
©«
𝑛−1∑︁
𝑗=1
(𝐸 𝑗, 𝑗 , 𝐸1,1) +

𝑛∑︁
𝑗=2
(0, 𝐸 𝑗, 𝑗 − 𝐸1,1)ª®¬
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Algorithm 5 Syz2GenCorankOne
Input: An integer 𝑛 ≥ 3 and an 𝑛 × 𝑛 matrix𝑀 of generic homogeneous linear forms in k[𝑥1, . . . , 𝑥𝑘 ].
Output: A minimal generating set for Syz2 (𝐹𝑛−2 (𝑀)).
1: 𝑆 ← ∅ ⊲ to be filled with the output generating set
2: ⊲ handle syzygies from Item (i) of Proposition 5.1
3: for 𝑖 ∈ {2, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑛 − 1} do
4: 𝑠 ← 0 ∈ k[𝑥1, . . . , 𝑥𝑘 ]2𝑛

2−2

5: 𝑠 (𝐸 𝑗,𝑗 ,𝐸1,1 ) ← 𝑀𝑗,𝑖 ; 𝑠 (0,𝐸𝑖,𝑖−𝐸1,1 ) ← 𝑀𝑗,𝑖

6: for 𝑘 ∈ {1, . . . , 𝑛} do
7: if 𝑘 ≠ 𝑗 then 𝑠 (𝐸𝑘,𝑗 ,0)

← 𝑀𝑘,𝑖

8: if 𝑘 ≠ 𝑖 then 𝑠 (0,𝐸𝑖,𝑘 )
← 𝑀𝑗,𝑘

9: 𝑆 ← 𝑆 ∪ {𝑠}
10: ⊲ handle syzygies from Item (ii) of Proposition 5.1
11: for 𝑖 ∈ {2, . . . , 𝑛} do
12: 𝑠 ← 0 ∈ k[𝑥1, . . . , 𝑥𝑘 ]2𝑛

2−2

13: for 𝑘 ∈ {1, . . . , 𝑛} do
14: if 𝑘 ≠ 𝑛 then 𝑠 (𝐸𝑘,𝑛,0)

← 𝑀𝑘,𝑖

15: if 𝑘 ≠ 𝑖 then 𝑠 (0,𝐸𝑖,𝑘 )
← 𝑀𝑛,𝑘

16: for 𝑗 ∈ {1, . . . , 𝑛 − 1} do
17: 𝑠 (𝐸 𝑗,𝑗 ,𝐸1,1 ) ← −𝑀𝑛,𝑖

18: if 𝑗 ≠ 1 then 𝑠 (0,𝐸 𝑗,𝑗−𝐸1,1 ) ← −𝑀𝑛,𝑖

19: 𝑆 ← 𝑆 ∪ {𝑠}
20: ⊲ handle syzygies from Item (iii) of Proposition 5.1
21: for 𝑗 ∈ {1, . . . , 𝑛 − 1} do
22: 𝑠 ← 0 ∈ k[𝑥1, . . . , 𝑥𝑘 ]2𝑛

2−2

23: 𝑠 (𝐸 𝑗,𝑗 ,𝐸1,1 ) ← 𝑀𝑗,1

24: for 𝑘 ∈ {1, . . . , 𝑛} do
25: if 𝑘 ≠ 𝑗 then 𝑠 (𝐸𝑘,𝑗 ,0)

← 𝑀𝑘,1
26: if 𝑘 ≠ 1 then 𝑠 (0,𝐸1,𝑘 )

← 𝑀𝑗,𝑘

27: 𝑆 ← 𝑆 ∪ {𝑠}
28: ⊲ handle syzygies from Item (iv) of Proposition 5.1

29: 𝑠 ← 0 ∈ k[𝑥1, . . . , 𝑥𝑘 ]2𝑛
2−2

30: for 𝑘 ∈ {1, . . . , 𝑛} do
31: if 𝑘 ≠ 𝑛 then 𝑠 (𝐸𝑘,𝑛,0)

← 𝑀𝑘,1
32: if 𝑘 ≠ 1 then 𝑠 (0,𝐸1,𝑘 )

← 𝑀𝑛,𝑘

33: for 𝑗 ∈ {1, . . . , 𝑛} do
34: if 𝑗 ≠ 1 then 𝑠 (0,𝐸 𝑗,𝑗−𝐸1,1 ) ← −𝑀𝑛,𝑖

35: if 𝑗 ≠ 𝑛 then 𝑠 (𝐸 𝑗,𝑗 ,𝐸1,1 ) ← −𝑀𝑛,1

36: 𝑆 ← 𝑆 ∪ {𝑠}
37: return 𝑆

16



Proof. The second syzygy module Syz2 (I𝑟 (𝑀)) is the image of 𝑑2, by Proposition 3.1. The map 𝑑2 is defined by

𝑑3 (𝑁 ) = (𝑀𝑁, 𝑁𝑀) .

Taking 𝑬𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 to be the canonical R-basis forM𝑛 (R), a basis for im(𝑑3) is given by {(𝑀𝑬𝑖, 𝑗 , 𝑬𝑖, 𝑗𝑀) | 1 ≤
𝑖, 𝑗 ≤ 𝑛}. We can express𝑀𝑬𝑖, 𝑗 and 𝑬𝑖, 𝑗𝑀 in the canonical R-basis forM𝑛 (R),

𝑀𝑬𝑖, 𝑗 =𝑚 𝑗,𝑖𝑬 𝑗, 𝑗 +
∑︁
𝑘≠𝑗

𝑚𝑘,𝑖𝑬𝑘,𝑗 ; 𝑬𝑖, 𝑗𝑀 =𝑚 𝑗,𝑖𝑬𝑖,𝑖 +
∑︁
𝑘≠𝑖

𝑚 𝑗,𝑘𝑬𝑖,𝑘 .

From this, we can express generators for Syz2 (I𝑟 (𝑀)) in the R-basis for ker(𝜋)/im(𝜄). Doing so gives precisely Items (i)
to (iv). □

Using Proposition 5.1, one deduces Algorithm Syz2GenCorankOne(𝑀) (Algorithm 5), which constructs the set
Syz2 (𝐹𝑛−2 (𝑀)). We use this algorithm in the next section to design a dedicated 𝐹5-type algorithm which performs no
reduction to zero when computing a Gröbner basis of I𝑛−2 (𝑀) when I𝑛−2 (𝑀) is Cohen-Macaulay and 𝑘 = 4.

Remark 5.2. Analogous to Remark 4.5, if I𝑛−2 (𝑀) is not Cohen-Macaulay, the Gulliksen-Negård complex need not be a
free resolution of I𝑛−2 (𝑀), though it is still a complex. Thus, even if I𝑛−2 (𝑀) is not Cohen-Macaulay, im(𝑑2) ⊆ ker(𝑑1),
so the syzygies described by Proposition 5.1 are a subset of a generating set for the syzygies between the generators for
ker 𝜖 given by Theorem 3.2.

5.2 A new F5 algorithm

In this section, we combine Proposition 5.1, Theorem 3.2, and Proposition 4.1 to give an algorithm which computes a
grevlex Gröbner basis for 𝐹𝑛−2 (𝑀) without any reductions to zero, provided I𝑛−2 (𝑀) is Cohen-Macaulay.

In order to obtain the leading terms of the first syzygy module, of 𝐹𝑛−2 (𝑀), we must know which rows will
reduce to zero when echelonizing the Macaulay matrices associated to the first syzygy module in various degrees. By
Proposition 4.1, the signatures of these rows are precisely the leading terms of a Gröbner basis for the second syzygy
module in the appropriate degree.

Subsequently, applying Proposition 4.1 once again, the leading terms of the first syzygy module in various degrees
are precisely the signatures of the rows which reduce to zero when echelonizing the Macaulay matrices associated to
𝐹𝑛−2 (𝑀).

Algorithm 6 Determinantal-Corank-One-Matrix-𝐹5

Input: An integer 𝑛 ≥ 3, an 𝑛 × 𝑛 matrix of generic homogeneous linear forms over k in 4 variables, and an integer
𝐷 ≥ 𝑛 − 1

Output: The elements up to degree 𝐷 of a grevlex Gröbner basis for I𝑛−2 (𝑀).
1: 𝑆1 ← SyzGenCorankOne(𝑀)
2: 𝑆2 ← Syz2GenCorankOne(𝑀)
3: 𝑆 ′2 ← Matrix-F5 (𝑆2, 𝐷 − 𝑛, ∅)
4: 𝑆 ′1 ← Matrix-F5 (𝑆1, 𝐷 − 𝑛 + 1, 𝑆′2)
5: 𝐺 ← Matrix-F5 (𝐹𝑛−2 (𝑀), 𝐷, 𝑆 ′1)
6: return 𝐺

Proposition 5.3. Algorithm 6 terminates and is correct.
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Proof. Termination follows from that of Algorithm 2, ??, and Algorithm 1. To show correctness, it suffices to show
that the set 𝑆 ′1 computed on Line 4 is indeed a set of syzygies of the polynomials in 𝐹𝑛−2 (𝑀). This follows from
Theorem 3.2. □

Proposition 5.4. Let 𝐷 = 2𝑛 − 3. Then there is a nonempty Zariski open subset 𝑈 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈 ,

upon running Algorithm 6 with arguments 𝜑𝒂 (I𝑛−2 (𝒜)), 𝐷 ,

(1) a full grevlex Gröbner basis is returned; and

(2) for each 1 ≤ 𝑖 ≤ 𝑛2 and for each 𝑛 − 1 ≤ 𝑑 ≤ 2𝑛 − 3, the matrixℳ𝑑,𝑖 is full rank.

Proof. By [29, Lem. 18], there is a Zariski dense subset𝑈1 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈1, the maximal degree of a

polynoimal in the reduced grevlex Gröbner basis of I𝑛−2 (𝑀) is 2𝑛 − 3. By Proposition 2.11, there is a nonempty Zariski
open subset𝑈2 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈2, the ideal 𝜑𝒂 (I𝑛−2 (𝒜)) is Cohen Macaulay. Thus, taking𝑈 = 𝑈1 ∩𝑈2,

we obtain Item 1.
We turn to Item 2. By Proposition 4.1, Item 2, it suffices to show that the leading terms of the set 𝑆 ′1 computed on

Line 4 consists of the elements of degree at most 2𝑛 − 3 of ltpot (Syz(I𝑛−2 (𝑀))). This is immediate from Theorem 3.2
and Proposition 2.9. □

6 COMPLEXITY IN THE CASE 𝑟 = 𝑛 − 2

In this section, for a homogeneous ideal I ⊆ R, we take HFI (𝑑) to be the Hilbert function of I. That is, for an integer
𝑑 ≥ 0, HFI (𝑑) = dimk I𝑑 . Further, we take 𝐻I (𝑡) =

∑
𝑑 HFI (𝑑)𝑡𝑑 to be the Hilbert series of I. We refer to [22, 1.9] for

details about these constructions.
When 𝑟 = 𝑛 − 2, we can use the results of the previous section to give explicit formulae for the coefficients of the

Hilbert series 𝐻I𝑟 (𝑀 ) (𝑡). Subsequently, we can exactly compute the ranks of the Macaulay matrices in each degree
computed by the 𝐹5 algorithm, and bound the complexity of computing the reduced grevlex Gröbner basis of a matrix
of generic homogeneous linear forms by the complexity of computing the row reduction of each of these matrices.

First, note that for any 1 ≤ 𝑑 ≤ 𝑟 (resp. 1 ≤ 𝑑 ≤ 𝑟 + 1), both the number of rows and the number of columns of the
Macaulay matrix in degree 𝑑 for the set 𝑆2 (resp. 𝑆1 ) computed by Algorithm 6 is bounded by the number of rows of
the Macaulay matrix in degree 𝑑 for the set 𝑆1 (resp. 𝐹𝑛−2 (𝑀)). Thus, the arithmetic cost of Algorithm 6 is bounded by
the arithmetic cost of the final step, computing the grevlex Gröbner basis for 𝐹𝑛−2 (𝑀).

Proposition 6.1. There exists a Zariski open subset𝑈 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈 , the Hilbert series 𝐻𝜑𝒂 (I𝑟 (𝒜) ) (𝑡)

for 𝜑𝒂 (I𝑟 (𝒜)) is given by:

2𝑟+1∑︁
𝑑=𝑟+1

(
𝑛2

(
𝑑 − 𝑟 + 2

3

)
− (2𝑛2 − 2)

(
𝑑 − 𝑟 + 1

3

)
+ 𝑛2

(
𝑑 − 𝑟

3

))
𝑡𝑑 . (8)

Proof. Let𝑈 be as in Proposition 5.4. IfM is a free R-module of rank 𝑡 , then the monomials ofM of degree 𝑑 form a
basis for the finite-dimensional k-vector space of homogeneous elements of degree 𝑑 ofM. Thus, HFM (𝑑) = 𝑡 ·

(𝑘+𝑑−1
𝑑−1

)
.

We have rk E0 = #𝐹𝑛−2 (𝑀) =
( 𝑛
𝑛−1

)2
= 𝑛2. The description of each free module in the Gulliksen-Negård complex given

in Section 3.1 gives rise to

rk E0 = #𝐹𝑛−2 (𝑀) =
(

𝑛

𝑛 − 1

)2
= 𝑛2, rk E1 = 2𝑛2 − 2

rk E2 = 𝑛2, rk E3 = 1
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Thus, by [22, Thm. 1.13], HFI𝑛−2 (𝑀 ) (𝑑) =
∑3
𝑖=0 (−1)𝑖 HFE𝑖 (𝑑) which equals 𝑛2 (𝑑−𝑟+2

3
)
− (2𝑛2 − 2)

(𝑑−𝑟+1
3

)
+ 𝑛2 (𝑑−𝑟

3
)
−(𝑑−𝑟−1

3
)
. □

In the following proposition, we take

ℬ =

2𝑟+1∑︁
𝑑=𝑟+1

𝑛2
(
𝑑 − 𝑟 + 2

3

)
− (2𝑛2 − 2)

(
𝑑 − 𝑟 + 1

3

)
+ 𝑛2

(
𝑑 − 𝑟

3

)
.

Proposition 6.2. There is a Zariski dense subset𝑈 of A4·𝑛2

k
such that for all 𝒂 ∈ 𝑈 , the arithmetic cost of computing

the reduced grevlex Gröbner basis for 𝜑𝒂 (I𝑛−2 (𝒜)) using Algorithm 6 is in

𝑂

(
ℬ

𝜔−1
(
2𝑟 + 5

5

))
= 𝑂

(
𝑛4(𝜔−1)

(
2𝑛
3

))
.

Proof. Take 𝑈 as in Proposition 6.1. Fix 𝒂 ∈ 𝑈 and let 𝑀 = 𝜑𝒂 (I𝑛−2 (𝒜)). The ideal I𝑛−2 (𝑀) is homogeneous,
so the complexity of computing a grevlex Gröbner basis for I𝑛−2 (𝑀) is bounded by the complexity of reducing the
intermediate Macaulay matrices encountered in the matrix-𝐹5 algorithm.

The coefficient on 𝑡𝑑 in the Hilbert series Eq. (8) gives the rank of the Macaulay matrix of 𝐹𝑟 (𝑀) in degree 𝑑 . The
Macaulay matrices computed in Algorithm 6 are full-rank. Hence, the result follows from the complexity of computing
the reduced row echelon form [49, Sec. 2.2] (see also [36, App. A]) and the fact that the number of columns in the
Macaulay matrix in degree 2𝑛 − 3, the maximal degree of a polynomial in the grevlex Gröbner basis of I𝑟 (𝑀), is the
number of monomials of degree 2𝑛 − 3 in k[𝑥1, . . . , 𝑥4]. □

Asymptotically, the bound given in [29, Thm. 20] is in𝑂
(
𝑛5𝜔+2) whereas that given by Proposition 6.2 is in𝑂 (

𝑛4𝜔−1) .
7 EXPERIMENTAL RESULTS

When 𝑟 = 𝑛 − 2, as Table 1 shows, all reductions to zero are avoided and thus all Macaulay matrices are full rank. By
virtue of Proposition 2.7, if a row ofℳ𝑑,𝑖 reduces to zero, then all multiples of this row inℳ𝑑 ′,𝑖 for 𝑑′ > 𝑑 reduce to
zero as well, and the standard 𝐹5 algorithm avoids these rows. Note however, that there are a significant number of
reductions to zero which do not arise from reductions to zero in lower degree, as evidenced by the discrepancy between
the ranks of the Macaulay matrices in each degree and the number of rows of the matrices computed by 𝐹5 in each
degree. Note also that by [29, Cor. 19], the largest degree of a polynomial in the reduced grevlex Gröbner basis for
I𝑛−2 (𝑀) is 2𝑛 − 3, which is strictly smaller than 2(𝑟 + 1) = 2𝑛 − 2. Thus, Proposition 2.8 is never used when running
either the standard 𝐹5 algorithm, or our refined algorithm on I𝑛−2 (𝑀).

When 𝑟 < 𝑛 − 2, we avoid all reductions to zero in the Macaulay matricesℳ𝑟+2,𝑖 for all 1 ≤ 𝑖 ≤
( 𝑛
𝑟+1

)2. As the data
in Table 1 shows, there are more reductions to zero in higher degrees. However, in all higher corank cases, over half of
the reductions to zero overall appear in degree 𝑟 + 2. The number of reductions to zero in degree 𝑟 + 2 (and thus the size
of a minimal generating set for Syz(I𝑟 (𝑀))) appears to be(

𝑛

𝑟 + 2

)2 (
2(𝑟 + 2) (𝑟 + 1)

𝑛 − 𝑟 − 1
+ 2𝑟 + 2

)
.

From this quantity one could derive a refined estimate of the complexity of Algorithm 4.
Note that generically, in the case 𝑟 < 𝑛 − 2, the largest degree of a polynomial appearing in the reduced grevlex

Gröbner basis for I𝑟 (𝑀) is 𝑟 · (𝑛 − 𝑟 ) + 1 again by [29, Cor. 19]. Thus, in this case, Proposition 2.8 is used as soon as the
degree exceeds 2(𝑟 + 1).
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Table 1. Rank and number of rows in Macaulay matrix ℳ
𝑑,( 𝑛𝑟+1)2

for I𝑟 (𝑀 ) computed by both the standard 𝐹5 algorithm and the

determinantal 𝐹5 algorithm, where𝑀 is an 𝑛 × 𝑛 matrix of homogeneous linear forms in 𝑘 = (𝑛 − 𝑟 )2 variables over k = F65521.

𝑛 𝑟 𝑘 𝐷 𝑑 rank Std. 𝐹5 Det. 𝐹5

4 2 4 5
3 16 16 16
4 34 64 34
5 56 82 56

5 3 4 7

4 25 25 25
5 52 100 52
6 83 124 83
7 120 160 120

6 4 4 9

5 36 36 36
6 74 144 74
7 116 176 116
8 164 220 164
9 220 273 220

7 5 4 11

6 49 49 49
7 100 196 100
8 155 242 155
9 216 298 216
10 285 366 285
11 364 432 364

8 6 4 13

7 64 64 64
8 130 256 130
9 200 322 200
10 276 385 276
11 360 471 360
12 454 559 454
13 560 650 560

9 7 4 15

8 81 81 81
9 164 324 164
10 251 401 251
11 344 486 344
12 445 584 445
13 556 675 556
14 679 813 679
15 816 931 816

4 1 9 4
2 36 36 36
3 164 324 164
4 495 582 582

5 2 9 7

3 100 100 100
4 450 900 450
5 1278 1956 1956
6 3002 3546 3546
7 6435 6685 6685

6 3 9 6
4 225 225 225
5 1017 2025 1017
6 2838 4715 4715

7 4 9 6 5 441 441 441
6 2009 3969 2009

5 1 16 4
2 100 100 100
3 800 1600 800
4 3875 4662 4662

6 2 16 4 3 400 400 400
4 3250 6400 3250
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