Loïc Sylvestre
email: loic.sylvestre@lip6.fr

Emmanuel Chailloux
email: emmanuel.chailloux@lip6.fr

Jocelyn Sérot
email: jocelyn.serot@uca.fr

Accelerating OCaml programs on FPGA

Keywords: High-level parallel programming, FPGA, OCaml, Virtual machine, Hardware acceleration, Compiling

published or not. The documents may come

Introduction

Reconfigurable circuits, like Field-Programmable Gate Arrays (FPGAs), are suited to design custom architectures exploiting the concurrent nature of hardware structures [START_REF] Cardoso | Compiling for reconfigurable computing: A survey[END_REF]. The configuration of an FPGA is commonly produced by a synthesis toolchain from a description expressed in hardware description language (HDL) such as VHDL or Verilog. Other examples of more expressive HDLs include Chisel [START_REF] Bachrach | Chisel: constructing hardware in a Scala embedded language[END_REF] embedded in Scala, Clash [START_REF] Baaij | Clash: structural descriptions of synchronous hardware using Haskell[END_REF] in Haskell, MyHDL [START_REF] Decaluwe | MyHDL: a Python-based hardware description language[END_REF] in Python and HardCaml 1 in OCaml. Nevertheless, the Register Transfer Level (RTL) programming model, on which HDLs are based, is characterized by a very low level of abstraction. Hence, different approaches aim to hardware-accelerate software applications using FPGAs.

-There have been some attempts to compile small applicative languages, such as SHard [START_REF] Saint-Mleux | SHard: a Scheme to hardware compiler[END_REF], FLOH [START_REF] Townsend | From functional programs to pipelined dataflow circuits[END_REF] and Basic SCI [START_REF] Ghica | Geometry of synthesis IV: compiling affine recursion into static hardware[END_REF], directly to RTL [START_REF] Gammie | Synchronous digital circuits as functional programs[END_REF]. A representative example is SAFL (Statically Allocated Functional Language) [START_REF] Mycroft | A statically allocated parallel functional language[END_REF], which is a first-order ML-like language limited to tail recursion and static data structures. -For more complex languages, custom processors or virtual machines can be implemented in RTL to run high-level languages on FPGA. JAIP [START_REF] Tsai | A Java processor IP design for embedded SoC[END_REF] is a Java Virtual Machine (JVM) written in VHDL, calling a softcore processor 2 to handle dynamic class-loading. JikesRVM [START_REF] Maas | A hardware accelerator for tracing garbage collection[END_REF] is a JVM implemented on a CPU using an FPGA for accelerating automatic dynamic memory management. -High-Level Synthesis (HLS) promotes the use of imperative languages to design hardware [START_REF] Nane | A survey and evaluation of fpga high-level synthesis tools[END_REF]. Most HLS tools, such as Catapult C or Handel-C, support a subset of C annotated with pragmas to optimize the compilation to RTL. LegUp [START_REF] Canis | LegUp: high-level synthesis for FPGA-based processor/accelerator systems[END_REF] runs C programs on a softcore processor while compiling functions -those that do not use dynamic allocation and recursion -to RTL. Pylog [START_REF] Huang | Pylog: An algorithm-centric python-based FPGA programming and synthesis flow[END_REF] proposes a similar approach for running Python on FPGA platforms having a hardcore processor. -Other HLS tools 3 use OpenCL to express parallel applications and target heterogenous architectures involving Multicores, GPUs and FPGAs. Aparapi [START_REF] Segal | High level programming framework for FPGAs in the data center[END_REF] and GVM [START_REF] Fumero | Running parallel bytecode interpreters on heterogeneous hardware[END_REF] implement the JVM in OpenCL. TAPA [START_REF] Chi | Extending high-level synthesis for task-parallel programs[END_REF] is a framework for task parallelism targeting OpenCL. TornadoVM [START_REF] Papadimitriou | Transparent compiler and runtime specializations for accelerating managed languages on FPGAs[END_REF] compiles specially annotated Java code to OpenCL. These tools, however, do not sufficiently expose the fine-grained parallelism available on the FPGAs nor their customization possibilities. -FPGAs allows implementing parallel programming models [START_REF] Lai | Programming and synthesis for software-defined FPGA acceleration: status and future prospects[END_REF] like task-parallelism [START_REF] Chi | Extending high-level synthesis for task-parallel programs[END_REF] and parallel skeletons [START_REF] Danelutto | Algorithmic skeletons and parallel design patterns in mainstream parallel programming[END_REF]. For instance, Lime [START_REF] Auerbach | Lime: a java-compatible and synthesizable language for heterogeneous architectures[END_REF] is a task-based data-flow programming language compiled to OpenCL or Verilog and interacting with Java bytecode running on a CPU. Kiwi [START_REF] Singh | Kiwi: Synthesis of fpga circuits from parallel programs[END_REF] is a subset of C♯ compiled to RTL and offering events, monitors and threads. RIPL [START_REF] Stewart | RIPL: a parallel image processing language for FPGAs[END_REF] is an image processing language with a collection of parallel skeletons.

The work described in this paper builds on the results of these experiments, by proposing an approach in which:

a runtime system, implemented on a softcore processor, is used to allow highlevel programming on FPGA (like JAIP); hardware acceleration of user-defined functions (like SAFL) is provided by partitioning the application code between the host and the accelerated code (like Pylog); the host language, running the softcore processor, and the embedded language used to describe accelerated functions are similar (like Lime); some predefined parallel constructs are provided to ease exploitation of the massive parallelism offered by FPGAs (like Kiwi).

1 https://github.com/janestreet/hardcaml 2 A softcore processor is processor implemented in the reconfigurable part of an FPGA. 3 Such as AMD Vivado HLS and Intel OpenCL SDK.

To this end, we have:

1. ported the OCaml virtual machine (VM) and its runtime (including a garbage collector) on a softcore processor to support the entire OCaml language. 2. combined this VM approach with hardware acceleration of user-defined functions expressed in an ML-like language. This language is extended with parallelism skeletons in order to process dynamic data structures allocated by the OCaml runtime in the memory of the softcore processor.

This approach allows to take full advantage of the fine-grained parallelism of FPGAs, while programming them in OCaml, and hence supporting quick prototyping, static type-checking, simulation and debugging of applications mixing numeric and symbolic computations.

Our contributions are:

-O2B4 (OCaml On Board), a port of OMicroB [START_REF] Varoumas | A generic virtual machine approach for programming microcontrollers: the OMicroB project[END_REF] (an implementation of the OCaml Virtual Machine) targeting the Nios II softcore processor realized on an FPGA. O2B enables to call custom hardware accelerators from OCaml programs. -Macle5 (ML accelerator), a subset of OCaml designed to express hardware-accelerated user-defined functions, called Macle circuits. These functions -distinguished with a special keyword "circuit" -are compiled to VHDL and synthetised on an FPGA to be used as hardware accelerators from OCaml source programs executed by O2B. Glue code is automatically generated. It includes C and OCaml code, VHDL descriptions and scripts to control the end-to-end synthesis workflow. Macle supports OCaml data structures (such as lists, trees, arrays and matrices) allocated in the OCaml VM heap. Macle allows general recursion by automatically rewriting it into tail-recursion with a local stack implemented in on-chip memory. Finally, Macle provides parallelism skeletons over OCaml arrays to expose fine-grained parallelism and optimize memory transfers.

The remainder of this paper is organized as follows. Sect. 2 introduces the O2B infrastructure to run OCaml programs on an FPGA. Sect. 3 proposes an approach to accelerate OCaml programs augmented with Macle circuits. Sect. 4 presents the compilation of Macle, using an intermediate language (HSML, Hierarchical State Machine Language) to abstract the VHDL target. Sect. 5 evaluates our approach on different benchmarks to measure the speedup resulting from using hardware-acceleration in Macle. Sect. 6 describes a mechanism using parallel skeletons to optimize memory transfers when accessing the OCaml heap. Sect. 7 discusses the acceleration possibilities and the programming style obtained and then identifies future work.

2 The O2B framework O2B (OCaml On Board) is a tool to run OCaml programs on FPGAs. It is based on OMicroB [START_REF] Varoumas | A generic virtual machine approach for programming microcontrollers: the OMicroB project[END_REF], an implementation of the OCaml VM dedicated to high-level programming of microcontrollers with scarce resources. The OCaml heap and stack can be stored either in the on-chip memory of the target FPGA (for small programs) or in the external memory (SDRAM) of the board. In both cases, access is provided by means of an interconnection bus 7 . This bus also supports data transfers between the custom components and the binary code executed by the processor. Both the softcore and the custom components can access the physical IOs of the FPGA.

Compilation flow for OCaml to FPGAs

Calling accelerators from OCaml programs

The OCaml language offers an OCaml/C foreign function interface (FFI) to call C functions from OCaml programs. These C functions, running on the softcore, can in turn invoke custom components implemented on the FPGA. It is thus possible to use custom components from OCaml programs compiled to bytecode executed by O2B. The communication layer between O2B and a custom component is done via a set of dedicated registers associated to the component and mapped into the memory of the softcore processor.

Fig. 2 shows the source code of an OCaml program designed to run with O2B. It defines three implementations of the greatest common divisor (GCD) algorithm: one in OCaml using a tail recursion, one in C using a loop, and one in C using an hardware accelerator that will be defined at Fig. 7 in VHDL. The difference between two calls to Timer.get_us (before and after a computation) in the OCaml function chrono gives the execution time of the argument function call in microseconds. The C function printf, and by extension, the OCaml functions print_int and print_string use the Board Support Package of the FPGA target to write on a console 8 . The gcd_c and gcd_rtl functions are defined as external functions in the OCaml code using the standard FFI mechanism. Calling a custom component from the gcd_rtl function involves sending the argument to and retrieving the result from the dedicated registers of the custom component. The corresponding operations are abstracted by the C macros GCD_ARG, GCD_START, GCD_RDY and GCD_RESULT). The behavioral description of GCD in VHDL requires 50 lines of code, plus 100 lines of VHDL glue code for argument and result passing. Finally, this GCD component must be mapped into the global configuration of the system implemented on the FPGA (called the System on Programmable Chip, SoPC), either manually (using the QSys tool) or by scripting. In practice, this limits the use of the O2B framework to programmers familiar both with VHDL and the target toolchain (Intel Quartus in the current distribution).

In the rest of the paper, we describe how this limitation can be overcome by providing a ML-like language, similar to OCaml, to describe hardware-accelerated functions and automatically generate both the FPGA configuration and glue code to interact with OCaml programs running on the softcore.

High-level FPGA programming

The proposed approach relies on a dedicated ML-like language to express hardwareaccelerated functions. This language, called Macle (ML Accelerator), can interoperate with the OCaml runtime of O2B and therefore can be used to accelerate OCaml host programs running on a softcore processor realized on an FPGA.

Compilation Flow

Fig. 3 shows our compilation flow of OCaml to FPGA. It automatically generates the configuration of an FPGA from an OCaml program extended with hardwareaccelerated functions defined in Macle. The OCaml code is compiled to bytecode to be executed by O2B targeting a softcore processor implemented on the FPGA whereas each Macle circuit is compiled to VHDL and then synthesized as a custom hardware component usable from the OCaml program. The glue code (including OCaml, C and VHDL files) is automatically generated from inferred types of Macle circuits. The compilation flow can therefore be used by a programmer without prior knowledge in VHDL or experience with the target FPGA programming toolset.

In Fig. 3, the two double arrows denote the calls of C functions from OCaml and the use of VHDL code from C.

The Macle language

Macle is a ML-like language which includes:

a functional-parallel core language (called Macle Core) compiled to RTL; additional language constructs (implemented in RTL) to interact with the OCaml runtime.

Fig. 4a defines the syntax of Macle Core. This language is independent of OCaml and can be used to program synchronous circuits and compose them in parallel. We denote by - instantiates twice the implementation of factorial function in order to enable their parallel execution. Function calls use an implicit parallel let-binding to compute the arguments passed to each function. Non-recursive functions can take functions as arguments 9 . raise exn for raising a built-in exception exn such as Failure (parametrized by a literal strings) or Stack overflow; -match • • • with • • • for destructuring (i.e., non-nested pattern matching) values of an algebraic datatype; -!e for accessing the content of the reference e; e := e ′ for setting the content of the reference e to the value of e ′ ; e.(e ′) for accessing at the index e ′ of the array e; e.(e ′) ← e ′′ for setting the value of e ′′ at the index e ′ of the array e; -array length e for accessing the length of the array e; e ; e ′ which is a syntactic sugar for let x = e in e ′ where x is a fresh name; -for x = e to e ′ do e ′′ done which is a syntactic sugar for a tail-recursive formulation using let rec.

→ o (or o 1 • • • o n) a
circuit ci ::= circuit f x 1 • • • x n = e constant c ::= ⟨bool⟩ | ⟨integer⟩ | () variable x, y, f ∈ X operator 1 ⊖ ::= -| not | •• operator 2 ⊕ ::= + | < | •• expression e ::= x | c | ⊖ e | e 1 ⊕ e 2 | if e then e 1 else e 2 | e 1 || e 2 | e 1 && e 2 | let ----------→ f x 1 • • • x n = e in e ′ | let rec ----------→ f x 1 • • • x n = e in e ′ | f e 1 • • • e n | let x 1 = e 1 and • • • x n = e n in e ′ | •• (a) Macle Core exception exn ::= Failure ⟨string⟩ | Stack overflow | •• pattern p ::= C(x 1 , • • • x n) | C
Note that, currently, Macle circuits cannot allocate data structures; they can only manipulate values allocated by the VM in the OCaml heap.

To preserve the semantics and the safety of the Macle code, multiple let-bindings are sequentialized when they contain memory accesses or raise an exception.

General recursion is supported via a program transformation producing code containing only tail-recursive calls and using an explicit stack. When the stack overflows, an exception (Stack overflow) is raised. Recursion in Macle uses an explicit call stack, as described in Sect. 5. Tail-recursion does not require a stack. Fig. 5a shows three Macle circuits. The circuit gcd_rtl expresses the GCD algorithm in Macle Core. The circuit collatz computes the stopping time of a Collatz [START_REF] Ito | A hardware-software cooperative approach for the exhaustive verification of the Collatz conjecture[END_REF] sequence (also called Syracuse) starting from a given integer. The circuit sum_array sums the elements of a given OCaml array. Accesses to the OCaml heap are safe since the exception Failure is (implicitly) raised in case of an out-of-bounds index or a non-exhaustive pattern matching. This exception can then be caught in OCaml by the try • • • with construct. In this example, the program evaluates the expression Add(Int(1),Var(0)) recursively and prints the result. Evaluating Var(0) fetches the value at the index 0 of the array.

Compiling Macle

The global compilation flow from Macle to VHDL is depicted Fig. 6. It involves four passes. The first pass (1) consists in normalizing the source code:

renaming all bindings in the source code with unique names; rewriting the code in so-called Administrative Normal Form [START_REF] Kennedy | Compiling with continuations, continued[END_REF] (introducing let-bindings for each step of computation); inlining functions by recursively duplicating their body at each call site (except recursive ones); transforming recursive functions which are not tail-recursive into tail-recursive ones using an explicit stack.

The second pass (2 Actions are performed when the transition is enabled and can write outputs and local variables. Transitions are only taken at the rising edge of a global clock. At each clock edge, if a transition starting from the current state has all its guards validated, it is enabled, the associated actions are performed (instantaneously) and the destination state becomes the current state.

FSMs are classically encoded in VHDL as synchronous processes with asynchronous reset. Inputs, outputs and local variables are implemented as VHDL signals with a dedicated signal representing the current state. At each rising edge of the input clock, depending on the value of the current state and some conditions involving inputs and local variables, the next state value is selected and the value of outputs and local variables is updated. The FSM is re-initialized, asynchronously, whenever the reset input signal becomes true. Fig. 7 gives a graphical representation of an FSM describing the computation of GCD and its encoding in VHDL. The start input and rdy output are used respectively to start and signal the termination of the computation. In the VHDL code, modifications of the state variable STATE as well as the outputs and local variables use signal assignments (<signal_name> <= <expression>). Assignments occurring at the same clock edge are performed concurrently, i.e., the expressions denoted by the right hand sides (RHSs) are all evaluated in parallel and then, and only then, the signals designated by the left hand sides (LHSs) are updated simultaneously. Note that in the code given Fig. 7, arguments and result are encoded as 31-bit signed integers to have the same representation of OCaml value than in the O2B runtime. This enhances the interoperability between Macle and OCaml.

Idle Gcd a > b a ← a -b a < b b ← b -a a = b result ← a start rdy ← false a ← m b ← n ¬start rdy ←
By declaring separate processes -each encoding a given FSM -within the same VHDL architecture, it is easy to implement synchronous parallel composition of FSMs. Each FSM is triggered by the same global clock and has access to the signals declared in the architecture. However, these signals can only be shared for reading as a signal written by a process cannot be written by another process.

An FSM-based intermediate language

We do not compile Macle circuits directly to VHDL. Instead, we use an intermediate language, HSML (Hierarchical State Machine Language) for describing the behavior of FSMs and expressing their composition, and which can be easily translated to VHDL. HSML is inspired by well-known FSM-based formalisms and languages with notions of hierarchy and compositionality, such as Statecharts [START_REF] Drusinsky | Using statecharts for hardware description and synthesis[END_REF], Communicating Hierarchical State Machines [START_REF] Alur | Communicating hierarchical state machines[END_REF] and Lustre-like languages with automata [START_REF] Colac ¸o | Mixing signals and modes in synchronous data-flow systems[END_REF].

Fig. 8 defines the syntax of HSML. A circuit is a parallel composition of FSMs (A 1 ∥ • • • A n) depending on inputs, modifying outputs and using local variables. An FSM is a set of zero or more mutually recursive transitions in the scope of a body used to initialize it. A transition is a thunk f () = A associating a name f to an FSM A. HSML offers a notion of hierarchy. For instance, given a transition t and an output x, the FSM (do x ← 0 then (let rec t in f ())) is a hierarchical formulation of the FSM (let rec t in (do x ← 0 then f ())). An FSM A is a mutually recursive definition of transitions (let

• • • rec • • •), a conditional, an assignment (do • • • then • • •), a branch f () to a transition f () = A or a local parallel composition of FSM (A 1 ∥ • • • A n) in A. An assignment do x 1 ← e 1 and • • • x n ← e n
in A evaluates the expressions e 1 • • • e n , then assigns the results to the variables x 1 • • • x n and finally computes A. An expression e is a variable, a constant or the application of a built-in operator. Logical operators ∧ and ∨ are strict.

Fig. 9 shows an HSML circuit corresponding to the VHDL code given Fig. 7. This circuit was automatically generated from the Macle circuit gcd rtl defined Fig. 5. Fig. 9 HSML circuit implementing the GCD algorithm HSML exposes the semantics of the register transfer level (RTL, informally presented on the VHDL code of Fig. 7) while allowing hierarchical formulations that makes it close to an expression language. In particular, some HSML constructs (such as let rec and conditional) are common with Macle. Therefore, HSML constitutes a useful intermediate language for compiling Macle to VHDL.) else (do rdy ← true then idle()) in (do rdy ← true then idle())

   
where idle is a fresh name The compilation C e e r,idle ρ of a subexpression is inductively defined on the syntax of the expressions. The compilation of a subexpression e which does not contain control structures is defined as an affectation of e to a variable r continuing with a tail-call to a destination.

C e e r,idle ρ = do r ← e then idle() if e is a variable, a constant or an application of an operator

The compilation of a Macle conditional is an HSML conditional, subexpressions being inductively compiled. Compiling a let rec globalizes function parameters. To achieve this, each function name introduced by a let rec is bound to the list of its formal parameters within the compilation environment ρ. The extension of ρ with a function name f bound to its parameters

x 1 • • • x n is denoted by ρ[f → (x 1 , • • • x n)]
, assuming that f is not in the domain of ρ. Alternatively, the compilation of a function call

(f x 1 • • • x n) is an assignment of the values x 1 • • • x n to the formal parameters y 1 • • • y n given by f (ρ),
continuing with a call to f ().

C e let rec f 1 - → x 1 = e 1 and • • • f n - → x n = e n in e r,idle ρ =    let rec f 1 () = C e e 1 r,idle ρ ′ and • • • f n () = C e e n r,idle ρ ′
in C e e r,idle

ρ ′    where ρ ′ = ρ[f 1 → - → x 1] • • • [f n → - → x n] C e f x 1 • • • x n r,idle ρ = do y 1 ← x 1 and • • • y n ← x n then f () if ρ(f) = (y 1 , • • • y n)
The compilation C e let x = e in e ′ r,idle ρ of a let with a single binding is defined as the compilation of the subexpression e into the variable x continuing with the compilation of the body e ′ . The compilation of a let with more than one binding is defined as a parallel composition of FSMs followed by a synchronization barrier activating the execution of the compiled body of the let.

C e let x 1 = e 1 and • • • x n = e n in e r,idle ρ (if n > 1) =             let rec f () = do start 1 ← false and • • • start n ← false then ((C e 1 start 1 ,rdy 1 ,x 1 ∥ • • • C e n start n ,rdy n ,x n) in if rdy 1 ∧ • • • rdy n then C e e r,idle ρ else f ()) in do start 1 ← true and • • • start n ← true then f ()             where i ∈ {1, • • • n} f , start i , rdy i are fresh names
Parallel let-bindings provide the main possibilities of acceleration of OCaml programs on FPGA as shown in the next section.

Examples and benchmarks

We now evaluate the speedup that can be achieved by running OCaml programs on FPGA via O2B and Macle. These programs are assessed by taking as reference an equivalent C code running on the same softcore processor. We first consider programs using circuits written in Macle Core (defined Fig. 4a) and then Macle circuits interacting with the OCaml runtime (using constructs defined Fig. 4b).

Methodology

Experimental setup We use a Max10 Intel FPGA embedded on a Terasic DE10-LITE board. This FPGA has limited resources: 50K logic elements (LEs), and 1,638 Kbit of on-chip memory. The board itself has 64 MB of external memory (SDRAM) and a clock frequency of 50 MHz. From a given OCaml source program, O2B creates a C program containing the bytecode generated by the OCaml compiler, the VM, its runtime library (including a GC) and additional C code. The bytecode as well as the OCaml stack and heap are implemented with C static arrays, both stored in external memory. The stack size is of 6,400 words of 4 bytes while the heap size is of 4MB. The resulting C program is compiled via the Nios II backend of gcc with optimizations enabled (-Os). The Macle circuits (compiled to VHDL) and the softcore processor are synthetized using Quartus 20.1. All data structures manipulated by OCaml, C and Macle code use the OCaml heap. Bounds of OCaml arrays are dynamically checked at each access.

Measuring elapsed time Macle circuits are called from a C block executed on the softcore. For this, and as described in Sect. 2.2, it is necessary to write arguments in the dedicated registers of the custom component implementing a circuit, start this circuit and wait for the end of the computation to read the result (again in the dedicated registers of the custom component). These reads and writes are done via the Avalon SOPC bus. We measure the execution time of each Macle circuit from the beginning to the end of the corresponding C block. The reported times, therefore, include the time to transfer the arguments and results.

Macle Core

Pure Computations The throughput of the Macle circuit gcd rtl given Fig. 5 is of exactly one tail-call per clock tick at 50 Mhz (i.e. 50 million tail-calls per second). We measure the execution time of gcd rtl compared to that of the C function gcd c (given Fig. 2a) running on the softcore. The observed Macle vs C speedup factor is 28×. The hardware implementation of gcd rtl uses approximately 360 logic elements (LEs), i.e. 0.75% of the total number of LEs available on the FPGA. Fig. 10 summarizes these results and gives similar examples of tail-recursive functions expressed in Macle vs C, both called from an OCaml program executed by O2B. This benchmark comprises the greatest common divisor (GCD), the recursive sum of the n-th first positives integers (SUM INT), The Fibonacci sequence (FIBONACCI), a tail-recursive version of the McCarthy 91 function (F91), and the Collatz sequence (COLLATZ) as defined Fig. 5a in Macle. The key point is that these "pure" Macle circuits have a throughput of one tail-call per clock tick while an iteration in the C code results in a sequence of instructions, hence the speedup of Macle vs C depends on the nature of the computation. Moreover, the size (in LEs) of the hardware generated from Macle also depends on the nature of the computation. given Fig. 7. The global execution time of the barrier is the max of the execution times of the expressions (gcd a i y), to which is added the execution time of the rest of the computation (here instantaneous). For instance, calling the circuit sum gcd 2 with equal arguments a 1 and a 2 doubles the previous 28× speedup reported in Fig. 10. Generalizing this example to circuits sum gcd n (computing n times gcd rtl and summing the results) gives a speedup of 28 × n in Macle vs C (e.g., sum gcd 32 is 900 times faster in Macle than in C). This gain is only possible because the gcd local function is inlined n times, the generated hardware using more LEs as shown Fig. 11b.

circuit sum_gcd2 a 1 a 2 y = let rec gcd n m = if n > m then gcd (n-m) m else if n < m then gcd n (m-n) else n in let x 1 = gcd a 1 y and x 2 = gcd a 2 y in (x 1 + x 2) (a) circuit

Interacting with the OCaml runtime

Fig. 12 depicts the execution time of a Macle circuit sum array (given Fig. 5a) computing the sum of the elements of an OCaml array. The size n of the array is its number of elements. The input array is filled with the n first positive integers.

In Fig. 12a, the OCaml heap is limited to 64 KB and is allocated either in on-chip memory or in external memory (SDRAM). Access times are longer (around two times longer on this example) using external memory than on-chip memory. This is still reasonable, considering that this allows to manipulate much larger data structures.

In Fig. 12b, the OCaml heap is allocated in SDRAM (with a heap size of 4MB). The Macle version is 4.8 times faster than the C one. Compared to the speedup obtained on pure computations, this example highlights a bottleneck when using memory accesses from Macle code. Fig. 13b shows the execution time of the Macle circuit eval_exp (given Fig. 5a) vs a C version, recursively evaluating trees of arithmetic expressions of various sizes (in number of constants and variables). The Macle version is 13 times faster than the C formulation. The realization of this Macle circuit uses 2,461 LEs and an explicit stack of 3,072 words implemented in on-chip memory (using RAM blocks and without requiring bus accesses). This preliminary evaluation shows that reformulating side-effect-free C functions as Macle circuits can bring substantial speedups (eg., up to 28× for the gcd rtl of Fig. 5). Replicating the hardware corresponding to these circuits, intrinsically resulting in their parallel execution, allows to further boost these speedups (e.g., up to 960× for the sum gcd 32 example given Fig. 10). It also show that for large data structures, such as arrays, the cost of accessing the corresponding memory can quickly create a bottleneck.

Optimised transfers and parallel skeletons

As demonstrated in the previous section, allowing Macle circuits to manipulate values stored in the OCaml heap has a cost. Because this heap is implemented in shared memory, each access requires a bus transaction. When manipulating large data structures, like arrays, the corresponding overhead can quickly become prohibitive. To overcome this problem, Macle provides parallel skeletons aiming at minimizing this overhead and offering higher-level parallelism. These skeletons are listed Fig. 14. Example 1. Fig. 15a illustrates the use of a skeleton array reduce<k> to define an optimized version sum array optimized of the Macle circuit sum array (given Fig. 5a). Fig. 15b gives the execution time of the circuit sum array optimized vs the circuit sum array. Using array reduce<k>, the size of the array is calculated only once rather than at each array accesses. Moreover, since the body of the reduction function f is a combinatorial expression, the execution is piplined and the generated code does not need to use any buffer. Example 2. We consider an OCaml program using a Macle circuit filter mul k replacing all multiples of an integer y by zero in an OCaml array a of size n containing integer from 1 to n. This Macle circuit uses a parallelism skeleton array map⟨k⟩ processing the array a in parallel by slice of k elements. Fig. 16a gives the corresponding program for k := 64. Fig. 16b shows the execution times of the Macle circuit filter mul k for different k vs a C sequential version. Doubling the degree of parallelism k almost doubles both the size of the generated hardware and the speedup (taking into account the transfer time). For instance, when n = 96,000, filter mul 1 is 28 times faster than the C version, while filter mul 64 is 60 times faster than filter mul 1 , resulting in a cumulated speedup of 28 × 60 = 1,680. This follows a classical space-time trade-off as shown by Fig. 16c, given the sizes (in LEs) of filter mul k for different k.

Comparison with sequential code running on a PC. We assess the performance of the Macle circuit filter mul 64 (given Fig. 16a) vs a C sequential version running on a PC equipped with an Intel Core i7 at 2.2 GHz and 16 GB of RAM. This C code is compiled with gcc option -Os and called from an OCaml program compiled to native code with the ocamlopt compiler. The frequency ratio between the PC and the FPGA is 2.2G/50M = 44. Due to licensing limitations, the Nios II architecture used in our experiment is a basic, unoptimized one. The sequential C version running on the softcore is 44 × 8.7 = 380 slower than the same C code running on the PC. Thus, on this small benchmark, Macle code synthesized on the FPGA is 1,680/380 = 4.4 times faster than an equivalent C sequential code running on a PC. In this paper, we have proposed an approach for programming FPGAs using the OCaml language. This approach consists in:

running OCaml programs by embedding their bytecode and the OCaml VM in a C program running on a softcore processor; calling hardware-accelerated functions, user-defined in the Macle language from OCaml.

Macle is a functional-imperative subset of OCaml supporting:

parallel and sequential compositions of computations; mixing computations with sequential accesses to the OCaml heap (within the dynamic memory of the softcore processor); use of parallelism skeletons on dynamic data structures with optimization of memory transfers.

Hardware acceleration of OCaml functions is simply obtained by replacing a "let" keyword in the original OCaml code by "circuit". This facilitates porting of OCaml applications, quick prototyping and debugging. Moreover, Macle is a statically typed language that provides much stronger guarantees on the safety of the generated hardware than classical HDLs.

We have presented an implementation of the proposed approach based on the O2B framework augmented with a Macle compiler targeting VHDL. This compilation flow is fully automatized on an Intel FPGA. It is simple to use and includes a simulation mode generating OCaml code from different points of the Macle compiler to test the applications on a PC before synthesizing them on the FPGA. The use of a local stack implemented in on-chip memory (instead of LEs) to realize non-tail recursive Macle functions (as evoked in Sect. 5.3) is a key point to allow large and complex symbolic computations to be implemented on moderately sized FPGAs.

Preliminary results, obtained on small benchmarks are very encouraging. They show in particular that important speedups (up to the three orders of magnitude, compared to C code running on the embedded softcore) can be obtained by combining the ability to compile a Macle function to hardware and the possibility to replicate the corresponding hardware in order to exploit data parallelism. Parametrizable parallel skeletons both offer a manner to address the bottleneck occurring when exchanging data between the OCaml host program and the accelerated Macle functions. It is also a very practical way to explore the space-time trade-off, which constitutes a classical issue when programming FPGAs (reducing computing time by increasing the number of logic elements used).

The work described in this paper offers many interesting paths for future work.

First of all, scaling up for larger applications is an important point to convince the OCaml community to use FPGAs, and the FPGA community to use high-level languages. From a programmer's point of view, it would be useful to allocate values from the Macle code, support concurrent memory access, share Macle local functions (rather than inline them), and use more parallel skeletons, possibly, domain-specific.

Concerning the tool chain itself, we plan to switch to fully open source design and synthesis tools, with the idea that using such tools would facilitate both the static analysis of the Macle code and prediction of the efficiency of the generated hardware (e.g., resource usage and execution time). These informations could be used, for example, to decide which Macle function should be inlined and also to provide guarantees on applications interacting with the outside world. This is especially necessary for critical applications, for which it would be appropriate to use synchronous programming models with similarities to the HSML intermediate language used in the Macle compiler.

One can expect much higher speedups by using faster and/or more resourceful FPGA boards. Moreover, although the use of softcore processors leads to some inefficiencies, it remains very suitable for multi-core programming, each core carrying an instance of the OCaml VM.

In the longer term, we could also explore other ways to accelerate both the runtime (memory and exception management) and the VM interpreter by partially implementing them in hardware, or even using different levels of parallelism such as multiple VMs sharing Macle code. The latter could provide an interesting approach to exploit heterogeneous platforms including multi-cores, GPUs and FPGAs.

Fig. 1

 1 Fig.1describes the configuration process used to run OCaml programs on an Intel FPGA 6 via O2B. The bytecode generated by the OCaml compiler is transformed into a static C array, then embedded in the C program implementing the bytecode interpreter and the O2B runtime library, including a garbage collector (GC). The OCaml heap and stack are C static arrays. This program is associated with the functions of the Board Support Package (BSP) giving access to the hardware resources of the target board. The resulting application is compiled to binary code executable by the Nios II softcore processor.

Fig. 1

 1 Fig. 1 Compilation flow targeting Intel FPGAs

Fig. 2

 2 Fig. 2 An OCaml program using external C code on O2B

Fig. 3

 3 Fig.3Accelerating OCaml programs on FPGA using O2B and Macle

 Fig. 4a defines the syntax of Macle Core. This language is independent of OCaml and can be used to program synchronous circuits and compose them in parallel. We denote by -→ o (or o 1 • • • o n) a non-empty sequence of objects o i . Macle Core includes variables (taken from a set of name X), constants, applications of builtin operators and conditionals. It also offers local mutually tail-recursive functions, function calls and let bindings. A simple let binding let x = e in e ′ first computes e, then e ′ . By extension, a multiple let-binding let x 1 = e 1 and • • • x n = e n in e ′ first computes the expressions e 1 • • • e n in parallel and synchronizes before computing e ′ . For instance, the hardware implementation of (let x = factorial 10 and y = factorial 11 in x + y) instantiates twice the implementation of factorial function in order to enable their parallel execution. Function calls use an implicit parallel let-binding to compute the arguments passed to each function. Non-recursive functions can take functions as arguments 9 .

Fig. 4

 4 Fig. 4 Syntax of the Macle language

Fig. 5

 5 Fig. 5 Examples of Macle circuits and OCaml program using a Macle circuit

Fig. 6

 6 Fig. 6 Compilation flow of Macle to VHDL

Fig. 7

 7 Fig. 7 FSM and VHDL implementation of the GCD algorithm (given in Macle Fig. 5)

Fig. 8

 8 Fig. 8 Syntax of HSML

 circuit gcd_rtl (start, m, n) returns (rdy, result) = var a, b in let rec idle() = if start then (do rdy ← false and a ← m and b ← n then gcd()) else (do rdy ← true then idle()) and gcd() = if a > b then (do a ← (a-b) then gcd()) else if a < b then (do b ← (b-a) then gcd()) else (do result ← a then idle()) in (do rdy ← true then idle())

4. 3

 3 Compiling Macle Core to HSMLThe compilation C circuit f -→ x = e of a Macle Core circuit is defined as the compilation of the body e of the circuit, from which the inputs, outputs and local variables are inferred.C ci circuit f -→ x = e = circuit f -→ x in returns -→ x out = var --→ x local inA in , -→ x out and --→ x local are inputs, outputs and local variables declarations inferred from A start, rdy, result are fresh namesThe compilation C e start,rdy,result of a Macle Core expression e is a hierarchical FSM initialized in a special state idle. It waits for the input start to be set to the value true to start the computation. This computation assigns a value to the output result. The output rdy notifies when the computation is done. The auxiliary function C e e result,idle ρ is defined next. The compilation environment ρ maps functions names to the list of their formal arguments. C e start,rdy,result =     let rec idle() = if start then (do rdy ← false then C e e result,idle / 0

C e if x then e 1 else e 2 r,idle ρ = if x then C e e 1 r,idle ρ else C e e 2 r,idle ρ

 212

C

 e let x = e in e ′ r,idle ρ = let rec f () = C e e ′ r,idle ρ in C e e x, f ρ where f is a fresh name

Fig. 10

 10 Fig. 10 Speedup factor of pure computations defined in Macle vs C along with resource usage

Fig. 11

 11 Fig. 11 Parallelization of a computation and impact on the size of the generated hardware

Fig. 12

 12 Fig. 12 Execution time of a Macle circuit summing the elements of an OCaml array

Fig. 13

 13 Fig. 13 Execution time of Macle circuits using imperative features

 Fig. 14 Simple parallel skeletons available in Macle

Fig. 15

 15 Fig. 15 OCaml program with a Macle circuit using the parallel skeleton array reduce<k>

Fig. 16

 16 Fig. 16 OCaml program with a Macle circuit using the parallel skeleton array map<k>

 The size of the circuit does not depend on k. The sum array and sum array optimized circuits use respectively arround 570 and 590 LEs. The optimized version is 2.8 times faster than the unoptimized one. Fig.13ashowed that the Macle circuit sum array is 4.8 times faster than C. As a result, there is a speedup of 4.8 × 2.8 = 13 when using sum array optimized vs the C version.

https://github.com/jserot/O2B

https://github.com/lsylvestre/macle

This process is general and can be adapted to target other FPGA families.

Avalon bus for Intel platforms.

The FPGA board is connected to a host PC via an UART connection for printing and debugging.

Each call of these functions is specialized and inlined at compile time.

Acknowledgements Work on O2B and Macle is partially supported by the Center for Research and Innovation on Free Software (IRILL).