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Abstract

The electron density of a molecule or material has recently received major attention

as a target quantity of machine-learning models. A natural choice to construct a model

that yields transferable and linear-scaling predictions is to represent the scalar field

using a multi-centered atomic basis analogous to that routinely used in density fitting

approximations. However, the non-orthogonality of the basis poses challenges for the

learning exercise, as it requires accounting for all the atomic density components at

once. We devise a gradient-based approach to directly minimize the loss function of the

regression problem in an optimized and highly sparse feature space. In so doing, we

overcome the limitations associated with adopting an atom-centered model to learn the

electron density over arbitrarily complex datasets, obtaining very accurate predictions

using a comparatively small training set. The enhanced framework is tested on 32-

molecule periodic cells of liquid water, presenting enough complexity to require an
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optimal balance between accuracy and computational efficiency. We show that starting

from the predicted density a single Kohn-Sham diagonalization step can be performed

to access total energy components that carry an error of just 0.1 meV/atom with respect

to the reference density functional calculations. Finally, we test our method on the

highly heterogeneous QM9 benchmark dataset, showing that a small fraction of the

training data is enough to derive ground-state total energies within chemical accuracy.

1 Introduction

The electron density ρ plays a special role in electronic structure methods, besides being

a well-defined physical observable that can be experimentally measured.1 In particular,

within density-functional theory (DFT), ρ provides direct access to not just the ground-state

electronic energy, but in principle to all of the ground-state properties of a system.

In the last few years, many efforts have been devoted to the integration of supervised

learning techniques within state-of-the-art electronic-structure methods, aiming at accelerat-

ing the calculation of properties beyond ground-state total energies and forces.2–5 Different

quantities have been considered as the target of machine learning (ML) models, including

molecular multipoles6–8 and polarizabilities,9 electronic density of states and bandgaps,10–12

kinetic density functionals,13–15 exchange-correlation potentials,16–18 single-particle wavefunc-

tions19–21 and Hamiltonians.20,22,23 For problems where DFT is the method of choice, it is

attractive to think that one could access all ground-state properties of a system at once

by simply being able to predict its real-space electronic density. However, it is not always

obvious whether one can actually benefit from computing derived electronic properties from

the predicted densities. In fact, under many circumstances it appears more convenient to

target the prediction of the property at hand directly, without going through intermediate

electronic-structure ingredients.24

We have recently shown that using the electron density as a stepping stone to predict the

electronic energy of a system can be beneficial when working in highly extrapolative regimes,
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which are specifically associated with a substantial increase of the system size.25 These are

the most sought-after regimes for ML models, since they are where ML can substantially

decrease computational cost, thus allowing a quantum-mechanical description of systems

that were unattainable just a few years ago. This good extrapolative behaviour is to be

expected, because computing the electronic energy as a functional of ρ can effectively recover

electrostatic and non-local effects, without the need to add an explicit long-range description

to the model. For these reasons, designing efficient and accurate learning algorithms that

specifically target the prediction of the electron density is becoming an increasingly attractive

possibility both to provide useful insights on the electronic structure of the system and to

complement the predictions of local ML potentials.

Various density-learning models currently available primarily differ by the nature of

the difficult task of discretizing the scalar field ρ for numerical handling by a computer.

Algorithms can work with a finite number of real-space grid points,26–29 or with expanding

the density over a suitable set of basis functions,24,30–32 for example. When it comes to the

learning architectures, both neural networks and kernel-based approaches have been adopted

over the years. While the former are more suited to handle a large number of training data,

the latter can be used to interpret more transparently the relation between the learning

model and the underlying physical problem, thus facilitating the prediction of complex targets

such as the electron density. This paper addresses current shortcomings of kernel-based

models of ρ that effectively limits its training in large datasets. We propose an extension of

the symmetry-adapted learning of three-dimensional electron densities (SALTED) method,25

where the density is discretized through a linear atom-centered expansion analogous to that

of density-fitting (DF) approximations routinely used in quantum chemistry codes.33–36

Within SALTED, a kernel-based parametrization of the learning problem is provided

through a local representation of the atomic structure that mirrors the rotational symmetry

of the atomic density components. The atom-centered nature of the density expansion is

a critical aspect to ensure the transferability of the SALTED predictions across atomic
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environments that share similar local structural patterns. The non-orthogonal character of

common DF basis sets, however, implies that particular care must be given to the spatial

overlap between any pair of off-centered basis functions, which has the effect of coupling

all the atomic density components together. In fact, the problem dimensionality depends

not only on the number of atomic environments used to train the model but also on the

basis set size associated with each atomic center. This downside of the method hinders the

calculation of explicit solutions at an increasing number of training structures, effectively

limiting the application of SALTED to relatively small datasets. Furthermore, as the number

of training atomic environments can grow very quickly, suitable dimensionality reduction

schemes must be adopted in order to limit the size of the fitting problem. In this respect,

converging the prediction accuracy with respect to the number of sparse atomic inputs

is known to be a particularly hard numerical problem that requires the implementation

of suitable expedients.37 These shortcomings become particularly severe whenever a large

number of atomic density components are required to train the model, e.g., when targeting

the prediction of the electron density of proteins38 or generic disordered, liquid systems.

In this paper, we overcome the aforementioned limitations in two ways: i) we make use of

a featurization of the atomic structure expressed explicitly in the reproducing kernel Hilbert

space (RKHS) of symmetry-adapted sparse kernel approximations, thus enabling a systematic

convergence of the prediction accuracy with the number of sparse atomic environments, and

ii) we implement an iterative gradient-based minimization of the SALTED loss function,

which allows us to bypass the computational bottleneck associated with the inversion of

prohibitively large regression matrices. Taking bulk liquid water as an example, we show that

the combination of these two ingredients allow us to apply SALTED to arbitrarily complex

systems, paving the way for the inexpensive calculation of electronic structure properties and

accurate electronic energies.
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2 Theory

Consider a generic density-fitting approximation of the electron density of a given structure

A, expressed as a linear expansion over a set of atom-centered basis functions φanλµ:

ρDF
A (r) =

∑
i,anλµ,U

canλµ(Ai)φanλµ(r−Ri + U) . (1)

where r is the spatial coordinate, Ri labels the position of atom i, U is the cell translation

vector, assuming the system is periodic, and canλµ(Ai) are the non-orthogonal expansion

coefficients. The basis φanλµ is defined as the atom-centered product of spherical harmonics

Y µ
λ , with λ and µ labelling the azimuthal and projection indices, and a set {n} of radial

functions Raλ
n which depend on the possible choices of atomic types a and λ values. Similarly

to what is reported in previous works,24,25,39 we then provide an atom-centered approximation

to the expansion coefficients through the definition of a covariant similarity measure between

atomic environments, which takes into account the transformation properties of spherical

harmonics under rotations:

canλµ(Ai) ≈
∑
{Manλ

j }

∑
|µ′|≤λ

banλjµ′ kanλµµ′ (Ai,M
anλ
j ). (2)

Here, banλjµ′ are the regression weights and kanλµµ′ (Ai,M
anλ
j ) is a symmetry-adapted kernel

function40 that couples the atomic environment Ai of the training set with a subset of atomic

environments {Manλ
j } selected to provide a suitable sparse representation of the spectrum of

chemical and structural variations included in the training set. Note that in the definition

of the sparse set {Manλ
j } we left the freedom of selecting different atomic environments

depending on the atomic function type anλ. In contrast to previous implementations, we

investigate the possibility of using different kernels not only to reflect the different types of

angular symmetries associated with each set of spherical harmonics Y µ
λ , but also to reflect

the different length scales associated with the various radial functions Raλ
n . Each kernel is
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constructed from a corresponding λ-SOAP representation40 computed at a spatial resolution

that is optimized by cross-validating the predictions associated with the individual anλ

density components.

Inserting Eq. (2) into Eq. (1), a ML approximation of the electron density ρML can be

defined to linearly depend on the vector of regression weights bM , where we use the subscript

M to indicate that the vector corresponds to the full set of reference environments. The

vector bM can then be obtained from the minimization of a quadratic loss function that

measures the integrated error over the N training structures between ρML and the reference

DF definition of Eq. (1):

`(bM) =
N∑
A=1

∫
u.c.

dr
∣∣ρML
A (r; bM)− ρDF

A (r)
∣∣2

+ η bTMKMMbM ,

(3)

where in the second line we introduced a regularization term modulated by a hyperparameter

η. The matrix KMM includes all the symmetry-adapted kernels kanλµµ′ (Manλ
i ,Manλ

j ) that couple

the sparse set of atomic environments {Manλ
j } and it is thus defined to be block diagonal in

the possible basis function types {anλ}.

2.1 RKHS formulation

According to standard subset of regressors 41 (SoR) approaches, selecting the number of sparse

atomic environments Manλ as a proper subset of the total number of training environments

implies approximating the full kernel matrix of the SALTED problem as follows:

KNN ≈ KNMK−1MMKT
NM (4)

where we used the subscript N to indicate that the dimension of KNN is given by the sum of

the number of DF basis functions associated with each atom of the training set. Most of the
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time, the matrix KMM is found to be ill-conditioned, yielding severe numerical instabilities

when solving the regression problem. Commonly adopted solutions to circumvent this issue

consist in introducing an ad hoc jitter term that provides a lower bound to the eigenvalues of

the matrix to be inverted.25 While effectively fixing the numerical instabilities, this stratagem

carries the drawback of hindering the systematic convergence of the SoR approximation when

taking the limit of Manλ towards the total number of training environments. To solve this

problem, we first consider a truncation of the eigen-decomposition of the KMM matrix. Given

that KMM is block-diagonal in the basis function type, for each triplet (anλ) we can write

Kanλ
NN ≈ Kanλ

NM

Danλ∑
d

vdM(vdM)T

λd

 (Kanλ
NM)T , (5)

where λd are the non-negligible eigenvalues of Kanλ
MM and vdM the corresponding eigenvectors,

so that Danλ indicates the final truncated dimension. Note that each outer product vdM (vdM )T

conserves the transformation properties of Kanλ
MM , so that, individually, each eigenvector vdM

has the same rotational symmetry as the corresponding basis functions (aλn). From the

equation above, we can then define the reproducing kernel Hilbert space (RKHS) of the sparse

kernel approximation as the space spanned by the following feature vectors:

Ψanλ
ND ≡ Kanλ

NMVanλ
MD(Λanλ

DD)−
1
2 , (6)

which, consistently with Mercer’s theorem,42 gives

Kanλ
NN ≈ Kanλ

NM (Kanλ
MM)−1 (Kanλ

NM)T ≈ Ψanλ
ND(Ψanλ

ND)T . (7)

Finally, we can reformulate the density-learning problem as a linear regression task parametrized

according to the feature vectors Ψanλ
ND. To do so, we can first invert Eq. (6) to approximate

the Kanλ
NM matrices as

Kanλ
NM = Ψanλ

ND(Λanλ
DD)

1
2 (Vanλ

MD)T , (8)
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where we made use of the unitary nature of the matrix of eigenvectors, Vanλ
MD(Vanλ

MD)T = 1anλMM .

Then, a sparse RKHS approximation of the density expansion coefficients can finally be

obtained by rewriting Eq. (2) as follows

canλµ(Ai) ≈
Danλ∑
d

b̃anλd ψanλd (Ai; anλµ) , (9)

where, for each basis function type (anλ), we defined a new vector of regression weights as

b̃anλD ≡ (Λanλ
DD)

1
2 (Vanλ

MD)TbanλM . (10)

The so derived RKHS reformulation of SALTED allows us to effectively make use of a sparse

symmetry-adapted kernel approximation of the density expansion coefficients that avoids the

numerical instabilities associated with normal equations solutions.37

2.2 Iterative solution

To practically solve the SALTED-RKHS problem, it is convenient to define the global problem

dimensionality D as the sum of all the truncated dimensions Danλ associated with each basis

function type. In so doing, a single vector of regression weights b̃D constructed by stacking

together each of the individual b̃anλD can be used to compactly write the SALTED-RKHS

approximation of the density coefficients as

canλµ(Ai) ≈ b̃TDΨD(Ai; anλµ) , (11)

where the global feature vector ΨD(Ai; anλµ) is defined to be diagonal in the various basis

function types. When inserted into Eq. (1), this allows us to rewrite the loss function of
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Figure 1: Schematic representation of the sparsity pattern of the RKHS feature matrix ΨND

(left) and basis-set overlap matrix SNN (right) entering the iterative minimization of the
electron-density loss function. ΨND can be built from separate blocks, each associated with
a separate type of atomic basis functions.

Eq. (3) as follows:

`(b̃D) =(ΨNDb̃D − cDF
N )T SNN (ΨNDb̃D − cDF

N )

+ ηb̃TDb̃D .

(12)

with cDF
N the vector of training DF expansion coefficients. The matrix SNN , which is block

diagonal in the training set, contains the spatial overlaps between the basis functions of each

structure, 〈φ|φ′〉, and is responsible for coupling all the basis function types and therefore all

the atomic density components together. Importantly, the sparsity pattern of ΨND differs

from that of SNN , implying that the product ΨT
NDSNNΨND is, generally, a full D×D matrix.

A schematic representation of this is reported in Fig. 1.

An explicit minimization of the loss function of Eq. (12) would be hindered by the quickly

growing dimensionality of the problem when considering an increasing number of sparse

atomic environments, which would make the inversion of the resulting regression matrix

prohibitively expensive when considering a large D and/or a large basis set size. For this

reason, we implement a basic conjugate gradient (CG) algorithm to iteratively minimize

the loss function of Eq. (12) directly. We rely on the analytical definition of the gradient of
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Eq. (12) with respect to b̃D, i.e.,

∂`(b̃D)

∂b̃D
= ΨT

ND SNN (ΨNDb̃D − cDF
N ) + ηb̃D , (13)

which is updated at each CG step from the knowledge of the Hessian matrix:

HDD = ΨT
NDSNNΨND + η1DD . (14)

Note that as the dimension D can easily be > 105 when treating complex datasets, precom-

puting HDD would imply running into similar issues to those associated with solving the

regression problem explicitly. For this reason, we estimate the gradient and curvature on the

minimization surface at each CG step by directly computing the projection of Eq. (14) on

the CG search direction. In this work, an efficient implementation of the latter quantity is

obtained by parallelizing the sum over the training set, preloading, for each configuration,

the associated dense block of the global overlap matrix SNN and RKHS descriptor, and

exploiting the high sparsity pattern of ΨND (in our dataset about 5% of entries are non-zero)

to perform sparse matrix multiplications.

2.3 Orthogonal approach

As a further justification of the need to tackle the non-orthogonal regression problem, we

consider an alternative path that could in principle be undertaken to bypass the computational

difficulties discussed above. A suitable orthogonal transformation could be introduced in

order to recast the SALTED problem into as many independent regression tasks as the

number of the different basis function types {anλ}. In particular, one could formally rewrite

the DF approximation of the electron density in terms of set of orthogonal basis functions,

defined as follows

φ̂k(r) =
∑
k′

[
S−

1
2

]k′
k
φk′(r) , (15)
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with S−
1
2 the orthogonalization matrix. This transformation is known as Löwdin orthogonal-

ization43 and it is typically used in the context of single-particle theories of the electronic

wavefunction to work in the space of atomic natural orbitals,44 as well in the localization

procedure of maximally-localized Wannier functions.45,46 Under this transformation, the

orthogonal expansion coefficients can be obtained from the non-orthogonal DF coefficients as

ĉ = S
1
2 c . (16)

Unlike hierarchical orthogonalization schemes, such as Gram-Schmidt, the Löwdin orthogo-

nalization preserves both the locality of the basis functions about the atomic positions and

the symmetry properties of spherical harmonics. As such, for each of the distinct triplets

(anλ) that labels the new set of orthogonal basis functions, a ML approximation of Eq. (16)

can be defined to follow the same sparse RKHS formulation already reported in Eq. (9).

As the basis functions are now orthogonal to each other, SNN = 1NN in Eq. (12) and

the regression problem decouples, leaving as many independent solutions as the number

of orthogonal basis function types {anλ}. This means that one can afford to compute the

regression weights for each (anλ) explicitly, i.e.,

b̃aλnD = ((Ψaλn
ND)TΨaλn

ND + η1DD)−1 (Ψaλn
ND)T ĉaλnN . (17)

Note that because the learning target still remains the entire density field, the value of the

regularization parameter η is defined to be the same for each independent solution.

In spite of the clear computational advantages, the presented orthogonal approach has

two main downsides. First, since the basis set of each structure now depends on the specific

atomic configuration that determines the Löwdin orthogonal transformation, the resulting

regression task is effectively required to learn this transformation, making the method more

data hungry. Moreover, reconstructing the density field from the predicted density coefficients

necessarily requires to undo the orthogonal transformation as c = S−
1
2 ĉ, adding a considerable
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computational burden at the prediction level. In fact, especially when targeting the prediction

of systems with a large number of atoms, the calculation of S−
1
2 can be particularly expensive,

undermining the rationale for applying a ML model in the first place.

2.4 Accuracy metrics

As already discussed in Ref. 25, the mean spherical average of the density over the dataset,

ρ̄0(r), is used as a baseline field for the learning of ρ(r). This implies that very much like

when doing regression of electronic energies, we can measure the root mean square error

associated with the density predictions carried out on any given test set as a fraction of the

standard deviation of the reference test densities about ρ̄0(r), i.e.,

%RMSE =

√√√√∑A

∫
dr |ρML

A (r)− ρDF
A (r)|2∑

A

∫
dr |ρDF

A (r)− ρ̄0(r)|2
× 100 (18)

This choice carries the advantage of providing a measure of the learning capability of the

method, rather than an absolute estimation of the accuracy of the predicted density. In

practice, Eq. (18) can be efficiently computed as follows:

%RMSE =

√√√√∑A (cML
A − cDF

A )
T

SA (cML
A − cDF

A )∑
A (cDF

A − c̄0)
T

SA (cDF
A − c̄0)

× 100 (19)

where c̄0 is the vector of spherical (λ = 0) coefficients associated with the expansion of the

average density ρ̄0(r). The overlap matrices SA of the test structures are set to the identity

matrix when considering the prediction of orthogonal coefficients.

To provide an estimate of the absolute accuracy of the predicted density we use the mean

absolute error (MAE) of the density as a fraction of the total electronic charge:

%MAE =
1

Ne

∫
dr
∣∣ρML(r)− ρQM(r)

∣∣× 100, (20)
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where ρQM is the reference Kohn-Sham density. This error is computed using FHI-aims’s

dense logarithmic real-space grids centred on each atom, ensuring an accurate integration of

the density close to the nuclei.47

3 Results

3.1 Electron density of bulk liquid water

To test the enhanced SALTED framework, we begin by considering a dataset consisting of 1000

configurations of 32-molecule supercells of bulk liquid water. This example presents enough

complexity to require training the model on a large number of atomic density components,

hence also requiring a large value of M , highlighting the importance of the methodological

advances discussed here. In the process, we also compare the performance of the method with

the alternative orthogonal approach outlined in Sec. II-C. The reference density coefficients

are computed at the DFT/LDA level using FHI-aims’s tight settings by projecting the

Kohn-Sham electron density on a set of auxiliary Slater-type atomic functions as implemented

in FHI-aims.36 This results in a density field that is represented using up to λ = 8 spherical

harmonics. The corresponding DF strategy and the assessment of the DF error is discussed

in detail in Ref.;25 in this case the error introduced to the total energy by DF is on the order

of 1 µeV/atom.

Given the additional complexity of treating an extended condensed-phase system, we

adjust the SALTED model according to the spatial resolution of the radial functions involved

in the expansion of the density. For that, several λ-SOAP kernels are initially computed

for various Gaussian widths σ and radial cutoffs rc, in such a way that a ratio of rc/σ =

10 is always conserved. In particular, we consider six different cutoffs which span rc =

(2.0, 3.0, 4.0, 5.0, 6.0) Å and compute RKHS descriptors as in Eq. (6) using M = 100 sparse

atomic environments for each basis function type. The selection of the sparse set is carried

out via a farthest point sampling (FPS) algorithm which makes use of the SOAP metric to
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Figure 2: Learning curves associated with the prediction of 500 randomly selected liquid water
structures using models constructed with an increasing number of sparse environments M .
(top) % RMSE of the predicted electron density as a function of the number of training
structures. (bottom) Absolute RMSE in meV/atom of the electronic energies obtained by
feeding the predicted electron densities into the density functional used to generate the
reference data. Full and dashed lines correspond to non-orthogonal and orthogonal learning
models, respectively.

measure the distance between pairs of atomic environments.48 For each of the aforementioned

models, we then perform orthogonal-learning predictions which are cross-validated for each

type of atomic functions (anλ) on a two-fold 500/500 random partition of the dataset. Finally,

the models that give minimal errors for each basis function type are selected to construct

an optimal representation of the atomic structure to be used both in orthogonal and non-

orthogonal approaches. Note that we will use throughout the same sparse environments

selections for each (anλ).

Fig. 2a reports learning curves for the electron-density prediction of 500 randomly selected

liquid water frames, comparing regression exercises carried out at an increasing number of

sparse atomic environments M . Both for orthogonal and non-orthogonal learning approaches,
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we observe a saturation of the prediction accuracy for M = 2000 sparse points and N = 200

training structures, which carry a total of 19200 atomic density components. While the

orthogonal approach yields optimal predictions associated with a RMSE of 7.0%, making

use of the fully coupled non-orthogonal framework allows us to bring the error down to

3.3%. Note that this level of accuracy corresponds to a mean absolute error of 0.36% when

measured as a fraction of the total electronic charge. In spite of the orthogonal approach being

computationally more convenient to train, these results highlight the importance of adopting

a fixed set of basis functions in order to solely focus regression effort on the density-based

variations of the learning target.

3.2 Prediction of electronic-structure properties

Having generated the reference data at the DFT level, the predicted densities can be used

to compute the electronic energy of the system. Within the Kohn-Sham DFT formalism,

however, one can only have direct access to the electrostatic and exchange-correlation energy,

while the kinetic energy must be expressed in terms of the Kohn-Sham molecular orbitals.

Therefore, we obtain the total energy by computing the Kohn-Sham potential as a functional

of ρML(r) and solving the resulting eigenvalue problem. Doing so requires performing a

single diagonalization step of the Kohn-Sham Hamiltonian, which can be done with almost

linear-scaling cost thanks to dedicated libraries used in FHI-aims.49 As shown in Fig. 2b, this

procedure can in fact be used to yield extremely accurate electronic energies. In particular,

for the maximum training set size adopted the predicted densities obtained through the non-

orthogonal framework are associated with an error of 0.13meV/atom, greatly outperforming

the accuracy that can be achieved through the orthogonal-learning framework. Interestingly,

this level of accuracy is made possible by a large error cancellation between the kinetic energy

T and the potential energy V of the system. As reported in the Supplementary Information

(SI), computing separately the kinetic, electrostatic and exchange-correlation energy shows

in fact that each of these individual terms are associated with errors that are from one to
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Figure 3: Correlation plot between the reference HOMO-LUMO gaps of 500 test water frames
and those computed from the predicted electron density as obtained from a non-orthogonal
learning exercise at N = 200 and M = 2000. The root mean square error in the predicted
gaps is 84 meV.

two orders of magnitude larger than those associated with the total electronic energy. The

observed error cancellation is related to the fact that the first functional derivative of the

total energy is zero when evaluated at the reference self-consistent density. In particular,

when considering a functional expansion of the total energy E in increasing powers of the

density error ∆ρ, the linear term in the error is expected to vanish at self-consistency, so that

the leading order in the total energy error ∆E is in fact quadratic in ∆ρ. A formal derivation

together with a numerical test of the quadratic relation ∆E ∝ ∆ρ2 is reported in the SI.

In principle, being able to use the predicted density to solve the Khon-Sham eigenvalue

problem allows us to access all kind of electronic-structure properties. In Fig. 3 we report

an example of this by showing how the predicted HOMO-LUMO gaps of the 500 test water

structures compared with the reference DFT values. Because of its non-local nature, the

accurate prediction of this quantity is known to be a particularly hard problem.20,23 As shown

in the Figure, in spite of having learned a local property using local structural information

only, our density-based predictions correlate well with the reference DFT values, resulting in a

low root mean square error of 84 meV (about 2% of the DFT band gap). We observe a small

systematic overestimation of the gaps, arising primarily from a systematic underestimation

of the HOMO energy. A 3D visualization of the HOMO-LUMO states of a given test water

frame, shown in Fig. 4, demonstrates an excellent agreement between the reference and
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a) HOMO (QM) b) HOMO (ML)

c) LUMO (QM) d) LUMO (ML)

Figure 4: (top) Two pairs of HOMO isosurfaces at ±0.25 and ±0.05 a.u. associated with the
reference DFT calculation (a) and those derived from the predicted density (b). (bottom) Two
LUMO isosurfaces at 0.15 and 0.01 a.u. associated with the reference DFT calculation (c)
and those derived from the predicted density (d).

predicted Kohn-Sham orbitals.

3.3 The QM9 dataset

As an even more challenging test, we learn the electron density of the QM9 dataset, con-

taining more than 130,000 different molecules containing H, C, N, O and F atoms. Having

demonstrated the superior performance of the non-orthogonal learning framework against the

computationally more convenient Löwdin approach, we will focus from here on exclusively

on the former method. The vast chemical heterogeneity of the dataset requires dealing at

the same time with a great number of sparse atomic environments and training structures,

making it virtually impossible to use a naive implementation of SALTED where the regression

exercise is carried out via the inversion of a kernel matrix. In testing the accuracy of our

predictions we rely on the same partitioning of the dataset reported in Ref.,29 i.e., using

the same random selection of 10,000 structures as a test set, while using the remaining

configurations for training the model. In order to directly compare our results with what is
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Figure 5: (top) % RMSE of the electron density prediction carried out on a total of 10,000
test molecules as a function of the number of training molecules at increasing values of M .
(bottom) Histogram of density absolute errors integrated in real space as a fraction of the
total electronic charge computed at M = 10000 and N = 8000.

reported in Ref.,29 we also make use of the same local environment definition by selecting a

radial cutoff around the atoms of rcut = 4 Å. For all learning exercises, we consider active set

sizes that span M = {2500, 5000, 10000}. Note that having to deal with 5 different atomic

types, the selection of sparse atomic environments plays a decisive role and it reflects the

population of each atomic type in the training set. For instance, as very few structures

contain fluoride atoms, only 29 fluoride environments are selected out of a total of M = 10000.

In this case the reference density coefficients are computed at the DFT/PBE level, again

using FHI-aims’s tight settings.

Figure 5 reports learning curves for the prediction of the electron density using a maximum

of 8000 randomly selected training structures reaching a small error of 1.22% for M = 10000.

Although we observe superior learning performances when compared with the dataset of
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liquid water, the huge variance of the electron density in the QM9 dataset implies a lower

absolute accuracy with respect to the previous example. In fact, as shown in the lower panel

of the Figure, absolute density errors integrated on a real-space grid are distributed around

a mean absolute error of 0.45%, which is about 25% larger than those observed for liquid

water. When compared with the results of Ref.29 for the very same QM9 test molecules, we

find that our errors are about 1.5 times larger; this is still remarkable when considering that

we used only 6% of the training set and that we predict the all-electron density, whereas

Ref.29 uses almost the entire QM9 dataset and uses the pseudo-valence density as target.

In Figure 6 we also report learning curves and error histogram for the derived total energy

predictions, showing a mean absolute error that is brought down to 1.57 kcal/mol, with 65%

of our predictions falling within chemical accuracy. Although not reported in the Figure

for visual purposes, we find that there are 196 molecules with an error >10 kcal/mol up to

a maximum of ∼228 kcal/mol. These outliers are typically associated with specific atomic

environments (such as 3- or 4-membered rings, 5-membered rings containing heteroatoms,

or alkyne groups) which are not well represented in the training set, consistent with having

used only a tiny fraction of the available data.

Learning curves for both densities and derived energies clearly show that there is still

margin for improvement by increasing both M and N , so that our method is likely to

surpass the performance of Ref.29 when using the entire training set. However, for N = 8000

and M = 10000 we already find that performing the iterative minimization of the density

loss function requires to keep in memory ∼10 TB of data, which are mainly associated

with preloading the RKHS descriptors for each training structure, whose dimension linearly

depends on the active set size M . In fact, the global problem dimensionality that accounts

for all the basis functions of each of the 10000 sparse atomic environments is D > 2× 106 for

this example, reflecting a large feature space of the RKHS descriptors. For comparison, a

naive implementation of the SALTED regression would require > 30 TB of RAM to store the

kernel matrix, making its inversion practically impossible. Going beyond these values of N
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Figure 6: (top) % MAE of the total energy prediction as a function of the number of training
molecules at a increasing values of M . (bottom) Histogram of absolute energy deviations
computed at M = 10000 and N = 8000. The vertical dashed line at 1 kcal/mol indicates the
chemical accuracy threshold.

and M and overcoming the need to use massive computational resources will be subject of

future investigation.

4 Conclusions

The data-driven prediction of the electron density of a system is a challenging computational

task which requires balancing the need for an optimal discretization of the scalar field with

a regression model that is at the same time highly transferable and that can be easily inte-

grated with electronic-structure programs. Adopting an atom-centered decomposition of the

scalar field represents an optimal choice to simultaneously meet these requirements, but the

implementation of an efficient machine-learning algorithm carries exceptional computational

challenges. We have shown how to tackle these challenges through an iterative minimiza-
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tion scheme of the density loss function which makes use of an equivariant sparse kernel

approximation of the expansion coefficients. In doing so, we bypassed the need to invert

regression matrices, increasing the capabilities of the method by 1-2 orders of magnitude with

respect to previous implementations.25 This leap forward was enough to successfully tackle

the regression of disordered condensed-phase systems such as liquid water and to achieve

chemical accuracy on most of the test structures of the QM9 dataset with a handful of

training structures. Further work should be undertaken to reduce the computational burden

required to keep in memory all the overlap matrices and feature vectors needed during the

training phase, thus allowing us to increase the training set size indefinitely. This could be

done either by adopting better sampling algorithms that allow the selection of smaller active

sets M , which are fine-tuned for each basis function type, or by implementing more efficient

minimization strategies that compute the gradient by loading the training data on-the-fly at

each iteration.

It is worth mentioning that an equivariant neural network approach that works on a

similar density-fitting basis has recently been proposed.32 In this method, the loss function is

defined via the sum of square errors made on the individual expansion coefficients, rather

than on the density itself. Although powerful, this approach may be limited in accuracy, as

the coupling between pairs of non-orthogonal density components is only implicitly obtained

through the network architecture, overshadowing the role of the correlations between the

expansion coefficients in the final prediction of the scalar field. Conversely, we have shown that

that within a kernel-based method the correlations between non-orthogonal coefficients are

solely brought by the spatial overlap between the basis functions, consistently with the pure

geometric nature of the coupling between off-centered density components. As an alternative

approach, we have suggested that a decoupling of the learning problem could be obtained

through a Löwdin orthogonalization strategy analogous to that routinely used for the atomic

orbitals in quantum-chemistry calculations. However, because of the system-dependent

nature of the orthogonalization procedure, this strategy is outperformed by the (fully coupled)
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non-orthogonal framework, especially when using the predicted density to compute derived

electronic energies.

As long as a single diagonalization step of the Kohn-Sham Hamiltonian can be performed

at low computational cost,49 the possibility of predicting the electron density to access all

kinds of ground-state electronic-structure properties is particularly attractive, as it sidesteps

all intermediate learning exercises that might be carried out to predict quantities such as the

density of states, band-gaps, wavefunctions and the Hamiltonian matrix itself. Moreover, the

presented protocol could be used as an alternative to standard machine-learning potentials,

where the total energy is learned and predicted directly from the atomic coordinates; while

the computational cost of going through the density is necessarily higher, it allows one to

more easily capture long-range effects that come from a more or less local integral of ρ and,

importantly, incorporates the permanent electrostatics exactly. As already shown in Ref.,25

this is extremely convenient when predicting the properties of systems that are much larger

than those used during the training phase.

In this respect, a relevant next step will be investigating the role of long-range descriptors

in complementing the capabilities of the method to predict all kind of physical interactions.

For example, making use of far-field representations such as LODE50 to learn the electron

density would help when reproducing long-range phenomena such as induced polarization

and charge-transfer effects, which could not be captured through a local learning of the

electron density around the atoms. Finally, the accurate prediction of ρ could be used to

feed existing orbital-free kinetic-energy functionals, which are typically limited by the quality

of the density, as well as to correct specific classes of KS-DFT calculations which present

pathological density-driven errors.51,52
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6 Source code and data availability

An open-source implementation of the method, together with the dataset of liquid water, can

be downloaded at https://github.com/andreagrisafi/SALTED. A worked example of the

workflow outlined in this work using FHI-aims with SALTED is also provided in this repository.

The reference calculations for both datasets are available at 10.17172/NOMAD/2022.10.17-1.

7 Supporting Information

Supporting Information includes: i) learning curves for the indirect prediction of kinetic,

electrostatic and exchange-correlation energies of liquid water, ii) an analytical and numerical

analysis of the error made in the indirect prediction of the total electronic energy.
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(3) Westermayr, J.; Gastegger, M.; Schütt, K. T.; Maurer, R. J. Perspective on integrating

machine learning into computational chemistry and materials science. The Journal of

Chemical Physics 2021, 154, 230903.

(4) Kirkpatrick, J.; McMorrow, B.; Turban, D. H. P.; Gaunt, A. L.; Spencer, J. S.;

Matthews, A. G. D. G.; Obika, A.; Thiry, L.; Fortunato, M.; Pfau, D.; Castellanos, L. R.;

Petersen, S.; Nelson, A. W. R.; Kohli, P.; Mori-Sánchez, P.; Hassabis, D.; Cohen, A. J.

Pushing the frontiers of density functionals by solving the fractional electron problem.

Science 2021, 374, 1385–1389.

(5) Kulik, H. J.; Hammerschmidt, T.; Schmidt, J.; Botti, S.; Marques, M. A. L.; Boley, M.;
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Jacquelin, M.; Jia, W.; Keçeli, M.; Laasner, R.; Li, Y.; Lin, L.; Lu, J.; Moussa, J.;
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