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Summary

� Sex-biased gene expression is considered to be an underlying cause of sexually dimorphic

traits. Although the nature and degree of sex-biased expression have been well documented

in several animal and plant systems, far less is known about the evolution of sex-biased genes

in more distant eukaryotic groups.
� Here, we investigate sex-biased gene expression in two brown algal dioecious species,

Fucus serratus and Fucus vesiculosus, where male heterogamety (XX/XY) has recently

emerged.
� We find that in contrast to evolutionary distant plant and animal lineages, male-biased

genes do not experience high turnover rates, but instead reveal remarkable conservation of

bias and expression levels between the two species, suggesting their importance in sexual dif-

ferentiation. Genes with consistent male bias were enriched in functions related to gamete

production, along with sperm competition and include three flagellar proteins under positive

selection.
� We present one of the first reports, outside of the animal kingdom, showing that male-

biased genes display accelerated rates of coding sequence evolution compared with female-

biased or unbiased genes. Our results imply that evolutionary forces affect male and female

sex-biased genes differently on structural and regulatory levels, resulting in unique properties

of differentially expressed transcripts during reproductive development in Fucus algae.

Introduction

Males and females can display striking differences in morphol-
ogy, physiology, and behavior. Evolution of these sexually dimor-
phic traits is thought to be rooted in anisogamy and shaped by
sex-specific selection (Hedrick & Temeles, 1989; Connallon &
Knowles, 2005; Ellegren & Parsch, 2007; Schärer et al., 2012).
Ultimately, the sexes are defined by the gamete size they produce
(either many small or fewer larger gametes) and sexual selection is
predicted to act differently regarding these two distinct reproduc-
tive strategies (Kokko & Jennions, 2008; Schärer et al., 2012).
Due to the disparity of resources and energy invested by males
and females into their reproductive cells, it is hypothesized that
sexual selection will be stronger in the sex that makes the smaller,
more abundant, and relatively ‘cheaper’ to produce gametes,
resulting in higher levels of selection on male-biased genes (Dar-
win, 1871; Bateman, 1948; Parker, 1979; Schärer et al., 2012;
Andersson, 2019). Because males and females share most of their
genomic sequence, the expression of sexually dimorphic traits
relies largely on the regulation of sex-biased gene (SBG)

expression (Ellegren & Parsch, 2007; Parsch & Ellegren, 2013;
Grath & Parsch, 2016).

Sex-biased gene expression has been well documented across a
wide number of animal species such as insects (Zha et al., 2009;
Perry et al., 2014; Papa et al., 2017), mammals (Yang et al.,
2006; Blekhman et al., 2010; Naqvi et al., 2019), birds (Mank
et al., 2007; Mank & Ellegren, 2009; Harrison et al., 2015), and
recently also in plants (Zemp et al., 2016; Darolti et al., 2018;
Cossard et al., 2019; Sanderson et al., 2019; Feng et al., 2020;
Scharmann et al., 2021) and brown algae (Martins et al., 2013;
Lipinska et al., 2015; Monteiro et al., 2019; Müller et al., 2021).
It has been shown that SBG expression can vary in strength
throughout development, can be detected already at juvenile
stages (Thoemke et al., 2005; Magnusson et al., 2011; Ingleby
et al., 2014; Perry et al., 2014; Lipinska et al., 2015), and can
constitute a large proportion of the transcriptome, with up to
90% in extreme cases (Ranz et al., 2003; Ayroles et al., 2009).
Genome-wide expression studies have found that the properties
of sex-biased genes differ between the sexes, where male-biased
genes show stronger bias, more rapid turnover rates and, at least
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in animals, greater evidence of relaxed purifying selection com-
pared with female-biased genes or unbiased genes (Parisi
et al., 2003; Ranz et al., 2003; Yang et al., 2006, 2016; Voolstra
et al., 2007; Zhang et al., 2007; Martins et al., 2013; Parsch &
Ellegren, 2013; Harrison et al., 2015). In dioecious plants, sex-
biased genes experienced faster evolution of gene expression levels
and high turnover rates between species, but no evidence of
higher divergence rates of protein-coding sequences has been
found so far (Zemp et al., 2016; Cossard et al., 2019; Sanderson
et al., 2019; Feng et al., 2020; Scharmann et al., 2021). More-
over, studies in willow (Salix viminalis) found reduced rates of
sequence evolution in male-biased genes compared with unbiased
genes, which was attributed to haploid purifying selection (Dar-
olti et al., 2018). In turn, male-biased genes in animal species
were found to evolve rapidly due mainly to relaxed selective con-
straint rather than adaptive evolution (Gershoni & Pietro-
kovski, 2014; Harrison et al., 2015; Sayadi et al., 2019). By
contrast, female-biased genes often evolve at similar or slower
rates compared with unbiased genes possibly due to larger pleio-
tropic constraints (Ellegren & Parsch, 2007; Zhang et al., 2007;
Assis et al., 2012). Altogether, these observations suggest that
male traits experience stronger sexual selection and sexual conflict
arising from anisogamy (Ranz et al., 2003; Connallon &
Knowles, 2005; Hayward & Gillooly, 2011; Janicke
et al., 2016). However, our knowledge about the evolution of
sex-biased expression is limited, mainly, to the animal species
with conspicuous sexual dimorphism and where separate sexes
evolved a long time ago.

Here, we study the evolution of sex-biased gene expression in
two brown algal species from the order Fucales, which has
recently evolved separate sexes (Serrão et al., 1999; Coyer
et al., 2006; Heesch et al., 2021). Brown algae are an interesting
group to study the evolution of sexual systems and sex-biased
expression because they have been evolving independently of
organisms such as animals, fungi, and plants for over a billion
years (Baldauf, 2003). The majority of brown algal species engage
in a haploid–diploid life cycle where sex is expressed during the
haploid gametophyte generation and controlled by haploid sex
chromosomes (UV system; Coelho et al., 2018). In that respect,
Fucales are unique among the brown algae as they represent the
only group that underwent a recent shift toward a diplontic life
history, in which the short-lived male sperm and female egg are
the only haploid stages (Coelho et al., 2019). Moreover, the con-
version to diploidy imposed a switch from the haploid UV (via a
hermaphroditic intermediate) to the diploid sex-determination
system, in several families of Fucales c. 17.5 Ma (million years
ago) (Heesch et al., 2021). While the transition to diploid sex
determination from the haploid system seems to be irreversible,
further transitions toward hermaphroditism within the diploid
lineages are still possible and occurred independently in several
genera of the Fucaceae (Heesch et al., 2021).

Fucus species have a rather simple structure with the vegetative
body consisting of a holdfast, a thallus, and the fronds. The
fronds contain reproductive receptacles which in dioecious spe-
cies bear either antheridia (producing motile sperm) or oogonia
(producing immotile, large eggs; Serrão et al., 1999; Coyer

et al., 2006; Cánovas et al., 2011; Fig. 1). The eggs produce pher-
omones which facilitate gamete–gamete recognition by attracting
sperm within a very short distance (Müller & Gassmann, 1985)
and fertilized zygotes usually settle within one to two meters of
the parent (Arrontes, 1993; Serrão et al., 1997). The different
reproductive structures are the only visible sexually dimorphic
trait in Fucus in the absence of detailed morphometric measures,
so that dioecious species are sexed solely by the presence of male
or female gametes (Coyer et al., 2002). In the case of hermaphro-
dite species, the same receptacle encloses both, antheridia and
oogonia, at the same time (Whitaker, 1931).

In this study, we focused on the dioecious species of two dis-
tinct lineages, Fucus serratus and Fucus vesiculosus (Supporting

Fig. 1 Fucus species co-occurring in their natural habitat. (a) Fucus spiralis
(top), Fucus distichus (center-left), Fucus serratus (center-right), and Fucus
vesiculosus (bottom-left) living in sympatry. (b) Diplontic life cycle of dioe-
cious Fucus. Gametes are produced in the receptacles of males and females
from which they are then released into the water column. Fertilization is
external, the developing zygote attaches to the substrate and the germl-
ings develop into male and female individuals. Diplontic life cycles occur
within the Fucales, whereas in most other brown algae with haploid–
diploid life cycles, a free-living diploid stage (sporophyte) alternates with a
free-living haploid stage (gametophyte). Photo credit G. Hoarau (a); image
created with BIORENDER (b).
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Information Fig. S1), that dominate the rocky intertidal North
Atlantic shoreline. The two lineages evolved c. 0.9–2.25 Ma,
and both contain hermaphroditic species, including Fucus dis-
tichus and Fucus spiralis (Fig. S1; Serrão et al., 1999; Coyer
et al., 2006; Hoarau et al., 2007). All four species often occur
intertwined with one another (Fig. 1a), and molecular studies
have shown that hybridization is common, involving dioecious-
hermaphrodite species pairs within each lineage, but hybrids of
dioecious species are almost never found (Coyer et al., 2002,
2007; Wallace et al., 2004; Billard et al., 2005; Hoarau
et al., 2015). Character mapping analysis suggested dioecy as the
most likely ancestral sexual system in the Fucus genus; however,
the direction of transition between hermaphroditism and separate
sexes within the two lineages remains ambiguous (Heesch
et al., 2021; Fig. S1).

Field observations and laboratory crosses of F. serratus–F. dis-
tichus hybrids allowed the identification of the type of sexual sys-
tem in dioecious species as a male heterogamety (XX/XY; Coyer
et al., 2002). Combined with the low levels of selfing, almost
100% fertilization success in dioecious species and effective poly-
spermy block (Bolwell et al., 1977; Brawley, 1992; Pearson &
Brawley, 1996; Serrao et al., 1996; Coyer et al., 2002), these
observations suggest that the targets of reinforcement and specia-
tion in Fucus involve gamete attraction and/or recognition genes.
Moreover, high levels of sperm competition in marine free
spawners like Fucus imply there is strong selection pressure on
the males for reproductive success as species in sympatry have
increased sperm specificity (Hoarau et al., 2015).

In this work, we explore male and female transcriptomic data
of F. serratus and F. vesiculosus, which recently evolved dioecy, to
elucidate the early stages of the evolution of sex-biased gene
expression. We study evolutionary dynamics of sex-biased tran-
scriptome expression, investigate the correlation of gene expres-
sion patterns between the two algal species, and identify sex-
biased genes with signatures of positive selection in this relatively
young XX/XY system.

Materials and Methods

Sampling

Reproductively mature F. serratus Linnaeus, F. vesiculosus Lin-
naeus, F. distichus Linnaeus, and F. spiralis Linnaeus were col-
lected from the intertidal shoreline at Mjelle, Norway
(67°24047.3″N, 14°37049.3″E) in May 2017 (Table S1). The
dioecious species were sexed by confirming the presence of
antheridia (male) or oogonia (female) in the receptacles. Recepta-
cles and small segments of vegetative tissue were dissected from
both hermaphroditic and dioecious individuals and stored at
−80°C, and then freeze-dried using a VirTis Bench Top K Freeze
Dryer before RNA extraction.

RNA extraction, library preparation, and sequencing

Heterogeneous tissue and variation in cellular composition can
impact RNA abundance between groups of samples and

contribute to large differences in gene expression that could be
misinterpreted as regulatory differences (Montgomery &
Mank, 2016; Hunnicutt et al., 2022). Specifically, inferences
from comparative bulk RNA-Seq approaches obtained from
homogenized whole bodies can introduce biases in inferred dif-
ferential expression profiles. To circumvent these biases, we
reduced sample complexity and dissected the reproductive organs
from vegetative tissue to detect sex-biased genes and reproductive
tissue genes with more confidence.

Total RNA was extracted from 5 mg of freeze-dried sample
from reproductive and vegetative tissue from three different male
and female individuals of both dioecious species F. serratus and
F. vesiculosus and from three F. spiralis and F. distichus individuals
as described in Pearson et al. (2006). Samples were purified with
the ZR-96 RNA Clean & Concentrator Kit (Zymo Research,
Irvine, CA, USA), and potential PCR inhibitors were removed
with the OneStep-96™ PCR Inhibitor Removal Kit (Zymo
Research). RNA concentrations were quantified with the Qubit
RNA Assay Kit (Life Technologies, Paisley, UK) and tested for
both quantity and integrity using RNA screen tape (Agilent
Technologies, Waldbronn, Germany) on the Agilent 2200
Tapestation.

Libraries were prepared from 1 μg RNA using the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina (New
England Biolabs, Ipswich, MA, USA) and sequenced on the Illu-
mina NextSeq 500 (150-bp pair-end reads), using the NextSeq
500/550 High Output Kit v.2.5 (300 Cycles).

RNA-Seq analysis and de novo reference transcriptome
assembly

Sequencing data were demultiplexed using the BCL2FASTQ Con-
version Software (v.2.20; Illumina, San Diego, CA, USA). Raw
sequences were adapter- and quality-trimmed with TRIMMOMATIC

(v.0.33; Bolger et al., 2014), followed by a quality check using
FASTQC (v.0.11.4; Andrews, 2010). Before de novo transcrip-
tome assembly, the reads were normalized to reduce redundancy
of overrepresented sequences, using Trinity’s in silico read nor-
malization (v.2.8.5). A reference transcriptome per species was
generated (all replicates and conditions combined), using Trin-
ity’s de novo assembly (Grabherr et al., 2011; Haas et al., 2013).
Isoforms were collapsed into single gene sequences using a Trin-
ity_gene_splice_modeler.py script (TRINITY toolkit).

The predicted genes generated from the de novo assembly
were then blasted against a custom bacterial/reference genomes
database to identify and eliminate bacterial contamination. The
longest open reading frames (ORFs) were constructed using
TRANSDECODER (v.5.5.0; Haas et al., 2013). The ORFs were
then blasted against an in-house heterokont database and a
standard UniProt and Pfam database to keep the most likely
ORFs. TRANSDECODER. Predict was used to predict the best
coding regions with homology search results (Pfam and hetero-
kont results) and genes without a coding region of at least
100 bp were removed from the dataset. Trinity’s CD-HIT-EST
(v.4.6; Li et al., 2001) clustered genes with predicted ORFs to
further reduce the number of redundant sequences, thus
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generating the final reference gene sets for each species. Tran-
script abundances were then quantified using KALLISTO (Bray
et al., 2016) with 1000 bootstraps and represented as TPM
(transcript per million). Genes with log2(TPM + 1) < 1 were
considered not expressed.

ORTHOFINDER (v.2.3.3; Emms & Kelly, 2019) was used to find
orthologous genes between all four Fucus species (Table S1). We
used orthogroups with single and/or multicopy-genes to study
global patterns of conservation of sex-biased expression in the
dioecious species pair; and orthogroups with strictly single copy
genes for the evolutionary and comparative expression analyses.
Orphan genes (i.e. taxonomically restricted genes) were defined
as genes present in the reference transcriptome of only one species
and having no BLASTP match (10 − 04e-value cutoff) in the other
Fucus species.

Differential gene expression analysis

Differential gene expression within species (between sexes and tis-
sue types) was tested with the DESEQ2 (BIOCONDUCTOR v.3.9;
Love et al., 2014). Genes with fold change (FC) ≥ 2 and FDR-
adjusted P-values Padj < 0.05 were considered significantly differ-
entially expressed.

Phylogenetic analysis

Phylogenetic trees of the four Fucus species, Pelvetia canaliculata
and Ascophyllum nodusum were generated using a set of 32
nuclear protein-coding genes used previously to construct a
Phaeophycean species tree (Akita et al., 2022). CLUSTAL-OMEGA

(v.1.2.4) was used to align the sequences which were then quality
checked for missing data (> 90%) and converted to nexus format
using a custom python script. IQ-TREE (v.1.6.1) was used to infer
phylogenetic trees (−bb 1000). ASTRAL (v.5.7.1) was then used to
search for the tree with the highest consensus in both bootstrap
trees and maximum likelihood trees and were then visualized
using FIGTREE (v.1.4.4).

Evolutionary analysis

Amino acid sequences of the single-copy orthologs of F. serratus–
F. distichus and F. vesiculosu–F. spiralis were aligned using MAFFT

(v.7.450; Katoh et al., 2002) and translated back to nucleotide
alignments using PAL2NAL (v.14; Suyama et al., 2006). The
alignments were trimmed using Gblocks with a minimum block
length of 20. In order to remove poorly aligned sequences that
could bias the evolutionary analysis, we realigned all the FASTA
files with EMBOSS WATER (v.6.6.0; Madeira et al., 2019) and
removed alignments with < 80% similarity. The remaining
high-quality, gapless alignments exceeding 100 bp in length were
retained for pairwise dN/dS (ω) analysis using YN00 method in
PAML4 (F3x4 model of codon frequencies; Yang & Nielsen, 2000;
Yang, 2007). The difference in mean dN/dS value between SBGs
and unbiased genes was assessed by 10 000 permutations using a
custom R function (R Core Team, 2020).

The positive selection analysis was carried out using CODEML

(PAML4, F3x4 model of codon frequencies) using single-copy
orthologs of the four Fucus species and two other brown algal spe-
cies (Ectocarpus sp.; Cock et al., 2010) and Sacchraina japonica (Ye
et al., 2015). Gapless alignments longer than 100 bp containing
sequences from all six species were retained for subsequent analysis.
We applied two branch-site models implemented in CODEML

PAML4 (Yang, 2007): a null model (H0, model = 2, NS sites = 2,
fix_omega = 1), in which the branch of interest (foreground
branch) may have different proportions of sites under neutral selec-
tion than the background (i.e. relaxed purifying selection), and an
alternative model (H1, model = 2, NSsites = 2, fix_omega = 0),
in which the foreground branch may have a proportion of sites
under positive selection. The outputs of the two models (H0 and
H1) were compared using the likelihood ratio test. P-values under
chi-squared distribution with the degree of freedom equal 1 and
FDR correction were calculated using Pchisq and P.adjust functions
in R (R Core Team, 2020).

Euclidean distances were estimated for all single-copy ortho-
logs between F. serratus and F. vesiculosus following the approach
of (Pereira et al., 2009). The following formula was used:

EucD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

j¼1

x1j�x2j
� �2s

where xij is the expression level of the gene under consideration
(TPM) in species i (i.e. species 1 or species 2) during stage j and
k is the total number of stages (i.e. four, male and female individ-
uals, reproductive and vegetative tissues). All statistical analyses
were performed using RSTUDIO (R v.3.6.3).

Gene ontology analysis

EGGNOG v.5.0 (Huerta-Cepas et al., 2019) was used to perform
functional annotation of F. serratus and F. vesiculosus genes. We
used TOPGO package in R (Alexa & Rahnenfuhrer, 2020) to
detect enrichment of specific GO terms in sex-biased genes (Fish-
er’s exact test with a P-value cutoff of 0.05).

Results

Transcriptome assembly and analysis of gene expression

We sequenced reproductive and vegetative tissue from males and
females of dioecious F. serratus and F. vesiculosus and hermaphrodi-
tic F. distichus and F. spiralis. We obtained a total of 478 million
reads from two sequencing runs with an average of over 21 million
reads per tissue type and species (Table S1). The de novo assembled
reference transcriptome for each species contained 29 610 genes
for F. vesiculosus and 39 009 genes for F. serratus (Table S1, see the
‘Materials and Methods’ section for details) after filtering out the
transcripts with low expression or high similarity to other tran-
scripts. BUSCO v.3 (Waterhouse et al., 2018) estimated complete-
ness of each reference transcriptome at 88.8% for F. vesiculosus and
92.4% for F. serratus (Table S1).
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Sex-biased gene expression

Genes with significant sex-biased expression (FC ≥ 2, Padj < 0.05
(FDR-adjusted P-value)) were identified in two comparisons,
male reproductive vs female reproductive tissue and male vegeta-
tive vs female vegetative tissue, using the DESEQ2 R package
(Love et al., 2014; Tables S2, S3). As expected, the greater num-
ber of sex-biased genes (SBGs) was found in the reproductive tis-
sue when male vs female receptacles were compared (2993 and
2772 genes in F. serratus and F. vesiculosus, respectively; Fig. 2a).
By contrast, in vegetative tissues, only 20 and 22 genes were sex-
biased in F. serratus and F. vesiculosus, respectively (Tables S2,
S3). Since the sex-biased genes from the vegetative tissue over-
lapped largely with those from the reproductive tissue, we
decided to focus on the latter in all consecutive analyses on sex-
biased gene expression.

We found more male-biased genes (MBGs) than female-
biased genes (FBGs) in both species (2315 MBGs vs 678 FBGs
in F. serratus; and 2025 MBGs vs 747 FBGs in F. vesiculosus;
Fig. 2a). Noteworthy, more than half of the MBGs were also
male-specific (55% in F. serratus and 58% in F. vesiculosus),
meaning their expression in female reproductive tissue fell below
the detection threshold (log2(TPM + 1) < 0; Fig. 2a). By con-
trast, the majority of female-biased genes were also expressed in
male receptacles, and female-specific genes constituted a smaller
fraction of the female sex-biased gene (FBG) pool (17%, F. serra-
tus; 3%, F. vesiculosus; Fig. 2a; Table S3).

To further examine the relationship between the expression
levels and the degree of sex bias, we grouped the genes according
to the fold change (FC) difference between males and females
and plotted their mean expression levels in each sex (Fig. 2b). We
observed that the highest fold changes (FC > 20) were a result of
very low expression or silencing (log2(TPM + 1) < 0) of the
given gene in the other sex (Fig. 2b). Interestingly, between 60%
and 90% of female-biased genes featured moderate expression
bias (2 < FC < 6) (416 in F. serratus; and 674 in F. vesiculosus),
whereas the majority of male-biased genes were silent in females
and exhibited very high fold changes (FC > 20; 61% or 1416
genes in F. serratus and 59% or 1201 genes in F. vesiculosus),
which is consistent with the high proportion of male-specific
SBGs (Fig. 2a,b).

We also noted that female-biased genes were highly expressed
and ubiquitously present in both sexes and both tissue types,
including male receptacles (Fig. 2c). Conversely, MBGs showed
a strong signal of expression only in the male reproductive tissue
and had significantly lower expression levels compared with unbi-
ased genes in male and female vegetative and female reproductive
tissues in both species (Fig. 2c, P < 2e-16 in all pairwise Wil-
coxon tests).

Tissue-biased gene expression

We analyzed transcript abundance in the reproductive vs vegeta-
tive tissues within each sex and species to identify genes with
tissue-biased expression (FC ≥ 2, Padj < 0.05 (FDR-adjusted
P-value); Tables S2, S3; Fig. 3a). Males of both Fucus species

displayed higher tissue-bias than females, and more of these
tissue-biased genes were over-expressed in the reproductive
organs compared with vegetative tissue (Fig. 3a). To identify sex-
biased genes that were predominantly expressed in the reproduc-
tive tissue, we compared the tissue-biased data set with that of the
male and female sex-biased genes identified above. Not surpris-
ingly, most of the male reproductive tissue-biased genes over-
lapped with MBGs (72% and 88% in F. serratus and
F. vesiculosus, respectively), whereas FBGs were more uniformly
expressed across the female body (only 18% and 7% localized
specifically in the reproductive tissue of F. serratus and F. vesiculo-
sus, respectively; Fig. 3a, shaded area). Noteworthy, the SBGs
showed significantly higher degrees of sex bias in the reproductive
tissue than in the nonreproductive tissue in both sexes and species
(Fig. 3b, Wilcoxon test, P < 1.4e-06).

Common patterns in male-biased expression among Fucus
species

Using ORTHOFINDER, we found 20 077 orthogroups that com-
prised 85 430 genes (72.6% of all the genes), out of which
14 818 orthogroups contained genes from both dioecious species
(F. vesiculosus and F. serratus). In addition, we searched for
single-copy orthologs within each lineage (F. distichus–F. serratus
and F. spiralis–F. vesiculosus) as well as between the two dioecious
species (F. serratus–F. vesiculosus). We found 9401 and 8758 one-
to-one orthologs between F. distichus–F. serratus and F. spiralis–
F. vesiculosus, respectively, and 9778 one-to-one orthologs in the
dioecious pair (Table S4). Up to 35% of genes in each species
were ‘orphans’, meaning species-specific genes, without any
intra- or interspecific orthologs.

First, we analyzed the conservation of sex bias among all
orthogroups, including orthogroups with multi-copy genes per
species, provided that at least one of the paralogs exhibited sex-
biased expression. Comparisons of orthogroups comprising the
sex-biased genes of F. serratus and F. vesiculosus revealed that the
male-biased genes were highly conserved between the two species
(Table S4). As much as 65–75% of the orthogroups containing
male-biased genes were common between F. serratus and F.
vesiculosus. By contrast, only 20–26% of orthogroups with
female-biased genes were shared between these species (Fig. 4a).
Interestingly, the low number of female-biased genes shared
between the lineages was not caused by the presence of orphan
genes among FBGs, but rather gain/loss of female bias in existing,
orthologous genes. In fact, the proportions of sex-biased genes
among the orphan genes were significantly lower than expected
in both species and sexes (χ2 test, P < 2.4e-23, Table S5). Taken
together, we observed high conservation of male sex-biased
expression and higher variation in female-biased genes between
F. serratus and F. vesiculosus.

To further analyze the common patterns of the sex-biased
expression, we focused on genes for which there was a clear one-
to-one relationship across F. serratus and F. vesiculosus. Out of the
9778 orthogroups with single copy genes, 21% (2070
orthogroups) contained genes with sex-biased expression in at
least one of the two species (Table S4). Again, male sex bias was
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Fig. 2 Sex-biased gene expression. (a) Number of sex-biased genes (MBG, male-biased; FBG, female-biased) in Fucus serratus and Fucus vesiculosus refer-
ence transcriptomes. Unbiased genes were defined as Padj > 0.05 or showing less than twofold difference between the sexes. Bars represent the proportion
of sex-specific genes among the sex-biased genes in each species. (b) Mean expression levels (log2(TPM + 1)) of female-biased and male-biased genes at
several degrees of sex bias (fold change) in the female (pink) and male (blue) reproductive tissues. Error bars represent SE. Bar plots indicates the number of
genes in each fold change (FC) category. (c) Boxplots showing the mean expression levels across the replicates (log2(TPM + 1)) of female-biased (pink),
male-biased (blue), and unbiased (gray) genes in male and female reproductive and vegetative tissues indicated by the hashed pattern (check, female
reproductive tissue; angled lines, male reproductive tissue; dots, female vegetative tissue; waves, male vegetative tissue). The letters above the plots indi-
cate significant differences within each gene group (pairwise Wilcoxon test, P < 0.05). Horizontal bars, median; lower whiskers, Q1 − 1.5×(interquartile
range); upper whiskers, Q3 + 1.5×(interquartile range); outliers, single data points with >1.5× value of the upper quartile or <1.5× value of the lower quar-
tile. RepF, female reproductive tissue; RepM, male reproductive tissue; VegF, female vegetative tissue; VegM, male vegetative tissue.

New Phytologist (2023)
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation.

Research

New
Phytologist6

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18710 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [16/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



strongly correlated across the two lineages and applied to c. 70–
80% of MBGs with one-to-one orthologs, contrary to 25–16%
of shared FBGs in F. serratus/F. vesiculosus (Fig. 4b).

The patterns of expression of common and species-specific
SBGs showed similar trends in F. serratus and F. vesiculosus
(Fig. 4c). Genes with common sex bias had significantly higher
average expression levels in reproductive tissue than the species-
specific SBGs (genes biased toward one sex in one species but not
the other; Fig. 4c, Wilcoxon test, P < 0.001). Interestingly, this
was also true for the FBGs shared between the lineages in the veg-
etative tissue (Wilcoxon test, P < 0.01), whereas shared male-
biased genes exhibited significantly lower expression levels in the
vegetative tissue compared with species-specific MBGs (Wil-
coxon test, P < 0.001). In short, male-biased genes shared by the
dioecious species were primarily expressed in reproductive tissue
and constituted almost half of the male-biased genes found in the
receptacles (42% in F. serratus and 48% in F. vesiculosus).

The tissue specificity of male-biased genes was further high-
lighted in the hierarchical clustering of the one-to-one ortho-
logs based on expression levels within and among the F. serratus
and F. vesiculosus species (Fig. 5). For the sex-biased genes
(when at least one or both orthologs are SBGs), the male

reproductive samples formed a separate cluster from all the
other samples (Fig. 5a), which grouped primarily by phyloge-
netic relatedness, with female reproductive tissue appearing
more similar to that of male and female vegetative tissue
(Fig. 5a). For unbiased genes (when neither of the orthologs
showed sex-bias), the samples clustered by phylogeny and tissue
types (Fig. 5b).

Evolution of sex-biased genes

To investigate the role of selection on coding sequence evolution,
we calculated pairwise divergence of the one-to-one orthologs
within lineages (F. serratus–F. distichus (7759 orthologs);
F. vesiculosus–F. spiralis (7103 orthologs)) using the YN00 pack-
age in PAML4 (Yang, 2007; Table S6).

In both dioecious species, female-biased genes showed similar
rates of nonsynonymous to synonymous substitutions (dN/dS) to
that of unbiased genes (Fig. 6a, permutation test, P > 0.07). By
contrast, the average dN/dS was significantly higher for male-
biased than unbiased genes (Fig. 6a, permutation test, P < 0.02)
and did not depend on the magnitude (FC) or conservation (uni-
versal vs species-specific) of the sex-biased expression patterns

(a) (b)

Fig. 3 Sex-biased genes (SBGs) are over-expressed specifically in the reproductive tissue. (a) Venn diagram shows numbers of significantly differentially
expressed genes between reproductive (Rep) and vegetative (Veg) tissues of males and females from Fucus serratus and Fucus vesiculosus (FC > 2,
Padj < 0.05). The shaded overlap highlights female-biased genes (FBGs, upper panel) and male-biased genes (MBGs, lower panel) that were over-
expressed in reproductive tissue. (b) Overall levels of sex-biased expression (log2FC) of SBGs up-regulated in reproductive (Rep) or vegetative tissue (Non-
Rep; Wilcoxon test, P < 1.4e-06). Horizontal bars, median; lower whiskers, Q1 − 1.5×(interquartile range); upper whiskers, Q3 + 1.5×(interquartile range);
outliers, single data points with >1.5× value of the upper quartile or <1.5× value of the lower quartile. ***, P < 1.4e-06.
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(Table S7, Wilcoxon test, P > 0.11). In addition, we found a sig-
nificant difference in dN/dS ratios between male and female
SBGs in both dioecious species (Fig. 6a, permutation test,
P < 2e-16).

To assess whether increased protein divergence rates were due
to increased positive selection or relaxed purifying selection, we
performed a maximum likelihood analysis using a branch-site

model implemented in CODEML in PAML4 (Yang, 2007). The
branch-site models allow ω to vary both among sites in the pro-
tein and across branches on the tree and aim to detect positive
selection affecting a few sites along particular lineages (called
foreground branches). We used sequences from the four Fucus
species (F. vesiculosus, F. serratus, F. distichus, and F. spiralis) and
two other brown algae (Ectocarpus sp. (Cock et al., 2010) and

(a)

(c)

(b)

Fig. 4 Conservation of sex-biased gene (SBG) expression across Fucus serratus and Fucus vesiculosus species. (a) Numbers of orthogroups with female
(pink, FBGs) and male (blue, MBGs) sex-biased genes shared between dioecious species. Orthogroups with multi-copy genes of a species were included if
at least one of the paralogs exhibited sex-biased expression. (b) Conservation of sex-biased expression among single copy, one-to-one orthologs between
F. serratus and F. vesiculosus. (c) Mean expression levels (log2(TPM + 1)) of conserved and species-specific SBGs with single-copy orthologs in F. serratus

and F. vesiculosus across different tissue types. Wilcoxon test: **, P < 0.01; ***, P < 0.001. F.ser, Fucus serratus; F.ves, Fucus vesiculosus. Horizontal bars,
median; lower whiskers, Q1 − 1.5×(interquartile range); upper whiskers, Q3 + 1.5×(interquartile range); outliers, single data points with >1.5× value of
the upper quartile or <1.5× value of the lower quartile.
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Saccharina japonica (Ye et al., 2015)) to find 561 conserved
single-copy orthologs. Among those, 57 orthologs exhibited
male-biased expression and 13 exhibited female-biased expression
in at least one of the Fucus species (Table S8). Each alignment
was tested for the direction and magnitude of selection on amino
acid changes, comparing the average of foreground ω values
(branches leading to either F. serratus or F. vesiculosus) with the
average of background ω values. We also performed the same test
choosing forward branches leading to: all four Fucus species; F.
serratus–F. distichus lineage; and, F. vesiculosus–F. spiralis lineage,
to identify genes with evidence for positive selection specific to
the dioecious species (Table S8). After filtering out the genes
under selection on the internal branches, we detected evidence
for adaptive evolution (FDR < 0.05) in 94 genes (eight male-
biased genes, two female-biased genes, and 84 unbiased genes) in
F. serratus and 119 genes (nine male-biased genes and 110 unbi-
ased genes) in F. vesiculosus (Table S8). We found no significant
enrichment of genes under positive selection among the sex-
biased genes compared with unbiased genes (χ2 test, P > 0.05),

which is consistent with the idea that sex-biased genes are evolv-
ing predominantly under relaxed selective constraint. Finally, we
compared the dN/dS analysis with gene expression divergence
measured as Euclidean distances for the one-to-one orthologous
pairs between F. serratus and F. vesiculosus. Female-biased genes
showed the highest divergence in expression patterns compared
with male-biased or unbiased genes (Fig. 6b, Wilcoxon test
P < 2e-16). These results are in line with the FBGs being more
liable (a given gene has a female bias in one species but it is unbi-
ased in the other species). By comparison, male-biased genes pre-
sented highly conserved expression, with the universal MBGs
having overall the most stable expression patterns among all
SBGs (Figs S2, S3; Wilcoxon test P < 0.003).

Functional analysis

The Gene Ontologies (GO) associated with female-biased genes
in F. serratus and F. vesiculosus were enriched in biological pro-
cesses related to cell wall synthesis, translation, transmembrane

(a) (b)

Fig. 5 Heatmaps and hierarchical clustering of gene expression levels (log2(TPM + 1)) for all single-copy orthologs among Fucus serratus and Fucus vesicu-

losus. The dendrogram was generated using hierarchical clustering with 1000 bootstraps (PVCLUST package, R). (a) Sex-biased genes (at least one sex-biased
gene in one of the studied species); (b) unbiased genes (none of the genes was sex-biased). The diagrams under the heatmap indicate the species (F.
vesiculosus or F. serratus), the sex of an individual (blue, male; pink, female) and tissue type (Rep, reproductive tissue; Veg, vegetative tissue).
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transport, receptor signaling, photosynthesis, cell homeostasis,
and establishment of cell polarity (Fisher exact test, P < 0.05,
Table S9). Interestingly, analysis of male-biased genes of both spe-
cies identified GO terms related to spermatogenesis and sperm
competition in addition to microtubule and flagellar movement
categories, as well as photo- and chemotaxis (Fisher exact test,
P < 0.05, Table S9). Furthermore, three consistently male-biased
flagellar-associated proteins were found to evolve under positive
selection (Table S8). These results are coherent with the reproduc-
tive functions of males and females, with MBGs being

predominantly involved in male germ cell differentiation, sperm
motility, and response to pheromones produced by the egg, whereas
FBGs being related to the development of a future embryo.

Discussion

Brown algae are excellent models to study the evolution of sexual
systems, as their extraordinary divergence in sex-determination
mechanisms and sexual dimorphism (ranging from isogamy to
oogamy) sets them apart from other eukaryotic groups (Silberfeld

(a)

(b)

Fig. 6 Evolution of sex-biased genes. (a)
Evolutionary rates measured as dN/dS
between species pairs (Fucus serratus/Fucus
distichus and Fucus vesiculosus/Fucus

spiralis) for unbiased, female-biased, and
male-biased genes in the two dioecious
Fucus species. White bar, median; black dot,
mean. Different letters above the plots
indicate significant differences in mean dN/
dS (10 000 permutations test; P < 0.05). (b)
Expression divergence measured as Euclidean
distances between single-copy orthologous
genes of F. serratus and F. vesiculosus.
Horizontal bars, median; lower whiskers, Q1
− 1.5×(interquartile range); upper whiskers,
Q3 + 1.5×(interquartile range); outliers,
single data points with >1.5× value of the
upper quartile or <1.5× value of the lower
quartile. Different letters above the plots
indicate significant differences (pairwise
Wilcoxon test: P < 4.3e-10). FBGs, female-
biased genes; MBGs, male-biased genes.
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et al., 2010; Coelho et al., 2019). In this work, we asked whether
there are similarities in sex-biased gene expression patterns
between two Fucus species, which recently evolved separate sexes
after the transition to a diploid life history. We investigated the
proportion of the transcriptome that evolved sex-biased expres-
sion in this relatively young XX/XY system with modest sexual
dimorphism. We also examined whether the evolutionary pat-
terns of sex-biased genes in Fucus are convergent with the ones
found in well-established XY or ZW systems.

Sex-biased expression in dioecious Fucus species

While very few genes were differentially expressed between male
and female vegetative tissue, thousands of genes (c. 8–9% of F. ser-
ratus and F. vesiculosus transcriptomes, respectively) were differen-
tially expressed in the reproductive tissues. A similar fraction of the
genome displayed tissue-biased expression between receptacles and
the rest of the body within each sex, allocating the majority of
tissue- and sex-biased expression to the reproductive organs. These
findings agree with the general trend found in animals and plants
where reproductive tissues show the highest expression divergence
between sexes (animals: Yang et al., 2006; Yang, 2007; Pointer
et al., 2013; Harrison et al., 2015; Allen et al., 2018; plants: Song
et al., 2017; Darolti et al., 2018; Sanderson et al., 2019). This could
be expected in Fucus, as sexes are morphologically identical except
for their receptacles. The overall moderate levels of SBG expression
in Fucus (8–9%), compared with many model organisms (Grath &
Parsch, 2016), may be explained by the low levels of sexual dimor-
phism, external fertilization, and, accordingly, more narrow range
of sexual selection in both F. serratus and F. vesiculosus (Luthringer
et al., 2014). In birds, the proportion of SBGs corresponded with
the strength of selection and the extent of phenotypic dimorphism
between males and females (Harrison et al., 2015). Similarly, in a
male feminized mutant strain of the brown alga Macrocystis, sex-
specific phenotypes (male, female, or feminized male variant)
showed sex-specific transcriptomic patterns (Müller et al., 2021).
However, a cross-genus study of SBG expression in Leucadendron
plants with varying levels of sexual dimorphism found no correla-
tion between levels of morphological differences and percent of
sex-biased genes (Scharmann et al., 2021).

It is worth noting that the proportion of SBGs in the ooga-
mous Fucus (reproduction involving a small motile male and
large immobile female gametes) much exceeded that of the near-
isogamous Ectocarpus (motile male and female gametes of similar
sizes; Lipinska et al., 2015). Ectocarpus is a filamentous brown
alga with low levels of sexual dimorphism between the male and
female gametophytes, has a haploid–diploid life cycle, and pro-
duces morphologically similar, small, flagellated male, and female
gametes (Luthringer et al., 2014; Lipinska et al., 2015). In brief,
phenotypic sexual dimorphism in Ectocarpus is imperceptible,
with < 4% (658) of Ectocarpus genes being sex-biased during the
reproductive stage in contrast to 8% (2993) in F. serratus and 9%
(2772) in F. vesiculosus in this study. Furthermore, in oogamous
kelp Macrocystis, where male and female gametophytes have visi-
bly distinct morphologies (Müller et al., 1979), sex-biased gene
expression analysis found 24% (5442) of genes with male/female

bias (Müller et al., 2021). In summary, our results suggest that
the evolution of anisogamy alone, without the other morphologi-
cally dimorphic characters, has triggered a significant increase in
sex-biased gene expression.

Excess of male-biased genes in the Fucus transcriptome

In both systems, Ectocarpus with UV, and Fucus with XX/XY sex
chromosomes, we identified an excess of male-biased over
female-biased genes. Sex-biased genes were also more commonly
male-biased in dioecious plants like Silene and asparagus (Harkess
et al., 2015; Zemp et al., 2016), but not in poplar (Sanderson
et al., 2019). However, in Fucus species, male overexpression was
much more pronounced, exceeding more than three times the
number of FBGs (400 MBGs vs 258 FBGs in Ectocarpus; 2315
MBGs vs 678 FBGs in F. serratus; 2025 MBGs vs 747 FBGs in
F. vesiculosus). Globally, male-biased genes featured extreme
expression bias (FC > 20) with more than half of the male-
biased genes being male-specific, expressed explicitly in male
receptacles, and at significantly higher levels than unbiased genes
in the vegetative tissue. This transcription profile may result from
adaptive changes in males, and, as predicted for anisogamy,
implies that males experience stronger selection on gene expres-
sion than females (Darwin, 1871; Bateman, 1948; Parker, 1979;
Schärer et al., 2012; Andersson, 2019). Excess of male-based
expression has been found in many other species and could be
due to the relative expression of male sexual traits, female choice,
and male–male competition (Connallon & Knowles, 2005; Poin-
ter et al., 2013; Harkess et al., 2015; Zemp et al., 2016).
Although female choice in the ‘classical’ understanding does not
exist in free-spawning species like Fucus, it could still occur at the
level of gametes or postfertilization. Evidence for ‘gamete-
mediated mate choice’ and the evolutionary significance of non-
random interactions among gametes to the evolutionary origins
of more definite forms of mate choice was recently reviewed
(Kekäläinen & Evans, 2018). Moreover, sperm competition
would be facilitated in the water column, where ejaculates from
different males mix and compete for fertilization of the egg.

To test the hypothesis that the sex-biased expression in Fucus
was associated with increased sexual selection in males, we would
need to compare our data with transcriptomic data from closely
related hermaphrodite species. For example, gene expression data
from the two Fucales families that remained hermaphroditic
(Sargassaceae and Notheiaceae) could serve as a baseline to assess
the direction of changes in expression that led to sex bias in F. ser-
ratus and F. vesiculosus (Heesch et al., 2021).

By contrast to MBGs, female-biased genes seemed to be uni-
formly and highly expressed throughout the female and male body.
This overall homogeneous expression pattern of FBGs became
apparent when vegetative and reproductive tissue within each sex
were compared (so-called tissue-biased expression, as opposed to sex-
biased expression, where the same tissue types are compared between
the two sexes). The majority of FBGs did not show tissue-biased
expression in females (79% in F. serratus and 91% in F. vesiculosus),
and only 20 and 22 genes showed sex bias in vegetative tissue in F.
serratus and F. vesiculosus, respectively. To summarize, sex-biased
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gene expression in Fucus appears to arise from the down-regulation
of expression of pleiotropic female genes in male receptacles and by
restricting the expression of MBGs to the male reproductive tissue,
resulting in tendentiously male-biased transcriptomes as previously
reported for the giant kelpMacrocystis (Müller et al., 2021).

High conservation of male-biased expression

Male-biased genes are largely shared between the two Fucus spe-
cies, which contrasts with the overall trends found in other spe-
cies. Male-biased genes in Fucus presented not only the
equivalence of bias, but also of expression levels (measured as
Euclidean distance), which resulted in clustering of the male
reproductive samples by sex rather than by species. The changes
in male-biased gene regulation may have risen in the common
ancestor of F. serratus and F. vesiculosus and shared ancestry could
be, therefore, responsible for the observed correlation. This
would further support a hypothesis that dioecy was the ancestral
state in the Fucus genus and hermaphroditism in F. distichus and
F. spiralis is a derived state. However, previous reports have
shown that the targets of sex-biased expression can change over a
short evolutionary time and that a small fraction of genes show
parallel changes in recently diverged species (Ranz et al., 2003;
Harrison et al., 2015; Huylmans et al., 2017). Similarly, studies
on Leucadendron plants failed to find genes that were consistently
sex-biased but, instead, concluded that the sex-biased gene
expression evolved independently in each species (despite dioecy
being most likely the ancestral state in this genus; Scharmann
et al., 2021). Furthermore, global patterns of evolution of sex reg-
ulation in dioecious plants found more differences than similari-
ties in both sex-determining genes and downstream pathways
(Feng et al., 2020).

Given the relatively young evolutionary age of our system,
phenotypic differences accumulated between and within species
may be insufficient to drive the turnover of sex-biased genes.
However, this is unlikely since the number of single-copy ortho-
logs with male-biased expression (in both species) exceeded four
times the number of unbiased genes with one-to-one orthologs,
suggesting that the MBGs are selectively maintained to perform a
role in male reproduction. Functional analysis of male-biased
genes further support this assumption, as MBGs were consis-
tently enriched in ontologies related to male fertility, sperm pro-
duction, and motility. In contrast to MBGs, FBGs showed more
variability and had species-specific expression patterns indicated
by significantly increased Euclidean distances, compared with
both unbiased and male-biased genes. Taken together, if intralo-
cus conflict (expression of sexually antagonistic alleles that
increase fitness in one sex but move the other sex from its pheno-
typic optimum) is the main driver of sex-biased expression, our
results suggest that the targets of this conflict are fixed in males,
but not in females of Fucus.

Evolution of sex-biased genes

Sex-biased genes tend to evolve faster than unbiased genes in ani-
mal species (Meiklejohn et al., 2003; Harrison et al., 2015;

Lipinska et al., 2015; Darolti et al., 2018). Nevertheless, no evi-
dence for faster evolution of male-biased genes has been found in
plants (Zemp et al., 2016; Cossard et al., 2019; Sanderson
et al., 2019; Scharmann et al., 2021). Although male-biased genes
displayed conserved expression between Fucus species, they pre-
sented higher rates of protein evolution compared with unbiased
genes. Both positive selection in males or relaxed selection in
females may be responsible for rapid DNA sequence evolution of
MBGs (Zhang et al., 2004; Dyken & Wade, 2010; Gershoni &
Pietrokovski, 2014; Gossmann et al., 2014; Mank, 2017). The
fraction of MBGs under selection was, however, not significantly
different to that observed for unbiased genes, indicating that
adaptive evolution is not the main driver of the elevated substitu-
tion rates in MBGs. Interestingly, three of the 21 male-biased
genes under positive selection were associated with the sperm
flagella, suggesting that at least a proportion of male-biased genes
could experience adaptive evolution resulting from stronger sex-
ual selection driven by, for example, sperm competition in Fucus.

Alternatively, other aspects of genetic architecture could be
contributing to the rapid evolution of male-biased genes. For
example, MBGs could be less constrained by pleiotropy, because
their expression is predominantly confined to male reproductive
tissue, which is often associated with patterns of faster sequence
evolution (Meisel, 2011; Grath & Parsch, 2012; Darolti
et al., 2018). In line with this, female-biased genes in Fucus are
expressed in both vegetative and reproductive tissue in male and
female gametophytes, and show lower rates of synonymous to
nonsynonymous substitutions. Interestingly, high tissue speci-
ficity of male-biased genes in animals was accompanied by high
rates of turnover, consistent with differential selection pressures
(Harrison et al., 2015; Catalán et al., 2018; Whittle & Exta-
vour, 2019). This was not the case in Fucus, as we observed accel-
erated rates of protein divergence linked to low pleiotropy of
MBGs, but also high conservation of the magnitude of sex bias
and gene expression levels. Furthermore, the rate of evolution
could be determined by the genomic location of MBGs, specifi-
cally the sex-chromosome linkage. Elevated rates of coding
sequence evolution on the sex chromosome relative to autosomes
have been reported for several species, consistent with the theoret-
ical prediction of fast-X or fast-Z evolution (Kirkpatrick &
Hall, 2004; Mank et al., 2010; Belleghem et al., 2018). In Fucus,
male-biased genes show high expression levels only in the male
reproductive tissue, and the fast-X theory predicts that genes
highly expressed in the hemizygous sex should be especially prone
to fast-X evolution (Meisel et al., 2012). This interesting aspect
of MBGs evolution should be revisited in the future when the
genome sequences of F. serratus and F. vesiculosus become avail-
able. Finally, the set of MBGs could be enriched for young genes,
which are known to evolve more rapidly in plant gametophytes
(Gossmann et al., 2016). However, to assess the evolutionary age
of Fucus sex-biased genes, additional data from closely related
species are needed.

In summary, MBGs and FBGs in Fucus seem to follow dif-
ferent evolutionary paths and are under different selective pres-
sures. Male-biased genes evolve faster at the level of the protein
sequence, but their expression levels remain very similar
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between Fucus species. By contrast, FBGs do not show acceler-
ated rates of coding sequences evolution, but rather higher
diversification of their expression levels. Because the changes in
coding and changes in regulatory sequences are often decou-
pled, it has been suggested that they play different evolutionary
roles in the evolution of morphological and physiological char-
acters (Connallon & Knowles, 2005; Wray, 2007; Tirosh &
Barkai, 2008; Liao et al., 2009; Martin et al., 2013; Loehlin
et al., 2019). Both types of changes (morphological or physio-
logical) could be under selection due to reinforcement, since
members of both lineages (F. serratus–F. distichus and F. vesicu-
losus–F. spiralis) show signatures of ongoing or past hybridiza-
tion, and hybrids of the dioecious F. serratus–F. vesiculosus are
extremely rare (Coyer et al., 2002, 2007; Wallace et al., 2004;
Billard et al., 2005; Hoarau et al., 2015). Additionally,
hybridization in Fucus species usually occurs asymmetrically,
with the sperm of the dioecious species fertilizing the eggs of
the hermaphrodite species. As a result of asymmetric hybridiza-
tion, male and female-biased genes could experience different
selection pressures from reinforcement. Furthermore, studies of
geographical hybrid zones of F. serratus and F. distchus show
signatures of reinforcement of prezygotic isolation, namely
decreasing rates of hybridization and interspecific fertilization
success, with increasing duration of sympatry (Hoarau
et al., 2015). Further studies are needed to characterize the
genetic basis of reproductive isolation in Fucus as well as the
connection between prezygotic barriers to fertilization and
within-species sexual selection.
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