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Andrés López-Sepulcre1,2,3*, Matthieu Bruneaux2, Sarah M. Collins4,

Rana El-Sabaawi5, Alexander S. Flecker6, and Steven A. Thomas7

1Department of Biology, Washington University in St. Louis, MO, USA

2Department of Biological and Environmental Sciences, University of
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Analysis of nutrient tracer additions

Abstract

Understanding how nutrients flow through food webs is central in ecosystem ecol-

ogy. Tracer addition experiments are powerful tools to reconstruct nutrient flows by

adding an isotopically enriched element into an ecosystem, and tracking its fate

through time. Historically, the design and analysis of tracer studies have varied

widely, ranging from descriptive studies to modeling approaches of varying com-

plexity. Increasingly, isotope tracer data is being used to compare ecosystems and

analyze experimental manipulations. Currently, a formal statistical framework for

analyzing such experiments is lacking, making it impossible to calculate the estima-

tion errors associated with the model fit, the interdependence of compartments, or

the uncertainty in the diet of consumers. In this paper we develop a method based

on Bayesian Hidden Markov Models, and apply it to the analysis of 15N-NH+
4 tracer

additions in two Trinidadian streams in which light was experimentally manipulated.

Through this case study, we illustrate how to estimate N fluxes between ecosystem

compartments, turnover rates of N within those compartments, and the associated

uncertainty. We also show how the method can be used to compare alternative

models of food web structure, calculate the error arround derived parameters, and

make statistical comparisons between sites or treatments.

Keywords: food webs, HMM, isotope tracer addition, model selection, nutrient up-

take, state-space models
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Analysis of nutrient tracer additions

Une nouvelle méthode de reconstruction quantitative des réseaux trophiques

et des flux de nutriments à partir d’expériences d’ajout de traceurs isotopiques

Abstract

Comprendre la manière dont les nutriments circulent au sein des réseaux trophiques

est essentiel en écologie des écosystèmes. Les expériences d’ajout de traceur –

consistant à ajouter un élément présentant un enrichissement isotopique dans un

écosystème et à suivre son devenir au cours du temps – constituent un outil puis-

sant pour reconstruire les flux de nutriments. Historiquement, ces données ont été

analysées en recourant à méthodes diverses, allant d’études descriptives jusqu’à des

modélisations plus ou moins complexes. Les données de traceurs isotopiques sont

de plus en plus utilisées pour comparer des écosystèmes et analyser des manipu-

lations expérimentales. Actuellement, il n’existe toujours pas de cadre statistique

formel pour analyser ce type de données, ce qui rend impossible le calcul des erreurs

d’estimation associées avec l’ajustement des modèles, de l’interdépendance des com-

partiments, ou encore de l’incertitude des régimes alimentaires des consommateurs.

Dans cet article, nous présentons une méthode bayésienne basée sur des modèles

de Markov cachés, et nous l’appliquons à l’analyse d’ajouts du traceur 15N-NH+
4

dans deux cours d’eau de l’̂ıle de la Trinité dans lesquels l’exposition lumineuse a été

manipulée expérimentalement. Dans cette étude, nous montrons comment estimer

les flux d’azote entre les compartiments de l’écosystème, les taux de renouvellement

d’azote au sein de ces compartiments et les incertitudes associées. Nous montrons

également que cette méthode peut être utilisée pour comparer des modèles de struc-

tures alternatives de réseaux trophiques, calculer l’erreur des paramètres dérivés, et

réaliser des comparaisons statistiques entre des sites ou des traitements.
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Introduction Analysis of nutrient tracer additions

Introduction

Food webs are the cornerstone of community and ecosystem ecology because they describe

the flow of matter and energy among organisms, thus defining important properties of an

ecosystem such as stability and productivity (Paine, 1980; Rooney and McCann, 2012;

Newbold et al., 1983; Carpenter et al., 2005). They provide the raw material for many

ecological questions including the study of trophic cascades, nutrient cycling, and ecosys-

tem productivity. Food web studies have been a major theme in ecological research for

over a century, beginning with early work that identified trophic linkages (Elton, 1927).

More recent studies have attempted to quantitatively track the movement of energy and

materials through food web compartments, which remains particularly challenging because

of complex methods for both data collection and analysis (Dodds et al., 2014).

While interaction strength has been defined in a variety of ways throughout the lit-

erature, ecosystem scientists are often interested in the biomass flux of a given nutrient

between two species or compartments (Berlow et al., 2004). Researchers have used a va-

riety of approaches to estimate trophic fluxes in the past, including gut-content analysis

(Ledger et al., 2013), and analysis of egested material (such as faeces or pellets; Lima

et al. 2002; Roslin and Majaneva 2016). These methods, however, are sensitive to sam-

pling effects (Banašek-Richter et al., 2004), and only consider what is ingested, rarely

accounting for what is assimilated into tissue, and therefore may not provide accurate es-

timates of how matter and energy flows through an ecosystem. Another approach is stable

isotope analysis (SIA), which uses natural variation in the abundance of stable isotopes

(most often 13C, 15N, or 2H) across organisms to infer trophic relations (Peterson and Fry,

1987; Boecklen et al., 2011). While these natural abundance isotope webs offer a more

integrative picture of diet, and directly target assimilated nutrients, they are often descrip-

tive and unable to quantify fluxes. Moreover, results are sensitive to the assumptions of

4



Introduction Analysis of nutrient tracer additions

diet mixing models (Post, 2002; Bond and Diamond, 2011), and often fail to differentiate

carbon sources in freshwater ecosystems (Jardine et al., 2014). A powerful alternative is

using whole-ecosystem isotope addition experiments to estimate fluxes across trophic com-

partments, and characterize nutrient cycles (Newbold et al., 1983; Kling, 1994; Carpenter

et al., 2005).

Isotope tracer additions use small amounts of isotopically enriched nutrients to track

the movement of nutrient tracers among different ecosystem compartments through time.

Depending on the properties of the ecosystem, isotopes are added all at once (pulse design)

or at a constant rate over a period of time (press design). The pulse design was used in

early additions of radioisotopes to lakes (Hutchinson and Bowen, 1950; Rigler, 1956),

streams (Ball and Hooper, 1963; Elwood and Nelson, 1972; Newbold et al., 1983), and

meso- and micro-cosms (Whittaker, 1961; Patten and Witkamp, 1967). Whittaker (1961)

pioneered the use of a linear donor-controlled compartment model to quantify transfers

of the tracer through the food web, an approach also applied by Patten and Witkamp

(1967) and Newbold et al. (1983). For their whole-stream addition of 32P, Newbold et al.

(1983) calculated transfer fluxes of the naturally occurring phosphorus from the steady-

state solution of the compartment model. In press additions, the tracer accumulates in

specific ecosystem compartments until an equilibrium state is achieved or the addition

ends. Once the addition stops, the tracer begins to clear from basal compartments (e.g.

algae), and progressively after, from higher trophic levels. This design has been used

extensively in stream ecosystems to estimate nutrient uptake and turnover (Dodds et al.,

2000; Mulholland et al., 2000).

Complemented with estimates of compartment sizes (biomasses), isotopic additions

allow for the estimation of nutrient uptake and turnover rates for all ecosystem compart-

ments, as well as quantification of the fluxes between them (Dodds et al., 2000; Mulholland
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Introduction Analysis of nutrient tracer additions

et al., 2000). This tracer addition approach has been used to characterize a variety of sys-

tems, including nitrogen (15N) in streams (summarized by Dodds et al. 2014) and forests

(Goodale et al., 2015), carbon (13C) in marine and lake ecosystems (Middelburg et al.,

2000; Cole et al., 2002; Pace et al., 2004), and deuterium-labeled water (2H2O) in terrestrial

ecosystems (Kulmatiski et al., 2010).

Despite the increase in their use, there is no formal statistical framework to analyze

whole-ecosystem data from tracer addition experiments. Instead, each trophic linkage is

analyzed separately, solving for a mass balance between tracer uptake and turnover under

the following assumptions: (1) the source pools from which a consumer obtains nutrients

are known, (2) if there is more than one source, the proportional contribution of each

source is known, (3) the added isotope is instantaneously and perfectly mixed within a

compartment, and (4) consumers don’t prey selectively within a source compartment i.e.

the isotopic signature of the matter taken up reflects the signature of the source (Dodds

et al., 2000; Mulholland et al., 2000). Some of these assumptions can be problematic.

First, trophic links can be uncertain, and even when every consumer’s source compartment

is known, estimates of their proportional contribution tend to be crude approximations

(Ainsworth et al., 2010). Second, consumers often differentially assimilate components

of their diet, or selectively feed on specific portions of a sampled compartment. If not

accounted for, this can cause seemingly paradoxical results, where consumers are more

enriched with the tracer than the resource they feed on (Dodds et al., 2014). Regardless of

their assumptions, neither of these approaches allows error in the inferences of parameters

at lower trophic levels to propagate into flux estimates at higher trophic levels. Nor can

they estimate and incorporate the error associated with uncertainty in trophic relationships

or diet proportions. With the increase in the use of isotope tracer additions in comparative

studies (Dodds et al., 2014; Norman et al., 2017; Tank et al., 2018) and ecosystem-scale
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experiments (Collins et al., 2016; Whiles et al., 2013), it has become imperative to develop

a statistical framework that allows rigorous comparisons among systems and treatments.

To meet this need, we developed a novel approach to the statistical analysis of isotope

tracer data based on Bayesian Hidden Markov Models (Zucchini and MacDonald, 2009;

King, 2014). Our approach allows for simultaneous modelling of nutrient transfers among

all measured ecosystem compartments, providing estimations of parameter uncertainty

that account for both observation and process error propagating across compartments. For

omnivores, our method does not require a priori assumptions on the proportion of different

prey constituting the diet, but rather estimates the proportion as a model parameter. It

also allows the modeling of non-homogeneous compartments by estimating actively cycling

vs. refractionary proportions, thus accounting for over-enriched signatures in consumers.

Moreover, when there are doubts in the topology of the food web (e.g. whether a particular

predator eats a specific prey or not), model comparison tools can be used to choose between

the most parsimonious structure according to the data.

We first present the mathematical and statistical framework, framed as a Hidden

Markov Model (HMM; Zucchini and MacDonald 2009), and then demonstrate its ap-

plication with a case study on two Trinidadian montane streams differing in canopy cover

(Collins et al., 2016). We illustrate how the approach can be used to (1) estimate model

parameters, and their uncertainty, (2) calculate derived properties, such as nutrient fluxes

and compartment residence times, and their uncertainty, (3) test alternative food web

topologies, and (4) statistically compare experimental treatments.
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Modeling tracer dynamics

Mathematical framework

The transfer of nutrients from one compartment to the other can be represented as a

Markov Chain, a probabilistic model where the state of a given system (i.e. the distri-

bution of nutrients across compartments) at time t depends only on its previous state at

time t − 1 (Iosifescu, 1980). In a HMM, dynamic data are modeled as a consequence of

two stochastic processes: an unobserved biological process (here, nutrient fluxes), and an

observation process that is conditional on the biological process (in our case, sampling

and measurement of isotopic ratios). Table 1 shows a summary of the parameter notation

followed and units of measurement used.

We conceptualize an ecosystem as a population of nutrient atoms flowing between

compartments of an ecosystem. These compartments correspond, in HMM terminology,

to the possible states a nutrient atom can be in. For a given ecosystem with a set of C

compartments we can define the distribution of atoms among compartments at time t as a

C × 1 vector x(t) = {x(t)
1 , x

(t)
2 , . . . , x

(t)
N }, where x

(t)
i indicates the number of nutrient atoms

in compartment i at time t. We can then define a C ×C transition matrix Ψ where each

element ψi,j defines the probability that an atom of nutrient in compartment j at time t

finds itself in compartment i at time t+ 1. Some of the compartments, such the inorganic

nutrient forms, may receive external inputs between t and t + 1, which can be defined as

non-zero elements in a C × 1 vector of external inputs y(t) = {y(t)
1 , y

(t)
2 , . . . , y

(t)
N } defined

by input functions fi : t → y
(t)
i . Given this, we can project the distribution of nutrients

from time t to t+ 1 using the equation:

x(t+1) = Ψ · x(t) + y(t) (1)
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This is a discretized form of the linear donor-controlled compartment model proposed

by Mulholland and Keener (1974). The transition probabilities ψi,j in Ψ, are determined by

two processes: nutrient uptake and nutrient loss. Uptake rates determine the probability

that a nutrient atom moves from compartment j to i in one time step, and are defined

as υi,j > 0 for every pair of compartments where compartment i uses compartment j as

a source of nutrient. Loss rates λj represent the probability that a nutrient atom leaves

compartment j within one time step without being taken up by any other compartment,

thus exiting the modeled ecosystem. The turnover rate kj of a given compartment j (i.e.

the proportion of nutrient exiting a given compartment per unit time) will be determined

by the sum of the proportion consumed by other compartments, and the proportion lost

λj:

kj = λj +
C∑
i=1

υi,j (2)

In other words, Equation 1 is equivalent to stating that the nutrient dynamics of any

given compartment j is described by the time-specific change in nutrient content ∆xj.

∆x
(t)
j =

∑
1≤i≤C,i6=j

υj,ix
(t)
j − kjx

(t)
j + y

(t)
j (3)

which can be simplified in the case where y
(t)
j = 0 (i.e. no external input for compartment

j) to:

∆x
(t)
j =

∑
1≤i≤C,i6=j

υj,ix
(t)
j − kjx

(t)
j (4)

For example, let’s consider a simple ecosystem with four compartments: an inorganic

nutrient pool, a primary producer, a herbivore that consumes the primary producer, and

an omnivore that feeds on both the primary consumer and the herbivore (Figure 1). Such
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system would be defined by the following 4× 4 transition matrix:

Ψ =



1− k1 0 0 0

υ2,1 1− k2 0 0

0 υ3,2 1− k3 0

0 υ4,2 υ4,3 1− k4


(5)

and an exogenous input vector y(t) = {y(t)
1 , 0, 0, 0}. Note that if we assume the concentra-

tion of inorganic nutrient to be at a steady-state equilibrium (x
(t)
1 = x

(t0)
1 does not depend

on time), it must fulfill that:

∀t, ∆x
(t)
1

∆t
= 0⇐⇒ y

(t)
1 − k1x

(t)
1 = 0 (6)

⇐⇒ y
(t)
1 = (υ2,1 + λ1)x

(t0)
1 (7)

thus y1 does not depend on t. Note also that it is straightforward to modify these equations

describing a discrete-time system to describe a continuous-time system. In this case,

equation 1 becomes:

dx

dt

(t)

= Ψ · x(t) + y(t) (8)

with Ψ·x(t) and y(t) describing instantaneous transition rates and input rates, respectively,

instead of transition probabilities and input per time step. Equation 8 is basically a system

of inhomogeneous linear differential equations (which simplifies into a homogeneous system

if y(t) = 0). The transition matrix Ψ for a continuous-time model corresponding to the
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ecosystem showed in Figure 1 becomes (compare with equation 5):

Ψ =



−k1 0 0 0

υ2,1 −k2 0 0

0 υ3,2 −k3 0

0 υ4,2 υ4,3 −k4


(9)

The choice between a discrete and continuous model depends on the biology of the system

under study. We use a continuous model in the case study of Trinidadian montane streams

presented below.

In the case of tracer addition experiments, the aim is to increase the exogenous input

of a tracer (or marked) nutrient population, and track the changes in the ratio between

marked and unmarked nutrient (atomic ratio, in the case of isotope tracers). The addition

of marked nutrient should cause a significant enrichment of the proportion of marked

nutrient in water, yet a marginal increase in the total amount of nutrient in water. This can

be achieved, for example, by using rare isotopic forms (e.g 15N, 13C, 18O, or 2H) that occur

at extremely low proportion in nature. To model this, it is therefore necessary to follow

two subpopulations of nutrient atoms: a tracer (or marked) population, usually the heavy

isotopic form, and an unmarked population, defined by vectors m(t) = {m(t)
1 , . . . ,m

(t)
C }

and n(t) = {n(t)
1 , . . . , n

(t)
C } respectively, which add up to the total nutrient population

x(t) = n(t) + m(t). The proportion of tracer can then be defined as:

z(t) = m(t) � x(t) (10)

where � stands for the element-by-element division, also known as Hadamard division.

Similarly, the exogenous input comprises marked ym
(t) and unmarked yn

(t) portions such
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that y(t) = yn
(t) + ym

(t). In a tracer addition experiment, the marked nutrient should

be at much lower concentration than the unmarked nutrient such that ym
(t) � yn

(t), and

therefore y(t) ≈ yn
(t).

The schedule of tracer addition is reflected in the exogenous input vector of marked

material ym
(t), and usually consists of a period of increased input for one or two inorganic

nutrient pools (e.g. NH+
4 or NO−3 ) followed by a period of background input (although

other experimental designs, such as repeated pulses, can be easily defined). The exogenous

input for the unmarked population yn
(t) is normally assumed constant.

Once we have an expected realization of the biological process model, the observation

process can be modeled as sampling and measurement error around that expectation. The

observed proportion of marked tracer in any given compartment i at time t can be modeled

as a Gamma distribution, which fulfills the multiplicative properties of proportions and

allows for the skewed distribution typical of low-concentration data. We parameterized the

Gamma distributiom with the projected mean z
(t)
i and a coefficient of variation η shared

across compartments, such that the observed proportion z
(t)
obs,i follows (using Gamma∗ to

denote the non-standard Gamma parameterization):

z
(t)
obs,i ∼ Gamma∗

(
z

(t)
i , η

)
(11)

This is equivalent to modeling Gamma distributions with shape parameter αi = η−2,

and rate parameter βi =
(
z

(t)
i · η2

)−1

. Although the Gamma distribution can hypotheti-

cally reach values larger than 1, the expected isotopic proportions are extremely low, and

therefore the probability density for values higher than one is negligible.

We will assume the total biomass of nitrogen xi in compartment i to be approximately

constant throughout the experiment, following a truncated normal distribution. This

assumes additive properties and allows for zero values of biomass, which can occur for a
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given compartment in some sampling points. We note the truncated normal distribution

with a mean x
(t0)
i (the initial biomass of compartment i) and a compartment-specific

standard deviation SDi:

x
(t)
i ∼ TNormlower=0

(
x

(t0)
i , SDi

)
(12)

Over-enriched compartments

The model as formulated above assumes that the tracer is well mixed, and consumers do

not selectively feed on differently labeled subcomponents of the source compartment. If

this is true, the tracer signature of a consumer cannot exceed the signature of the source

compartment. In practice, however, it is not uncommon for a consumer’s isotopic label to

be higher than its resource (Newbold et al., 1983; Dodds et al., 2014). This is because some

compartments, particularly detrital ones, consist of material in which only a proportion is

biologically active and assimilating tracer during the experiment. If consumers selectively

feed on active constituents and/or preferentially assimilate active fractions their signature

can become higher than the average of the resource compartment. For example, coarse

benthic organic matter (CBOM) is largely biologically inactive, and nutrient uptake into

leaf packs is associated with the biofilm surrounding it. While the average tracer signal

measured on the whole compartment might be low, the biofilm can have a high tracer

signature, and organisms selectively feeding on (or assimilating) that biofilm will become

highly labeled.

In order to allow for this in the model, one can assume that the biomass of any given

compartment i is split into two portions: an active and a refractory one. The active

portion takes up nutrients throughout the experiment and contributes to changes in x
(t)
i

(both m
(t)
i and n

(t)
i ). The refractory portion has negligible nutrient uptake and turnover
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within the timespan of the experiment, and thus does not contribute to changes in x
(t)
i . If

we define a vector of active proportions for the C compartments π = {π1, . . . , πC} where

0 < πi < 1 whenever compartment i is assumed to be non-homogeneous, the apparent

uptake rates υ′i,. and apparent turnover rate k′i of the whole compartment will be:

υ′i,. = υi,. · πi (13)

k′i = ki · πi (14)

In practice, this means that, while the biological model (Equation 5) runs only on the

active portion of biomass, the observation model accounts for the total biomass. Newbold

et al. (1983) preceded the present manuscript in recognizing that the standing stocks of

the actively cycling components (as well as transfer fluxes) can be estimated from the

model’s steady-state solution. Note that π bears a similar meaning to the estimates of

exchangeable P in Newbold et al. (1983) and the inverse of multiplier M in Dodds et al.

(2014).

Model fitting

Fitting the above Hidden Markov Model requires time series of the observed tracer pro-

portions z
(t)
obs,i, in each compartment and data on compartment biomasses x

(t)
obs,i. In isotope

tracer studies, where there is a heavy isotope (the marked tracer) and a light (unmarked)

isotope, the amount of marked tracer will often be expressed as δ-value. For example in

studies of nitrogen dynamics, the tracer is 15N (heavier than the naturally common 14N),

and data is obtained as δ15N which, for any given compartment i at time t is:

δ15N
(t)
i =

(
R

(t)
i

R0

− 1

)
· 1000 (15)
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where R
(t)
i = (15N/14N)

(t)
i is the isotopic ratio in compartment i at time t and R0 is the

isotopic ratio in a standard air sample (e.g. for 15N this is taken to be 0.003663). In order

to fit the above model to this data, it is necessary to convert the δ-values to observed

proportions. This can be done by expressing z
(t)
obs,i as a function of R

(t)
i :

z
(t)
obs,i =

m
(t)
i

n
(t)
i +m

(t)
i

=
15N

(t)
i

14N
(t)
i + 15N

(t)
i

=
R

(t)
i

R
(t)
i + 1

and then using a rearrangement of Equation 15 to replace R
(t)
i in the equation for z

(t)
obs,i:

z
(t)
obs,i = R0

(
δ15N

(t)
i

1000
+ 1

)[
R0

(
δ15N

(t)
i

1000
+ 1

)
+ 1

]−1

(16)

Given this data, and an assumed system topology denoting which compartment pairs

are assumed to be linked as consumer and resource (i.e. which off-diagonal elements

ψi,j > 0), we can fit the model to the data using a Bayesian framework. To do so, we need

to define priors for all υi,j ≥ 0, 0 ≤ πi ≤ 1, λi, and η. These can be uninformative (i.e. flat)

distributions within the parameter bounds, or informative priors if there is prior knowledge

on these quantities. For parameters which are positive but for which no upper bound is

known precisely a priori, a half-Cauchy distribution defined by its scale parameter (i.e.

its median) is a reasonable choice. We used half-Cauchy priors for the uptake rates from

the inorganic input compartments since those compartments are constantly being renewed

with the stream flow. For uptake rates and loss rates from biotic compartments, we used

(scaled) beta priors to impose a maximum rate while allowing to put more prior belief in

small rate values: for example, it is unreasonable to allow uptake or loss rates greater than

one with our data, since this would indicate a replacement of the whole nitrogen content

of a biotic compartment within one day. Hence, we started our modelling approach with
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the following weakly informative priors:

υi,j ∼ Half-Cauchy (scale = 250) for input compartments j ∈ I

υi,j ∼ Beta (α = 1, β = 3, scale = 1) for all other uptake rates υi,j > 0

λi ∼ Beta (α = 1, β = 3, scale = 1)

πi ∼ Uniform (0, 1) for all basal compartments πi < 1

η ∼ Half-Cauchy (scale = 1)

where I defines the set of inorganic nutrient compartments. We adjusted them for some

parameters after realising from initial runs that they could be either too restrictive or too

permissive, depending on the compartments:

υeudan,CBOM ∼ Beta (α = 1, β = 3, scale = 0.5)

υlepto,seston ∼ Beta (α = 1, β = 3, scale = 0.5)

In the formulation above, we definesX as following a scaled beta distribution Beta (α, β, scale)

if X/scale follows a beta distribution Beta (α, β).

The likelihood L of each observation z
(t)
obs,i is given by Equation 11, and the joint log-

likelihood of all observations, as the sum of logarithms of all individual likelihoods. To

help identifiability, the model can be constrained so that the total nutrient biomass of

each compartment xi is randomly distributed with known constant mean and coefficient

of variation cvi as described in Equation 12. These values can be obtained from indepen-

dent estimations of compartment-specific biomasses xobs,i. The likelihood of each biomass

x
(t)
i projected by the model is evaluated against this distribution at each time-point where

there is any observation z
(t)
obs,i, in order to constrain the biomass change of the system com-
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partments in the model. The posterior distribution of the parameters can be obtained by

sampling the product of prior and likelihood using Markov Chain Monte Carlo techniques

(Geman and Geman, 1984).

Model selection, derived properties, and statistical comparisons

If there is uncertainty over the presence or absence of any given trophic link, it is possible to

define and to fit alternative models representing different hypothesized food-web topologies

Ψh differing in whether particular uptake rates υi,j are equal to 0 or not. The model fits

can then be compared using the Deviance Information Criterion (DIC; Spiegelhalter et al.

2002), defined as:

DIC = D̄ + pD (17)

where D is the set of deviance values calculated from the log-likelihood value at each

MCMC iteration as−2×logL, D̄ is the mean deviance value and pD is the effective number

of parameters in the model and can be calculated as var(D)/2(Gelman et al., 2003). The

most parsimonious model will be the one with the lowest DIC. A DIC difference ∆DIC

greater than 2 indicates some evidence for the model with a lower DIC, while substantial

evidence would be indicated by ∆DIC > 5. It is also possible to compare the proportional

support for any given model Ψh as a DIC weight (Link and Barker, 2010):

wh =
e∆DICh/2∑M
g=1 e

∆DICg/2
(18)

where h represents the model hypothesis in question, and M the total number of models

tested.

Any derived metric of the system, such as total uptake and residence times of different

compartments, or proportion of a given prey in a consumer’s diet, can be calculated
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using the MCMC chains of the parameter estimates involved in the calculations. This

will produce an equally sized MCMC chain from which to create the distribution of the

metric and its uncertainty (e.g. 95% credible intervals). Similarly, one can compare

estimates of parameters or derived metrics between streams by subtracting (or dividing)

the MCMC chains of the two estimates and producing a distribution and credible intervals

of the difference in the estimates. The 95% credible intervals of statistically significant

differences should not overlap 0 (or 1 for ratios).

Case study: nitrogen fluxes in Trinidadian montane

streams

Study system and experimental methods

As an empirical illustration of our statistical modeling framework, we showcase its use

in a case study conducted in Trinidadian streams, using simultaneous 15N tracer isotope

additions to evaluate the effects of an experimental manipulation of light availability on

major food web fluxes. These experiments were carried out in streams of the Northern

Range of Trinidad: Upper La Laja (UL) and Lower La Laja (LL). The study reaches are

100 and 156 meters long, respectively, and form part of a long-term experiment to study

interactions betwen ecological and evolutionary processes (Travis et al., 2014). These data

have been previously analyzed using current methodology in Collins et al. (2016), providing

a good point of comparison between the current method and our proposed modelling.

Details of the experiment and sampling can be found in Collins et al. (2016). In

summary, we established a continuous drip of a solution of 15N labeled ammonium (as

dissolved 15NH4Cl) on the upstream end of each stream with a rate of 10 mL min−1 over

a 10-day period from March 7-16, 2010. The N injections increased the δ15N of dissolved
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ammonium to approximately 20,000h, yet the concentration of ammonium added was

below 5% of ambient NH4 and thus did not enrich the stream. We sampled biomass of

food web compartments and water chemistry at approximately 15, 30 and 60m down-

stream, both in pool and riffle habitat, on days 3, 7 and 10 of the injection, and on days

13, 17, 20, 30 and 40 (post-injection). The sampled food web compartments include wa-

ter chemistry (NH+
4 , and NO−3 ), basal resources (epilithon, seston, FBOM, and CBOM),

eight common invertebrate taxa representing all major functional feeding groups includ-

ing grazers (Petrophila, and Psephenus), filterers (Leptonema), collectors (Tricorythodes,

Phylloicus, and Eudaniela), and predators Argia, and Euthyplocia). For simplicity, fish

were not included in this illustrative analysis. For each of the 14 compartments we ana-

lyzed the isotopic ratio (δ15N) of the samples obtained through time, and estimated the

standing biomass of each compartment in mass of nitrogen per m2 at two points in time.

We also collected background samples from each compartment, either before the experi-

ment or upstream from the injection, to estimate background isotopic values. We detail

the analytical methods in the Appendix.

Model specification and selection

The Trinidadian stream web modelled is composed of the 14 compartments described

above. Therefore, the distribution of nitrogen biomasses at any given time t is described

by the vector

x(t) = {x(t)
NH4, x

(t)
NO3, x

(t)
epi, x

(t)
ses, x

(t)
FBOM , x

(t)
CBOM , x

(t)
pet, x

(t)
pse, x

(t)
lep, x

(t)
tri, x

(t)
eud, x

(t)
phy, x

(t)
arg, x

(t)
eut}

which can be projected following the system of differential equations showed in Equation

8, given a transition matrix Ψ of trophic relationships. Given the uncertainty of some
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trophic links, we test eight variations of the food web structure assumed by Collins et al.

(2016), which corresponds to the matrix shown in Box 1.

Because the dynamics of the two inorganic element compartments, NH+
4 and NO−3 ,

occur at much faster rates than the rest, the system can be numerically approximated

by assuming that they are completely regenerated at each infinitesimal time step and

driven by external inputs or, in other words, that they are completely replaced by the flux

from upstream. Note that this assumption does not imply that the system modelled is

completely open, but is merely a mathematical simplification that treats water nutrient

as a given in order to simplify the estimation. This can be mathematically expressed by

setting ψ1,1 = ψ2,2 = 0 and by replacing after each step of the numerical integration of

the system of differential equations the elements x1 and x2 of x by values that reflect the

measured profiles for NH+
4 and NO−3 at sampling point s. In our example, we have three

sampling points (transects) per stream.

Given this, we can model the two parallel subsystems comprising x: unmarked nutrient

n and marked nutrient m, representing the dynamics of each isotope. While both systems

will be governed by the same transition matrix Ψ, they have different initial values n(0)

and m(0) corresponding to the background isotopic ratios before the drip experiment has

started. The inorganic nutrient compartments also have different forced input profiles

between unmarked and marked nutrient pools. The forced quantity of unmarked tracer

in the inorganic compartments is constant through time, such that:

n
(s,t)
i = 14N

(s)
i,bkg for i ∈ I and all t values (19)

where I defines the set of inorganic nutrient compartments (NH+
4 and NO−3 ) and 14N

(s)
i,bkg

is the natural (background) abundance of 14N (in mgN/m2) in the inorganic nutrient

compartment i measured at sampling transect s.
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On the contrary, the forced quantity of marked nutrient in the inorganic compartments

changes with the experimental enrichment profile. This means that, if we define toff as the

time the drip is turned off, then the following step function drives m
(s,t)
i :

m
(s,t)
i =


15N

(s)
i,bkg + 15N

(s)
i,add for i ∈ I and t < toff

15N
(s)
i,bkg for i ∈ I and t ≥ toff

(20)

Here, 15N
(s)
i,bkg represents the natural (background) abundance of the heavy isotope (15N)

form of the inorganic nutrient compartment measured at sampling transect s before nutri-

ent addition, and 15N
(s)
i,add is the additional 15N measured during the experimental addition

at sampling transect s.

We tested eight topological model structures of the network Ψh representing the vari-

ations of Ψ111 where one or more of three uncertain links were eliminated. The uncertain

links corresponded to the uptake of FBOM by the Eudaniela crabs, and predation of

Psephenus waterpennies and Petrophila caterpillars by Argia damselflies (Table 2).

We fit the models to the data of Lower and Upper La Laja using transect and com-

partment specific time series of isotopic proportions z
(s,t)
obs,i, as well as compartment-specific

biomass data x
(s,t)
obs,i at three points in time t, and three points in space s. Latent biomasses

xi were assumed to be constant (i.e. at steady state), therefore considering sample dif-

ferences as random observed variation cvi. In practice, this allows for deviations of the

steady state assumption that are within the range of the compartment’s natural variation.

We fit the model in R version 3.6 (R Core Team, 2019) by implementing it in Stan

(Carpenter et al., 2017) and running it with the RStan package (Stan Development Team,

2019). Details of the model implementation and of the priors used are described in the

Supplementary Material S1. The data and the source code used in our study can be found

as an R package at https://doi.org/10.5061/dryad.8sf7m0chx (Lopez-Sepulcre et al., 2020).
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We assumed that both streams have the same network topology of trophic links, albeit

with different parameter values. We therefore calculated the joint DIC for both streams

by adding the DICs of the same model fit to the two streams. We chose the best model

as the one with the lowest joint DIC.

Calculation of derived parameters

After selecting the best model, we illustrate the calculation of some important derived

metrics, their uncertainty, and their comparison between the natural (LL) and open canopy

(UL) streams. To do so, one only has to apply the required calculation with all 1000

sampled values of the MCMC chain rather than with the estimates of the parameters.

This produces a probability distribution for the derived parameter, which can be used to

calculate measures of dispersion such as standard errors or 95% quantiles (i.e. credible

intervals).

A common quantity of interest is the expected residence or turnover time Tj of nutrient

N in each compartment j, which can be calculated as the inverse of the turnover rate:

Tj =
1

kj
=

1

λj +
∑C

i=1 υi,j
(21)

In the case of compartments divided into active and refractory subcompartments, the

apparent residence time T ′j will be larger:

T ′j =
1

πjkj
=

1

πj

(
λj +

∑C
i=1 υi,j

) =
Tj
πj

(22)

The flux rates between compartments can be calculated as:

Fi,j = υi,jX̂i (23)
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where Fi,j represents the flux from compartment j to compartment i, and X̂i is the ex-

pected biomass. Because we assume the system to be at steady state, expected biomasses

can be calculated using eigen-analysis of the system as follows. Under steady state, the

two nutrient forms NH+
4 and NO−3 ought to remain constant, which we can achieve by

defining a transfer matrix Ψ′ that equals Ψ but with ψ′1,1 = ψ′2,2 = 1. This matrix will

have at least 2 right eigenvectors v(NH4) and v(NO3) corresponding to an eigenvalue of

1, and which are scaled to a norm of 1. The elements i of each of these 14 × 1 vectors

represent the relative equilibrium biomass of compartment i that originates from each of

the two inorganic nutrients, NH+
4 and NO−3 , respectively. Because the eigenvectors v(NH4)

and v(NO3) are scaled to a norm of 1, they need to be rescaled based on the mass of NH+
4

and NO−3 in the water, respectively. The total equilibrium biomass X̂i of compartment i

at steady state can thus be calculated as the sum elements i of the two rescaled vectors

as follows:

X̂i = x1
v

(NH4)
i

v
(NH4)
1

+ x2
v

(NO3)
i

v
(NO3)
2

(24)

where x1 and x2 are the background masses (in mgN/m2) of NH+
4 and NO−3 in the stream.

It is worth noting that at steady state, it should be true that inputs should equal outputs,

and therefore:

Fi,. = ki · X̂i ⇐⇒ X̂i = Fi,. · Ti (25)

where Fi,. is the total flux through compartment i:

Fi,. =
C∑

j=1

Fi,jX̂j (26)

The total flux of N through the system can then be calculated as the sum of fluxes from

the set of nutrient input compartments I (in our case, NH+
4 and NO−3 ) and the set of basal
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compartments B (in our case, epilithon, seston, FBOM and CBOM).

FT =
∑
i∈I

∑
j∈B

Fi,j (27)

Total flux is of interest as an indicator of whole-ecosystem productivity, and we expect

it to be higher under higher light conditions (i.e. in UL). A second metric of interest is the

relative use of NO−3 to NH+
4 by primary producers. Primary producers favour NH+

4 over

NO−3 , due to lower assimilation cost (Morris, 1974). Because more productive streams

have higher demand of N and greater energy supply, we expect primary producers in the

high light stream to supplement their N need by assimilating nitrate and therefore have

a higher ratio of NO−3 flux to NH+
4 (Morris, 1974). The proportion of N uptake flux from

two different sources can be calculated as:

PU
i,j =

υi,jxj∑C
r=1 υi,rxr

(28)

where i stands for the consumer and j for the source of which we want to calculate

the proportion of each form taken up. We will calculate the proportional use of NO−3

by epilithon PU
epi,NO3 to test the above hypothesis of preferential NH+

4 use under light

limitation. Note that this can also be expressed as a ratio of NO−3 to NH+
4 use:

Repi,NO3 =
PU

epi,NO3

1− PU
epi,NO3

(29)

Similarly, one can use PU
i,j to evaluate the importance of a particular compartment in the

diet of a consumer. We illustrate this by calculating the importance of Petrophila water

moths in the diet of Argia damselflies PU
arg,pet.

Conversely, we can calculate the contribution of a particular consumer i to the turnover
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of a given resource compartment j as:

PK
i,j =

υi,j
kj

=
υi,j

λj +
∑C

r=1 υr, j
(30)

As an example, we calculate the contribution of Eudaniela crabs to the turnover of CBOM,

PK
eud,CBOM.

Derived parameter uncertainty and statistical comparisons

One of the main advantages of Bayesian inference though MCMC is that it is straight-

forward to carry out the estimation error on the primary parameters onto the derived

parameters. This is done by simply applying the relevant calculation elementwise on the

MCMC chains of the estimated parameters. This results in a posterior distribution of the

derived parameter that naturally accounts for the error in all its component parameters.

One can then calculate from the posterior distribution any relevant measure of uncertainty

(e.g. standard error or credible intervals).

In the same manner, one can compare the parameter estimates between two streams

by simply calculating the elementwise difference (or ratio, or any other measure of effect

size) in the MCMC chains. A Bayesian posterior predictive p-value for the difference can

then be extracted by calculating the proportion of the posterior distribution that falls

below 0 (or 1, in the case of a ratio).

Results

The most parsimonious network topology corresponded to model Ψ100, which includes

the consumption of Petrophila by Argia, but not consumption of Psephenus by Argia,

nor FBOM by Eudaniela crabs (Table 2). The second best model was 3.3 DIC units
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away, indicating moderate support for the best model. However, the overall support for a

Petrophila → Argia link is higher if we consider all tested models. The sum of the DIC

weights of all the models including that link is 0.90 (out of 1), compared to only 0.19

for a Psephenus → Argia link, and <0.01 for an FBOM → Eudaniela link. We therefore

present the results for model Ψ100. Figure 2 shows the fit for isotope ratios for this model

in both streams for the first transects (see Figure S1 for all transects, and Figure S2

for biomass fit), while the parameter estimates, credible intervals, MCMC chains, and

posterior distributions, can be found in the Table S1 and Figure S3).

In order to compare our proposed approach to current standard methodology, in Figure

3 we compare our estimates of Lower La Laja compartment fluxes and turnover times,

with estimates obtained in a previous analysis of the same data (Collins et al., 2016),

using current methodology (Dodds et al., 2000). For basal compartments that are split

into an active portion πi and a refractory portion 1 − πi, apparent turnover times T ′i in

our analyses (Equation 22) are equivalent to the turnover times estimated in Collins et al.

(2016). 14 of the 24 compartment uptake rates estimated by Collins et al. lie within the

95% credible intervals of our estimates, as 14 out of the 24 turnover time estimates do.

Relative to the estimates derived by our model, the estimates of Collins et al. tend to

overestimate uptake in the basal compartments and underestimate it for some consumers,

while the converse is true for turnover time. Differences between methods in estimates

were often not trivial, and in some cases varied by an order of magnitude (e.g. CBOM

uptake or Eudaniela turnover). The negative relationship between the bias of uptake and

turnover time is expected, given that an overestimate of uptake must be balanced by

decreased turnover time in order to explain the same concentration of tracer in a given

compartment.

The estimates and 95% credible intervals of all fluxes among compartments, turnover
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times, and expected steady-state biomasses are found in the supplementary material (Ta-

bles S2 and S3) and represented in Figure 4. This figure summarizes the three main aspects

of nitrogen dynamics across compartments: fluxes between compartments, turnover (or

residence) times, and compartment biomasses. Basal compartments are divided into their

active (solid white) and refractory (hatched) portions as estimated by πi, with Ti and

T ′i represented by the width of the white solid portion of the box, and the total width

of the box, respectively. As expected, active portions of basal compartments tend to be

larger in the open canopy stream than the closed canopy stream, particularly for epilithon

((πepi)
LL = 0.13 ± 0.07; (πepi)

UL = 0.44 ± 0.12) and CBOM ((πCBOM)LL = 0.30 ± 0.14;

(πCBOM)UL = 0.50 ± 0.13; Table S1). Another clear and expected pattern that emerges

from Figure 4 is the overall higher fluxes into the basal compartments in the open canopy

stream. This is illustrated in Figure 5 and is in good part due to an increased NO−3 uptake

by epilithon and CBOM. In contrast, the increase in N uptake by FBOM, is mostly due

to increased NH+
4 uptake.

A consistent pattern across our analyses was the high uncertainty associated with

estimates of fluxes, turnover, and other derived parameters. Despite this quantitative

uncertainty, it is possible to make important statistical inferences regarding differences

among compartments and between streams. Total flux is higher in the open canopy

than the closed canopy stream, ((FT )UL − (FT )LL = 63.7 ± 35.9, one-sided Bayesian p-

value = 0.036, Figure 6A) and epilithon’s uptake shows a higher ratio of NO−3 to NH+
4

uptake (log[(Repi,NO3)UL] − log[(Repi,NO3)LL] = 3.54 ± 1.51, p = 0.008, Figure 6B), as ex-

pected. Although there seems to be a higher contribution of Eudaniela crabs to CBOM

turnover in the closed canopy stream, the parameters around Eudaniela are highly un-

certain due to irregular sampling (crabs captures are patchy), and this difference is not

significant (logit[(PK
eud,CBOM)UL] − logit[(PK

eud,CBOM)LL] = −1.02 ± 1.74, p = 0.28, Figure
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6C). A clearer but still non significant result is that Petrophila moths seem to represent a

higher proportion of the diet of Argia damselfiles in in our high light stream (UL > LL,

(logit[(PU
arg,pet)

UL]− logit[(PU
arg,pet)

LL]) = 1.48± 1.43, p = 0.13, Figure 6D).

Discussion

We have presented a statistical formalization of a tracer addition to track nutrient move-

ment through an ecosystem. As such, this is the first evaluation of the uncertainty involved

in the estimation of uptake and turnover using these experiments. Quantifying and man-

aging such uncertainty is important in these experiments because of the limited amount of

data involved, and because they measure phenomena that propagate across scales. Beyond

accounting for sampling error, our method can handle three important sources of error or

bias that were previously suboptimally handled. First, modeling the system as a whole

ensures that the interdependence of parameter estimates among compartments becomes

explicit, and thus the error in the estimates of nitrogen dynamics of a particular compart-

ment is incorporated in the estimation of the compartments that consume it. In the past,

this kind of error propagation has been ignored (Dodds et al., 2000). Second, it is now pos-

sible to model diet uncertainty at two levels: topological and quantitative. By topological

uncertainty we refer to the uncertainty regarding the presence or absence of a particular

trophic link. By modifying the topology of the transfer matrix Ψ (i.e. which elements

ψi,j 6= 0), one can explicitly test different hypotheses regarding the trophic structure of the

ecosystem using model selection techniques, and either select the best model or average

across models using model averaging. We have illustrated how to do so using the DIC

(Spiegelhalter et al., 2002), but other Bayesian techniques such as reversible jump MCMC

(Green, 1995), or variable selection methods, can be implemented (see Tenan et al. (2014);

Hooten and Hobbs (2015) for reviews on available methods). By quantitative uncertainty
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we refer to the diet of organisms with more than one food source. Past models required

the input of assumed proportions of each source. This is not necessary in our approach,

and the proportion of each resource consumed (and its uncertainty) can be calculated as

a derived parameter after the model fit (see Equation 29). Finally, our method offers a

solution to the paradox of overenrichment, whereby consumer compartments appear more

labelled than their sources (Dodds et al., 2014). It does so by allowing the partitioning of

resource compartments into an active portion πi that uptakes detectable marked nutrient

during the time frame of the experiment, and a refractory one that doesn’t (or does so

at much larger time scales). Because this portion is an estimated parameter, its uncer-

tainty is evaluated, which is an advantage over the post hoc multiplicative factor approach

previously proposed (Dodds et al., 2014).

All the above mentioned sources of uncertainty get integrated to produce the uncer-

tainty in the posterior distribution of the evaluated parameters. As exemplified by our

case study, this uncertainty can sometimes be rather large, which is not surprising given

the typically high dimensionality of these systems and the limited amount of data (due to

the high cost of isotopic analysis and the need to minimize invasiveness). This highlights

further the importance of measuring and reporting the uncertainty in the estimated pa-

rameters, in order to temper our statements on the results. One of the advantages of our

Bayesian implementation is that it can incorporate prior knowledge to help reduce this

uncertainty, a strategy increasingly used in ecological management (McCarthy and Mas-

ters, 2005). This can be in the form of supplementary experiments on specific organisms

or published values on similar taxa and systems. Moreover, it is possible to evaluate the

influence of prior information using prior sensitivity analysis, and therefore formally eval-

uate the contribution of our data to the increase (or decrease) of certainty in the studied

parameters. Ultimately, our method can be used on simulated data prior to an experiment
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in order to test out the power of alternative experimental designs regarding the dripping

regime, and the sampling schedule of each compartment. In our opinion, this is one of the

most powerful advantages of having a formal statistical framework available for isotope

tracer experiments. While a full exploration of different designs is out of the scope of

this article, two important aspects of the design that are important to parameter identi-

fiability seem apparent to us. First, it is necessary to have good temporal resolution of

samples where uptake of tracer changes slope significantly (e.g. at peak uptake). Second,

if more than one nutrient is labeled (as is the case here with both forms of nitrogen), it is

important that their labelling is not strongly positively correlated, if one is to distinguish

differential uptake of each shource. In our example, the dynamics of nitrification ensure

that, as 15NH+
4 label decreases downstream, 15NO−3 increases, allowing us to tease apart

15NH+
4 from 15NO−3 uptake.

Despite large uncertainties around some parameter values, we were able to identify

some important expected differences in the functioning of the two study streams. For

example, basal (and total fluxes) are higher in the open canopy stream (Figure 6A), as

expected by the limiting effect of light in forested streams (Vannote et al., 1980). This

result is consistent with previous analyses (Collins et al., 2016), and with other contempo-

rary work in the same study sites that show an increase of chlorophyll a abundance with

light (Kohler et al., 2012), and increased gross primary production (GPP) in the open

canopy stream (Leduc et al. in revision). Our analysis also clearly shows a higher ratio of

NO−3 to NH+
4 use by epilithon in the open canopy stream (Figure 6B). This is consistent

with the fact that NH+
4 is the preferred form of nitrogen to algae, and as light increases,

the higher nutrient demand drives algae to use other sources of nitrogen, such as NO−3

(Morris, 1974).

Our analysis also suggests potential biases in previous estimation methods that ap-
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proximate post-drip 15N turnover by fitting an exponential decay curve (Collins et al.,

2016). Previous estimates show higher consumer turnover times than our statistical im-

plementation, and consequently, higher uptake rates, too (in order to maintain the same

observed 15N concentration). This could be due to the increasing difficulty of detecting a

clear exponential decrease in the isotopic ratio with increasing trophic level. The converse

pattern is true for basal compartments: our approach estimates higher turnover times and

higher uptake rates than Collins et al. (2016). This may be a consequence of our splitting

of basal compartments in active and refractory portions. In Collins et al. (2016), primary

consumers need to eat a larger quantity of their resource to get enough 15N signal, while

in our model, they need to eat a lower biomass of the active portion, which has higher 15N

concentration. Less consumption should result in lower turnover rates and higher turnover

times. A full investigation of the potential biases of the different methods will require an

intensive simulation approach.

Through our model selection exercise, we were also able to contrast some of the topo-

logical assumptions of Collins et al. (2016). While Collins et al. assumed that Eudaniela

crabs consume comparable amounts of CBOM and FBOM, our model selection exercise

shows clear evidence against the consumption of FBOM. On the other hand, while in

Collins et al. we assume that Argia damselflies only consume Tricorythodes mayflies, we

found evidence in favour of them also preying on Petrophila larvae. This illustrates the

power and importance of being able to perform model selection on isotope tracer experi-

ments. Against a priori expectations, some of the untested links appear very weak (e.g.

consumption of Petrophila by Argia). The purpose of our model comparison was illus-

trative, and a thorough examination of all trophic links is out of the scope of our article,

but we hope it is clear how this would be a straightforward exercise. We must caution,

however, that the number of models increases exponentially with every link tested, and

31



Discussion Analysis of nutrient tracer additions

one must be wary of the risks of data-dredging and overanalysis that come with testing

too many models if there are no a priori reasons to test them all.

For all its advantages, from error propagation to the use of prior information, Bayesian

models do have a main inconvenience: computing time. It took on average four hours

of computation to fit a single model to one stream, using parallel computing of the four

MCMC chains on an Intel (R) CoreTM i5 processor (4590 3.3GHz) and 8GB of RAM.

Given that one of the strongest motivations to use this method is the need to statisti-

cally analyze the increasing number of large comparative studies (Mulholland et al., 2008;

Norman et al., 2017; Tank et al., 2018), this is an important concern. However, faster com-

puters and large clusters are likely to reduce these times quickly. It is also important to be

aware of the method’s limitations and simplifications. First, our model is based a linear

Markov process, which means that all transfer rates are a constant proportion of resource

abundance. Strictly speaking, this is not a realistic assumption, since algal uptake often

follow a non linear function of nutrient availability, such as Michaelis-Menten dynamics

(O’Brien, 1974), and consumers show saturating functional responses to prey abundance

(Jeschke et al., 2002). However, this simplification, common to previous methods, is eas-

ily justified given the relatively short time-frame of isotope tracer addition experiments.

This makes it unlikely that resource abundance will vary to the point that non-linearities

cannot be approximated locally by linear functions. In fact, our methods assumes that

the system is approximately at steady state, meaning that there are no major changes

in the biomass of compartments during the period of the study. It is possible that this

assumption won’t hold for some longer experiments in highly productive environments,

and future developments of the model may alleviate this assumption using time series of

biomass data throughout the experiment.

We can think of other aspects that can be incorporated into this framework in the
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future other than non-linear uptake and growth dynamics. For example, this model could

incorporate the longitudinal dimension explicitly, as was done in Newbold et al. (1983).

In that effort, the water column was treated as a dynamic compartment and included

particle exchange between the bed and the water column (the latter being critical to

fitting the dynamics of the net-spinning caddisfly). The present manuscript, by contrast,

is not spatially explicit, replaces the water column dynamics with external forcing, and

neglects particle suspension, transport and deposition. An explicit treatment of flow and

longitudinal linkage would allow one to combine the temporal and spatial information of

tracer distribution along the stream in order to increase the accuracy of our estimates of

uptake, and turnover. This can be particularly powerful for understanding the dynamics of

nutrient pools and basal compartments (e.g. nitrification), whose faster dynamics makes

tracer differences most apparent along the spatial axis (Mulholland et al., 2000; Peterson

et al., 2001). A second potential development is the incorporation of nutrient cycling in the

form of excretion or decomposition. This would essentially involve a new set of parameters

ρi denoting the recycling rate of compartment i, (i.e. the proportion of that compartment

that returns to the NH+
4 pool). These parameters would populate the first row of the

transfer matrix Ψ. In order for compartment-specific recycling rates to be identifiable,

however, they would likely require the incorporation of priors (e.g. using supplementary

excretion trials), and the incorporation of the spatial scale proposed above.

Another possible development would be the integration of generalized linear mixed

models (GLMMs; (Bolker et al., 2009)) or other models that allow for covariates to affect

uptake and turnover rates. This would be particularly powerful in comparative analyses

across different experiments and sites, as it would improve our ability to explicitly test

effects of a paticular variable of interest (e.g. light, temperature, or time) across streams

or treatments.
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In conclusion, we have presented a method that improves the statistical rigor and of

tracer addition analyses. Our hope is that it will not only be of great use as it stands, but

also provide a baseline template for further developments and improvements that extract

the most information from such elegant experiments. Most importantly, our modelling

approach allows statistical comparisons among systems and treatments, as well as formal

testing of alternative hypotheses, expanding the utility of isotope tracer experiments in

comparative and experimental settings.
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Appendix: Tracer drip, sampling and chemical analy-

sis

Biomass sampling

Biomass of food web compartments and water chemistry in both streams were monitored in

March 2010 before isotope tracer releases began and in May 2010 after sampling concluded.

Each stream had three biomass sampling sites. We sampled one pool and one riffle at each

of the six sampling sites for a total of 6 samples per stream. Total biomass was calculated

assuming that 60% of the benthic area is composed by riffles.

We collected filtered water samples for soluble reactive phosphorus (SRP) and ni-

trate (NO−3 ) that were frozen and returned to the US for analysis. Nitrate samples were

analyzed using a Dionex ICS-90 ion chromatography system with Chromeleon software

(Dionex Corporation) and SRP samples were analyzed on a Pharmacia LKB Ultraspec

III spectrophotometer (model 80-2097-62; Pharmacia Biotech) using a method developed

by Murphy & Riley (1962). We analyzed ammonium (NH+
4 ) water chemistry in the field

using fluorometric methods with an Aquaflor handheld flurometer (Turner Designs, Sun-

nyvale, CA). Ammonium samples collected in brown opaque bottles and kept cold for

up to six hours until they were reacted with orthophthaldiadehyde (OPA). Fluorescence

was measured 2-3 hours after the OPA reagent was added. We created a standard curve

with stream water samples to correct for matrix effects and converted fluorescence to NH+
4

concentration (Taylor et al. 2007).

Because both streams contained many large rocks and bedrock that could not be re-

moved from the stream and scrubbed, we sampled epilithon with modified Loeb samplers

(Loeb 1981). Seven Loeb samples per sampling site were combined into a single sample for

analysis. Epilithon samples were subsampled and filtered through glass fiber filters (What-

35



Appendix Analysis of nutrient tracer additions

man GF/F; 0.7 µm pore size) to analyze chlorophyll-a and ash free dry mass (AFDM).

Suspended organic matter (seston) was collected on Whatman GF/F filters in the field by

filtering a known quantity of stream water, between 1 and 2 L depending on seston concen-

tration. Fine benthic organic matter (FBOM) was sampled by sinking a plastic cylinder

(bottom area = 530 cm2) into an area of soft sediment, measuring the water depth in the

cylinder, mixing the surface layer of organic matter into the water, and removing a known

quantity of slurry from the cylinder. Coarse benthic organic matter (CBOM) was sampled

by haphazardly selecting a location on the stream and removing all leaf litter and woody

material in a 0.5 m wide transect that stretched across the width of the stream at the

selected location. We dried epilithon AFDM, seston, FBOM and CBOM samples at 50°C

until they reached a constant mass and recorded all biomasses. After recording the mass

of epilithon AFDM filters, we ashed filters at 450°C for six hours and recorded the mass

of the filter plus ash.

Invertebrates were sampled at the same transects as basal resource compartments using

a Hess sampler with a 0.032 m2 area and a 250 µm net. We preserved invertebrate samples

in 90% ethanol and returned them to the US for processing and enumeration. Biomass

was calculated using standard length-mass relationships (Benke et al. 1999, Baumgartner

& Rothhaupt 2003, Sabo et al. 2002, Miyasaka et al. 2008, T. Heatherly, unpublished

data).

15N-ammonium addition

We added 15N labeled ammonium (as dissolved 15NH4Cl) to both study reaches: canopy

thinned (UL), and natural canopy (LL). We added the isotope using a continuous drip

with an injection rate of 10 mL.min−1 over a 10-day period from March 7th to 16th 2010.

The injections increased the δ15N of dissolved ammonium to approximately 20,000h.
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The target enrichment was not intended to fertilize the system, and the concentration

of 15N added was <5% of ambient NH+
4 . We also added rhodamine fluorescent dye as a

conservative tracer throughout the course of the isotope release, which we used to correct

for dilution along the study reach.

Isotope sampling and analysis

We sampled food web compartments to track the fate of the isotope tracers at three sta-

tions downstream of each point of isotope release (approximately 15, 30 and 60m down-

stream depending on the reach). Samples were collected on three days during the 10-day

isotope release (Days 3, 7 and 10), and on five days during the month following the isotope

release (Days 13, 17, 20, 30 and 40). Sampled food web compartments included: water

chemistry (15NO−3 and 15NH+
4 ), epilithon, FBOM (sampled from the sediment surface via

suction), CBOM, seston, and eight common invertebrate taxa representing all functional

feeding groups (predators, grazers, collector-gatherers, collector-filterers and shredders).

Invertebrate taxa selected were sufficiently large-bodied and abundant that they could be

collected by hand with minimal disturbance to the streambed. Many of the invertebrate

taxa we collected (Eudaniela, Euthyplocia, Psephenus, Leptonema, Tricorythodes and Ar-

gia) are among the dominant taxa in both streams, but two of our sampled invertebrate

groups, Petrophila sp. and Phylloicus sp., were not among the most abundant inverte-

brate taxa but represented functional feeding groups (scraper and shredder, respectively)

distinct from those dominant in the streams. We were unable to collect some small-bodied

but abundant taxa (e.g., chironomids) because we could not collect enough individuals for

isotope sample analysis without causing major disturbance to the streambed. We also

collected background samples from each compartment to correct for background isotopic

values. Background samples were collected either prior to the start of the experiment or
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from upstream of the control reach tracer addition point.

We dried all samples at 50°C and conducted isotopic analyses at the University of

Georgia isotope analysis facility. Basal resource sampling protocols were the same as the

biomass sampling techniques, but for invertebrates, we hand-picked individuals by turning

over rocks and sorting through organic matter in plastic trays to minimize disturbance

and ensure that sufficient numbers of each taxon were collected for isotopic analysis. We

also measured water column 15N, which we measured with a filter pack diffusion technique

(Sigman et al. 1997, Holmes et al. 1998). Specifically, we collected 900 mL of water in 1

L plastic cubitainers for 15NH+
4 samples and added a 60 µg spike of N as NH+

4 to increase

N mass to a level that is detectable by a mass spectrometer. We collected 500 mL of

water for 15NO−3 samples and transferred samples in 250 mL Nalgene bottles after boiling

to reduce volume to approximately 100 mL. Ammonium from all samples was allowed to

diffuse onto a 1.0 cm Whatman GF/D (2.7 µm pore size) filter sealed in Teflon tape for

at least three weeks before filters were harvested and dried at 50°C.
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Banašek-Richter, C., M.-F. Cattin, and L.-F. Bersier. 2004. Sampling effects and the

robustness of quantitative and qualitative food-web descriptors. Journal of Theoretical

Biology 226:23–32.

Berlow, E. L., A.-M. Neutel, J. E. Cohen, P. C. De Ruiter, B. Ebenman, M. Emmerson,

J. W. Fox, V. A. A. Jansen, J. Iwan Jones, G. D. Kokkoris, D. O. Logofet, A. J. McKane,

J. M. Montoya, and O. Petchey. 2004. Interaction strengths in food webs: issues and

opportunities. Journal of Animal Ecology 73:585–598.

Boecklen, W. J., C. T. Yarnes, B. A. Cook, and A. C. James. 2011. On the Use of Stable

Isotopes in Trophic Ecology. Annual Review of Ecology, Evolution, and Systematics

42:411–440.

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens,

and J.-S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology

and evolution. Trends in Ecology & Evolution 24:127–135.

Bond, A. L., and A. W. Diamond. 2011. Recent Bayesian stable-isotope mixing models are

highly sensitive to variation in discrimination factors. Ecological Applications 21:1017–

1023.

39



References Analysis of nutrient tracer additions

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. Stan : A Probabilistic Program-

ming Language. Journal of Statistical Software 76.

Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M.

Gille, J. R. Hodgson, J. F. Kitchell, and E. S. Kritzberg. 2005. Ecosystem subsidies:

Terrestrial support of aquatic food webs from 13c addition to contrasting lakes. Ecology

86:2737–2750.

Cole, J. J., S. R. Carpenter, J. F. Kitchell, and M. L. Pace. 2002. Pathways of organic

carbon utilization in small lakes: Results from a whole-lake 13c addition and coupled

model. Limnology and Oceanography 47:1664–1675.

Collins, S. M., S. A. Thomas, T. Heatherly, K. L. MacNeill, A. O. H. C. Leduc, A. López-
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Table 1: Notation.

Parameter Description Domain Units

Observed variables

C Number of ecosystem compartments N -
I Set of dissolved inorganic nutrient compartments - -
B Set of basal resources uptaking dissolved nutrients - -

x
(s,t)
obs,i Biomass of compartment i at sampling point s and

time t
(0,∞) mgN/m2

z
(s,t)
obs,i Proportion of marked isotope in compartment i at s

and time t
(0, 1) 1

SDi Coefficient of variation of compartment biomasses xi (0, 1) 1

State variables

x(s,t) C×1 vector of elements x
(s,t)
i = nutrient mass in com-

partment i at sampling point s and time t
(0,∞) mgN/m2

n(s,t) C × 1 vector of elements n
(s,t)
i = unmarked nutrient

mass in compartment i at sampling point s and time t
(0,∞) mgN/m2

m(s,t) C×1 vector of elements m
(s,t)
i = marked nutrient mass

in compartment i at sampling point s and time t
(0,∞) mgN/m2

z(s,t) C × 1 vector of elements z
(s,t)
i = proportion of heavy

isotope for compartment i at sampling point s and
time t

(0, 1) 1

yn
(s,t) C × 1 vector of elements y

(s)
n,i = external input of un-

marked nutrient into i at sampling point s and time
t

(0,∞) mgN/m2

ym
(s,t) C × 1 vector of elements y

(s)
m,i = external input of

marked nutrient into i at sampling point s and time t
(0,∞) mgN/m2

Estimated parameters

Ψh Transition matrix of elements ψi,j = rate of nutrient
transition between compartments j and i under model
h

(0, 1) day−1

υi,j Uptake rate from compartment j to i (0, 1) day−1

λi Loss rate of compartment i (0, 1) day−1

ki Turnover rate of compartment i (0, 1) day−1

πi Active (i.e. non refractory) portion of compartment i (0, 1) 1
η Coefficient of variation of the isotopic proportions zi,j (0, 1) 1

Derived parameters

X̂i Expected steady-state biomass of compartment i (0,∞) mgN/m2

Ti Turnover time of the active portion of compartment i (0,∞) day
T ′i Apparent turnover time of compartment i (0,∞) day
Fi,j Flux between compartment j and i (0,∞) mgN/m2 day
FT Total nutrient flux (0,∞) mgN/m2 day
PU
i,j Proportion of compartment i’s total uptake coming

from j
(0, 1) 1

PK
i,j Proportionof compartment j’s turnover due to uptake

by i
(0, 1) 1
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Table 2: Comparison of alternative models of food web structure regarding Argia and
Eudaniela diets.

Model Trophic link # param. DIC ∆DIC wDIC

Petrophila
→ Argia

Psephenus
→ Argia

FBOM →
Eudaniella

Ψ100 Yes No No 68 -2844.8 0 0.757
Ψ110 Yes Yes No 70 -2841.5 3.3 0.146
Ψ000 No No No 66 -2839.3 5.4 0.05
Ψ010 No Yes No 68 -2839.1 5.6 0.046
Ψ111 Yes Yes Yes 72 -2830 14.8 0
Ψ011 No Yes Yes 70 -2828.2 16.6 0
Ψ101 Yes No Yes 70 -2823.9 20.8 0
Ψ001 No No Yes 68 -2810.5 34.2 0
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Equation boxes

Ψ111 =

ψ1,1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ψ2,2 0 0 0 0 0 0 0 0 0 0 0 0

υepi,NH4 υepi,NO3 −λepi 0 0 0 0 0 0 0 0 0 0 0
υses,NH4 υses,NO3 0 −λses 0 0 0 0 0 0 0 0 0 0
υFBOM,NH4 υFBOM,NO3 0 0 −λFBOM 0 0 0 0 0 0 0 0 0
υCBOM,NH4 υCBOM,NO3 0 0 0 −λCBOM 0 0 0 0 0 0 0 0

0 0 υpet,NO3 0 0 0 −λpet 0 0 0 0 0 0 0
0 0 υpse,NO3 0 0 0 0 −λpse 0 0 0 0 0 0
0 0 0 υlep,ses 0 0 0 0 −λlep 0 0 0 0 0
0 0 0 0 υtri,FBOM 0 0 0 0 −λtri 0 0 0 0
0 0 0 0 0 υeud,CBOM 0 0 0 0 −λeud 0 0 0
0 0 0 0 0 υphy,CBOM 0 0 0 0 0 −λphy 0 0
0 0 0 0 0 0 0 0 υarg,lep υarg,tri 0 0 −λarg 0
0 0 0 0 0 0 0 0 0 0 0 υeut,phy 0 −λeut



Box 1: Transition matrix describing the food web structure assumed by Collins et al.
(2016).
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Figures legends

Figure 1: Schematic example/representation of a Hidden Markov Model and food-web
matrix.

Figure 2: Model fit for comparing data with credible and prediction envelopes. Solid dots
are observed data; dark grey envelopes are 95% credible intervals; and light grey envelopes
are 95% prediction intervals. Only data for the first transect of each stream is shown here.
Profiles for all three transects can be found in the Supplementary Material (Figure S1).

Figure 3: Estimates of uptake fluxes and turnover times of all compartments for Lower La
Laja (solid symbols), and Upper La Laja (open symbols). Circles and error bars represent
our estimates and 95% credible intervals. Triangles represent the estimates made by
Collins et al. (2016). Turnover was not estimated for Argia nor Euthyplocia in Collins
et al. (2016). Note that the axis scale is logarithmic.

Figure 4: Quantitative food web reconstruction of the two streams. Compartments are
represented by boxes and fluxes between them, by filled curved lines connecting them. The
white box area represents the active portion of the compartment πi, while the grey hatched
area on the basal compartments represents the non-active (refractory) proportion (1−πi).
Curve thickness is proportional to the flux rate calculated following Equation 23. The
height of all non-nutrient compartment boxes is therefore proportional to the total uptake
of N by that compartment. Box widths of non-nutrient compartments are proportional
to the compartment’s turnover time, with the width of the white area representing the
turnover time of the active component, and the total width, the overall turnover time.
The area of the box is therefore proportional to the compartment’s biomass under the
steady-state assumption (as per Equation 25). Note that the consumer fluxes (right) and
biomasses have been magnified by 10x in order to visualize differences between streams.

Figure 5: Distribution of total NH+
4 and NO−3 uptake among the three main basal com-

partments. Grey areas represent 95% credible bounds. The dashed isoline indicates equal
uptake of NH+

4 and NO−3 , with estimates above it indicating a dominance of NO−3 uptake
over NH+

4 . Estimated values can be seen in Table S3. Seston uptake is not visible because
it is very close to zero and has small credible bounds.

Figure 6: Statistical comparisons of derived parameters between streams. Each panel is
composed of two plots: an upper plot with the estimate (and 95% credible intervals) for
both streams side by side, and a lower plot with the distribution of the difference (or
ratio), and its 95% credible intervals. Each panel corresponds to a derived parameter: (A)
Total N flux FT , (B) ratio of NO−3 to NH+

4 uptake by epilithon Repi,NO3, (C) proportion of
Petrophila N in the diet of Argia PK

arg,pet, and (D) contribution of Eudaniela consumption
to CBOM turnover PU

eud,CBOM.
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Andrés López-Sepulcre1,2,3*, Matthieu Bruneaux2, Sarah M. Collins4,
Rana El-Sabaawi5, Alexander S Flecker6, and Steven A. Thomas7

1Department of Biology, Washington University in St. Louis, MO, USA
2Department of Biological and Environmental Sciences, University of
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Supplementary Material S1 Analysis of nutrient tracer additions

Supplementary Material S1. Implementation of the

model for MCMC sampling

We sampled the posterior distributions of the model parameters using the Stan program
and its R interface RStan (Carpenter et al., 2017; Stan Development Team, 2019). Stan
implements Hamiltonian Monte Carlo (HMC) sampling, which allows for more e�cient
and reliable sampling of complex model posterior than a simple Metropolis-Hastings
algorithm, especially as the dimension of the posterior increases.

Here, we present the model implementation in Stan by describing the data passed
to the sampler, the priors used and the likelihood calculation. Our description is valid
for either stream (UL and LL): we ran the model independently for both stream, and
then combined the DIC values obtained for a given foodweb topology.

The model is based on solving numerically the system of di↵erential equations
describing the foodweb topology to calculate the trajectories of marked and unmarked
nutrients based on a set of parameter values. The numerical solving of the di↵erential
equations is done using a simple discretization approach with a reasonably small dt
value, and projecting the trajectories iteratively.

Data passed to Stan

The data passed to Stan for one stream comprises (using the notations from Table 1):

• a matrix of the same size as  h containing 0 and 1 values, and serving as a mask
defining the directed connections existing between the foodweb compartments,

• the dt value of the time step used for the numerical solving of the system of
di↵erential equations describing the foodweb,

• for each transect, a vector describing the initial isotopic proportions z
(s,0) (i.e.

the initial isotopic proportions for each compartment),

• for each transect, a table providing the observed data z
(s,t)
obs,i as one observation

of proportion of marked tracer per row (with columns being the compartment
observed and the time of observation),

• for each transect and for each inorganic nutrient compartment i 2 I, one table
giving the pre-computed n

(t)
i and m

(t)
i values for every time step that will be

used when solving the ODE system (those tables are calculated from the step
functions based on the measured isotopic profiles for NH+

4 and NO
�
3 ),

• shared across all transects of the stream, the initial biomass of each compartment
(calculated from x

(s,t)
obs,i) and its estimated standard deviation SDi.

Sampled parameters and their priors

The parameters sampled by Stan are:

• all the non-zero uptake rates �i,j from compartment j to compartment i,
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• all the non-zero loss rates �j from compartment j (i.e. for all organic compart-
ments),

• the active portions ⇡i for the primary producers (CBOM, FBOM, epilithon, ses-
ton),

• the coe�cient of variation ⌘ for observed isotopic ratios

The priors we used were:

�i,j ⇠ Half-Cauchy (scale = 250) for input compartments j 2 I
�i,j ⇠ Beta (↵ = 1, � = 3, scale = 1) for all other uptake rates �i,j > 0

�i ⇠ Beta (↵ = 1, � = 3, scale = 1)

⇡i ⇠ Uniform (0, 1) for all basal compartments ⇡i < 1

⌘ ⇠ Half-Cauchy (scale = 1)

with the following compartment-specific adjustments:

�eudan,CBOM ⇠ Beta (↵ = 1, � = 3, scale = 0.5)

�lepto,seston ⇠ Beta (↵ = 1, � = 3, scale = 0.5)

where we defines X as following a scaled beta distribution Beta (↵, �, scale) if X
scale

follows a beta distribution Beta (↵, �).

Likelihood calculation

Below is a pseudo-code for the calculation of the likelihood of a set of parameter values.
It is applied for each transect of a stream.

1. Build the matrix  using the parameter values to evaluate. The refractory
portions 1�⇡i are included as separate, static compartments with no connection
to any other compartment and no loss in an expanded  , i.e. only 0s on the
corresponding rows and columns in the expanded  .

2. Build initial values of n(0) and m
(0) using the mean of observed biomasses for

compartments {x̄obs,1, x̄obs,2, . . . , x̄obs,C}, initial �15N values, and parameter values
⇡ (active portions of compartments).

3. Set t = 0. While t  40 (40 days is the latest timepoint with observations):

(a) n
(t+dt) =  · n(t) and m

(t+dt) =  ·m(t) (Equation 1)

(b) Set t t+ dt

(c) Update n
(t)
i and m

(t)
i for inorganic nutrient sources i 2 I based on the

pre-computed tables giving their values for each time point

4. Calculate the trajectories for biomasses x(t) and proportions of marked tracer z(t)

(a) x
(t) = m

(t) + x
(t)
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(b) z
(t) = m

(t) ↵ x
(t) (Equation 10)

5. Update x
(t) and z

(t) by merging active and refractory portions of split compart-
ments into single observed compartments, using weighed averages according to
⇡.

6. For each non-source compartment i 62 I:

(a) Set ti the timepoints for which this compartment was sampled

(b) Extract values ztii calculated in 4.b.

(c) Update likelihood assuming z
ti
obs,i ⇠ Gamma⇤

⇣
z
(t)
i , ⌘

⌘
(Equation 12)

(d) Extract values xti
i calculated in 4.a.

(e) Update likelihood assuming xti
obs,i ⇠ TNormlower=0

⇣
x
(t0)
i , SDi

⌘
, where x(t0)

i is

the initial biomass of this compartment (i.e. the mean of observed biomasses
for this compartment, potentially adjusted if the compartment is an active
or refractory portion of an observed compartment), and SDi is the standard
deviation of observed biomasses for this compartment.
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Supplementary Material S2. Supplementary tables

and figures

Parameter LL estimate UL estimate

⇡epi 0.136 [0.0114� 0.274] 0.45 [0.238� 0.727]
⇡CBOM 0.19 [0.0187� 0.439] 0.394 [0.0929� 0.651]
⇡FBOM 0.0775 [0.028� 0.151] 0.0503 [0.0046� 0.108]
⇡ses 0.134 [0.0151� 0.292] 0.35 [0.238� 0.475]
�epi,NH4 31.8 [20.7� 48.4] 50.1 [36.5� 68.7]
�CBOM,NH4 14.4 [3.62� 58.1] 41.3 [22.5� 84.6]
�FBOM,NH4 85.6 [44.8� 138] 134 [75.4� 216]
�ses,NH4 0.0288 [0.0185� 0.0503] 0.0146 [0.0113� 0.019]
�epi,NO3 0.00805 [0.000328� 0.0409] 0.404 [0.0698� 0.847]
�CBOM,NO3 0.401 [0.0477� 1.94] 1.08 [0.269� 2.72]
�FBOM,NO3 0.271 [0.0186� 0.852] 0.248 [0.0121� 0.79]
�ses,NO3 0.000122 [0.00000865� 0.000366] 0.0000311 [0.00000323� 0.0000849]
�pet,epi 0.0000587 [0.0000397� 0.0000855] 0.000224 [0.0000902� 0.000528]
�pse,epi 0.00443 [0.00325� 0.00629] 0.00344 [0.00232� 0.00504]
�eud,CBOM 0.0173 [0.00357� 0.102] 0.00594 [0.00197� 0.0182]
�phy,CBOM 0.000449 [0.00011� 0.00281] 0.0000896 [0.0000253� 0.000363]
�tri,FBOM 0.00197 [0.000667� 0.00519] 0.0037 [0.00169� 0.00888]
�lep,ses 0.0555 [0.0341� 0.0911] 0.0449 [0.0119� 0.0801]
�arg,pet 0.0122 [0.000531� 0.0447] 0.0632 [0.012� 0.142]
�arg,tri 0.0216 [0.005� 0.0773] 0.0183 [0.00553� 0.0591]
�eut,tri 0.119 [0.0217� 0.38] 0.0817 [0.0194� 0.236]
�epi 0.217 [0.131� 0.343] 0.189 [0.126� 0.264]
�CBOM 0.282 [0.0274� 0.773] 0.165 [0.0668� 0.382]
�FBOM 0.059 [0.0295� 0.0894] 0.0882 [0.0528� 0.17]
�ses 0.0708 [0.00454� 0.224] 0.0168 [0.000626� 0.0531]
�pet 0.013 [0.000584� 0.0455] 0.0244 [0.000928� 0.101]
�pse 0.0268 [0.0135� 0.0445] 0.0296 [0.00931� 0.056]
�tri 0.393 [0.085� 0.775] 0.124 [0.017� 0.334]
�lep 0.0306 [0.0046� 0.085] 0.543 [0.396� 0.835]
�eud 0.0336 [0.00216� 0.13] 0.0416 [0.00781� 0.133]
�phy 0.103 [0.0314� 0.705] 0.167 [0.0649� 0.584]
�arg 0.0612 [0.0184� 0.166] 0.13 [0.0762� 0.228]
�eut 0.0224 [0.00104� 0.111] 0.0209 [0.000918� 0.119]
⌘ 0.096 [0.0878� 0.105] 0.104 [0.0945� 0.115]

Supplementary Table 1: Estimates of primary parameters (median and 95% credible
interval) from the best model,  100, for the closed closed canopy (LL) and open canopy
(UL) streams.
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Compartment i
Biomass X̂i (mgN/m2)

LL UL

Epilithon 226 [192-258] 329 [279-382]
active 44.5 [34.7-57.4] 146 [83.8-246]
refractory 181 [152-207] 181 [89.9-251]

CBOM 879 [623-1100] 948 [528-1490]
active 72 [9.21-276] 266 [91.9-664]
refractory 793 [549-960] 660 [380-987]

FBOM 5410 [4990-6300] 5500 [5190-6100]
active 584 [259-1350] 518 [259-966]
refractory 4860 [4470-5120] 5000 [4700-5240]

Seston 0.663 [0.552-0.771] 0.244 [0.228-0.263]
active 0.0983 [0.0536-0.192] 0.0856 [0.061-0.12]
refractory 0.56 [0.457-0.637] 0.158 [0.128-0.186]

Petrophila 0.0908 [0.0333-0.418] 0.362 [0.0648-1.62]
Psephenus 7.54 [4.44-14.2] 18 [8.73-41.5]
Tricorythodes 2.2 [0.681-4.71] 8.58 [3.1-16]
Leptonema 0.19 [0.0548-0.995] 0.00692 [0.00161-0.015]
Eudaniela 41.2 [3.82-484] 41.5 [8.71-155]
Phylloicus 0.276 [0.0634-0.676] 0.148 [0.0281-0.37]
Argia 0.871 [0.0857-4.27] 1.45 [0.345-3.55]
Euthyplocia 11.9 [0.511-402] 35.9 [1.3-911]

Supplementary Table 2: Steady state compartment biomasses in mgN/m2 estimated
as the sum of the first two right eigenvectors of  100.
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Compartment i
Uptake Fi,. (mgN m�2 day�1) Turnover time T

0
i (days)

LL UL LL UL

Epilithon 9.88 27.6 33.5 11.8
[6.42-15] [17.6-42.9] [13.5-436] [7.56-20.9]
6.52 24.9 35.71 15.38

CBOM 17.3 46.4 23.4 15.8
[3.05-75.9] [16.9-108] [4.5-229] [5.71-66.6]

6.52 24.9 35.71 15.38

FBOM 35.2 49.3 213 222
[17.5-62.3] [27-81.6] [83.8-851] [84.5-2390]

128 244 29.41 36.71

Seston 0.0127 0.00541 61.8 45.2
[0.00717-0.0233] [0.00386-0.00773] [22.1-533] [32-66.4]

0.55 0.222 21.28 16.13

Petrophila 0.0026 0.0319 34 10.5
[0.0019-0.00366] [0.01-0.113] [15.7-145] [5.73-25.1]

0.012 0.111 12.6 11.6

Psephenus 0.196 0.505 37.3 33.7
[0.154-0.269] [0.264-0.952] [22.5-74.2] [17.8-107]

0.263 0.459 19.7 30

Tricorythodes 1.16 1.92 1.81 4.25
[0.412-2.79] [0.943-4.01] [1.03-3.76] [2.14-8.32]

0.392 2.83 6.26 3.78

Leptonema 0.00549 0.00391 32.7 1.84
[0.0027-0.0112] [0.00106-0.00664] [11.8-217] [1.2-2.52]

0.01 0.296 23.7 10.9

Eudaniela 1.17 1.54 29.8 24
[0.273-5.04] [0.513-5.45] [7.72-464] [7.51-128]

4.3 2.7 173 149

Phylloicus 0.0273 0.0241 9.75 6
[0.00726-0.22] [0.00571-0.0968] [1.42-31.8] [1.71-15.4]

0.11 0.108 7.8 27.3

Argia 0.049 0.181 16.3 7.7
[0.0131-0.124] [0.0688-0.367] [6.03-54.3] [4.39-13.1]

0.02 0.02 25.7 13.6

Euthyplocia 0.254 0.709 44.6 47.9
[0.0516-0.676] [0.159-1.41] [8.98-962] [8.42-1090]

0.3 0.8 104.2 93.6

Supplementary Table 3: Flux and turnover time estimates and 95% credible intervals.
Estimates from Collins et al. (2016) are shown in italics for comparison.
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(a) Lower La Laja (LL)
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Supplementary Figure 1: Model fit for comparing data with credible and prediction
envelopes (�15N). Solid dots are observed data; dark grey envelopes are 95% credible
intervals; and light grey envelopes are 95% prediction intervals.
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Supplementary Figure 3: MCMC chains of primary parameters for the the final model
fits. Four chains were run for each model. For each chain, the trace in the main panels
and the density plot in the side panel are shown with matching color.
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