An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse.

M. Traore², C. Gentil¹, C. Benedetto¹, J.Y. Hogrel³, A. Ferry¹, M.Lemaitre⁴, F. Pietri-Rouxel¹<u>S. Falcone¹</u>

¹Sorbonne Université, Centre de Recherche en Myologie, UM76 /INSERM U974 Institut de Myologie, F-75013, Paris, France. ²Inovarion F-75013, Paris France. ³Institut de Myologie, GH Pitié-Salpêtrière, Paris France; ⁴Sorbonne Université, INSERM, UMS28, F-75013, Paris, France

17^{èmes} Journées de la Société Française de Myologie 20-22 Novembre 2019

Muscle plasticity and compensatory response

Excitation-Contraction coupling

β1

Adult (healthy)muscle

•Anchors CaV α 1S at the T-tubule membrane

Developing muscle (independent of E-C coupling)

•Transcription factor function in MPCs

•Mediates CaVa1S -RyR interaction in E-C coupling •Required for synaptic patterning in embryo (before innervation)

$CaV\beta1$ expression after nerve damage

Denervation induces a strong increase of mRNA levels of CaVβ1 related to the appearance of an upper extra band: splicing isoform expression?

CaV β 1A was considered the isoform "muscle specific" Upper band size was suggested the expression of CaV β 1E

Alternative first exon splicing of Cacnb1 in muscle after denervation

Two different Cacnb1 transcripts depending on innervation state of muscle

A new CaV β 1 isoform: embryonic?

		Ab:CaV/i1		Ab:CaVB1E
NT	SH3	HOOK	GK	CT C:
1 2	3 4 5	6 7A 78	8 9 10 11 1	2 1 13 14 Ca
1 2	3 4 5	6 7A	8 9 10 11 1	Ca
1 2	3 4 5	6 78	8 9 10 11 1	1 13 🚺 Ca
1 2	3 4 5	<u>6</u> 7B	8 9 10 11 1	2 18 Ca
	345	6 7A	8 9 10 11 1	Ca
1 2	3 4 5	6 7A	8 9 10 11 1	11 11 Ca
1 2	3 4 5	6	8 9 10 11 12	Ca

Cacnb1-A (7A-Δ14) NM_031173 (58 KDa) Cacnb1-B (7B) NM_145121 (66 KDa) Cacnb1-C (7B-Δ14) NM_001159319 (53 KDa) Cacnb1-D (7A-Δ1,2,14) NM_001159320 (53KDa) Cacnb1-E (7A) NM_001282977 (70 KDa) Cacnb1-F (Δ7A-7B-14) NM_001282978 (52 KDa)

CaV_{β1}

Cacnb1 gene

Localization of $CaV\beta1$ isoforms in adult muscle

CaVβ1D: triadic localization-partially in nuclei

CaV β 1E: tethers Z-lines and accumulates into nuclei

Role of Cav\beta1E in adult muscle

 $\text{Cav}\beta\text{1E}$ is needed for muscle mass maintenance and regulates Gdf5 signaling

Gdf5 over-expression rescues the effects of Cav β 1E ablation in denervated muscles

 $Cav\beta 1E$ is needed for muscle mass maintenance via Gdf5 activation after nerve damage

Role of $Cav\beta 1E/GDF5$ in muscle mass maintenance

What about Cav β 1E/GDF5 axis during age-related progressive muscle mass loss?

Cavβ1E expression decreases in aging muscle

$Cav\beta 1E/Gdf5$ axis is impaired....

Effect of $Cav\beta 1E$ expression restoration in aging muscle?

Innervation, fiber size composition and CaV β 1E in ageing muscle

 $Cav\beta 1E$ expression decreased in all muscle fiber during aging, independently of typing

Exercice and CaV β 1E in ageing muscle

Exercise rapidly restores $Cav\beta 1E$ expression in aged mice, without affecting fiber type composition

$Cav\beta 1E/GDF5$ over-expression

 $Cav\beta 1E$ and Gdf5 improve aged muscle mass and function

Age (Weeks)

 $hCav\beta 1E$ expression is negatively associated to aging and muscle decline in HUMANS

Take home message

Discovery of a key role of $Cav\beta 1E/Gdf5$ axis in muscle mass maintenance

- Inducible embryonic Cav β 1E in adult muscle regulates Gdf5 pathway after nerve damage
- Cavβ1E/Gdf5 axis is altered in ageing muscle
- Cavβ1E overexpression restores aged muscle mass and function by increasing Gdf5 signaling
- Discovery of HUMAN Cav β 1E : negatively associated to aging and muscle decline

Systemic implementation of rGdf5 during aging (Patent #18184861.5)

Improvement of muscle mass and function – mechanism?

CENTRE DE RECHERCHE EN MYOLOGIE

Team Gene therapy for DMD and pathophysiology of skeletal muscle

P.de la Grange RNAseq data analysis

Y. Marie RNA sequencing

IGENSEQ

M. Lemaitre/A Ferry Sorbonne Université Assessment of muscular function

AAV production facility

J.Y. Hogrel Myology Institute Human biopsies

