
HAL Id: hal-04003128
https://hal.sorbonne-universite.fr/hal-04003128v1

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explainable Model-specific Algorithm Selection for
Multi-Label Classification

Ana Kostovska, Carola Doerr, Saso Dzeroski, Dragi Kocev, Pance Panov,
Tome Eftimov

To cite this version:
Ana Kostovska, Carola Doerr, Saso Dzeroski, Dragi Kocev, Pance Panov, et al.. Explain-
able Model-specific Algorithm Selection for Multi-Label Classification. 2022 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), Dec 2022, Singapore, Singapore. pp.39-46,
�10.1109/SSCI51031.2022.10022177�. �hal-04003128�

https://hal.sorbonne-universite.fr/hal-04003128v1
https://hal.archives-ouvertes.fr


Explainable Model-specific Algorithm Selection for
Multi-Label Classification

1st Ana Kostovska
Knowledge Technologies Department,

Jožef Stefan International Postgraduate School
Jožef Stefan Institute
Ljubljana, Slovenia

0000-0002-5983-7169

2nd Carola Doerr
CNRS, LIP6

Sorbonne Université
Paris, France

0000-0002-4981-3227

3rd Sašo Džeroski
Knowledge Technologies Department

Jožef Stefan Institute
Ljubljana, Slovenia

0000-0003-2363-712X

4th Dragi Kocev
Knowledge Technologies Department

Jožef Stefan Institute
Ljubljana, Slovenia

0000-0003-0687-0878

5th Panče Panov
Knowledge Technologies Department

Jožef Stefan Institute
Ljubljana, Slovenia

0000-0002-7685-9140

6th Tome Eftimov
Computer Systems Department

Jožef Stefan Institute
Ljubljana, Slovenia

0000-0001-7330-1902

Abstract—Multi-label classification (MLC) is an ML task of
predictive modeling in which a data instance can simultaneously
belong to multiple classes. MLC is increasingly gaining interest
in different application domains such as text mining, computer
vision, and bioinformatics. Several MLC algorithms have been
proposed in the literature, resulting in a meta-optimization prob-
lem that the user needs to address: which MLC approach to select
for a given dataset? To address this algorithm selection problem,
we investigate in this work the quality of an automated approach
that uses characteristics of the datasets – so-called features – and
a trained algorithm selector to choose which algorithm to apply
for a given task. For our empirical evaluation, we use a portfolio
of 38 datasets. We consider eight MLC algorithms, whose quality
we evaluate using six different performance metrics. We show
that our automated algorithm selector outperforms any of the
single MLC algorithms, and this is for all evaluated performance
measures. Our selection approach is explainable, a characteristic
that we exploit to investigate which meta-features have the largest
influence on the decisions made by the algorithm selector. Finally,
we also quantify the importance of the most significant meta-
features for various domains.

Index Terms—automated algorithm selection, multi-label clas-
sification, XAI

I. INTRODUCTION

Multi-label classification (MLC) is a predictive modeling
task that involves predicting the presence of multiple class la-
bels which are not mutually exclusive class labels. It is present
in many research areas (e.g., text categorization, where doc-
uments might be assigned multiple topics simultaneously [1],
[2], computer vision [3], [4], and bioinformatics [5], [6]).
For solving the MLC task, many different algorithms have
been proposed in the literature. Previous experiments have

The authors acknowledge the support of the Slovenian Research Agency
through research core grants No. P2-0103 and P2-0098, project grants No. J2-
9230 and N2-0239, the young researcher grant No. PR-09773 to AK, as well
as the EC through grant No. 952215 (TAILOR). Our work is also supported
by the CNRS INS2I project RandSearch and by the ANR T-ERC project
VARIATION (ANR-22-ERCS-0003).

demonstrated that there is no single algorithm that performs
best on all possible datasets on a given machine learning
(ML) learning task. The diversity of different MLC algorithms,
therefore, poses a new meta-optimization problem: which
algorithm to select when a new dataset becomes available to
maximize the performance metric under consideration? This
meta-optimization problem is known as the algorithm selection
(AS) problem.

AS is a task of meta-learning [7], where an ML model
is learned to predict the best performing algorithm for new
datasets (or even data instances). This requires a set of
benchmark datasets that will be used for training the AS
model, often referred to as a dataset portfolio; dataset char-
acteristics presented in the same vector space for all datasets
defined meta-features (this is known as meta-representation
or representation of the problem landscape); and data on the
performance achieved by a set of algorithms out of which the
best algorithm will be selected for each dataset, often referred
to as algorithm portfolio.

The AS task has already been explored for different learn-
ing tasks, based on the availability of the above-mentioned
resources for the learning task: the dataset portfolio, a meta-
representation for the datasets, and the performance data for
an algorithm portfolio. There are several frameworks, such as
OpenML [8], ASlib [9] and OPTION [10] that support the
development of AS for different ML and optimization tasks.

OpenML [8] is an open platform for sharing datasets,
algorithms, and experimental results that can further be used
for meta-learning about ML tasks. ASlib [9] is a repository
that contains a large number of ML datasets, together with
data about the performance of the algorithms achieved on
datasets especially designed and stored for performing AS.
OPTION [10] is an ontology developed to store and make
experimental data from single-objective optimization inter-
operable. Currently, it contains meta-features for describing

1

ar
X

iv
:2

21
1.

11
22

7v
1 

 [
cs

.L
G

] 
 2

1 
N

ov
 2

02
2



single-objective optimization problem instances coming from
the COCO benchmark suite [11], together with performance
data obtained from COCO, IOHprofiler [12], and the Meta
framework Nevergrad [13]. It is also worth mentioning that
the DACBench library [14], where instead of AS, data for
performing algorithm configuration (AC) (i.e., selecting the
best hyperparameters for a given algorithm) is stored for evo-
lutionary computation, AI planning, and deep learning tasks.
The same data can be also used in an AS learning scenario,
where different hyper-parameters for the same algorithm will
be treated as different algorithms.

The existence of the above-mentioned and similar libraries
has led to several studies in AS [15]. Tornede et al. [16]
presented a general framework for performing AS, especially
focusing on meta-learning and ensemble learning methods.
Shawkat and Smith [17] investigate AS in a classification
learning scenario involving 8 different classifiers and 100
benchmark datasets. Cohen-Shapira and Rokach [18] pre-
sented an approach for AS in clustering by using supervised
graph embeddings, 210 clustering datasets, and 17 clustering
algorithms. Kotthoff [19] provided an overview of different
methods that can be used in AS for combinatorial optimization
problems. Jankovic et al. [20] investigated per-problem and
per-instance AS for single-objective continuous optimization
problems by using a meta-representation calculated from tra-
jectory data of the algorithms and their global state variables
that are changing during the optimization process. Kostovska
et al. [21] investigated a per-run AS for single-objective con-
tinuous optimization using trajectory data of the optimization
algorithms and explored the transferability of the AS results
across different dataset portfolios or benchmark suites.

However, AS for MLC is still largely unexplored. In recent
work, Bogatinovski et al. [22] presented a study of automated
algorithm performance prediction for MLC algorithms, the
performance of 26 MLC algorithms was considered on a set
of 40 MLC datasets described with 50 meta-features. From
this data, they trained a multi-target regressor (with predictive
clustering trees) to predict the performance of the algorithms
with regard to several performance metrics. The main findings
describe the importance of the meta-features for algorithm
performance prediction with predictive clustering trees. This
study motivated us to go one step beyond and instead of
automated algorithm performance prediction to perform AS
for MLC, i.e., select the best performing algorithm for each
dataset separately. In addition, we also utilize explanation
techniques to explain the AS decisions.

The contributions of our paper can be summarized as
follows:

• Using ML, we trained MLC algorithm selector for six
different evaluation measures on a portfolio comprised
of eight different MLC algorithms. The results show
that the algorithm selector provides better results across
the different evaluation metrics when compared to the
best single algorithms, confirming our hypothesis that
state-of-the-art algorithm selection techniques provide a
promising alternative to a manual choice.

• To provide explanations for the choices made by the
algorithm selector, we investigate the impact of the MLC
meta-features on the automatic algorithm performance
prediction for each algorithm separately and combine
the contribution of the MLC meta-features based on the
selected best algorithms.

• We present domain-specific explanations for the algo-
rithm selector to explore the differences in the landscape
of MLC meta-features when training an algorithm selec-
tor for each domain separately.

Outline of the Paper: In Section II, we introduce the
problem of algorithm selection and provide a background of
the MLC meta-features used to characterize the landscape of
MLC datasets. Section III provides details of the experimental
setup and the quality estimation of the MLC selector. In
Section IV, we discuss the results of our empirical evaluation.
The domain-specific explanations of the algorithm selector are
given in Section V. Finally, Section VI concludes our study
by highlighting the main contributions and discussing possible
directions for future work.

Availability of data and code for reproducibility: Source
code, performance and landscape data, results, and figures
produced for our study are available in the Zenodo repository
accompanying this paper [23]. Please note that the repository
also contains additional information, not described here for
reasons of space limitation.

II. BACKGROUND

A. Algorithm Selection

Algorithm selection is a meta-algorithmic design technique
that addresses the problem of choosing a well-performing al-
gorithm from a finite, performance-complementary algorithm
portfolio, on a per-instance basis. There are different strategies
for building an algorithm selector (e.g., parallel algorithm port-
folios, algorithm schedules, or ML-based automated algorithm
selection). In ML, algorithm selection can be treated as a
classification or regression task. When treated as multi-class
classification, the input is the landscape features (or meta-
features) of the dataset instance, and the output (or target) is
the best-performing algorithm out of an algorithm portfolio.
Alternatively, pairwise classification can be employed, where
the relative performance of pairs of algorithms is compared
and the algorithm with the most “wins” is selected [24]. When
treated as a regression task, separate regression models for
performance prediction are trained for each algorithm in the
portfolio. The algorithm with the best-predicted performance
is selected.

To estimate the quality (or the performance gain) of an
algorithm selector, two baselines are commonly used in the
literature [15]: (i) the performance of the algorithm that
maximizes mean performance on the dataset portfolio (called
single best solver (SBS)); (ii) the oracle performance or the
virtual best solver (VBS) – a hypothetical, perfect selector
that chooses the best performing algorithm for each dataset
instance.

2



B. MLC Meta-features

Meta-learning is a sub-field of ML concerned with learning
from past experiences i.e., data on past machine learning
experiments, commonly referred to as meta-data [25]. The
main goal of meta-learning is to enable the automation of
parts of the machine learning pipeline, i.e., the selection of
machine learning algorithms that are most suitable for a given
dataset. The meta-data usually includes dataset characteristics
(or meta-features) that are relevant to the learning task. These
meta-features allow for grouping the datasets according to
their similar characteristics, which can be used for transferring
knowledge from one dataset to other datasets in the same
group.

Defining a proper set of meta-features for specific learning
tasks has been a question of interest for data scientists.
Moyano et al. [26] defined a list of meta-features specific for
multi-label classification datasets, categorized into five meta-
feature groups: (1) dimensionality, e.g., number of features,
number of labels, number of instances; (2) label distribution,
e.g., frequency, cardinality and density of labels; (3) label
imbalance, e.g., mean of inter-class imbalance ratio; (4) labels
relationship, e.g., proportion of distinct labelsets; and (5)
attribute metrics, e.g., number of binary attributes. In this
study, we use these meta-features to represent the landscape
of MLC datasets.

III. EXPERIMENTAL SETUP

This section describes the experimental setup, which in-
cludes the description of the dataset portfolio, the landscape
data associated with the datasets, the MLC algorithm portfolio,
and the performance data. Following that, we present details
on how the regression models that are the basis for building
the algorithm selector are trained. Finally, we describe how
we build the algorithm selector.

A. Dataset Portfolio and Landscape Data

The dataset portfolio consists of 38 MLC datasets that have
previously been used in various studies for benchmarking
MLC methods. The datasets come from five different
application domains (i.e., text, multimedia, bioinformatics,
medical, and chemistry). Further, the portfolio covers datasets
with a diverse number of labels (4-274), data instances (139-
17190), and descriptive features (33-49060). Our ML pipeline
for building the algorithm selector relies on having meta-
descriptors (or meta-features) of the MLC datasets in order to
train the regression models. For that purpose, we reuse a set
of 63 MLC meta-features that have already been proposed in
the literature [27] and are shown to provide promising results
when predicting algorithm performance [22]. We reduce the
initial set of 63 meta-features to 17 by calculating Pearson
correlation pairwise and removing one of the features in the
pair with a correlation larger than 0.75. All datasets and the
related MLC meta-features have been downloaded from the
publicly available MLC data catalogue [28].

TABLE I: RF hyperparameter names and their corresponding
values considered in the grid search.

Hyperparameter Search space
n estimators [50, 100]
max features [AUTO, SQRT, LOG2]
max depth [4, 8, 15, NONE]

min samples split [2, 5, 10]

B. MLC Algorithm Portfolio and Performance Data

The performance data we use here comes from a compre-
hensive comparative study of MLC algorithms [29]. The study
evaluates 26 MLC algorithms over 42 datasets (including the
38 datasets mentioned above) using 18 predictive performance
evaluation measures and two efficiency performance measures.

In this study, we are only concerned with selecting the
algorithm that performs best and we ignore the efficiency
component, i.e., we ignore the two efficiency performance
measures. Since the evaluation measures are correlated, we
remove the evaluation measures with a Pearson correlation
larger than 0.90. This leaves us with six evaluation measures:
average precision, macro F1, one error, AUROC, Hamming
loss, and micro precision.

Next, to create a portfolio of MLC algorithms with com-
plementarity in their performance, for each combination of
dataset and evaluation measure, we count the number of times
a given algorithm is performing the best. In the portfolio, we
include the algorithms that performed the best on at least
eight out of the 38 datasets for any of the six evaluation
metrics. Following this criteria, the final MLC method port-
folio consists of eight algorithms (i.e., AdaBoost [30], Cali-
brated Label Ranking (CLR) [31], [32], Deep Belief Networks
(DEEP4 version) [33], Hierarchy of Multi-label Classifiers
(HOMER) [34], Multi-label Adaptive Resonance Associative
Map (MLARM) [35], The method of Pruned Sets (PSt) [36],
Binary relevance with random forest (RFDTBR) [37], and
Random Forest of Predictive Clustering Trees (RFPCT) [?],
[38]).

C. Regression Models

For training the regression models we considered two sce-
narios:

• Single target regression (STR) – we train a separate
regression model for each evaluation metric per MLC
algorithm. That leaves us with 48 different regression
models (8 MLC methods × 6 evaluation metrics).

• Multi-target regression (MTR) – we train one regression
model per MLC method where we simultaneously try
to predict the performance of the method according to
the six evaluation metrics. In this scenario, we train
eight different regression models since we have an MLC
method portfolio of size eight.

The regression models are built with the Random For-
est (RF) algorithm as implemented in the Python package
scikit-learn [39]. The RF hyperparameters are tuned
using the grid search methodology. We tune four different RF

3



...

...

...

...

...

...

1st iteration

2nd iteration

3rd iteration

37th iteration

38th iteration

test instance

train instances

MSE 1

MSE 3

MSE 37

MSE 38

MSE 2

model candidate 1

model candidate 2

...

model candidate 72

se
le

ct
 th

e 
m

od
el

 w
ith

th
e 

sm
al

le
st

 M
SE

G
rid

 S
ea

rc
h 

-h
yp

er
pa

ra
m

et
er

 tu
ni

ng
 - 

Final regression model
for predicting the

performance of an MLC
algorithm

training a regression
model with a fixed set of

hyperparameters

Fig. 1: An illustration of the process of training a regression
model for predicting the performance for an MLC algorithm.

regression model for

...
"Ax"

se
le

ct
 th

e 
al

go
rit

hm
w

ith
 s

m
al

le
st

 M
SE

regression model for

regression model for

Fig. 2: An illustration of the process of selecting the best
performing algorithm for an algorithm portfolio of size N .

hyperparameters: (1) n estimators – the number of trees in
the random forest; (2) max depth – the maximum depth of
the trees ; (3) max features – the number of features used
for making the best split ; and (4) min samples split – the
minimum number of samples required for splitting an internal
node. Thus, for each trained model, we consider 72 different
model candidates. The full list of tuned hyperparameters and
the corresponding search spaces are given in Table I.

The regression models are evaluated with the leave-one-
instance-out strategy, where an instance is one MLC dataset.
Since we have 38 MLC datasets, we perform training 38 times
where we hold one instance for testing and 37 for training.
Finally, we compute the mean squared error and average it
across all test instances (see Figure 1.

D. Construction and Quality Estimation of the MLC Algo-
rithm Selector

After training the regression models for performance pre-
diction of each of the MLC algorithms separately, we select
the best performing algorithm (the one with the best-predicted
performance) on every dataset, w.r.t. each evaluation metric
(see Figure 2). Note that the selection process is the same for
the single and multi-target settings and the two settings only
differ in the prediction step.

To estimate the quality (or the performance gain) of the
algorithm selector, we take two approaches: (i) we treat the
algorithm selection as a multi-class classification problem and
report the macro f1 score, and (ii) we compute the absolute
difference between the target performance value reached by
the selected best algorithm and the true best algorithm.

IV. EVALUATION RESULTS

We first present the results of the algorithm selector where
we estimate its performance on the corresponding multi-class
classification problem. Fig. 3 provides the heatmap of the
macro F1 scores with each of the MLC algorithms in the
portfolio as chosen/predefined as the single best solver and
when we take predictions of the two algorithm selectors we
build (single and multi-target) for each evaluation metric.

First of all, we should note that the results are highly
dependent on the evaluation metric. For example, RFPCT can
be considered the single best solver according to the AUROC
metric (it has a 0.142 macro F1 score – the highest when
compared to the other algorithms in the portfolio). However,
for 3 out of the 6 evaluation metrics, it has a macro F1 score
of 0, which means that in the available performance data, this
algorithm did not perform the best for any of the datasets (for
the 3 metrics considered).

Further, the results indicate that there is a performance
gain when using our methodology for algorithm selection. For
instance, the macro F1 score increases from 0.142 for the
single best solver to 0.272/0.288 for the algorithm selector
build in the single/multi-target setting, when considering AU-
ROC as an evaluation metric. The single/multi-target algorithm
selector achieves the best performance, 0.401/0.471, for the
ONE ERROR evaluation metric.

Since the evaluation measures (the multiple targets in our
experimental setup) are correlated, we wanted to investigate
whether the performance of the selector improves when we
train multi-target regression models and make predictions si-
multaneously for the multiple targets (or evaluation measures).
We can observe that for 4 out of the 6 evaluation measures
considered in the study, the performance indeed improves.
However, the performance slightly drops when considering
Hamming loss as the evaluation metric (from 0.395 to 0.368)
and there is a significant drop in performance in the case of
macro F1 (from 0.396 to 0.108). This could be explained
by the fact that Hamming loss has a lower correlation with
the other evaluation metrics. However, even though macro F1
has strong a correlation with the other metrics, performance
suffers in the multi-target setting. We intend to look into

4



Fig. 3: A heatmap showing the f1-macro of the multi-class classification for each of the methods chosen as single best solvers
and for the two algorithm selectors (single and multi-target) across the six different MLC evaluation metrics.

this phenomenon in more detail in subsequent research. All
correlation plots can be found at [23].

Treating the algorithm selection as a multi-class classifica-
tion problem might not give us an accurate estimate of the
performance gain. It can happen that the selected algorithm
is not the same as the virtual best solver, but has very simi-
lar performance. The opposite is also true, the performance
difference between the selected and the virtual best solver
can be very large. To take into consideration this discrepancy
in the target value, we also provide boxplots that depict the
absolute difference between the target value reached by the
selected best and the virtual best solver (see Fig. 4). Here,
we can also observe that the algorithm selector improves
performance when comparing it to the single best solvers.
However, the performance gain (the gap closed between the
VBS and the SBS) largely depends on the evaluation metric.
More specifically, for the one error, micro precision, macro F1,
and Hamming loss we have a large performance gain, whereas
for the AUROC and average precision the performance of the
algorithm selector is very similar to the one of RFDTBR and
RFPCT taken as single best solvers.

V. EXPLAINABLE ALGORITHM SELECTION

To provide better explanations of the algorithm selection
models, we proceed with the calculation of the Shapley values,
i.e. the MLC meta-feature importance scores for the AS
models. The Shapely values quantify the marginal contribution
of the input features on the predictions made by the predictive
AS model [40]. However, the calculation of the Shapley values
is computationally expensive as it considers each possible
combination of features (a power-set of features) to determine
their contribution to the prediction process. Therefore, we ap-
ply the SHAP (SHapley Additive exPlanations) algorithm [41].

A. General explanations

In order to obtain the Shapley values for the algorithm
selector, for each MLC dataset, we first check which is the
selected algorithm and then get the Shapley values by using

the regression model trained for the selected algorithm. Next,
we provide a summary plot that illustrates the positive and
negative relationships of the meta-features with the quality
of the prediction. Each dot in the plots represents a dataset
and the MLC meta-features are listed in descending order of
importance. The colors used indicate the magnitude of the
MLC meta-feature value (red representing higher values and
blue representing lower values). Finally, the position on the
horizontal axis presents the impact of the MLC meta-feature
value on the prediction of the target. Fig. 5 shows the summary
plot for the single target algorithm selector with respect to the
one error evaluation metric. We can see that Density, Ratio
of unconditionally dependent label pairs by chi-square test
and Mean of mean of numeric attributes, appear as the top 3
most important meta-features. Because of the limited number
of pages available, the summary plots for the other evaluation
metrics and for the multi-target algorithm selector are not
included here but are available at our Zenodo repository [23].

B. Domain-specific Explanations

Next, we investigate the MLC meta-features’ importance
in the predictive performance for the algorithm selector at
the level of domains from which datasets originate. The 38
MLC datasets taken into account in this study come from 5
distinct application domains, including text (15), multimedia
(5), bioinformatics (15), medical (2), and chemistry (1)). In
the following analysis, for simplicity, we focus only on the
text, multimedia, and bioinformatics domains as they appear
as the most frequent domains in our dataset portfolio. To obtain
domain-specific explanations, we take the Shapley values of
the MLC meta-features, group them by domain and compare
the feature importance ranks to see if they vary across the
different domains.

Figure 6 depicts Venn diagrams with the top 5 most impor-
tant MLC meta-features for the text, multimedia and bioin-
formatics domain w.r.t. the one error and AUROC evaluation
measures. An interesting observation is that the most important
MLC meta-features do not overlap for the bioinformatics and

5



Fig. 4: Boxplots depicting the absolute difference in the achieved target value by the single best solver (SBS) and the target
value of the virtual best solver (VBS) for each of the evaluation metrics.

6



Fig. 5: Summary plot of the Shapley values obtained for the single-target algorithm selector and the one error evaluation metric
across all datasets.

(a) one error (b) AUROC

Fig. 6: Venn diagrams with the top 5 most important MLC meta-features for the Bioinformatics, Multimedia, and Text domains
w.r.t. the (a) one error and (b) AUROC evaluation measures.

the text domain. The same pattern can be observed for the
other evaluation measures as well (check our Zenodo reposi-
tory [23] that includes all resources and generated figures).
This might be due to the nature of the datasets, but it is
something we that should be investigated further.

VI. CONCLUSIONS

In this paper, we have investigated the potential of au-
tomated algorithm selection for the multi-label classification
(MLC) learning task. We have trained random forest models
in both single- and multi-target scenarios, to predict the
performance of the algorithms with regard to six performance
metrics. We used 38 datasets, represented with 17 selected
meta-features and an algorithm portfolio of eight MLC al-
gorithms. The results of the performance prediction were
used to select the best algorithm for each dataset separately.
The evaluation results showed that algorithm selection yields
performance gains over the scenario, which uses a single
MLC algorithm (the one which is, on average, the best for all

datasets) regardless of the evaluation measure that is predicted.
By combining the explanations obtained for each performance
prediction model separately, we have additionally provided
explanations about which meta-features most influence the
decisions made by the algorithm selector (AS).

We come to the conclusion that there is an overlap be-
tween the meta-features from the multimedia datasets and the
datasets from the bioinformatics and text domains separately
after looking at the explanations provided for various datasets
and examining them based on the dataset domain. The most
significant meta-features, however, that are used to help the
algorithm choose between datasets from bioinformatics and
text, do not overlap.

For our future work, we intend to build on this work by
incorporating additional datasets for the MLC learning task.
We will also look at how the datasets, described by their
meta-feature representation are distributed in the landscape
and choose datasets that are evenly distributed in the landscape
space that will be used to train the AS. By doing this, we hope

7



to reduce the bias of the AS toward certain types of dataset
distribution landscapes. Finally, we consider presenting a more
thorough analysis of the justifications offered by the AS and
their intersection with various dataset domains and evaluation
metrics.

ACKNOWLEDGMENT

The authors acknowledge the support of the Slovenian Re-
search Agency through research core grants No. P2-0103 and
P2-0098, project grant No. N2-0239, and the young researcher
grant No. PR-09773 to AK, as well as the EC through grant
No. 952215 (TAILOR). Our work is also supported by Paris
Ile-de-France region, via the DIM RFSI AlgoSelect project
and via a SPECIES scholarship for Ana Kostovska.

REFERENCES

[1] Z. Chen and J. Ren, “Multi-label text classification with latent word-wise
label information,” Applied Intelligence, vol. 51, no. 2, pp. 966–979,
2021.

[2] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. Dhillon, “X-bert:
extreme multi-label text classification with using bidirectional encoder
representations from transformers,” arXiv preprint arXiv:1905.02331,
2019.

[3] W. Ge, S. Yang, and Y. Yu, “Multi-evidence filtering and fusion for
multi-label classification, object detection and semantic segmentation
based on weakly supervised learning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 1277–
1286.

[4] H. Guo, K. Zheng, X. Fan, H. Yu, and S. Wang, “Visual attention
consistency under image transforms for multi-label image classification,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 729–739.

[5] Y. Guo, F.-L. Chung, G. Li, and L. Zhang, “Multi-label bioinformatics
data classification with ensemble embedded feature selection,” IEEE
Access, vol. 7, pp. 103 863–103 875, 2019.

[6] J.-P. Zhou, L. Chen, and Z.-H. Guo, “iatc-nrakel: an efficient multi-
label classifier for recognizing anatomical therapeutic chemical classes
of drugs,” Bioinformatics, vol. 36, no. 5, pp. 1391–1396, 2020.

[7] J. Vanschoren, “Meta-learning,” in Automated machine learning.
Springer, Cham, 2019, pp. 35–61.

[8] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo, “Openml:
networked science in machine learning,” ACM SIGKDD Explorations
Newsletter, vol. 15, no. 2, pp. 49–60, 2014.

[9] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney et al.,
“Aslib: A benchmark library for algorithm selection,” Artificial Intelli-
gence, vol. 237, pp. 41–58, 2016.

[10] A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and
T. Eftimov, “Option: optimization algorithm benchmarking ontology,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2021, pp. 239–240.

[11] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“Coco: A platform for comparing continuous optimizers in a black-box
setting,” Optimization Methods and Software, vol. 36, no. 1, pp. 114–
144, 2021.

[12] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck, “IOHprofiler: A
Benchmarking and Profiling Tool for Iterative Optimization Heuristics,”
CoRR, vol. abs/1810.05281, 2018, Up-to-date documentation of IOH-
profiler available at https://iohprofiler.github.io/.

[13] J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization
platform,” https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[14] T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and
M. Lindauer, “Dacbench: A benchmark library for dynamic algorithm
configuration,” arXiv preprint arXiv:2105.08541, 2021.

[15] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary computa-
tion, vol. 27, no. 1, pp. 3–45, 2019.

[16] A. Tornede, L. Gehring, T. Tornede, M. Wever, and E. Hüllermeier,
“Algorithm selection on a meta level,” Machine Learning, pp. 1–34,
2022.

[17] S. Ali and K. A. Smith, “On learning algorithm selection for classifica-
tion,” Applied Soft Computing, vol. 6, no. 2, pp. 119–138, 2006.

[18] N. Cohen-Shapira and L. Rokach, “Automatic selection of clustering
algorithms using supervised graph embedding,” Information Sciences,
vol. 577, pp. 824–851, 2021.

[19] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” in Data mining and constraint programming. Springer, 2016,
pp. 149–190.

[20] A. Jankovic, T. Eftimov, and C. Doerr, “Towards feature-based perfor-
mance regression using trajectory data,” in International Conference
on the Applications of Evolutionary Computation (Part of EvoStar).
Springer, 2021, pp. 601–617.

[21] A. Kostovska, A. Jankovic, D. Vermetten, J. de Nobel, H. Wang, T. Ef-
timov, and C. Doerr, “Per-run algorithm selection with warm-starting
using trajectory-based features,” arXiv preprint arXiv:2204.09483, 2022.

[22] J. Bogatinovski, L. Todorovski, S. Džeroski, and D. Kocev, “Explaining
the performance of multilabel classification methods with data set
properties,” International Journal of Intelligent Systems, 2022.

[23] A. Kostovska, C. Doerr, S. Džeroski, D. Kocev, P. Panov, and
T. Eftimov, “Explainable Model-specific Algorithm Selector for
Multi-Label Classification,” Jul. 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.6829671

[24] J. N. v. Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren, “Fast
algorithm selection using learning curves,” in International symposium
on intelligent data analysis. Springer, 2015, pp. 298–309.

[25] P. Brazdil, C. Carrier, C. Soares, and R. Vilalta, Metalearning: Appli-
cations to data mining. Springer Science & Business Media, 2008.

[26] J. Moyano, E. Gibaja, and S. Ventura, “MLDA: A tool for analyzing
multi-label datasets,” Knowledge-Based Systems, vol. 121, pp. 1–3,
2017.

[27] J. M. Moyano, E. L. Gibaja, and S. Ventura, “Mlda: A tool for analyzing
multi-label datasets,” Knowledge-Based Systems, vol. 121, pp. 1–3,
2017.

[28] A. Kostovska, J. Bogatinovski, S. Džeroski, D. Kocev, and P. Panov, “A
catalogue with semantic annotations makes multilabel datasets FAIR,”
Scientific Reports, vol. 12, no. 1, pp. 1–11, 2022.

[29] J. Bogatinovski, L. Todorovski, S. Džeroski, and D. Kocev, “Compre-
hensive comparative study of multi-label classification methods,” Expert
Systems with Applications, vol. 203, p. 117215, 2022.

[30] R. Schapire and Y. Singer, “Boostexter: A boosting-based system for
text categorization,” Machine Learning, vol. 39, pp. 135–168, 2000.

[31] K. Brinker, “On active learning in multi-label classification,” in From
Data and Information Analysis to Knowledge Engineering. Berlin,
Heidelberg: Springer, 2006, pp. 206–213.

[32] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker, “Mul-
tilabel classification via calibrated label ranking,” Machine Learning,
vol. 73, no. 2, pp. 133–153, 2008.

[33] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[34] G. Tsoumakas, I. Katakis, and I. P. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,” in
Proceedings of the Workshop on Mining Multidimensional Data at
ECML/PKDD 2008, 2008, pp. 53–59.

[35] E. Sapozhnikova, “ART-based neural networks for multi-label classifica-
tion,” in Advances in Intelligent Data Analysis VIII. Berlin, Heidelberg:
Springer, 2009, pp. 167–177.

[36] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using
ensembles of pruned sets,” in Proceedings of the 8th IEEE International
Conference on Data Mining. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 995–1000.

[37] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining (IJDWM), vol. 3,
no. 3, pp. 1–13, 2007.

[38] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An extensive
experimental comparison of methods for multi-label learning,” Pattern
Recognition, vol. 45, pp. 3084 – 3104, 2012.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” JMLR, vol. 12, pp. 2825–
2830, 2011.

[40] C. Molnar, Interpretable machine learning. Lulu. com, 2020.
[41] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model

predictions,” Advances in neural information processing systems, vol. 30,
2017.

8

http://species-society.org/scholarships-2022/
https://iohprofiler.github.io/
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.5281/zenodo.6829671
https://doi.org/10.5281/zenodo.6829671

	I Introduction
	II Background
	II-A Algorithm Selection
	II-B MLC Meta-features

	III Experimental Setup
	III-A Dataset Portfolio and Landscape Data
	III-B MLC Algorithm Portfolio and Performance Data
	III-C Regression Models
	III-D Construction and Quality Estimation of the MLC Algorithm Selector

	IV Evaluation Results
	V Explainable Algorithm Selection
	V-A General explanations
	V-B Domain-specific Explanations

	VI Conclusions
	References

